Operations Research Letters 53 (2024) 107067

journal homepage: www.elsevier.com/locate/orl|

Contents lists available at ScienceDirect

Operations Research Letters

=

Operations
Research
Letters

Max cut and semidefinite rank

Renee Mirka*, David P. Williamson

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 18 July 2023

Received in revised form 18 October 2023
Accepted 8 January 2024

Available online 17 January 2024

Keywords: graphs.

Max cut

Semidefinite programming
Matrix rank

Graphs

This paper considers the relationship between semidefinite programs (SDPs), matrix rank, and maximum
cuts of graphs. Utilizing complementary slackness conditions for SDPs, we investigate when the rank 1
feasible solution corresponding to a max cut is the unique optimal solution to the Goemans-Williamson
max cut SDP by showing the existence of an optimal dual solution with rank n — 1. Our results consider
connected bipartite graphs and graphs with multiple max cuts. We conclude with a conjecture for general
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1. Introduction

Given an undirected graph G = (V, E) and positive weights w;;
for every (i, j) € E, a cut of G is a partitioning of V into A and
B, denoted (A, B). If M C E is the set of edges with exactly one
endpoint each in A and B, then the value of the cut (A, B) is
2 . jyem Wijs the max cut is the cut with maximum value. The
problem of finding a max cut has been extensively studied. It ap-
peared on Karp’s initial list of NP-complete problems [6], and there
is a wealth of literature researching approximation algorithms and
heuristics to find good cuts [8,5,3,4,9].

This paper considers the use of semidefinite programming for
max cut. Goemans and Williamson [5] initially demonstrated the
connection by introducing a semidefinite programming relaxation
of the max cut problem producing a .878-approximation algorithm.
The relaxation is given by the following vector program, which can
be solved via semidefinite programming:

i 1 . . .
maximize 5 Z(i,j)eE wij(1 —vi-vj)
subjectto v;-v;j=1,

vi e R",

VieV,
VieV.

(MC-P)

For any cut (A, B), there is a feasible solution to the vector pro-
gram with objective value equal to the value of (A, B): let u; € R"
be any unit vector and u; = —uq so that uq - up = —1. Then let
vi=uy ifie A and vi=uy if i € B for all i € V. Note that this so-
lution is 1-dimensional, and the best 1-dimensional solution to the
vector program corresponds to the max cut. We will call the fea-
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sible solution where there are two unit vectors uq, u; € R" with
uq = —uy and each v; equal to uq or uy the reference solution.

In this paper, we consider situations when the reference solu-
tion is the unique optimal primal solution to the (MC-P). If the ref-
erence solution is the unique optimal primal solution, then we can
obtain an optimal cut from the SDP instead of an approximation.
To identify these situations, we utilize complementary slackness
conditions for semidefinite programs. Consider the following gen-
eral primal and dual SDPs (in what follows we assume all matrices
are symmetric):

maximize Ce X
subjectto A;eX =b; fori=1,...,m,
(P) X >0,
Xe Réx(
minimize bTy
subjectto S=Y1, yiAi —C,
(D) §>0,

S e RExL,

Here, X > 0 represents the constraint that X must be a positive
semidefinite matrix and C e X denotes the outer product of ma-
trices given by Zf:] Z?zl cijxij. For any feasible primal solution
X and feasible dual solution y, duality theory of SDPs shows that
CeX >bTy. Furthermore, if Ce X =bT y, then X and y are optimal
primal and dual solutions, respectively, and duality theory shows
that XS =0 and rank(X) + rank(S) < £. Therefore, if we want to
show that any optimal primal solution has rank at most 1, it suf-
fices to show the existence of an optimal dual solution with rank
at least £ — 1. Given an instance of max cut on a graph G = (V, E),
let W € R™" be the matrix of edge weights, W, = Z(i‘j)eE wij,
and C € R™" such that Cjj; =), wi if i = j and —w;; otherwise.
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Then we can consider the semidefinite program in standard form
that is equivalent to (MC-P):

maximize 3CeX
subject to i,-;gzl, i=1,....m, (MC-P-SDP)
X € R™¥,

where E; € R™" has a 1 in the ith spot on the diagonal and 0
everywhere else.

