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This Perspective evaluates recent progress in modeling 
nature–society systems to inform sustainable development. 
We argue that recent work has begun to address longstand­
ing and often-cited challenges in bringing modeling to bear  
on problems of sustainable development. For each of four 
stages of modeling practice—defining purpose, selecting 
components, analyzing interactions, and assessing interven­
tions—we highlight examples of dynamical modeling meth­
ods and advances in their application that have improved 
understanding and begun to inform action. Because many 
of these methods and associated advances have focused on  
particular sectors and places, their potential to inform key 
open questions in the field of sustainability science is often 
underappreciated. We discuss how application of such meth­
ods helps researchers interested in harnessing insights into 
specific sectors and locations to address human well-being, 
focus on sustainability-relevant timescales, and attend to 
power differentials among actors. In parallel, application of  
these modeling methods is helping to advance theory of 
nature–society systems by enhancing the uptake and utility  
of frameworks, clarifying key concepts through more rigor­
ous definitions, and informing development of archetypes 
that can assist hypothesis development and testing. We 
conclude by suggesting ways to further leverage emerging 
modeling methods in the context of sustainability science.

modeling for sustainability | place-based approach | sector-based 
approach | theory-building approach | theory-testing approach

Calls for better modeling of nature–society dynamics have been 
with us since the emergence of concerns about global environ-
mental change and sustainable development a generation ago 
(1, 2). Recently, Elsawah et al. (3) identified “grand challenges” 
for socio-environmental systems modeling including integrat-
ing human dimensions, capturing systemic change, and dealing 
with multiple interacting scales. A recent National Academies 
report setting out a vision for studying Earth’s systems high-
lights the need for different disciplinary communities to collab-
orate on models for understanding, exploring, and projecting 
changes resulting from the complex interconnections and 
feedback between natural and social processes (4). Peng et al. 
(5) proposed that integrated assessment models used for cli-
mate policy should better incorporate social realities. Schlüter 
et al. (6) note a lack of modeling tools that account for social–
ecological relations and feedback. Consistent themes that 
emerge in these assessments of the shortcomings of models 
relate to difficulties in capturing important elements of com-
plexity relevant to long-term dynamics, representing spatial 
heterogeneity, incorporating generation of novelty, including 
the influence of actors with unequal power and agency, and 
dealing with uncertainty. Modern arguments that improving 

modeling of nature–society dynamics is needed largely echo 
those from decades ago, suggesting a lack of progress.

At the same time, there has been a recent surge in interest 
and ambition among those who develop and use models of 
nature–society systems. A growing number of researchers 
are applying their tools to inform the pursuit of sustainable 
development. Proposals for new capabilities, fields, and com-
munities of practice, shifting disciplinary priorities, and an 
increase in interdisciplinarity aim to leverage modeling 
approaches to transcend system-specific understanding. For 
example, the Multisector Dynamics effort examines “complex 
systems of systems that deliver services, amenities, and prod-
ucts to society” (7). Donges et al. (8) suggested new taxono-
mies for organizing connected models of human societies 
with Earth systems. The emerging field of macroenergy sys-
tems aims to understand the dynamics, benefits, costs, and 
impacts of large-scale energy systems and transitions and 
defines simulation, abstraction, and modeling as fundamen-
tal to its work (9). Biggs et al. (10) highlight several modeling 
approaches in a recent handbook of methods for analyzing 
social–ecological systems, including dynamical systems mod-
eling, state-and-transition modeling, and agent-based mod-
eling. Bauer et al. (11) summarize efforts to develop “digital 
twins” for Earth that link modeling and observational capacity 
with the goal of informing a green transition. Concurrently, 
data and computational advances are enabling new tech-
niques for integrating understanding across fields (12).

One driving factor behind the recent surge in modeling 
ambition is practical: The acceleration of human impacts on 
the Earth means that incorporating nature–society interac-
tions in analysis is increasingly vital for reliable understanding 
of how to promote sustainable development (13, 14). Models 
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of such interactions incorporate a variety of approaches: for-
mal or informal, qualitative or quantitative, equilibrium or 
dynamically focused, and with solutions achievable analyti-
cally or through numerical computation. A broad range of 
models can be tools toward an overall objective of building 
knowledge and informing action toward the problem of sus-
tainable development. Efforts toward that objective involve 
two interconnected approaches: harnessing sector- and 
location-specific insights and advancing theories of nature–
society systems. Following the first approach, much research 
builds from case studies of detailed processes supporting 
human well-being in specific places or sectors. Understanding 
the sector- and location-specific challenges of sustainable 
development often requires making projections based on 
the present understanding about the dynamics of nature–
society systems, which include interacting people, technolo-
gies, institutions, and ecosystems, and both social and 
environmental processes. Quantitative modeling is especially 
important for understanding the behavior of these complex 
adaptive systems, where intuition can often be misleading. 
In parallel, following the second approach, there is an increas-
ing acknowledgment of the need to build a body of knowl-
edge that transcends individual cases. Empirical studies have 
shown that the pursuit of sustainable development does not 
follow universally consistent patterns; so-called “middle-
range” theories that lie between working hypotheses in day-
to-day research and all-inclusive systematic efforts to develop 
unified theories of behavior can enable learning and harness 
knowledge across contexts (15). Related to advancing theory, 
dynamic system models can address questions related to the 
emergence of novelty, path dependencies, and distributional 
outcomes.

