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Abstract

Prediction of the intrinsic disorder in protein sequences is an active research area, with well over 100 pre-
dictors that were released to date. These efforts are motivated by the functional importance and high
levels of abundance of intrinsic disorder, combined with relatively low amounts of experimental annota-
tions. The disorder predictors are periodically evaluated by independent assessors in the Critical Assess-
ment of protein Intrinsic Disorder prediction (CAID) experiments. The recently completed CAID2
experiment assessed close to 40 state-of-the-art methods demonstrating that some of them produce
accurate results. In particular, IDPnn2 method, which is the successor of fIDPnn that performed well in
the CAID1 experiment, secured the overall most accurate results on the Disorder-NOX dataset in CAID2.
fIDPnNn2 implements a number of improvements when compared to its predecessor including changes to
the inputs, increased size of the deep network model that we retrained on a larger training set, and addi-
tion of an alignment module. Using results from CAID2, we show that fIDPnn2 produces accurate predic-
tions very quickly, modestly improving over the accuracy of fIDPnn and reducing the runtime by half, to
about 27 s per protein. fIDPnn2 is freely available as a convenient web server at http://biomine.cs.vcu.
edu/servers/fIDPnn2/.

© 2024 Elsevier Ltd. All rights reserved.

Introduction

Bioinformatics studies suggest that proteins with
intrinsically disorder regions (IDRs)'~® are common
in nature, especially in eukaryotes where they
account for over 30% of proteins® °. These proteins
are implicated in pathogenesis of several human
diseases,”'° which explains growing interest in uti-
lizing them as drug targets'''°. To date, only a few
thousand IDRs were characterized experimen-
tally'®, prompting the need to develop computa-
tional methods that accurately predict intrinsic
disorder in the broadly available protein
sequences'’?°. Predictive quality of the intrinsic
disorder predictors was evaluated in several com-

parative surveys®?® and community-driven
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assessments that include CASP (Critical Assess-
ment of protein Structure Prediction), between
CASP5%° and CASP10°°, and more recently CAID
(Critical Assessment of protein Intrinsic Disor-
der).®'®? The CASP and CAID assessments were
done by independent assessors (who exclude
authors of the assessed predictors) on relatively
large and blind test datasets (the authors had no
access to these datasets before the assessment),
applying community-accepted metrics, and in the
case of CAID using predictors that were deposited
to the assessors. This arguably makes these
assessments more reliable and objective when
compared to the other evaluations that are typically
done by authors of tools on already available test
datasets.
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The first CAID has shown that several methods,
such as fIDPnn**, rawMSA®*!,  ESpritz*°,
DisoMine®®, and SPOT-Disorder2,>” generate
accurate disorder predictions with AUC (area under
the ROC curve) > 0.76 when evaluated on the Dis-
Prot dataset.'®*® Our fIDPnn predictor secured the
highest AUC of 0.81 and a commentary on the
CAID assessment noted that “fIDPnn is at least an
order of magnitude faster than its competitors, and
it succeeded on all sequences”.*>° Given this suc-
cess, we developed a new version, fIDPnn2, which
implements multiple improvements to the original
method that make it modestly more accurate and
substantially faster. These improvements include
changes to the input profile and features, slightly
increased size of the deep network model, retrain-
ing on larger training and validation datasets, and
addition of an alignment module. We submitted
flIDPnn2 along with fIDPnn to the second CAID
experiment, where fIDPnn2 secured favourable
results on the DisProt-NOX dataset.®’ The results
in CAID2°" suggest that fIDPnn2 is a state-of-the-
art predictor that supersedes fIDPnn and other
available methods, offering very accurate and fast
predictions of the intrinsic disorder.