Then the corresponding dual program to (MC-P-SDP) in stan-
dard form is given by

minimize 17y
subjectto S=Y1, yiEi— %C»

MC-D-SDP
S»0. ( )
Se Rnxn,
which is equivalent to the following program:
minimize Wi + 5 Y1 i (MC.D)

subjectto W +diag(y) = 0.

Observe that (MC-D-SDP) and (MC-D) are equivalent since for any
solution y to (MC-D) or y to (MC-D-SDP) we can define an equiv-
alent solution given by the relationship y; = }l(C,-i — ¥i) where the
objective values of (MC-D) and (MC-D-SDP) are equal at y and y,
respectively, and the slack matrices are the same except for a scal-
ing of 7.

By the previous discussion, if we can find a feasible dual solu-
tion for our max cut instance that has objective value equal to the
value of the max cut of G and with rank n — 1, then the comple-
mentary slackness conditions for SDPs tell us any optimal primal
solution has rank at most 1; in this case, we will show that the
solution must be the reference solution. We will refer to a dual
solution as a slack matrix S and optimal dual solutions with rank
n — 1 as having sufficiently high rank.

Similar analysis and techniques were previously introduced for
graph coloring by Mirka, Smedira, and Williamson [7]. In the set-
ting of graph colorings, it was known that the corresponding refer-
ence solution is always an optimal primal solution for a k-colorable
graph with an induced k-clique, but it was unknown whether it
was the unique optimal solution and thus would always be the re-
turned solution. In the max cut setting, the reference solution is
always a feasible primal solution, but it may not be optimal. In
this work, we explore both when the reference solution is an opti-
mal primal solution and when it is uniquely so.

The rest of the paper is organized as follows. Section 2 presents
some preliminary facts about semidefinite matrices and semidefi-
nite programs that will be used in subsequent sections. Section 3
describes the max cut semidefinite program and its dual, as well
as a partial characterization of graphs for which the reference so-
lution corresponding to a max cut is the unique optimal solution.
In particular, we show that dual solutions of rank n — 1 exist for
connected bipartite graphs but not for graphs which do not have
unique max cuts. In Section 4, we consider more general graphs
and present a conjecture on when the reference solution is the
unique optimal primal solution. Finally, Section 5 concludes with a
few further thoughts and open questions.

2. Preliminaries

In this section, we recall some basic facts about semidefinite
matrices and semidefinite programs that we will use in subsequent
sections. Recall the general primal and dual semidefinite programs
(P) and (D) given in the introduction.

We always have weak duality for semidefinite programs, so that
the following holds.
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Fact 1. Given any feasible X for (P) and y for (D), Ce X >bT y.

Thus if we can produce a feasible X for (P) and a feasible y for
(D) such that C e X =bTy, then X must be optimal for (P) and y
optimal for (D).

The following is also known, and is the semidefinite program-
ming version of complementary slackness conditions for linear
programming.

Fact 2. [1, Theorem 2.10, Corollary 2.11] For optimal X for (P) and y for
(D), XS = 0 and rank(X) + rank(S) < ¢.

Semidefinite programs and vector programs are equivalent be-
cause a symmetric X € R™" is positive semidefinite (PSD) if and
only if X=QDQT for a real matrix Q € R™" and diagonal ma-
trix D in which the entries of D are the eigenvalues of X, and the
eigenvalues are all nonnegative. We can then consider D'/2, the
diagonal matrix in which each diagonal entry is the square root of
the corresponding entry of D. Then X = (Q DV/2)(Q DV?)T. If we
let v; e R" be the ith row of Q D'/?, then x;j = v; - v;, and simi-
larly, given the vectors v;, we can construct a semidefinite matrix
X with x;; = v; - vj. We also make the following observation based
on this decomposition.