Have emerging efforts made any real progress in modeling 
nature–society systems in recent years? What explains the 
apparent disconnect between the persistence of longstanding 
arguments that suggest models remain as insufficient as they 
were decades ago, and the increasing ambition of communities 
who are engaged in modeling? In this Perspective, we take stock 
of recent progress and identify substantive advances toward 
better modeling of nature–society systems. We focus on an 
area where we see much recent work in novel and exciting 
approaches to modeling dynamic systems for sustainable 
development: developing and applying mechanistic models 
through computational means. Such computational models are 
a principal means of building and testing theory as well as using 
theory and empirical data to make and test projections in large-
scale, complex systems (16). Recent work builds upon long-
standing efforts in economics, engineering, natural resource 
management, energy systems, climate science, water resources, 
computer science, and many other traditions that have con-
tributed to better understanding and decision-making for 
sustainability-relevant problems. We posit that recent advances 
are not widely appreciated across the broader community of 
researchers because they are largely drawn from specific 
sustainability-relevant sectors (e.g., energy, water, air pollution, 
transport, agriculture, fisheries, rangelands) or location-specific 
case studies and are mostly reported in disciplinary journals.

Our goal in this Perspective is to highlight some of the 
most exciting of these advances, for researchers who are 
interested in applying modeling techniques toward the goal 
of building knowledge to inform action toward sustainable 

development. We synthesize across and build upon recent 
work in this area, identifying selected methods and advances 
associated with four stages of modeling practice. We then 
discuss emerging lessons that illustrate progress in efforts 
to build knowledge to inform action by harnessing sector- 
and location-specific insights and by developing and testing 
theories in nature–society systems. We conclude by identi-
fying modeling methods under development with as-yet 
untapped potential to advance understanding.

Methods and Advances in Modeling for 
Sustainability Science

To illustrate potential applications of modeling methods to 
research in support of sustainable development, we consider 
four stages in modeling practice: 1) defining the purpose of 
a model, 2) selecting its components and their relationships, 
3) analyzing the dynamical interactions of those components, 
and 4) assessing the consequences of potential interventions. 
Disciplines related to sustainability science define the mod-
eling process in distinct ways, but many that address dynamic 
systems follow similar logic that includes these four funda-
mental stages (e.g., ref. 17). Further, the concepts of elements 
(or components), interconnections (or interactions), and a 
purpose parallel definitions of a system itself (18). Feedback 
and iteration are central to modeling, and thus these stages 
are interdependent and interacting. Model evaluation, includ-
ing incorporating views of stakeholders and users, occurs 
throughout all stages and involves developing targeted met-
rics, benchmarking with data, and testing assumptions and 
sensitivities.

For each of the four stages, we identify modeling meth-
ods—techniques drawn from a variety of disciplines and 
domains—that have high potential to contribute to building 
knowledge and informing action toward sustainable devel-
opment. We then highlight advances, specific examples from 
applications in recent research that illustrate how these 
methods inform sustainability-relevant questions. In select-
ing these methods and advances, which are intended to be 
illustrative but not comprehensive, we draw on recent 
reviews of the core questions of sustainability science (19) 
and of systems-oriented sustainability research (13), together 
with topical workshops, seminars, and contributions to a 
Special Feature we organized for PNAS. We focus on selected 
papers published in the last several years (from peer-
reviewed journals in the English language) that we believe 
provide particularly useful examples and references for 
researchers across different fields. Fig. 1 summarizes these 
modeling methods and related advances. Each of the follow-
ing subsections focuses on one stage of modeling practice 
and expands on the summary in each quadrant of Fig. 1. 
Further details and examples, including references drawn 
from different applications, are in SI Appendix, Table S1.

Defining Purpose. Sustainability science is a problem-oriented 
field that aims to build knowledge to inform efforts to promote 
sustainable development: fostering equitable improvements 
of human well-being on multigenerational timescales. Models 
can be used in sustainability science for a variety of purposes, 
including exploring ideas, concepts, and mechanisms, building 
understanding about system interactions, or examining future D
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scenarios (20). One way to view computational modeling is as 
a process that integrates theory, concepts, and empirical data 
in ways that can directly test theories that involve dynamics 
(21). Modeling can also be used in combination with empirical 
synthesis together with stakeholders to help build mid-range 
theory of complex nature–society systems (22). Beyond 
building and testing theories, additional roles that models can 
play in policy and management design and implementation 
for sustainability include exploratory scenario simulation, goal-
oriented modeling, ex ante and ex post assessment (23). Efforts 
to adapt existing models, and link them across sectors and 
places, have enabled inclusion of a wider range of stakeholders, 
informing different places and sectors.
Methods for defining purpose. Incorporating nature–society 
interactions into sectoral decision-support models allows 
a broad range of existing models that may not have been 
designed to address human well-being explicitly to be 
adapted for the purpose of sustainability-relevant analysis. 
Decision-support systems and associated models apply a 
diverse range of qualitative and quantitative approaches and 
incorporate social factors in order to simulate realistic options 
and outcomes and fully address the priorities of a broader 
range of users and stakeholders increasingly concerned with 
promoting sustainability (24). Models of natural resources 
and technical (engineered) systems have thus advanced 
substantially in their ability to incorporate nature–society 
interactions, including human behavior and responses to 
environmental change, as well as social interactions such as 
learning and collective action (25). Modern sector-focused 
models capture these interactions in ways that are credible 
and legitimate for their decision support applications, though 
they usually do not focus on inclusive well-being as a formal 
objective function.

