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Abstract: Disordered linkers (DLs) are intrinsically disordered regions that facilitate movement
between adjacent functional regions/domains, contributing to many key cellular functions. The
recently completed second Critical Assessments of protein Intrinsic Disorder prediction (CAID2)
experiment evaluated DL predictions by considering a rather narrow scenario when predicting
40 proteins that are already known to have DLs. We expand this evaluation by using a much larger
set of nearly 350 test proteins from CAID2 and by investigating three distinct scenarios: (1) prediction
residues in DLs vs. in non-DL regions (typical use of DL predictors); (2) prediction of residues in
DLs vs. other disordered residues (to evaluate whether predictors can differentiate residues in DLs
from other types of intrinsically disordered residues); and (3) prediction of proteins harboring DLs.
We find that several methods provide relatively accurate predictions of DLs in the first scenario.
However, only one method, APOD, accurately identifies DLs among other types of disordered
residues (scenario 2) and predicts proteins harboring DLs (scenario 3). We also find that APOD’s
predictive performance is modest, motivating further research into the development of new and more
accurate DL predictors. We note that these efforts will benefit from a growing amount of training
data and the availability of sophisticated deep network models and emphasize that future methods
should provide accurate results across the three scenarios.

Keywords: intrinsic disorder; disordered linkers; protein structure; protein function; prediction; assessment

1. Introduction

Intrinsically disordered regions (IDRs) are segments in protein sequences that lack
stable tertiary structure under physiological conditions [1]. While cellular functions of
many IDRs involve transitioning into a structured state(s), the entropic disordered regions
function by shifting between conformational states without becoming structured [2,3]. The
most commonly annotated type of entropic disordered regions in the DisProt database [4-7],
which is the main source of functionally annotated IDRs [4], are the disordered flexible
linkers (DLs). They are defined as regions that connect, provide separation, and permit
movement between adjacent functional regions, which could be structured domains or
disordered motifs (IDPontology term: 00503 [4,8]). DLs are distinct from flexible linkers,
which are flexible (but not necessarily disordered) inter-domain regions (e.g., hinges) that
allow domains to move relatively to each other [9] in several ways: they are intrinsically
disordered, longer, and localized in both inter-domain and intra-domain fashion [10]. DLs
contribute to many cellular functions, with just a few examples that include allosteric
regulation [11], peptide aggregation [12], phase separation [13], and DNA packaging [14].
Furthermore, some DLs act as entropic clocks that are crucial for timing various cellular pro-
cesses, e.g., the timing of the intra- and inter-molecular binding events involved in gating
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and clustering processes of the voltage-activated potassium channels [15] via the so-called
“ball and chain” mechanism [16,17]. Long DLs contribute to the functionality of stochastic
machines, which are protein complexes formed via the fusion of proteins with flexible
linkers that can dramatically accelerate chemical interactions between them by their colo-
calization and random movements and not via coordinated conformational changes [18].

Although it may seem that any IDR can act as a linker [19], the levels and depth of dis-
order in proteins can be very different, with different “disorder flavors” being distinguished
based on differences in amino acid compositions, sequence locations, and biological func-
tions [20]. Even at the global level (i.e., at the level of a whole protein or protein domain),
one can clearly distinguish compact (molten globule-like) and extended disorder (coil-like
and pre-molten globule-like) [21,22]. Furthermore, since different parts of a protein can be
(dis)ordered to a different degree, a protein molecule may exist as a dynamic structural
ensemble of foldons, inducible foldons, inducible morphing foldons, nonfoldons, semi-
foldons, and unfoldons, with all these differently (dis)ordered elements possessing different
specific functions [2,3]. In other words, the intrinsic disorder phenomenon underlies the
structure—function continuum model linking structural heterogeneity and multifunctional-
ity of proteins. Here, independently foldable units or foldons of a protein can contribute to
the catalytic and transport functions, whereas IDRs can (partially) fold when interacting
with binding partners (inducible foldons) or even fold differently upon interaction with
different binding partners (inducible morphing foldons) or could be in a semi-folded form
(semifoldons). Moreover, ordered protein regions that undergo an order-to-disorder transi-
tion to become functional (i.e., unfoldons) are related to a vast set of dormant or cryptic
disorder-associated functions [23]. Finally, various entropic disordered region activities,
including DLs, are ascribed to the nonfoldable protein regions or nonfoldons.

