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This paper considers the relationship between semidefinite programs (SDPs), matrix rank, and maximum 
cuts of graphs. Utilizing complementary slackness conditions for SDPs, we investigate when the rank 1 
feasible solution corresponding to a max cut is the unique optimal solution to the Goemans-Williamson 
max cut SDP by showing the existence of an optimal dual solution with rank n − 1. Our results consider 
connected bipartite graphs and graphs with multiple max cuts. We conclude with a conjecture for general 
graphs.
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1. Introduction

Given an undirected graph G = (V , E) and positive weights w i j

for every (i, j) ∈ E , a cut of G is a partitioning of V into A and 
B , denoted (A, B). If M ⊂ E is the set of edges with exactly one 
endpoint each in A and B , then the value of the cut (A, B) is 
∑

(i, j)∈M w i j ; the max cut is the cut with maximum value. The 
problem of finding a max cut has been extensively studied. It ap-
peared on Karp’s initial list of NP-complete problems [6], and there 
is a wealth of literature researching approximation algorithms and 
heuristics to find good cuts [8,5,3,4,9].

This paper considers the use of semidefinite programming for 
max cut. Goemans and Williamson [5] initially demonstrated the 
connection by introducing a semidefinite programming relaxation 
of the max cut problem producing a .878-approximation algorithm. 
The relaxation is given by the following vector program, which can 
be solved via semidefinite programming:

maximize 1
2

∑

(i, j)∈E w i j(1− v i · v j)

subject to v i · v i = 1, ∀i ∈ V ,

v i ∈ R
n, ∀i ∈ V .

(MC-P)

For any cut (A, B), there is a feasible solution to the vector pro-
gram with objective value equal to the value of (A, B): let u1 ∈ Rn

be any unit vector and u2 = −u1 so that u1 · u2 = −1. Then let 
v i = u1 if i ∈ A and v i = u2 if i ∈ B for all i ∈ V . Note that this so-
lution is 1-dimensional, and the best 1-dimensional solution to the 
vector program corresponds to the max cut. We will call the fea-
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sible solution where there are two unit vectors u1, u2 ∈ Rn with 
u1 = −u2 and each v i equal to u1 or u2 the reference solution.

In this paper, we consider situations when the reference solu-
tion is the unique optimal primal solution to the (MC-P). If the ref-
erence solution is the unique optimal primal solution, then we can 
obtain an optimal cut from the SDP instead of an approximation. 
To identify these situations, we utilize complementary slackness 
conditions for semidefinite programs. Consider the following gen-
eral primal and dual SDPs (in what follows we assume all matrices 
are symmetric):

maximize C • X

subject to Ai • X = bi for i = 1, . . . ,m,

(P ) X � 0,

X ∈ R
�×�,

minimize bT y

subject to S =
∑m

i=1 yi Ai − C,

(D) S � 0,

S ∈ R
�×�.

Here, X � 0 represents the constraint that X must be a positive 
semidefinite matrix and C • X denotes the outer product of ma-

trices given by 
∑�

i=1

∑�
j=1 ci jxi j . For any feasible primal solution 

X and feasible dual solution y, duality theory of SDPs shows that 
C • X ≥ bT y. Furthermore, if C • X = bT y, then X and y are optimal 
primal and dual solutions, respectively, and duality theory shows 
that X S = 0 and rank(X) + rank(S) ≤ �. Therefore, if we want to 
show that any optimal primal solution has rank at most 1, it suf-
fices to show the existence of an optimal dual solution with rank 
at least � − 1. Given an instance of max cut on a graph G = (V , E), 
let W ∈ Rn×n be the matrix of edge weights, W tot =

∑

(i, j)∈E w i j , 
and C ∈ Rn×n such that C i j =

∑

k w ik if i = j and −w i j otherwise. 
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Then we can consider the semidefinite program in standard form 
that is equivalent to (MC-P):

maximize 1
4
C • X

subject to E i • X = 1, i = 1, . . . ,n,

X � 0,

X ∈ R
n×n,

(MC-P-SDP)

where E i ∈ Rn×n has a 1 in the ith spot on the diagonal and 0 
everywhere else.