Methods for simulating cross-sector connections and dif-
fering contexts can help decision-makers more effectively 
draw lessons that address complex sustainability challenges. 
So-called “nexus” approaches, linking models across sectors 
such as water, food, and energy, have been characterized as 
still in their infancy, but quantitative methods have been 
used to identify related synergies and trade-offs (26). Work 
in multisystem dynamics bridges nexus approaches with 

advances in formal modeling techniques (7). Advances in 
machine learning can enable using remote sensing informa-
tion in regions where on-the-ground data are sparser (27).
Advances in defining purpose. Results from decision-support 
models that have been adapted to incorporate a broader 
scope of nature–society interactions have shown promise 
in providing action-oriented analysis relevant to multiple 
stakeholders. For example, Fletcher et al. (28) highlight how 
water systems models for East Africa and California were 
extended to better capture equity-based considerations 
in the context of stakeholder-engaged decision-support 
processes. Bremer et  al. (29) engage with participants in 
watershed management programs in Brazil to identify how 
models can better meet their needs. Hess et  al. develop 
recommendations to make air quality health effects modeling 
more useful to policy-makers, including using common 
scenarios to facilitate comparison (30).

Utilizing models across different contexts has enabled 
decision-relevant insights across sectors and places. Reed 
et al. (7) identify methodological connections involving adap-
tive responses, uncertainty and risk, resilience, and tipping 
points across detailed sectoral models. Doelman et al. (31) 
use a global multimodel scenario approach to quantify syn-
ergies and trade-offs associated with interventions in water, 
land, food, and climate. Pastor et al. (32) examine food and 
water linkages with international trade using a model frame-
work accounting global water availability, crop production 
strategies, land use, and socioeconomic change. Nhamo et al. 
(33) use an integrative model for the water–energy–food 
nexus to provide decision-support toward the Sustainable 
Development Goals in South Africa.

Selecting Components. Frameworks in sustainability science 
provide an extensive “checklist” of the components that 
have been found important in shaping many nature–society 
interactions (19). These comprise resources (e.g., natural 
and human-made capital), actors who can make choices 
or decisions, and institutions that channel those decisions. 
Within any modeling effort, it is important to establish 
transparent criteria to determine what components are 
necessary and sufficient to inform the stated purpose of 

Fig. 1. Summary of methods and advances in four stages of modeling dynamic systems for sustainability science.
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the analysis. This is particularly difficult in nature–society 
systems, where “everything is connected to everything 
else” (34). Related to component selection are decisions 
about their resolution—the aggregation of real-world detail 
including over time and space for analytical tractability. This 
is closely connected to questions of how to understand 
and account for heterogeneity across actors and places. 
Methods that leverage improved computational capacity 
and data availability have helped researchers simulate a set 
of necessary and sufficient components for sustainability 
analysis, at more appropriate resolution.
Methods for selecting components. Approaches for capturing 
diverse societal actors and agency extend beyond previous 
efforts that often treated people as rational actors. Growing 
work in computational social science has contributed to the-
ory and associated models of human behavior (35). Agent-
based modeling, which can capture heterogeneity among 
different agents, is increasingly applied to nature–society 
systems (e.g., refs. 36 and 37). Integrated assessment mod-
eling is attempting to better capture how policy actions create 
winners and losers and to better account for incentives and 
trade-offs with knowledge from sociology, psychology, and 
organizational behavior (5). Several approaches to incorpo-
rating actors, decision-making, and institutions in quantita-
tive systems modeling are ready for implementation without 
major changes in model structure (24). Generalized mode-
ling approaches (38) address the challenge of incorporating 
components that would otherwise be omitted because of 
incomplete process knowledge.

The development of computational frameworks that facil-
itate model interoperability is addressing the technical chal-
lenge of modeling the full range of components that affect 
outcomes in nature–society systems. Models used by differ-
ent disciplines make practical choices that are difficult to 
reconcile, including computational implementations such as 
programming language and temporal and spatial resolution. 
Efforts to harmonize models capturing different components 
such that they can be more easily run in tandem from a 
computational perspective have a long history. Relevant 
standards date back decades in some areas, such as the 
Earth System Modeling Framework (39). Further standardi-
zation and automation are made possible through applica-
tion programming interfaces (APIs), AI, and cloud-based 
applications. However, while model coupling is becoming 
easier, much innovative method development has eschewed 
full coupling in favor of ad hoc, purpose-built links, facilitated 
in part by computational advances and new ways of thinking 
about architectures. System-of-systems approaches provide 
methodologies for linking models from different domains, 
which view system representations as multitier structures 
with differing levels of abstraction (40). Network approaches 
have also been used to represent systems with different 
types of components in a common framework (41).