Looking at this structural and functional heterogeneity of IDRs [2,3], it is clear that spe-
cific computational methods are required if one would like to find specific disorder-based
functions in query proteins. Recent bioinformatics analysis suggests that thousands of
proteins are likely to have DLs, including about 7% of human proteins that were predicted
to have one or more long DL regions that are at least 20 consecutive residues in length [10].
Given that only about 400 experimentally annotated DLs are currently known [4], several
computational predictors that identify these regions in protein sequences were devel-
oped [24]. They include DFLpred [10], APOD [25], and TransDFL [26]. These predictors
were trained to predict DLs defined in the DisProt database (IDPontology term: 00503). At
the same time, well over 100 methods that predict a more generic class of disordered regions
were published [24,27-30]. The predictive performance of these methods was evaluated
in two large and recently completed community-driven Critical Assessments of protein
Intrinsic Disorder prediction (CAID): CAID1 [31,32] and CAID2 [33]. These assessments
are performed by independent assessors (who exclude authors of the evaluated methods)
using large and blind benchmark datasets (authors of predictors have no access to these
data before the assessment), community-accepted protocols and metrics, and predictors
that are provided by the authors to the assessors before the experiment. This makes these
assessments arguably more objective and reliable compared to smaller-scale evaluations
that are done when individual methods are published and evaluated by the authors of
these methods.

In particular, CAID2 was the first assessment that included an evaluation of the predic-
tions of DLs. The organizers used a dataset of 40 proteins that have DLs to comparatively
evaluate 41 predictors, which include two DL predictors and 39 disorder predictors [33].
The results, which are summarized in Figure 3C,D in ref. [33], suggest that several methods
perform relatively well. Specifically, SPOT-Disorder2 [34], SETH [35], and Dispredict3
(unpublished) are shown to secure the Area Under the ROC Curve (AUC) of 0.782, 0.770,
and 0.744, respectively. However, this analysis considers a rather narrow scenario where
these methods are applied to predict residues in DLs in proteins that are already known to
have DLs. Moreover, DL residues are the only disordered residues for 45% of the 40 pro-
teins that were used in this evaluation, essentially allowing generic disorder predictors
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to correctly identify disordered linkers. In other words, this evaluation does not address
a broader scenario where residues in DLs must be separated from the majority of other
types of disordered residues. Motivated by the availability of quality benchmark data and
predictions from the CAID2 experiment, we evaluate predictions of DLs by considering
several arguably more practical scenarios. First, we test accuracy when making predictions
of residues in DLs for a broad collection of over 300 proteins that include a variety of
different types of intrinsically disordered residues, including the 40 proteins harboring DLs.
Second, we specifically evaluate whether the current methods can accurately differentiate
between residues in DLs and other types of disordered residues. Third, we assess whether
those methods are able to distinguish proteins harboring DLs from other proteins that do
not harbor DLs. This is a useful scenario for methods that struggle with predicting the
correct positions of DL residues but which accurately identify the presence of these residues
in a given sequence, especially if they make these predictions very quickly, facilitating
applications to large collections of proteins. Following CAID2, we evaluate both the DL
predictors and generic disorder predictors in the context of the DL prediction assessment.
The inclusion of the latter group of methods is also motivated by the fact that DLs can be
seen as IDRs on the extreme end of the intrinsic disorder spectrum, as they are nonfoldons.
This means that disorder predictors might be able to predict residues in DLs with higher
propensities for disorder than other types of IDRs that undergo some form of folding (e.g.,
inducible foldons, inducible morphing foldons, or semifoldons).

2. Materials and Methods

We use the full CAID2 test set available at https:/ /caid.idpcentral.org/challenge, which
we accessed on 5 October 2023. This dataset includes 348 proteins and 287,020 residues.
Among the 348 test proteins, 40 (11.5%) have DLs. There are 37,072 intrinsically disordered
residues (12.92% of residues are disordered), including 2,023 DL residues, i.e., 5.5% of the
disordered residues are disordered linkers.