Observation 3. Given a semidefinite matrix X = QDQT e R™™",
rank(X) = d if and only if the vectors v; € R" with v; the ith row of
Q D'/2 are supported on just d coordinates.

Throughout the rest of the paper, we may refer to semidefinite
programs and vector programs interchangeably due to this equiva-
lence.

In the introduction, we defined the reference solution to be the
rank 1 feasible solution to (MC-P) with two unit vectors uq,up €
R" such that u; = —uy and v; is equal to uq or uy for each i €
V. By Observation 3, the positive semidefinite matrix X = WwT
(with v; the ith row of W) must also have rank 1 and each entry
of X is either 1 or —1.

We will also say that a positive semidefinite matrix X is the
reference solution if it has rank 1 and there is some W such that
X=WWT and W has exactly two distinct rows uy, u; € R" with
uqy = —uj.

We also observe that, in fact, any rank 1 feasible solution to
(MC-P) must be the reference solution. Let u; be a unit vector from
a rank 1 feasible solution to (MC-P). For any vertex i with v; # u;,
it must be the case that v;j = —uy since —uq is the only other unit
vector in the span of uq. If uy = —uq, then uy - uy =uq - (—uq) =
—1, and this is a reference solution as claimed.

3. Max cut semidefinite program

Recall the max cut SDP (MC-P) given in the introduction. In
this section, we give a partial characterization of graphs for which
the reference solution corresponding to a max cut is the unique
optimal primal solution to (MC-P). We do so by investigating the
rank of the optimal solutions to (MC-D).

We will refer to the primal and dual solutions as X = (v; -
V)i jev and S =W 4 diag(y), respectively. Our first result shows
the reference solution is the unique optimal primal solution for
connected bipartite graphs. Note that the value of a max cut in a
bipartite graph is always W,y : if V.= AUB with ANB =¢ and all
edges have exactly one endpoint in each A and B, then all edges
are contained in the cut given by (A, B). Thus, we can prove the
claim by constructing a feasible dual matrix with objective value
Wior and rank n — 1.
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Theorem 4. If G is a connected bipartite graph with n vertices, there
exists an optimal dual solution S to (MC-D) with rankn — 1.

Proof. et V =AUB with ANB=¢ so that A and B are the
two parts of G. For ve V, let y, = Zi:(i,v)eE wiy. Then the matrix
S =W +diag(y) is PSD: for any x € R",

xTSx = Z Vi + Z 2WijXiXj

1<i=n (i,))€E
2
=2 | 2 wi|®H D 2wy
1<i<n \j:(i,j)eE (i,j)eE
= Y wiixi+x))*=0.
(,))eE

Since S is PSD, it is a feasible dual slack matrix. Dual optimality of
S is given by the objective value:

1 1
EWtot + 2 Z 12
veV

:%Wtot'i‘}lz Z Wiy

veVi:(i,v)eE

1 1
= EWtot + 4_1 Z ZWU
(i, j)eE
1 1

=3 Wit + 5 Wiot

= Wiot,

which is also the value of the max cut since G is bipartite.

It remains to show rank(S) =n — 1. For a vector x € ker(S), we
have xTSx = > jyeE Wij (Xi +xj)? = 0. Then since all edge-weights
are positive, it must be the case that x; + xj =0 for every edge
(i,j)eE.Let ye R" such that y,=1ifveAand y,=-1ifve
B. Since G is bipartite, every edge is between some vertex in A and
some vertex in B, so (y; + yj)2 =0 for every edge. Therefore, y €
ker(S). The connectivity of G guarantees that scalings of y are the
only vectors in the ker(S). Assume this is not the case, and there
is a vector y’ € ker(S) such that there exist vertices a,a’ € A where
Yq # ¥, Because the graph is connected, there must be a path P
from a to a’ where vertices in the path alternate being in A and B.
Let ax € A be the first vertex in A on the path such that y; # y,
and af € A the last vertex in A on the path before a*. Then af and
ax must share a neighbor b € B on P, and therefore it must be the
case that (y/; +y})? =0 and (y,, +y;)? = 0. This means Yok = Vo
which contradicts our selection of a' and a*. Since scalings of y are
the only vectors in ker(S), rank(S) =n—1. O