Then the corresponding dual program to (MC-P-SDP) in stan-
dard form is given by

minimize 	1T y

subject to S =
∑n

i=1 yi E i −
1
4
C,

S � 0,

S ∈ R
n×n,

(MC-D-SDP)

which is equivalent to the following program:

minimize 1
2
W tot + 1

4

∑n
i=1 γi

subject to W + diag(γ ) � 0.
(MC-D)

Observe that (MC-D-SDP) and (MC-D) are equivalent since for any 
solution γ to (MC-D) or y to (MC-D-SDP) we can define an equiv-
alent solution given by the relationship yi = 1

4
(C ii − γi) where the 

objective values of (MC-D) and (MC-D-SDP) are equal at γ and y, 
respectively, and the slack matrices are the same except for a scal-
ing of 1

4
.

By the previous discussion, if we can find a feasible dual solu-
tion for our max cut instance that has objective value equal to the 
value of the max cut of G and with rank n − 1, then the comple-

mentary slackness conditions for SDPs tell us any optimal primal 
solution has rank at most 1; in this case, we will show that the 
solution must be the reference solution. We will refer to a dual 
solution as a slack matrix S and optimal dual solutions with rank 
n − 1 as having sufficiently high rank.

Similar analysis and techniques were previously introduced for 
graph coloring by Mirka, Smedira, and Williamson [7]. In the set-
ting of graph colorings, it was known that the corresponding refer-
ence solution is always an optimal primal solution for a k-colorable 
graph with an induced k-clique, but it was unknown whether it 
was the unique optimal solution and thus would always be the re-
turned solution. In the max cut setting, the reference solution is 
always a feasible primal solution, but it may not be optimal. In 
this work, we explore both when the reference solution is an opti-
mal primal solution and when it is uniquely so.

The rest of the paper is organized as follows. Section 2 presents 
some preliminary facts about semidefinite matrices and semidefi-

nite programs that will be used in subsequent sections. Section 3

describes the max cut semidefinite program and its dual, as well 
as a partial characterization of graphs for which the reference so-
lution corresponding to a max cut is the unique optimal solution. 
In particular, we show that dual solutions of rank n − 1 exist for 
connected bipartite graphs but not for graphs which do not have 
unique max cuts. In Section 4, we consider more general graphs 
and present a conjecture on when the reference solution is the 
unique optimal primal solution. Finally, Section 5 concludes with a 
few further thoughts and open questions.

2. Preliminaries

In this section, we recall some basic facts about semidefinite 
matrices and semidefinite programs that we will use in subsequent 
sections. Recall the general primal and dual semidefinite programs 
(P) and (D) given in the introduction.

We always have weak duality for semidefinite programs, so that 
the following holds.

Fact 1. Given any feasible X for (P ) and y for (D), C • X ≥ bT y.

Thus if we can produce a feasible X for (P ) and a feasible y for 
(D) such that C • X = bT y, then X must be optimal for (P ) and y
optimal for (D).

The following is also known, and is the semidefinite program-

ming version of complementary slackness conditions for linear 
programming.

Fact 2. [1, Theorem 2.10, Corollary 2.11] For optimal X for (P ) and y for 
(D), X S = 0 and rank(X) + rank(S) ≤ �.

Semidefinite programs and vector programs are equivalent be-
cause a symmetric X ∈ Rn×n is positive semidefinite (PSD) if and 
only if X = Q DQ T for a real matrix Q ∈ Rn×n and diagonal ma-

trix D in which the entries of D are the eigenvalues of X , and the 
eigenvalues are all nonnegative. We can then consider D1/2 , the 
diagonal matrix in which each diagonal entry is the square root of 
the corresponding entry of D . Then X = (Q D1/2)(Q D1/2)T . If we 
let v i ∈ Rn be the ith row of Q D1/2 , then xi j = v i · v j , and simi-

larly, given the vectors v i , we can construct a semidefinite matrix 
X with xi j = v i · v j . We also make the following observation based 
on this decomposition.