We consider all methods that participated in CAID2. However, we eliminate methods
that achieve below 90% coverage, i.e., they are unable to make predictions for more than
10% of proteins. This could be because they can only be applied to protein sequences
of a certain length and/or may not work for sequences that have nonstandard amino
acids. Keeping these methods would lead to comparisons performed on substantially
different datasets (different collections of proteins), which would adversely affect reliability
of the corresponding observations. We note that the two DL predictors that participated
in CAID2, DFLpred [10] and APOD [25], were able to predict the 348 test proteins (100%
coverage). We cannot include the third DL predictor, TransDFL, since its authors did not
deposit it to CAID2, and consequently, it cannot be evaluated using a fair setup where the
benchmark dataset is equally unknown to the authors of the methods, i.e., some of the
CAID2 test proteins could potentially be used to train the TransDFL model. In total, we
assess a comprehensive collection of 37 methods that include the two DL predictors and
35 predictors of disorder. The latter predictors are (alphabetically) AIUPred (unpublished
method by Zsuzsanna Dosztanyi), AUCpreD [36], DeepIDP-2L [37], two versions of Dis-
EMBL (DisEMBL-dis465 and DisEMBL-disHL) [38], DisoMine [39], DisoPred (unpublished
method by Min Li), DISOPRED3 [40], Dispredict2 [41], Dispredict3 (unpublished method
by Md Tamjidul Hoque), three versions of ESpritz (ESpritz-D, ESpritz-N, and ESpritz-
X) [42], four versions of fIDPnn (fIDPnn, fIDPtr, fIDPIr2, and fIDPnn2) [43], FoldUnfold [44],
IDP-Fusion (unpublished method by Bin Liu), IsUnstruct [45], IUPred3 [46], Metapre-
dict [47], MobiDB-lite [48], two flavours of PredIDR (PredIDR-long and PredIDR-short;
unpublished methods by Kun-Sop Han), PreDisorder [49], pyHCA [50], rawMSA [51],
RONN [52], s2D (unpublished method by Michele Vendruscolo), two versions of SETH
(SETH-0 and SETH-1) [35], SPOT-Disorder [53], SPOT-Disorder-Single [54], and VSL2 [55].
Brief descriptions of these methods are available at https://caid.idpcentral.org/overview.
We collected their predictions from https://caid.idpcentral.org/challenge.
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The above methods predict propensities for DLs (for DFLpred and APOD) and in-
trinsic disorder (for the other 35 methods) for each residue in an input protein sequence.
We evaluate these predictions by comparing these propensities against the ground truth
annotations of DLs. We rely on the same metrics that were used in the CAID1, CAID2,
and other recent assessments of disorder predictors [28,31,33,56-60]. They include AUC,
lowAUCratio, and Area Under the Precision-Recall Curve (AUPRC), which quantify the
performance of the predicted propensities. The lowAUCratio focuses on a part of the ROC
curve where the number of residues predicted to be in DLs is relatively low (conservative)
and does not exceed the number of native DL residues. It is calculated as the AUC for false
positive rates that are lower than the rate of native DL residues, which is divided by the
corresponding AUC of a random predictor. Consequently, a lowAUCratio > 1 means that
the corresponding predictions outperform a random result, where a value of 2 denotes
twice better AUC. Moreover, we compute the F1 and Matthews Correlation Coefficient
(MCC) that evaluate the performance of binary predictions (i.e., linker vs. non-linker).
Following CAID1 [31], we compute Flmax and MCCmax. These are the maximal values of
F1 and MCC established by binarizing the predicted propensities with different thresholds
and selecting the threshold that produces the highest value of F1 or MCC. Larger values
for each of these four metrics indicate that the accuracy of the underlying predictions is
higher. We perform sampling to facilitate direct comparisons of the measured metrics
between experiments. Specifically, we keep all residues in DLs and randomly sample the
residues in non-DLs to obtain the content/fraction of the DL residues that is equal to the
content/fraction of intrinsically disordered residues in the CAID2 dataset. This way, we
can compare the quality of the linker predictions in the various scenarios that we consider
(prediction residues in DLs vs. in non-DL regions; prediction of residues in DLs vs. other
disordered residues) with the quality of the disorder predictions from the CAID2 experi-
ment. Finally, we perform statistical significance tests between the leading/most accurate
method and the other considered methods. This test assesses whether the improvements
offered by the best method are robust across diverse datasets. To do that, we sample 50%
of test proteins 10 times, and we compare the corresponding 10 results for a given pair
of methods. We use the Anderson-Darling test at 0.05 significance to test whether the
resulting measurements are normal; for normal measurements, we assess significance using
the t-test; otherwise, we utilize the Wilcoxon test. While such tests are commonly used in
disorder prediction assessments [58-60], they were not reported in CAID2, where only the
overall/dataset-level scores are available.

3. Results
3.1. Prediction of Residues in Disordered Linkers in Protein Sequences

We assess the quality of predictions of residues in DLs for the 37 methods on the test
dataset that includes a variety of proteins harboring DLs and other types of disordered
regions. We find that the predictive quality ranges between modest (AUC between 0.70
and 0.72, and AUPRC between 0.25 and 0.3) and poor (AUC < 0.55 and AUPRC < 0.15),
see Table 1. The best-performing methods, which secure AUC > 0.7 and AUPRC > 0.25,
include APOD [25], which was specifically designed to predict residues in DLs, and
SETH [35]. The key characteristic of the disorder predictor SETH is that it was trained
on disorder annotations from the NMR and chemical shift experiments that produce real-
valued propensity for disorder, unlike the large majority of the other disorder predictors
that rely on the binary (disordered vs. structured) annotations of disorder for training. The
other methods have significantly and consistently lower predictive performance across
the five metrics compared with the overall most accurate APOD (p-value < 0.05). The low
predictive performance of many of these methods is because they were designed to predict
disordered residues, and apparently, their predictions cannot be used to accurately predict
DL residues from among other disordered and structured residues. The modest nature of
the predictive quality is also clear from the moderate values of the correlation coefficients
(MCCs) that are between 0.25 and 0.3 for the best-performing predictors (APOD, SETH,
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and PredIDR). To compare, CAID2 results (Figure 2A,B in ref. [33]) reveal that several
disorder predictors, such as fIDPnn2, Dispredict3, DisoPred, and fIDPIr2, secure AUC > 0.8
and AUPRC > 0.5 when applied to predict intrinsically disordered residues.