The increasing availability of high-resolution data and asso-
ciated simulation capacity have made modeling possible at 
ever-finer detail. At the same time, this is prompting new ways 
of thinking about how to balance model fidelity with uncer-
tainty and computational cost. Global Earth system models can 
now be run for multiple century-long simulations at ~10-km 
spatial resolution (42). High-resolution, bias-corrected climate 

model data are increasingly broadly available and widely 
applied to better understand impacts (43). New highly resolved 
social data, often near-real-time and at unprecedented levels 
of disaggregation, have prompted new applications to sustain-
ability science (44). These data can be leveraged to better 
understand and simulate diverse actors’ diversity of goals, 
access to resources, and circumstances, and their unequal 
degrees of agency. Data are newly available in undersampled 
regions due to satellite coverage, and satellite-based data prod-
ucts require models to interpret relationships between 
remotely sensed quantities and sustainability-relevant on-the-
ground information. The combination of data availability and 
computational capacity has prompted new ways to simulate 
the heterogeneity that is a core element of nature–society sys-
tems. Relatedly, there is a long history in Earth system and 
climate modeling of applying model hierarchies or spectrums 
to address questions which need different degrees of resolu-
tion (45).
Advances in selecting components. Recent work has led to im-
proved guidance on how and why to incorporate multiple 
actors with differential agency in modeling. Jafino et al. (46) 
identify concrete ways in which disaggregation of actors and 
associated costs and benefits could be improved in integrat-
ed assessment modeling toward assessing distributive justice, 
summarizing applications from model-based climate planning 
studies. Basheer et al. (47) use what they refer to as a “coev-
olutionary” modeling framework; they apply it to show that 
accounting for both the Nile River system and Egypt’s macro-
economy better simulated the effects of coordinated strate-
gies to manage the Grand Ethiopian Renaissance Dam. Zaniolo 
et al. (48) design a method using automated learning to repre-
sent different policies and their objectives and tradeoffs and 
show that it results in improved information for operational 
regulation in a case of reservoir management characterized by 
heterogeneous objectives and conflict between users.

The ability to account for a larger variety of model com-
ponents through connected models contributes to better 
knowledge about the components of most importance to 
sustainability. The inclusion of different components in a 
practical modeling application can help integrate knowledge 
across different domains, as Lade et al. (49) describe in an 
example of a model that investigates the importance of 
social–ecological feedback for an ecological regime shift (the 
collapse of the Baltic cod). Barnes et al. (50) use multilevel 
network modeling to identify aspects of social organization 
that influence responses to climate change among Papua 
New Guinea islanders. Enahoro et al. (51) link agricultural 
and food system models in an integrated assessment frame-
work to show how diversified farming practices minimize 
losses in ecosystem services. Mayfield et al. (52), using air 
pollution, climate, and employment impact modeling, are 
able to identify spatial differences in the economic and envi-
ronmental effects of the shale gas boom in the United States. 
Agutu et al. integrate cost of capital values into an electrifi-
cation model to identify how off-grid finance influences elec-
trification costs (53).

As the capacity for ever-greater resolution increases, best 
practices for weighing the trade-offs of resolution choices  
in contexts relevant to sustainability have begun to be devel-
oped. Merrick and Weyant (54) summarize guidance for 
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choosing resolution in models used for policy analysis, stra-
tegic planning, and system analysis with examples from 
energy and climate, noting the links of choice of resolution 
across space, time, and with respect to different outcomes 
with uncertainty analysis. Brown-Steiner et al. showed in an 
application to air quality that choosing coarser model reso-
lution can decrease fidelity but increase the ability to explore 
uncertainty spaces with the same computational resources 
(55). Marcy et al. (56) examined the impact of temporal and 
spatial resolution decisions in energy system modeling, iden-
tifying best practices for selecting resolution. Giuliani et al. 
(57) use parameter exploration to identify regions where 
simulating highly resolved processes is important in a case 
of water reservoir operation.

Analyzing Interactions. The process of modeling interactions 
involves simulating systems’ dynamic behavior over time. The 
nature–society system that researchers and decision-makers 
seek to understand for pursuing sustainability is coevolving, 
complex, and adaptive. Dynamics associated with complex 
adaptive systems include novelty, feedback, discontinuities, 
path dependence, and threshold behavior. Two-way 
interactions between natural and social components are 
especially important on sustainability-relevant (generational) 
timescales. Quantitative modeling can illuminate nonintuitive 
and unpredictable dynamics, especially when feedback 
loops are operating, and where decision-makers’ mental 
models may be unreliable (58). Systems analysis and stylized 
models have also been used to identify properties of interest, 
including resilience, robustness, and vulnerability, which 
may be associated with outcomes relevant to sustainability. 
Dynamic couplings of models simulating integrated systems, 
and integration of data and modeling, have been applied to 
gain new understanding of important mechanisms and causal 
relationships in nature–society systems.
Methods for analyzing interactions. Calls to improve model 
representation of the dynamics of integrated systems often 
suggest incorporating all relevant feedback into a single 
model—that is, endogenization of model representations of 
different types of components. Full endogenization, however, 
may not always be necessary or desirable. Linking models 
through purpose-built approaches to model couplings can 
instead provide rigorous information without the difficulty 
and complexity of developing a comprehensive model that 
includes all linkages and feedback. These techniques also 
can help mitigate the risk of creating integrated models that 
are mechanistically coupled but not useful for advancing 
understanding (59). Partial couplings can isolate and thus 
inform understanding of mechanisms of key interactions and 
avoid computational and resource expense (60). Reduced-
complexity models can be used to accurately describe a 
system using numerical techniques that make running the 
model simpler and more efficient. Applications of reduced 
complexity models enable researchers from other disciplines 
to better incorporate realistic feedback, retaining important 
detailed representations in a way that does not sacrifice too 
much realism. Generalized modeling approaches allow for 
rigorous analysis of dynamics under conditions of limited 
data and knowledge (38).