The connectivity of a bipartite graph G plays a subtle but im-
portant role in Theorem 4; without connectivity, the max cut of
G would not have been unique, and the kernel of the constructed
matrix S would be higher-dimensional. As the next result illus-
trates, it turns out the uniqueness of a max cut is a necessary
condition for the existence of an optimal solution to (MC-D) with
sufficiently high rank. We show this by finding a feasible solution
to (MC-P) with rank greater than 1 but with objective value equal
to the objective value attained by the reference solution. The key
insight behind the construction is that the objective function of
(MC-P) is affine, so any convex combination of optimal solutions
gives an optimal solution. However, taking convex combinations
does not necessarily preserve rank, so some of these optimal so-
lutions will have rank greater than 1. Because there must be an
optimal solution to (MC-P) with rank greater than 1, there cannot
be an optimal dual solution with rank n — 1.
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Fig. 1. A graph with a unique max cut and optimal solution to (MC-P) with rank
greater than 1.

Theorem 5. Let G be a graph with two distinct max cuts. Then there is
an optimal solution to (MC-P) with rank greater than 1.

Proof. Let (A1, By) and (A3, By) be two distinct max cuts. Con-
sider the rank 1 solutions f and g associated with each cut given
by f(v)=1if ve Ay and f(v)=—-1if ve B; and g(v) =1 if
v e Ay and g(v) =—1 if v € B,. Let F and G be the correspond-
ing PSD matrices where Fj; = f(i) f(j) and G;j = g(i)g(j). Observe
for any o € (0, 1), the convex combination of F and G given by
H=aF + (1 — )G is PSD and a feasible solution to (MC-P) since
each diagonal entry of H is equal to 1.
Now we consider the objective values. Let

Z wij(1 — Gjj)

(i,j)eE

1 1
C=2 > wy(l—Fy=>

(i,J)eE

where the second equality follows since F and G both correspond
to optimal cuts and thus produce the same objective value. Since
the objective function is affine, the objective value for H is also C:

1 1
5 2 wil—Hip=2 3 wi(l—aFj—(1-a)Gy)
(i,j)eE (i,j)eE
=aC+(1—-a)C=C.

Now that we have shown H attains the same objective value
as the max cut, we must determine the rank of H. Let y € (A1 N
A2)U(B1NBy) so that f(y) = g(y). Note that because the cuts are
distinct, such a y must exist. If not, then it must be the case that
A1 = By and By = A, contradicting the distinctness of the cuts.
Similarly, there must exist a v € (A1 N B2) U (A2 N B1) which means
f(v) = —g(v). Together, this implies f(y)f(v) =—g(y)g(v). Con-
sider o = % so that Hy, = 0. Since H is PSD, H = VTV for
some V, and rank(H) = rank(V). If rank(V) =1, then H;; = %1
for 1 <i, j <n. Therefore Hy, =0 implies 1 < rank(V') = rank(H).
Since H is a feasible solution to (MC-P) with rank greater than and
obtaining the same objective value as F and G (the optimal rank 1
solutions), the claim is complete. O

Theorem 5 tells us that only graphs with unique max cuts can
have the corresponding reference solution as the unique optimal
solution. Unfortunately, uniqueness of a max cut is not sufficient
to guarantee uniqueness of the reference solution as the optimal
primal solution (or existence of a rank (n — 1) optimal dual solu-
tion) in general as Fig. 1 illustrates: the graph has a unique max
cut with value 12 given by ({v1, v3, vs}, {v2, v4}) and a rank 2 pri-
mal solution with objective value ~ 12.05.