Table 1. Predictive performance for the prediction of residues in DLs on the CAID2 test dataset with
348 proteins. Predictors are sorted using their AUC values. We report averages from the ten test
experiments. Performance metrics that are significantly different from the results of the most accurate
method listed at the top of the table are denoted by + (p-value < 0.05); = means that the difference
is not significant (p-value > 0.05). We explain the metrics and test procedure in the Materials and
Methods section.

Predictors AUC lowAUCratio AUPRC Flmax MCCmax
APOD 0.723 3.82 0.292 0.381 0.281

SETH-1 0.712 = 2.70 0241+ 0.349 + 0241+
SETH-0 0.708 = 296 % 0.257 * 0340 % 0.230 *
PredIDR-short 0.694 * 3.15% 0.246 * 0341 % 0244 *
PredIDR-long 0.683 + 290+ 0.233 *+ 0.337 *+ 0.246 +
Dispredict3 0.682 = 161t 0.205* 0346 * 0.234 +
AUCpreD 0.675* 1.94* 0210 * 0.328 * 0.207 *
fIDPnn 0.661 + 1.81° 0.204 + 0.340 * 0225+
fIDPnn2 0.653 + 191* 0.200 * 0.330 * 0214+
IDP-Fusion 0.652 * 1.51* 0.193 * 0.328 * 0.204 *
s2D 0.648 + 1727 0.189 + 0.302 * 0171+
fIDPIr2 0.646 + 248 * 0215+ 0.338 * 0221+
DeepIDP-2L 0.642 * 1.56 * 0.197 * 0.340 * 0.222 *
PreDisorder 0.641 3.00* 0.262 = 0.350 * 0219+
RONN 0.640 * 1517 0.185* 0.301 * 0171+
fIDPtr 0.635* 1.58 * 0.183 * 0.301 % 0.171°
IsUnstruct 0.631 + 1317 0.178 * 0.303 * 0.178 *
Metapredict 0.629 + 0.52* 0.163 * 0.296 * 0171+
DisoPred 0.621* 1.84 0.192 * 0.307 * 0.179 *
SPOT-Disorder-Single 0.620 + 1467 0.176 * 0.290 * 0.151 +
SPOT-Disorder 0.617 *+ 091+ 0.169 * 0301 % 0.173 *
DisEMBL-disHL 0.616 * 1.75* 0.179 * 0278 * 0.137 *
DisoMine 0.615+ 0.63* 0.161 * 0.290 * 0.159 +
ESpritz-N 0.615* 1.63% 0.179 * 0.280 * 0.141+
MobiDB-lite 0.613 * 1.74* 0.176 * 0282 % 0.142 *
DisEMBL-dis465 0.610 * 1.76 * 0.179 + 0279 * 0.137 +
DISOPRED3 0.609 * 079 % 0.163 * 0.299 * 0.164 *
rawMSA 0.606 * 1.70 * 0.187 * 0.323 % 0.197 *
VSL2 0.605 + 0.67 * 0.155* 0.290 * 0.157 +
IUPred3 0.602 + 121+ 0.165* 0.281* 0.143 *+
ESpritz-X 0.602 + 1.25% 0.168 * 0276 * 0.132*
AIUPred 0.595 + 0.84* 0.160 * 0.283 * 0.145+
FoldUnfold 0.581* 1.39 * 0.154 * 0.263 * 0.109 *
Dispredict2 0573 + 122+ 0.160 * 0274+ 0121+
pyHCA 0.569 + 154 ° 0.165* 0.266 * 0.136 %+
DFLpred 0.526 + 151% 0.153 * 0235 % 0.070 *

ESpritz-D 0512+ 0.99 * 0.138 + 0.253 + 0.109 *

The ROC and PR curves for the top ten methods from Table 1 are in Figure 1A,B,
respectively. The lowAUCratio metric focuses on the arguably most practical left side of the
ROC curves, which corresponds to the predictions with low false positive rates, i.e., where
the number of predicted residues in DLs does not exceed the number of native residues in
DLs. We note that several methods, including APOD, SETH, PredIDR, PreDisorder, and
fIDPIr2, secure a lowAUCratio of about 2.5 or higher. This means that they outperform a
random predictor by a factor of at least 2.5 for the low false positive rate part of their ROC
curves (Figure 1A).
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Figure 1. ROC curves and PR curves for the tests on the CAID2 test dataset with 348 proteins. Panels
(A,B) focus on the assessment of the predictions of DL residues in sequences. Panels (C,D) are for the
predictions of residues in DLs vs. other disordered residues. Panels (E,F) are for the prediction of
the proteins harboring DLs. Each panel includes results for the top 10 methods for a given metric

and dataset.