Materials and Methods

Datasets

The dataset collection for fIDPnn2 follows the
process that we used for fIDPnn (see Supplement
for details) but using a much larger and publicly
available collection of the disorder-annotated
proteins from the version 9.1 of DisProt that we
downloaded in March 2022'°. We randomly divided
these 2,227 sequences into the training dataset
(1,527 sequences), validation dataset (200
sequences), and test dataset (500 sequences).
We designed the new predictive model using the
training and validation datasets and we compared
alternative designs of fIDPnn2 on the test dataset.
The ultimate comparative assessment against the
state-of-the-art relies on the independent evaluation
done by the assessors in the CAID2 experiment,
which was done after we completed the design
and validation of our predictor. We rely on the
results on the DisProt-NOX dataset from CAID2,*"
which is composed of 210 protein sequences that
have 19.5% of intrinsically disordered residues.
This dataset, together with the corresponding pre-
dictions from the tools that participated in the CAID2
experiment, are available at https://caid.idpcentral.
org/challenge#Data.

Evaluation

Disorder predictors produce two outputs for each
amino acid in a given protein sequence: a real-
valued propensity for the intrinsic disorder and a
binary state (disordered vs. structured). The states
are typically generated from the propensities

where amino acids with propensities greater than
a given threshold predicted as disordered, and
otherwise they are assumed to be structured. For
each considered predictor, we set the threshold to
the value that produces predictions which match
the native disorder content in the DisProt-NOX
dataset. This calibrates the binary predictions
across methods allowing us to directly compare
their results. Inspired by the CAID2 assessment,”’
we evaluate the binary predictions with F1 and
MCC (Matthews correlation coefficient) and we
use AUC (area under the receiver-operating char-
acteristic (ROC) curve) and AUPRC (area under
the precision-recall curve) to assess the propensi-
ties. Since the disordered residues are in minority
(19.5% of amino acids), we follow related stud-
ies*®*° and compute lowAUCratio and lowPRCra-
tio. These two ratios are defined as the AUC and
AUPRC values for the parts of the curves where
the amount of the predicted disorder is equal or
lower than the actual amount of disorder (i.e., disor-
der is not over-predicted) divided by the corre-
sponding AUC and AUPRC of a random predictor,
respectively. This way, these ratios quantify the rate
of improvement over the random result. We provide
a more detailed discussion of these metrics in the
Supplement.

Moreover, we assess statistical significance of
differences between predictors, focusing on
comparing other methods against fIDPnn2. We
evaluate whether differences are consistent over a
range of different test sets by performing 20
random selections of 50% of proteins from the
DisProt-NOX dataset. We evaluate significance of
differences over these 20 paired results using the
student’s ttest if the measurements are normal,
as evaluated with the Anderson-Darling test at
0.05 significance*®; otherwise we use the Wilcoxon
test. This procedure is consistent with recent related
works. 042444748 \WWe assume that the difference
is statistically significant if the resulting p-
value < 0.01.

The fIDPnn2 model

Similar to fIDPnn, the fIDPnn2 model produces
disorder predictions in three steps (Figure 1): 1)
compute a sequence profile from the input
sequence; 2) encode features from the profile;
and 3) process the features via a deep neural
network and an alignment module to generate
putative propensities of disorder.

The sequence profile extends the input sequence
with several sequence-derived/predicted structural
and functional characteristics that are relevant to
the disorder prediction. We extract this information
from the input chain utilizing popular and fast
bioinformatics tools that include (Figure 1):
positions specific scoring matrix generated with
PSI-BLAST* from the Swiss-Prot database (i.e.,
we use a small database to ensure that this calcula-
tion is fast), which we use to generate entropy-
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Figure 1. Architecture of the fIDPnn2 model. The blue elements denote major changes when compared to the

fIDPnn model.

based conservation scores,” initial disorder predic-
tion generated by IUPred2,°" which we refine and
improve using our model; secondary structure pre-
dicted with the single-sequence version of
PSIPRED®?; disordered DNA binding, RNA binding
and protein binding propensities predicted with Dis-
oRDPbind®*** and ANCHOR2,”" and disordered
linkers predicted by DFLpred.*® The major improve-
ments when compared to fIDPnn are the removal of
now outdated fMoRFpred,”® replacement of
IUPred®” with newer and more accurate IlUPred2,”"
and addition of a fast and accurate ANCHOR2.7" "