Model techniques for capturing realistic dynamic behavior 
in sustainability-relevant systems address the interacting 

scales of key processes, threshold effects, rapid changes, and 
path dependence. Though well-established existing sectoral 
models often account for only a subset of the complex adap-
tive dynamics that occur in real-world systems explicitly, strat-
egies that can address their implications include scenarios, 
limit testing, or uncertainty analyses. Promising approaches 
to modeling “tipping points,” for example, include agent-
based modeling and modeling of social dynamics (61). 
Methods can also be drawn from underlying mathematical 
toolboxes for dealing with complex systems with nonlinear 
dynamics, such as control theory. The ability to formulate 
sustainability-relevant situations as complex control problems 
with multiple decision-makers and multiple often conflicting 
goals can enable improved rigor in conducting simulations 
that capture feedback behavior, threshold processes, and 
adaptive responses.

Related to the availability and accessibility of more detailed 
and highly resolved data sets discussed above, data–model 
integrations that leverage advanced computational methods 
can be used to better understand dynamics and ultimately the 
determinants of well-being. Researchers have begun to use 
novel data-driven causal methods to address sustainability-
relevant questions using Earth system data (62). The use of 
exploratory modeling techniques can inform robust inferences 
in coupled nature–society systems (63). Earlier work leveraging 
AI techniques applied to big data sets focused on prediction, 
but newer methods are being developed that can provide 
causal insights. So-called “digital twins” (11) combine two-way 
interactions of modeling and data analysis in a common 
framework.
Advances in analyzing interactions. Several studies have leveraged 
different coupling approaches of various complexities 
and degrees of endogenization to provide improved 
understanding of behavioral and societal interactions in 
nature–society systems. Tong et  al. (64) combine models 
of power plant fleet turnover with integrated assessment 
modeling and air quality modeling to quantify the relative 
influence of retiring power plants and the application of 
pollution controls on human health. Muneepeerakul and 
Anderies (65) use stylized dynamical models to capture the 
interaction between the day-to-day operational management 
of shared natural resources (day-to-day operations) and 
collective action, exploring how governance emerges 
endogenously. Kamal Chowdhury et al. link a power system 
model with a hydrological power management model to 
show how climate variability modulates power system 
behavior and resultant costs and emissions (66). Beckage 
et al. (67) use a reduced-complexity climate model together 
with a simplified model of human behavioral change, to 
identify behavioral interactions with the largest influence on 
global temperature rise. Nordhaus developed equations that 
mimic behavior of an ice sheet model to assess the economic 
damage associated with scenarios of climate warming (68).

Advances in understanding of the creation and propagation 
of novelty and its impacts, drawn in part from long-standing 
research programs in evolutionary biology and economics, are 
beginning to inform sustainability-relevant applications to 
adaptation and transformation. Novelty emergence is a type 
of dynamic behavior that has historically proven particularly 
hard to capture in models, as it often depends on simultaneous, 
synergistic propagation of different and related innovations in D
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different contexts. Mercure et al. (69) show how different the-
oretical assumptions about innovation applied in models lead 
to different outcomes in projecting low-carbon transitions. 
Meng et al. (70) assessed the performance of technology cost 
forecasts for energy transitions, finding that existing models 
outperformed expert assessments, but both approaches 
underestimated technological progress. Batinge et al. (71) use 
a system dynamics model to explore how gendered innovation 
affects energy security in poor urban environments.

Applying mechanistic modeling together with a broader 
toolbox of quantitative and qualitative methods has led to 
identification of previously unknown mechanisms and causal 
relationships. Orach et al. linked process-tracing of an empir-
ical case with agent-based modeling to identify and test 
causal mechanisms to show how interest group behavior 
can delay or prevent fishery collapses (72). Qiu et al. com-
bined retrospective analyses including difference-in-differ
ence regressions with atmospheric chemical transport 
modeling to diagnose firm-level heterogeneity in production 
processes, policy responses, and air quality outcomes as a 
result of energy policy (73). Morris et al. (74) paired Monte 
Carlo analysis with scenario discovery techniques applied to 
large uncertainty ensembles, finding that many patterns of 
energy and technology development are possible for various 
long-term environmental pathways. Banitz et al. (75) use the 
example of cod fishing to show how the use of different 
model assumptions can identify different causal mechanisms 
for the same system; they suggest that ensemble modeling, 
statistical frameworks, or structured discussion could help 
resolve model disagreements.