3.2. Prediction of Residues in Disordered Linkers among Disordered Residues

DLs are one of the many types of IDRs, which also include regions that interact with
proteins and peptides, such as MoRFs [61], regions that interact with nucleic acids and
lipids, molecular recognition display sites that host PTM sites, and self-assembly regions [4].
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Given the variety of disorder functions, it is important to accurately differentiate residues
in DLs from other categories of disordered amino acids. We test this by evaluating the
ability of the 37 methods to predict residues in DLs among the native disordered residues
in the CAID2 test dataset. Results in Table 2 show that only two methods, APOD and
DFLpred, are capable of identifying residues in DLs in this scenario. These two methods
were designed to predict DL residues, while the other 35 methods predict all disordered
residues and, thus, expectedly, cannot accurately predict residues in DLs. APOD secures
an AUC of 0.72, a lowAUCratio of 3.0, an AUPRC of 0.27, and an MCC of 0.26, matching its
ability to predict residues in DLs among all residues from Table 1. The disorder predictors
produce near-random levels of predictive quality and are significantly less accurate than
APOD across the five metrics (p-value < 0.05). While DFLpred also provides statistically
worse results compared to APOD (p-value < 0.05), it is more accurate than the disorder
predictors (AUC of 0.61 vs. AUC < 0.55). The corresponding ROC and PR curves are in
Figure 1C,D, respectively. They reveal a substantial gap between the curves of APOD
and the other 36 predictors. Altogether, this analysis suggests that currently, only APOD
is capable of relatively accurately differentiating residues in DLs from other intrinsically
disordered residues.

Table 2. Predictive performance for the prediction of residues in DLs vs. other disordered residues
on the CAID2 test dataset with 348 proteins. Predictors are sorted using their AUC values. We report
averages from the ten test experiments. Performance metrics that are significantly different from the
results of the most accurate method listed at the top of the table are denoted by + (p-value < 0.05).
We explain the metrics and test procedure in the Materials and Methods section.

Predictors AUC lowAUCratio AUPRC Flmax MCCmax
APOD 0.724 3.00 0.269 0.367 0.264
DFLpred 0.614 + 1.63° 0.181* 0279 + 0.136
s2D 0.541 + 1.03* 0.142 * 0249 * 0.076 *
PredIDR-short 0.530 * 217 % 0.173 * 0.290 * 0.159 *
PreDisorder 0517+ 198 * 0.172 *+ 0270 * 0.135+
SETH-0 0512+ 1.88* 0.167 * 0251+ 0.108 *
DisEMBL-disHL 0.506 * 076 * 0.128 * 0237 * 0.043 *
PredIDR-long 0.505 + 211+ 0.168 * 0.284 *+ 0.160 *
SETH-1 0.503 + 1.07* 0.136 * 0.248 * 0.077 *
DisEMBL-dis465 0.495 * 0.68* 0.126 * 0.239 * 0.046 *
RONN 0482+ 0.61* 0.124 + 0241+ 0.059 *
AUCpreD 0477+ 1.01° 0.128 * 0236 * 0.039 +
DISOPRED3 0474 * 055 % 0.120 * 0.239 * 0.052 *
Dispredict2 0465t 047 * 0.114 * 0232+ 0.055+
IsUnstruct 0.449 * 046 % 0.113 * 0236 * 0.043 *
ESpritz-N 0.447 * 081% 0.119 * 0.233 * 0.048 *
FoldUnfold 0.437 0.83* 0.119* 0.186 * 0.003 +
DeepIDP-2L 0.427 + 0.18* 0.109 * 0.237 * 0.042 +
Dispredict3 0427 * 0.08 * 0.106 * 0227 * 0.042 *
fIDP1r2 0421+ 0.10* 0.108 * 0236+ 0.051+
ESpritz-X 0420+ 0.80 * 0.117* 0.234* 0.042 +
MobiDB-lite 0419 * 030* 0.113 * 0.206 * 0.009 *
Metapredict 0415+ 046 * 0.112* 0.239 *+ 0.063 +
SPOT-Disorder-Single 0414+ 042+ 0.109 * 0.233 * 0.040 *
flIDPnn 0412 % 0.01% 0.104 * 0.235* 0.045 *
VSL2 0.409 + 0.19* 0.103 * 0234 * 0.036 *
rawMSA 0401 % 0.00* 0.103 * 0.235* 0.035*
fIDPnn2 0.400 * 0.07* 0.102 * 0234+ 0.043 *
IUPred3 0.397 + 0.62* 0.106 * 0.233 *+ 0.042 +
IDP-Fusion 0.390 + 0.11%* 0.102 * 0236 * 0.032*
SPOT-Disorder 0.383 * 028" 0.101 * 0.230 * 0.030 *