In the second step, we use the profile to compute
three feature sets: residue-level, window-level and
protein-level. We re-use the residue-level features
from fIDPnn and introduce additional window-level
and protein-level features. We calculate the
residue-level and window-level features with
the popular sliding window approach, where the
amino acid in the middle of a small sequence
segment (window) is predicted based on the
information from all amino acids in that segment.
The residue-level features correspond to the
profile values for individual residues in a small
window of size 5. The window-level features
correspond to the average over two window sizes,

5 and 21 residues. The length of the longer
window doubles the size of the shortest
disordered regions that are available in the

DisProt database (length of 10)'%°® plus one that
is for the middle residue. Similarly, window of size
5 is motivated by the minimal disordered region size
that was used in CASP assessments (length of 4)°°
plus one that is for the middle residue. Moreover,
we compute features that contrast the average-
based values from the sub-segments of 11 residues
in the middle of the 21-residues long window
against the two flanking segments of 5 residues
on both sides of the middle sub-segment. This
approach aims to detect changes among nearby
residues, such as transition from a putative helix
to a putative coil segment or from a putative non-
binding to a binding region, and was used in the
past to improve predictions of related characteris-
tics of intrinsic disorder.°®° The use of the longer,
21-residues long window and the flanking regions
are new additions to the fIDPnn2 model. We utilize
the protein-level features to quantify the overall bias
of a given protein, such as propensity to be fully dis-
ordered or having a large number of binding
regions. Like in fIDPnn, the protein-level features
include the sequence-average of the profile values,
sequence length, and the distance of the residue
being predicted to each sequence terminus. We
also add the minimum of the two distances to the
terminus (to detect proximity to either terminus)
and average of the 30% of the highest and the
30% of the lowest profile scores. The latter two
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averages attempt to detect large structural and
functional regions, such as long helices or long
binding segments.

We input the three feature sets into a deep feed-
forward neural network. We used the same network
type in fIDPnn, however, in fIDPNN2 we increase the
size of the first layer by 50%, from 318 nodes to 477,
driven by the inclusion of the additional window- and
protein-level features. Moreover, proper training of
the larger network is possible due to the
substantially larger size of the training dataset.
The input layer is followed by a dropout layer with
0.2 dropout rate, hidden layer with 64 nodes,
dropout layer with 0.2 dropout rate, second hidden
layer with 8 nodes, and the output layer with one
node that generates the propensities for disorder.
The dropout layers are meant to reduce overfitting
into the training dataset.®’ Similar to fIDPnn, we
apply the ReLU activation functions for all neurons
except for the output neuron that relies on the sig-
moid function to properly scale the output
propensities.

Finally, we add an alignment module that
combines the outputs produced by the deep
network and an alignment-based prediction using
PSI-BLAST, with an objective to improve
performance when predicting sequences that are
similar to the proteins with experimentally
annotated disorder in an alignment dataset. We
investigate the most similar protein from the
alignment dataset and if it is sufficiently similar
(i.e., sequence identity >60%) then we use the
resulting alignment to augment the predictions
from the network; otherwise we use the network
prediction. We consider four ways to combine
predictions generated by the network with the
alignment. We explain and compare these four
options with the results obtained without the
alignment module in the Supplement. This
experiment performs predictions on the test
dataset when using the training proteins as the
alignment dataset. We find that the use of the
alignment provides modest improvements in
predictive performance for each of the four
variants of the alignment module, with the best
variant producing AUC = 0.811 when compared to
AUC = 0.805 when the alignment module is
excluded (Suppl. Figure S1). The modest
magnitude can be explained by the fact that the
DisProt proteins that we use to derive training and
test datasets share low levels of sequence
similarity. The corresponding best variant
averages the network prediction with the score of
1 for residues that are aligned and annotated as
disordered, and otherwise it uses the propensity
generated by the network. The fIDPnn2
implements the alignment module using this
design and the alignment dataset that consists of
the DisProt database from March 2022. This

alignment dataset is small and thus the
computational cost of the inclusion of the
alignment module is minimal.