4. General graphs

In Section 3, we showed that the uniqueness of a max cut for a
graph is a necessary but insufficient condition to guarantee the ref-
erence solution is the unique optimal solution to (MC-P). We also
proved that bipartiteness is sufficient in connected graphs, though
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it turns out it is not necessary. The following theorem provides an
equivalent condition for the reference solution to be an optimal
primal solution.

Theorem 6. Let G = (V, E) be a graph with a unique max cut, W its
weight matrix, and M C E the set of edges in its max cut. For v € V, let
Vv =2(v.jyem Wvj — 2(v,j)eE\m Wvj. Then the rank 1 reference solu-
tion corresponding to the max cut is an optimal primal solution if and
only if S = W +diag(y) is PSD.

Proof. We begin by showing optimality of the reference solution
implies S is PSD. Let X be the primal solution corresponding to the
reference solution; an off-diagonal entry X;; =1 if i and j are in
the same side of the cut and —1 otherwise. Furthermore, since X is
assumed to be optimal, by complementary slackness conditions we
know that XT =0 for any optimal dual solution T. In particular,
Xi-Tiy=0 for i=1,...n, where X; and T; are the ith row of X
and T, respectively. This means

Ti=yi+ Z wij — Z wij.

(i,j)eE\M @i,j)eM

0=2X;-

Rearranging shows that y; = 3 jyem Wij — 2, jepym Wij and T
must be equal to S. Since T was assumed to be optimal for (MC-
D), this implies S is optimal for (MC-D) and therefore is PSD as
claimed.

On the other hand, if S is PSD, it is a feasible dual solution. Note
the value of the max cut for G, and thus the reference solution, is
Y ecm We. The corresponding objective value for S is

1 1
EWtot + Z Z Vv
veV

:%Wtot"‘iz Z Wyj — Z Wyj

veV \(v,j)eM (v,j)eE\M

1 1

:thot'FZ ZZWe—z Z We
eeM ecE\M

1 1

= EWtot + 1 2Wior — 4 Z We
ecE\M
= Wiot — Z We=ZWe-
ecE\M eeM

Since the dual objective value for S matches the primal objective
value for the reference solution, both must be optimal. O

Clearly if the reference solution is the unique optimal solu-
tion, then the matrix S from Theorem 6 is still PSD (where we
do not assume that the reference solution is the unique optimal
solution). However, while Theorem 6 guarantees the optimality of
the reference solution to (MC-P) (if S is PSD), it does not nec-
essarily guarantee the existence of a rank (n — 1) optimal dual
solution to (MC-D) or the uniqueness of the optimality of the ref-
erence solution. Consider a triangle with edge weights w1 =1 and
wy = w3 = 2. In this case,

11 2
S=]11 2
2 2 4

which is PSD (showing the optimality of the reference solution)
but itself only has rank (n — 2). This example illustrates why we
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may not be able to immediately conclude the reference solution is
the unique primal solution even if S is PSD; however, we conjec-
ture this is the case:

Conjecture 7. Let G = (V, E) be a graph with a unique max cut, W its
weight matrix, and M C E the set of edges in its max cut. For v € V, let
Vv =2 (v, jreM Wvj — 2 (v, jee\m Wvj- If the rank 1 reference solution
corresponding to the max cut is an optimal primal solution or, equiva-
lently, S = W +diag(y ) is PSD, then the reference solution is the unique
optimal primal solution.

5. Conclusion

In this work, we have partially characterized graphs for which
we can find a rank n — 1 solution to (MC-D). This goal was moti-
vated by the desire to classify instances when the reference solu-
tion of a max cut is the unique optimal solution to (MC-P). We
show in Theorem 4 that this is always the case for connected
bipartite graphs. In order to classify further, we had to first ex-
plore when the reference solution is an optimal solution to (MC-P).
Theorem 5 shows that uniqueness of a max cut is a necessary con-
dition, and Theorem 6 shows that given the uniqueness of a max
cut, whether the reference solution is an optimal primal solution is
equivalent to whether a matrix with entries depending only on the
edge-weights of G and its max cut is positive semidefinite. These
results do not completely characterize when there is a unique op-
timal solution with rank 1, but we conjecture this is the case when
the conditions of Theorem 6 are met. A deeper understanding of
classes of graphs when the matrix S given in Theorem 6 is PSD
could provide useful insights into proving Conjecture 7.