AlIUPred 0.380 * 0.50 * 0.105* 0.233 * 0.045*
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Predictors AUC lowAUCratio AUPRC Flmax MCCmax
pyHCA 0.368 * 0.60* 0.105 * 0.227 * 0.028 +
fIDPtr 0.367 * 0.10* 0.096 * 0231 % 0.033 *
DisoPred 0.360 * 037 % 0.101 % 0238 * 0.031°
DisoMine 0.340 * 0.04* 0.092 * 0.233 * 0.046 *
ESpritz-D 0282 % 016 % 0.087 * 0229 * 0.033 *

3.3. Prediction of Proteins Harboring Disordered Linkers

Based on the current data in version 9.4 of the DisProt database [4], about 10.6% of
the intrinsically disordered proteins harbor DLs (i.e., 282 out of 2649 proteins in DisProt).
This is similar to the rate of DLs in the CAID2 test dataset that we use (11.5%; 40 out of
348 test proteins). The first step in finding DL residues is to identify proteins that have
these regions. We are the first to design an approach for that purpose and evaluate the
current residue-level methods in this context.

We use the residue-level predictions generated by each of the 37 predictors to generate
protein-level scores that can be used to identify proteins harboring DLs. DLs range between
10 and 288 consecutive residues in length, with a median length of 31, in the test dataset.
Correspondingly, we process the residue-level scores to identify segments of consecutive
residues with high propensities. More precisely, we apply sliding windows of size 10
(minimal DL length) and 31 (median DL length) to scan the input sequences. We compute
an average of the residue-level propensities in each window and select the highest of these
averages as the protein-level score. This simulates identifying a DL region in the sequence,
which by definition should be composed of consecutive residues that obtain high predicted
propensities. Moreover, as an alternative, we compute an average of the predicted residue-
level propensities for the 10 and 20 residues with the highest propensities. These two
protein-level scores focus on the subset of residues with the highest scores, as they would
be a proxy for the presence of DLs. We do not consider using the average for all residues in
the sequence since DLs cover a relatively small fraction of the amino acids in the sequences.
We empirically compare the four protein-level scores that we define above by applying
them to the predictions of the 37 methods. We pick the most accurate of the 37 methods for
each protein-level score, as measured using the AUC and AUPRC of the corresponding
predictions. Results, which we summarize in Figure 2, reveal that APOD generates the best
protein-level scores. This agrees with the relatively best predictive quality of this method in
Tables 1 and 2. Among the four protein-level scores, the approach based on the median size
sliding window produces the best performance, with AUC of 0.664 and AUPRC of 0.226.
This can be explained using the fact that this approach most closely mimics the underlying
characteristics of DLs, including their size and segment-based nature.

We compare the results obtained by the 37 predictors using the best-performing
protein-level scores in Table 3. APOD’s predictions are the most accurate, reaching a
lowAUCeratio of 2.6 and an MCC of 0.22. This corresponds to low levels of correlation with
the ground truth and the 2.6-fold improvement over a random predictor, respectively. Most
of the other methods have significantly lower predictive performance when compared
with APOD (p-value < 0.05), with the exceptions of DFLpred, which obtains lower AUC,
PreDisorder, and s2D that secure lower lowAUCratio and AUPRC, and PredIDR that
has a lower F1 and MCC, but where these differences are not statistically significant
(p-value > 0.05). The corresponding ROC and PR curves are in Figure 1E,F, respectively.
These curves have a serrated shape because this evaluation is conducted at the protein
level, where there are 40 proteins harboring DLs (i.e., 40 positives). While the ROC curves,
in general, are better than random (i.e., above the diagonal line), only the curves for APOD
and PreDisorder perform relatively well for low false positive rates where the predictions
are practical (i.e., where a relatively limited number of proteins without DLs are incorrectly
predicted to have them). This is why these two methods secure the highest values of
lowAUCratios at 2.6 and 2.4, respectively. Overall, the analysis of Table 3 and the two
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curves suggests that APOD outperforms the other methods for the prediction of proteins
harboring DLs; however, its predictive quality is rather modest.