We also use the test dataset to quantify impact of
the main improvements implemented in fIDPnn2 on
the predictive performance (Suppl. Figure S1). We
find that replacement of IUPred with I[UPred2 and
the inclusion of ANCHOR2 lead to an increase in
AUC from 0.801 to 0.811, while the removal of
fMoRFpred does not reduce predictive
performance while saving a substantial amount of
runtime. A more detailed discussion of these
results is included in the Supplement. Altogether,
fIDPnn2 extends the original fIDPnn model by
improving the sequence profile and features,
correspondingly increasing the size of the deep
neural network, adding the alignment module,
retraining the network on a much larger training
dataset with 1,527 proteins, and streamlining
implementation of  this design. These
improvements reduce the runtime and modestly
increase the predictive performance.

Results

Comparative assessment of predictive
performance

We compare fIDPnn2 against the state-of-the-art
disorder predictors using results from the CAID2
experiment on the DisProt-NOX dataset.®’ This
assessment was performed independently by the
CAID2 assessors using predictors that were depos-
ited by the corresponding authors. The results in
Table 1 show that fIDPnn2 secures the highest val-
ues of AUPRC = 0.596, lowPRCratio = 4.1,
lowAUCratio = 6.7, F1 = 0.526 and MCC = 0.414,
and the second highest AUC = 0.838. These values
suggest that the fIDPnn2’s predictions are accurate,
with lowPRCratio and lowAUCratio revealing that
they are 4.1 and 6.7 times better than a random pre-
diction. The improvements offered by fIDPnn2 are
statistically significant for AUPRC and lowPRCratio
when compared to all 36 other predictors (p-
value < 0.01). For the lowAUCratio, fIDPnn2 is not
statistically different than fIDPnn but statistically
better than the other methods (p-value < 0.01).
For AUC, fIDPnn2, fIDPnn and Dispredict3 are not
statistically different and statistically more accurate
than the other methods (p-value < 0.01). We note
that fIDPnn2 is able to make predictions for all test
proteins (coverage of 100%), compared to some
other tools that cannot be used to predict certain
sequences (e.g. short, very long or having non-
standard amino acids). When compared to its
predecessor, fIDPnn2 generates modestly more
accurate predictions with AUPRC of 0.596
(IDPNN2) vs. 0.581 (fIDPnn), AUC of 0.838 vs.
0.835, F1 of 0.526 vs. 0.521, and MCC of 0.414
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Table 1 Comparative assessment of predictive performance on the DisProt-NOX dataset from the CAID2 experiment.
We report averages computed over the 20 repetitions using 50% of the DisProt-NOX dataset. We sort methods by their
AUPRC values. Bold font identifies the best results for a given performance metric. Statistical significance of differences
between fIDPnn2 and each of the other 36 predictors is denoted by “+” if IDPnn2 is statistically better (p-value < 0.01)
and by “=” if the difference is not statistically significant (p-value > 0.01). We provide details of the assessment protocol
in the “Evaluation” section in the Supplement. The coverage quantifies the fraction of proteins for which a given tool was
able to produce predictions. Predictors that lack reference were not published.