Assessing Interventions. Modeling can provide a means to 
assess the potential of interventions—and updating such 
assessments, considering system responses and other actors’ 
responses to them. There is increasing recognition that 
effective interventions must “fit” particular contexts (76) and 
that actors engaged in interventions have different goals and 
power. Combining policies and strategies such as regulations, 
market approaches, and persuasion to effectively promote 
sustainability requires better understanding of their strengths, 
limitations, and potential complementarities. Much modeling 
practice is increasingly focusing on providing decision-support 
for interventions. Methods that can incorporate diverse 
visions and goals, as well as deep uncertainty analysis, have 
been leveraged to evaluate multiple stakeholders’ priorities 
and understand adaptation pathways.
Methods for assessing interventions. Computational and 
statistical approaches that evaluate decision scenarios under 
uncertainty have further advanced the capacity of models, 
including existing decision-support tools, to evaluate the likely 
outcome of potential interventions relative to different metrics 
in particular situations, and for modelers to provide that 
information to a broad range of stakeholders and user groups. 
Techniques drawn from applying theories of decision-making 
under deep uncertainty, uncertainty quantification techniques, 
and scenario planning are being used in combination to 
better assess outcomes and their probabilities (77). Methods 
can address pathways of sequential decision-making in 
ways that can inform strategies beyond traditional adaptive 
management approaches. Exploratory modeling has been 
used to examine responses to management decisions along 

adaptive pathways (78). This can help identify unintended 
consequences of interventions. Computational and statistical 
approaches have combined ensemble simulations and deep 
uncertainty techniques to provide new insights targeted 
toward decision-making.

Recent efforts have identified ways to incorporate differ-
ent perspectives and normative visions in dynamic modeling. 
Previous generations of decision-relevant models were often 
designed to serve a narrow audience and prioritized certain 
problem definitions, often based on the status quo. One 
example is the inclusion of certain social sciences such as 
economics, and exclusion of other social sciences and 
humanities that address questions about values, in models 
of global environmental change (79). Emerging techniques 
allow modelers to grapple constructively with pluralism, 
ambiguity, and values, engaging different users’ viewpoints 
and perspectives as well as problem definitions. One exam-
ple is the application of multiobjective optimization methods 
to explore tradeoffs across alternative candidate solutions 
(capturing objectives from different stakeholders) (80). 
Participatory modeling has been used to promote learning 
amongst stakeholders, by facilitating dialogue (81) or inform-
ing transition governance (82). Improved metrics that address 
different goals can also help evaluation of system progress 
toward sustainability goals. A growing literature connects 
domain-focused modeling with sustainable development 
goals, illustrating outputs with metrics increasingly relevant 
to stakeholder communities (83).
Advances in assessing interventions. Better knowledge of how 
decision and adaptation pathways evolve over time has been 
enabled by the application of decision science and option 
analysis in modeling, including modeling techniques drawn 
from the field of decision-making under deep uncertainty. 
The Natural Capital Project has developed and applied a 
suite of spatially explicit planning and assessment models  
to support decision-making about managing environmental 
resources at local to regional scales (84). Fletcher et  al. 
(85) applied a scenario planning framework, drawing from 
planning approaches and climate uncertainty analysis to 
inform robust designs while incorporating learning, to a 
reservoir planning problem in Kenya. Bojórquez-Tapia et al. 
(86) summarize cases where modeling was used to identify 
adaptation pathways under deep uncertainty applied 
to climate uncertainty and large-scale infrastructure 
planning. Hadjimichael et al. paired exploratory modeling 
with global sensitivity analysis to enhance the ability 
to make inferences on water scarcity vulnerabilities in 
institutionally complex river basins (87). Lucena et al. (88) 
used multiple models to assess the interaction between 
climate adaptation and mitigation strategies in a case of 
hydropower generation in Brazil. Saari et al. (89) used an 
ensemble-based approach together with an integrated 
modeling framework to quantify the influence of natural 
variability in air quality and related health responses to 
climate policy.

Evaluations of interventions against multiple objectives and 
priorities are made possible through attention to different goals 
and normative visions. Nock et al. (90) show how maximizing 
social benefit, rather than cost-minimization approaches, 
changes allocation decisions for electricity generation infra-
structure and energy access in developing countries. Bremer D
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et al. (29) used semistructured interviews and focus groups to 
better understand the role that hydrologic modeling plays in 
supporting a range of stakeholder needs and perspectives. 
Devisscher et al. (91) used fuzzy cognitive mapping to incorpo-
rate environmental, social, economic, and policy factors in the 
context of fragmented data availability, in a case study of adap-
tation to wildfires in Bolivia. Edwards et al. showed that goal-
inspired metrics for emissions could inform climate policies 
better than typically used global warming potentials (92). The 
concept of inclusive wealth provides a promising way of design-
ing a limited ‘dashboard’ of outcomes theoretically consistent 
with sustainability; Ikeda and Managi (93) simulate it to project 
regional sustainability in Japan.

Lessons from Advancing Modeling in 
Sustainability Science

In this section, we highlight emerging lessons based upon 
the modeling methods and initial advances discussed above. 
Specifically, we return to the two interacting approaches that 
implement efforts to develop knowledge and inform action: 
1) harnessing sector- and location-specific insights and 2) 
advancing theories of nature–society systems. We identify 
three lessons relevant to the former, and three lessons rel-
evant to the latter, together with related methods and 
advances. We summarize these in Fig. 2.