0.670 + 0.664 0.226 AUC mAUPRC - 0.24
0.660 —+ + 0.22
0.650 + 0.191 0.192 0.188 ~-T 0.20
0.637 (@)
0.640 + + 0.18
o
S 0.632 0.633 o«
< 0630 1 to16 2
0.620 + + 0.14
0.610 + + 0.12
0.600 T T T + 0.10
max max MinWindow10avg  avg ToplOresidues avg Top20residues
MedianWindow31avg using APOD using APOD using APOD
using APOD

Figure 2. Predictive performance for the prediction of proteins harboring DLs on the CAID?2 test
dataset with 348 proteins. We compute the protein-level scores from the residue-level predictions
using four approaches: sliding windows of size 10 and 31 and averaging the 10 and 20 residues with
the highest predicted propensities. We compare results generated using each of the 37 predictors
and select the best method for each of the four protein-level scores, i.e., the method that secures the
highest AUC and AUPRC values. We compare these best AUC scores (green bars) and best AUPRC
scores (blue bars) between the four protein-level scores listed on the x-axis.

Table 3. Predictive performance for the prediction of proteins harboring DLs on the CAID2 test
dataset with 348 proteins. We derive the protein-level scores using the maximum value of the sliding
window-based average. The window size is 31 and corresponds to the median size of the DL regions.
Predictors are sorted using their AUC values. We report averages from the ten test experiments.
Performance metrics that are significantly different from the results of the most accurate method listed
at the top of the table are denoted by + (p-value < 0.05); = means that the difference is not significant
(p-value > 0.05). We explain the metrics and test procedure in the Materials and Methods section.

Predictors AUC lowAUCratio AUPRC Flmax MCCmax
APOD 0.664 2.65 0.226 0.326 0.219
DFLpred 0.633 = 1.75* 0.191 % 0.280 * 01717
Metapredict 0.605 * 1.99 * 0.179 * 0.288 * 0173+
PredIDR-short 0.603 * 1.09* 0.179 * 0.304 = 0.186 =
PredIDR-long 0.594 * 099 % 0.173 * 0.299 = 0.179 =
s2D 0.562 * 1.66 = 0.188 = 0.263 * 0.141
PreDisorder 0.559 * 2417 0.203 = 0246 * 0.149 *
SETH-0 0.558 + 1227 0.164 * 0242+ 0112+
SETH-1 0.551 % 051% 0.144 * 0.247 * 0.106 *
DISOPRED3 0.550 * 0.83* 0.138 * 0.258 * 0.125*
ESpritz-X 0.548 + 1257 0.159 * 0.253 * 0.124 +
FoldUnfold 0.547 * 1.08 * 0.133 * 0.250 * 0.136 *
IsUnstruct 0.540 * 131* 0.142 * 0.249 * 0.106 *
DisEMBL-dis465 0.534 + 045" 0.134 *+ 0251+ 0.114 +
rawMSA 0.533 * 039 % 0.134 * 0.252 % 0.111°
ESpritz-N 0.533 * 054 % 0.140 * 0243 * 0.098 *
SPOT-Disorder 0524 * 057 % 0.141 % 0235 % 0.091 *
DisEMBL-disHL 0.518 * 0.30% 0.130 * 0241+ 0.088 *
RONN 0517 * 040% 0.130 * 0242 % 0.097 *
AUCpred 0514 % 1.04% 0.126 * 0224+ 0.050 *
MobiDB-lite 0513 * 119+ 0.137 * 0241+ 0.106 *
SPOT-Disorder-Single 0.503 * 0.06* 0.123 * 0236 * 0.076 *

pyHCA 0.498 *+ 1.04+ 0.136 * 0.233 * 0.084 *
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Table 3. Cont.

Predictors AUC lowAUCratio AUPRC Flmax MCCmax
fIDP1r2 0.494 * 0.08* 0.124 * 0.236* 0.088 *
VSL2 0.488 + 0.09* 0.118 * 0.237 *+ 0.087 +
AIUPred 0481+ 0.37* 0.120 * 0232+ 0.077 *
IUPred3 0479 * 0.10* 0.117 * 0231 % 0.073 *
DisoPred 0470+ 021+ 0.119 0225+ 0.048 +
DeepIDP-2L 0436+ 0.00* 0.105* 0.229 * 0.068 *
DisoMine 0435 * 0.00* 0.109 * 0223+ 0.047 *
Dispredict3 0430+ 0.00* 0.105* 0219 * 0.037 +
fIDPnn2 0424+ 0.03* 0.106 * 0219 * 0.035+
ESpritz-D 0421 % 024+ 0.108 * 0214+ 0.026 *
IDP-Fusion 0417+ 034+ 0.113 *+ 0.228 * 0.057 *
fIDPtr 0.405+ 0.00* 0.101 * 0221* 0.041 +
fIDPnn 0.389 * 0.00* 0.097 * 0.219 * 0.036 *
Dispredict2 0.383 + 0.04* 0.103 + 0221+ 0.037 +