Predictor [reference] Coverage [%] AUPRC lowPRCratio AUC lowAUCratio F1 McC

fIDPnN2 100.0 0.596 4.07 0.838 6.73 0.526 0.414

fIDPnN*® 100.0 0.581* 3.95% 0.835~ 6.53~ 0.521= 0.409~
Dispredict3 100.0 0.579* 3.91* 0.842 6.31* 0.517° 0.404~
SPOT-Disorder2®” 82.9 0.544* 2.09" 0.777* 2.89% 0.506~ 0.303"
DisoPred 92.4 0.503* 3.21* 0.824* 4.96* 0.484* 0.364*
rawMSA>* 100.0 0.476" 3.25% 0.790* 4.75% 0.464" 0.338"
ESpritz-D* 100.0 0.475* 3.13* 0.806* 4.10* 0.442* 0.311*
IDP-Fusion®? 96.7 0.468" 297" 0.818* 4.49% 0.463" 0.339"
DisoMine®® 100.0 0.466* 3.07* 0.799* 3.92* 0.434* 0.301*
DeeplDP-2L%° 100.0 0.458* 2.94% 0.801* 4.24% 0.461* 0.335*
SETH-1%* 100.0 0.403* 2.39% 0.781* 3.45% 0.434* 0.301*
pyHCA®® 100.0 0.396* 2.36* 0.779* 3.29* 0.419* 0.283*
AlphaFold-RSA®¢-68 82.4 0.396" 1.93* 0.748* 2.56% 0.414* 0.245*
SETH-0%* 100.0 0.378* 1.79* 0.735* 2.32* 0.389* 0.212*
PreDisorder®® 95.7 0.376* 1.79* 0.729* 2.22% 0.393* 0.218*
SPOT-Disorder’® 100.0 0.370* 1.98* 0.776* 2.54* 0.373* 0.227*
SPOT-Disorder-Single”" 100.0 0.368* 2.00* 0.775* 2.66* 0.388* 0.244*
IUPred3”® 100.0 0.367* 2.09* 0.758* 2.77* 0.403* 0.264*
Dispredict2”® 96.2 0.364* 2.29* 0.645* 2.33* 0.348" 0.163*
AlUPred 100.0 0.363* 1.92* 0.770* 2.64* 0.402* 0.263*
AUCpred-profile” 99.5 0.363" 3.58* 0.767* 2.56% 0.000" 0.000"
MobiDB-lite”® 100.0 0.361* 3.24* 0.748* 3.19* 0.364* 0.236*
IsUnstruct”® 100.0 0.355* 2.15* 0.750* 2.63* 0.375" 0.228*
vsL2”’ 100.0 0.346* 2.02* 0.746* 2.48* 0.365* 0.216*
ESpritz-X*° 100.0 0.341* 1.93* 0.743* 2.45* 0.363" 0.214*
AUCpred-no-profile”* 100.0 0.337* 3.43* 0.743* 2.35* 0.307* 0.178*
PredIDR-long 100.0 0.335* 1.90% 0.743* 2.39* 0.339* 0.184*
RONN7® 100.0 0.335* 2.01* 0.724* 2.47* 0.356* 0.208*
Metapredict’® 100.0 0.334* 1.83* 0.759* 1.86* 0.328" 0.172*
PredIDR-short 100.0 0.333* 1.91* 0.738* 2.44* 0.347* 0.195*
AlphaFold-pLDDT#° 82.4 0.329* 1.36% 0.698* 1.54% 0.322* 0.128*
ESpritz-N*° 100.0 0.328* 1.85* 0.726* 2.36* 0.358* 0.208*
DisEMBL-dis465°" 100.0 0.310" 1.96* 0.680" 2.35% 0.341% 0.187*
s2D 100.0 0.291* 1.72% 0.677* 2.06* 0.316* 0.156*
DISOPRED3% 100.0 0.291* 2.26* 0.696* 1.61% 0.275* 0.116*
FoldUnfold®® 100.0 0.281* 3.47* 0.680* 1.91% 0.000* 0.000*
DisEMBL-disHL®' 100.0 0.274* 1.75* 0.635" 2.01* 0.299* 0.135"

vs. 0.409.

In the case of the AUPRC and

Interestingly, the AlphaFold-RSA’s predictions are

lowPRCratio the improvements offered by fIDPnn2
are statistically significant (p-value < 0.01). While
being modest in magnitude, these improvements
are consistent across all performance metrics.
Suppl. Figure S2 shows the ROC and precision-
recall curves for the top five tools. We find that
while fIDPnn2 has modestly lower AUC when
compared to Dispredict3, this is because
Dispredict3 performs well for the part of the curve
with  FPR > 0.15 where the disorder is
overpredicted. The higher value of lowAUCratio
for fIDPnn2 when compared to Dispredict3
(Table 1) means that the former tool performs
better for the part of the curve where intrinsic
disorder is not overpredicted (Suppl. Figure S2B).