Harnessing Sector- and Location-Specific Insights. First, for 
researchers who aim to build knowledge to inform action 
through research focusing on specific sectors and locations, 
a sustainability-related focus on changes in inclusive well-
being as an overall “objective function” draws attention not 

only to the connection between different sectors but also 
prioritizes outcomes that can deliver equitably shared well-
being improvements across present and future generations. 
Many of the modeling applications described in the previous 
section address sectors closely linked to sustainability 
transitions, including climate, energy, food, and land use. 
Modeling and analysis to better understand these systems 
is necessary, but not sufficient, for sustainable development. 
To that end, by incorporating human behavior and social 
dynamics into existing decision-support models, and 
linking across sectors, modelers increase their capacity to 
examine well-being in ways that inform multiple actors and 
interests. The importance of adaptation pathways in many 
such systems warrants increased attention to accounting for 
related dynamics in decision-relevant applications.

Second, while addressing sustainability challenges requires 
modeling processes that interact on a variety of timescales, 
a sustainability perspective suggests the importance of atten-
tion to decadal to generational-scale outcomes. Modelers are 
well equipped to identify how spatial and temporal scales 
interact, but the goal of informing sustainability may lead to 
different choices about the resolution of components, which 
may include increasing resolution and data fidelity, or reduc-
ing resolution to enable addressing interactions of multiple 
components.

Third, informing efforts toward equitably shared well-
being for present and future generations foregrounds issues 
of power differentials among actors. This encourages mod-
elers to grapple with the implications of power and associ-
ated issues of equity in their work, and fully addressing these 
issues requires further challenging underlying assumptions 

modeling for 
sustainable 

development

developing and testing theories 
of nature-society systems

Incorporating nature-society interactions into 
sectoral decision-support models

harnessing sector- and 
location-specific insights

Simulating cross-sector connections and differing 
contexts

Computational frameworks that facilitate 
interoperability

Capturing diverse societal actors and their agency

High-resolution data and simulation capacity

Purpose-built approaches to model couplings

Techniques for capturing realistic dynamic 
behavior

Data-model integrations that leverage advanced 
computational methods

Computational and statistical approaches that 
evaluate decision scenarios under uncertainty

Ways to incorporate different perspectives and 
normative visions in dynamic modeling

Focusing on 
changes in 

inclusive well-being 
as an overall 

objective function 

Foregrounding 
issues of power 

differentials among 
actors

Paying attention to 
decadal and 

generational time 
scales 

Formalizing a core set 
of dynamical 
archetypes 

Adopting more rigorous 
definitions to advance 

conceptual 
understandings

Enhancing uptake and 
utility of frameworks

Goal: Bridging Knowledge to Action for Sustainable Development

Fig. 2. Emerging lessons resulting from connecting research aiming to building knowledge to inform action that uses one of two interconnected approaches (i.e., 1)  
harnessing sector- and location-specific insights and 2) developing and testing theories of nature–society systems), with modeling methods identified in the text.D
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that may still remain unstated in modeling related applica-
tions. Leveraging approaches to capture diverse societal 
actions can better accommodate stakeholders’ diverse val-
ues and preferences. Relatedly, incorporating different goals 
and normative visions of sustainability into models can 
inform the development of appropriate metrics. It is also 
closely related to efforts to better capture actors and their 
diverse values. Further exploration of equity in modeling is 
addressed elsewhere in the Special Feature on Modeling 
Dynamic Systems for Sustainable Development.

Advancing Theories of Nature–Society Systems. For work that 
aims toward advancing theories of nature–society systems, 
particularly middle-range theory, making better use of 
modeling methods enhances the utility of frameworks across 
the research communities contributing to sustainability 
science. A wide variety of systems-oriented analytical 
frameworks exist to help researchers identify important 
components and their interactions, but much sustainability-
relevant research does not make use of them (13). Recent 
work has developed new approaches to bridge frameworks 
to methods in ways that can facilitate modeling (94). The 
modeling methods and advances described above provide 
a toolbox that can help analysts select and examine which 
of the potentially important elements and interactions are 
necessary and sufficient to determine outcomes in a particular 
case. For example, increasing computational interoperability 
and applying techniques such as loose couplings can help to 
make models usable outside the communities that developed 
them. Methods that link across sectors and contexts lead to 
understanding the application of models across cases. Efforts 
to apply multiple approaches in a single study such as data–
model integrations also represent steps forward.

Second, models provide a common ground on which to 
compare, critically assess, and synthesize multiple perspectives 
on key concepts such as adaptation, transitions, transforma-
tions, vulnerability, and resilience. Formal modeling provides 
a way to transparently compare the purposes, components, 
interactions, and interventions that different traditions apply 
to similar phenomena, even where increasing complexity 
addresses realistic rather than stylized systems. Researchers 
have noted that diversity and openness in definitions for the 
concept of resilience, for example, may impede their applica-
tion to complex systems modeling (95). Conversely, adopting 
more rigorous definitions can help advance conceptual under-
standings through referring to system components, their rela-
tionships, and their dynamical interactions. One test of an 
effective definition is whether it is consistent across different 
modeling choices. An example of this is efforts to better under-
stand adaptation, identified as a capacity necessary to support 
sustainable development (19). Formalizing adaptive mecha-
nisms in models, especially agent-based models, has used 
detailed data from case studies to explore causal claims. In 
contrast, efforts to advance theory on adaptation have been 
hampered by a lack of definitional clarity, with much effort 
spent on differentiating whether adaptive responses occur 
with relevance to internal or external shocks. A modeling per-
spective reveals that this differentiation depends on subjective 
boundary definition, suggesting that efforts to advance theory 
might more usefully focus on characterizing specific types of 
dynamical behavior.