In addition to settling Conjecture 7, there are several poten-
tial directions of future study which we present now. Conjecture 7
claims for a general graph that if the GW-relaxation is exact and
the graph has a unique max cut, then the reference solution corre-
sponding to the max cut is the unique optimizer of the relaxation,
and Theorem 4 proves this for connected bipartite graphs. In gen-
eral, we do not know when the GW-relaxation is exact, but we
do know it remains exact for bipartite graphs even if they are not
connected. However, in this case, the max cuts are not unique and
therefore the optimal solution to (MC-P) is not unique either. One
might explore whether the bipartiteness can still be exploited to
analyze the optimum solutions in this setting. In particular, one
set of optimal solutions is given by selecting a unit vector (or ref-
erence solution) for each connected component of the bipartite
graph. A reasonable assertion might be that all optimum solu-
tions are then convex combinations of solutions of this type. One
could also investigate an analogous question about the rank of op-
timal solutions and how it potentially corresponds to the number
of connected components. For general graphs, if the GW-relaxation
is exact, but there are several max cuts, can we understand the
form these optimal solutions to (MC-P) take? Are they always con-
vex combinations of reference solutions?

Additionally, while Theorem 6 provides one condition for the
reference solution being an optimal solution to (MC-P) in general
graphs, more can be said in the case of planar graphs if the max
cut SDP (MC-P) is modified slightly.

Barahona and Mahjoub [2] consider the SDP given by adding
the following constraints to (MC-P): for all i, j,k e V,

Vi-Vji+Vi-Ve+vj-ve>-—1
Vi Vj—=Vi-Vp+Vj-Vp>—1
—V,‘-Vj~|—Vi~Vk—Vj-Vk2—1

Vi-Vj—Vi-Vp—Vj-Vp>—1.
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We will refer to (MC-P) with these additional constraints as (MC2-
P). They show that (MC2-P) has optimal objective value equal to
that of the max cut for any planar graph instance. Furthermore,
we can observe that the reference solution of a max cut given by
uq,uy € R" is still a feasible solution to (MC2-P); all constraints
are satisfied if vi, v, vi € {uq, up} for all i, j, k € V. Thus, since the
objective value of (MC2-P) is equal to the value of the max cut
for planar graphs, and the reference solution is a feasible solution
achieving the value of the max cut, it must be an optimal solution
to (MC2-P). Therefore, we can immediately focus on the unique-
ness of the reference solution as an optimal solution to (MC2-P).

To do so, we can again consider finding sufficiently high rank
solutions to the dual program of (MC2-P). The new dual (MC2-D)
has the following form:

n
e . 1 1
minimize [7 Weor + 3 Z] Vi
i=

n n n
+3 > X (oj+ Bijk + Sijk + Vijk)}
i=1 j=i+1k=j+1

(MC2-D) subjectto W +diag(y)+T >0,

where T is the symmetric matrix such that T;; =0 for all i and
Tij =Y (—0ij — Brij + Skij + Mis)
k<i
+ ) (—aikj + Bitg — Sikj + kikj)
i<k<j
+ ) (—ijic + Bijk + Sijic — Mije)
Jj<k
fori < j.
Unfortunately, the large number of dual variables adds signif-

icant complexity to the analysis of potential high-rank dual so-
lutions. While we believe the reference solution should be the
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unique optimal solution to (MC2-P) for planar graphs, we were un-
able to find a general form of a sufficiently high rank solution to
(MC2-D) which would prove this. It would be an interesting di-
rection of research to understand more about optimal solutions to
(MC2-D). In particular, can this SDP be used to classify when the
reference solution is the unique optimal primal solution for planar
graphs?
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