substantially more accurate than the AlphaFold-
pLDDT variant (AUPRC of 0.396 vs. 0.329, AUC
of 0.748 vs. 0.698), which agrees with the recent
analyses.?”°"° Moreover, the better AlphaFold-
RSA is significantly less accurate than several
state-of-the art disorder predictors, which is also in
line with a recently published study®’. Moreover,
we find that the top six methods (i.e., fIDPnn2,
fIDPnn, Dispredict3, SPOT-Disorder2, DisoPred,
and rawMSA) rely on deep learning models, sug-
gesting that these models are more accurate than
other types of predictors. A similar conclusion was
reached in a recent analysis that compared deep
learning-based vs. other types of the intrinsic disor-
der predictors.?®
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We perform an additional analysis to investigate
whether fIDPnn2 performs similarly well on the
DisProt-NOX proteins that share low, below 25%
sequence similarity with the proteins in its
alignment dataset (i.e., DisProt from March 2022)
and its training dataset, which is a subset of the
alignment dataset. More specifically, we use
BLASTClust” to cluster the combined set of
sequences from the alignment and the DisProt-
NOX datasets at 25% similarity and select clusters
that do not include the alignment proteins. The
resulting sequence similarity reduced subset of
the DisProt-NOX dataset includes 193 proteins
and is available on the fIDPnn2’s page at https://bio-
mine.cs.vcu.edu/servers/fIDPnn2/. We summarize
results on this dataset in Suppl. Table S1, with the
corresponding ROC and precision-recall curves
for the top five tools in Suppl. Figure S3. Overall,
these results produce consistent observations
when compared to the results on the complete
DisProt-NOX dataset. We find that fIDPnn2 secures
the highest values of AUPRC of 0.614, lowPRCratio
of 3.48, lowAUCratio of 5.81, F1 of 0.540 and MCC
of 0.407 and the second highest AUC of 0.820, but
the difference to the highest AUC of 0.823 for Dis-
predict3 is not statistically significant. It is also con-
sistently and modestly better than fIDPnn, and its
AUPRC, lowPRCratio, lowAUCratio, and MCC are
statistically better than the results of all other predic-
tors (p-value < 0.01). The AUPRC values of
flIDPnn2, fIDPnn and Dispredict3 (i.e., predictors
that secure the highest AUCs and AUPRCs on the
DisProt-NOX dataset) for the complete DisProt-
NOX dataset are 0.596, 0.581 and 0.579 vs.
0.614, 0.592, and 0.594 on the sequence similarity
reduced subset of DisProt-NOX, respectively. The
same comparison for AUC produces 0.838, 0.835,
and 0.842 (complete dataset) vs. 0.820, 0.817,
and 0.823 (similarity reduced dataset), and for
MCC is produces 0.414, 0.409, and 0.404 (com-
plete dataset) vs. 0.407, 0.395, and 0.389 (similarity
reduced dataset), respectively. These results sug-
gest that fIDPnn2 produces accurate results for
the proteins that share low levels of similarity with
proteins in its training and alignment datasets. They
quantify performance when the alignment module is
not used, given the insufficient levels of similarity to
the alignment proteins, and suggest that this mod-
ule did not provide measurable benefits for fIDPnn2
in the CAID2 experiment. This means that the mod-
est improvements over the original fIDPnn are due
to the changes in the deep network model. Interest-
ingly, in spite of the fact that the sequence similarity
was reduced only for fIDPnn2, this predictor still
maintains similar levels of differences in predictive
performances when compared with the other meth-
ods. We note that we could not analyze results on
the sequence similarity reduced subset of the
DisProt-NOX dataset for the other disorder predic-
tors since some of them, including Dispredict3,

are unpublished and their training datasets are not
available.