4. Summary and Conclusions

CAID experiments provide invaluable insights into the performance of the current
predictors of disorder and disorder functions [31,33]. They were recently used to identify
accurate and practical methods for the prediction of disorder and disordered binding
regions [62], analyze the performance of predictors that apply deep learning [58], investigate
the use of AlphaFold for the disorder prediction [60,63,64], and design new methods for
protein structure and disorder function predictions [47,65-74]. CAID2 featured the first
evaluation of predictions of DLs [33]. However, this evaluation reflects a rather restricted
scenario where methods are applied to proteins that are already known to have DLs
and where DLs are the only disordered regions for nearly half of these test proteins. We
substantially expand this assessment by using a much larger collection of nearly 350 test
proteins from CAID2 and evaluating three distinct scenarios: (1) prediction of residues in
DLs vs. in non-DLs (arguably the typical use of DL predictors); (2) prediction of residues in
DLs vs. other disordered residues (to evaluate whether predictors can separate residues
in DLs from other types of disordered residues); and (3) prediction of proteins harboring
DLs. We summarize the results from these three scenarios in Figure 3. The x-axis shows
that the DL predictor APOD and several disorder predictors, such as SETH, PredIDR, and
Dispredict3, provide relatively accurate predictions of residues in DLs. However, only
APOD accurately identifies residues in DLs among other types of disordered residues
(y-axis) and predicts proteins harboring DLs (size of the marker). Altogether, we find that
the one universally accurate method is APOD, while the disorder predictors and DFLpred
perform rather poorly in identifying residues in DLs among other types of disordered
residues. These conclusions are distinct from the observations in CAID2, where disorder
predictors were found to be more accurate than the DL predictors when predicting residues
in DLs for proteins which are known to have disordered linkers [33].

We also note that APOD’s predictive performance is moderate, with AUCs ranging
between 0.66 and 0.72 and AUPRC values between 0.23 and 0.29. This observation, along
with the functional importance and abundance of DLs discussed in the introduction,
motivate further research into designing and deploying new and more accurate methods.
Importantly, these efforts should ensure that future methods provide accurate results for
each of the three scenarios. Moreover, this need is particularly urgent for identifying
proteins harboring DLs, where the current predictors are limited to AUCs < 0.67 and
AUPRCs < 0.23. One of the reasons for this rather poor performance is that current
methods produce residue-level predictions while the latter scenario considers protein-level
predictions. Designing the protein-level methods would likely lead to more accurate results,
given that such predictors would benefit from a design where information from the entire
protein chain is used for the prediction, in contrast to the residue-level predictors that
typically rely on a local sequence window. The new methods would also benefit from
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larger training datasets, as the size of the DisProt database, which is the main source
for the experimentally annotated DLs, continually grows from 800 proteins in version
7.0 (September 2016) to 2039 proteins in version 9.0 (September 2021) and to 2649 in the
newest version 9.4 (June 2023). Accurate predictors of proteins harboring DLs would
be particularly useful if their results could be produced very quickly, allowing for fast
screening of proteins for the presence of DLs. Such fast predictions could be followed up
by running a relatively slow APOD, which takes about 560 s to predict a 1000-residue-long
sequence [33] and which accurately identifies residues in DLs. Finally, we anticipate that
the recently popular deep learning models should play an important role in the efforts to
design this new generation of accurate DL predictors, given the success of these models in
the context of intrinsic disorder prediction [58]. The two DL predictors evaluated in CAID2
rely on other types of predictive models, including logistic regression in DFLpred [10] and
support vector machine in APOD [25].

0.72 + APOD
[72]
o
=}
i)
§ 0.67 +
he}
o
B 0.62
5 0.62 DFLpred
0
©
—
Lo57 +
° 0.59 PredIDR-long
4 0.52 DisEMLB- dlsHL ‘PredIDR short
9052 + PreDlsorder 0.55 SETH-0
[ 0.53 DisEMBL-dis465 Q
= Q
» o 56 SETH-1
2047 + DISOPRED3 AUCpred
k)
g FoIdUnfoId 0.60 MetaPredict
~ 0.42 + @ Dispredict3
8 ’ @ fIDPnN
< 0.55 ESpritz-X @ 0.42 fiDPnn2

0.42 IUDP-Fusi
0.37 : : : : : — :
0.50 0.53 0.56 0.59 0.62 0.65 0.68 0.71 0.74

AUC (residues in DLs vs. residues in non-DL regions)

Figure 3. Predictive performance for the top ten methods that we identify using AUC scores in
Tables 1-3. The x-axis shows the AUC when predicting residues in DLs vs. residues in non-DL
regions (based on Table 1). The y-axis gives the AUC when predicting residues in DLs vs. other
disordered residues (based on Table 2). The radius of the markers corresponds to the AUC for the
predictions of proteins harboring DLs, which is listed inside the marker (based on Table 3). Methods
are named next to their markers.
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