Third, formalizing a core set of dynamical archetypes in 
modeling could assist efforts to develop and test mid-range 
theory across sustainability science. In system dynamics 
modeling, archetypes are defined as basic modes of system 
behavior and their associated feedback structures; introduc-
tory texts build from the understanding that the behavior of 
systems arises from their structure and their combinations 
form the building blocks for complex system behavior. 
Archetype analysis is increasingly used as an approach to 
understand recurrent patters of variables that affect 
sustainability-relevant outcomes (96). Reference to common 
archetypes enhances efforts to simulate cross-sector con-
nections and differing contexts. While there is a need for 
going beyond stylized systems, defining archetypes can help 
efforts to leverage methods drawn from other fields that can 
capture complex dynamics. A core set of widely understood 
modeling archetypes in sustainability could be leveraged to 
explore theories and hypotheses (97).

Emerging Techniques and Ways Forward

In summary, there have been repeated calls for improved 
models of nature–society systems to be used in support of 
sustainable development. Many, even most, recent examples 
of these exhortations echo themes identified decades ago 
when modeling and computation, data availability, and 
understanding of nature–society systems were substantially 
less advanced. Here, we argue that recent modeling advances 
have begun to address these longstanding challenges. These 
advances often lack visibility outside particular application 
domains but are addressing common questions, and their 
insights can be harnessed to advance open questions in sus-
tainability science.

A focus on modeling and related methods clarifies the 
relationship between the two interrelated approaches to 
building knowledge to inform action in sustainability science: 
1) harnessing sector- and location-specific insights and 2) 
advancing theories of nature–society systems. Many mode-
ling advances draw from research that primarily applies the 
former approach, though both are indispensable in efforts 
to achieve an overall goal of bridging knowledge to inform 
action toward sustainable development. For research 
focused on specific locations and sectors, modeling requires 
categorization and abstraction of elements and interactions. 
The process of simplification can thus help derive hypotheses 
to advance theory. For efforts focused on advancing theory, 
formalizing a model representation can provide conceptual 
clarity and enable hypothesis testing. More formal acknowl-
edgment of the importance of both approaches and their 
interrelationship, for example through future synthesis 
efforts or through targeted journal keywords (a set is sug-
gested for this paper), may help researchers better situate 
contributions to this rapidly growing field.

Models will also be most effective in the context of these 
interconnected approaches when they are applied considering 
best practices and when used in combination with empirical 
data and theory development. Researchers in sustainability 
transitions have welcomed increasing efforts to apply mod-
eling but drawn attention to its limits (98). Others have 
argued that researchers ought not to even attempt modeling 
certain aspects of uncertain human–natural systems (99). D
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Given the fast-moving frontier of emerging methods, it is 
important to recognize that modeling has dramatically 
advanced in recent years and that what once seemed to be 
fundamental limitations of modeling methods could poten-
tially be addressed with new innovative ideas (5, 99). However, 
every scientific method, including modeling, is associated 
with limitations and uncertainties. Applying best practices 
such as identifying objectives, documenting data, and testing 
key assumptions should be standard expectations for models 
in any field (17). Researchers would also be well-advised to 
remember that modeling is one of many methods that can 
help further understanding and that its potential for support-
ing advances is enhanced when used in combination with 
other methods.

The examples we cite here illustrate how modeling can be 
applied to draw robust conclusions meaningful to an audi-
ence interested in advancing sustainable development. 
However, further work is required to fully leverage the mod-
eling methods and advances described above toward broader 
understanding. Publication and review processes, as well as 
disciplinary norms for tenure and professional advancement, 
still largely discourage researchers from drawing broader 
lessons across sustainability-relevant cases. While an increas-
ing number of outlets have emerged for such work, the chal-
lenge of ensuring fair and thorough review across disciplines 
can discourage researchers from fully leveraging the poten-
tial of newer modeling methodologies. Interest in common 
themes, as noted above, has prompted numerous calls for 
new disciplines and specializations. While emerging commu-
nities often need new structures and organizations, we see 

greater utility in broadening existing forums for sharing 
methodological advances and empirical results. Modeling 
advances are further enhanced, and research communities 
benefit from open access to publications, data, and code, 
including applying FAIR (findability, accessibility, interopera-
bility, and reuse) principles, with important implications for 
equity .

Finally, we focused in this Perspective largely on modeling 
tools and techniques currently being applied. There is much 
potential for future improvement. Advances in computa-
tional methods, in particular, the rise of automation and AI, 
in combination with ever-larger data streams, have the 
potential to induce transformative change in modeling pro-
cesses (12). Fittingly, the insights that sustainability science 
has developed to rigorously analyze the development and 
propagation of novelty and innovation may prove useful to 
increase the likelihood that these tools are used to advance 
common goals of equitable improvements in well-being 
within and across generations.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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