Runtime

The CAID2 assessors measured the runtimes of
the predictors using the same hardware
environment (i.e., the methods were deposited
with and run by the assessors). The runtime
values, which are measured in seconds per 1,000
residues long sequence, are available at
https://caid.idpcentral.org/challenge#Runtimes.
Figure 2 summarizes the runtime against the
AUPRC values to visualize trade-offs between
predictive performance and execution time. We
find that the fastest methods, which predict in
under 1 s per protein, provide limited levels of
predictive performance, with the most accurate
Espritz-D securing AUPRC of 0.475. On the other
end of the runtime spectrum, by far the slowest
option is AlphaFold that takes 71,690 s (i.e., close
to 20 h). To compare, the top three most accurate
tools are between 260 times faster (Dispredict3)
and 2,600 times faster (fIDPnn2) than AlphaFold.
This suggests that some modern disorder
predictors are both faster and more accurate in the
context of the disorder prediction when compared
to AlphaFold. The fastest among the most
accurate methods is fIDPnn2, which takes 26.6 s,
and is 2.4 times faster than its predecessor,
fIDPnn, which takes 63.7 s. Dispredict3, which is
another tool that is comparably accurate to
fIDPnn2, secures AUPRC = 0.579 vs. 0.596 for
fIDPnn2, while needing 275.4 s vs. 26.6 s (i.e.,
over 10 times slower). Altogether, these results
suggest that fIDPnn2 is relatively fast and
substantially faster than the other very accurate
disorder predictors, including fIDPnn.

Prediction of fully disordered proteins

Similar to the CAID experiment®?, we apply the 37
methods to predict fully disordered proteins, i.e.,
proteins with a significant amount of disorder.
These proteins have unique cellular functions®*2°
and are particularly difficult to predict accurately.®®
Like in CAID, we consider several classifications
of the fully disordered proteins based on varying
amounts of disorder content (DC), defined as a frac-
tion of the intrinsically disordered residues, includ-
ing 1, 0.9 and 0.8, i.e., proteins with 100%, over
90% and over 80% of disordered residues are
assumed to be fully disordered. This is meant to
investigate whether the results are robust to these
different definitions. We use the average value of
the predicted amino acid-level propensities to make
prediction of the fully disordered proteins and sum-
marize these results on the DisProt-NOX dataset in
Suppl. Table S2. The most accurate predictions of
fully disordered proteins are generated by fIDPnn2,
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Figure 2. Analysis of runtime, quantified in seconds per a sequence of 1000 residues long (shown in log10 scale),
based on the results from the CAID2 experiment. We report the highest AUPRC value for the tools that have multiple
variants that share the same runtime, such as AlphaFold and DisEMBL.

followed by fIDPnn and Dispredict3, which is consis-
tent with the assessment of the intrinsic disorder
predictions (Table 1). We note that the margin of
the improvement of fIDPnn2 vs. fIDPnn is rather
substantial, with the average AUPRC of 0.761 vs.
0.713 and the average AUC of 0.921 vs. 0.910,
and these improvements are consistent across the
three definitions of the fully disordered proteins.
This suggests that fIDPnn2 provides more accurate
predictions of the fully disordered proteins when
contrasted with its predecessor. Moreover, the
Pearson correlation coefficients between the
AUPRC values of the 37 predictors for each pair
of the definitions (i.e., column-wise correlations in
Suppl. Table S2 between DC = 1 and DC > 0.9,
between DC = 1 and DC > 0.8, and between
DC > 0.9 and DC > 0.8) range between 0.96 and
0.99, and for AUC between 0.98 and 0.99. These
high correlations imply that the results are highly
consistent across the different definitions of the fully
disordered proteins, which agrees with the observa-
tions in CAID.*?

Web server

We release fIDPnn2 as a convenient web server
at https://biomine.cs.vcu.edu/servers/fIDPnn2/ to
maximize its impact.®” Given the relatively low run-
time of fIDPnn2, the server supports batch predic-
tions of up to 50 FASTA-formatted protein
sequences per job. The prediction process is fully
automated and done on the server side. The server
provides results in multiple formats that include raw
predictions and an interactive graphical interface,
which we detail in the Supplement.
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