Observation 3. Given a semidefinite matrix X = Q DQ T ∈ Rn×n , 
rank(X) = d if and only if the vectors v i ∈ Rn with v i the ith row of 
Q D1/2 are supported on just d coordinates.

Throughout the rest of the paper, we may refer to semidefinite 
programs and vector programs interchangeably due to this equiva-
lence.

In the introduction, we defined the reference solution to be the 
rank 1 feasible solution to (MC-P) with two unit vectors u1, u2 ∈
Rn such that u1 = −u2 and v i is equal to u1 or u2 for each i ∈
V . By Observation 3, the positive semidefinite matrix X = WW T

(with v i the ith row of W ) must also have rank 1 and each entry 
of X is either 1 or −1.

We will also say that a positive semidefinite matrix X is the 
reference solution if it has rank 1 and there is some W such that 
X = WW T and W has exactly two distinct rows u1, u2 ∈ Rn with 
u1 = −u2 .

We also observe that, in fact, any rank 1 feasible solution to 
(MC-P) must be the reference solution. Let u1 be a unit vector from 
a rank 1 feasible solution to (MC-P). For any vertex i with v i 
= u1 , 
it must be the case that v i = −u1 since −u1 is the only other unit 
vector in the span of u1 . If u2 = −u1 , then u1 · u2 = u1 · (−u1) =
−1, and this is a reference solution as claimed.

3. Max cut semidefinite program

Recall the max cut SDP (MC-P) given in the introduction. In 
this section, we give a partial characterization of graphs for which 
the reference solution corresponding to a max cut is the unique 
optimal primal solution to (MC-P). We do so by investigating the 
rank of the optimal solutions to (MC-D).

We will refer to the primal and dual solutions as X = (v i ·
v j)i, j∈V and S = W + diag(γ ), respectively. Our first result shows 
the reference solution is the unique optimal primal solution for 
connected bipartite graphs. Note that the value of a max cut in a 
bipartite graph is always W tot : if V = A ∪ B with A ∩ B = ∅ and all 
edges have exactly one endpoint in each A and B , then all edges 
are contained in the cut given by (A, B). Thus, we can prove the 
claim by constructing a feasible dual matrix with objective value 
W tot and rank n − 1.
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Theorem 4. If G is a connected bipartite graph with n vertices, there 
exists an optimal dual solution S to (MC-D) with rank n − 1.

Proof. Let V = A ∪ B with A ∩ B = ∅ so that A and B are the 
two parts of G . For v ∈ V , let γv =

∑

i:(i,v)∈E w iv . Then the matrix 
S = W + diag(γ ) is PSD: for any x ∈ Rn ,

xT Sx =
∑

1≤i≤n

γix
2
i +

∑

(i, j)∈E

2w i jxix j

=
∑

1≤i≤n

⎛

¿

∑

j:(i, j)∈E

w i j

À

£ x2i +
∑

(i, j)∈E

2w i jxix j

=
∑

(i, j)∈E

w i j(xi + x j)
2 ≥ 0.

Since S is PSD, it is a feasible dual slack matrix. Dual optimality of 
S is given by the objective value:

1

2
W tot +

1

4

∑

v∈V

γv

=
1

2
W tot +

1

4

∑

v∈V

∑

i:(i,v)∈E

w iv

=
1

2
W tot +

1

4

∑

(i, j)∈E

2w i j

=
1

2
W tot +

1

2
W tot

= W tot ,

which is also the value of the max cut since G is bipartite.
It remains to show rank(S) = n − 1. For a vector x ∈ ker(S), we 

have xT Sx =
∑

(i, j)∈E w i j(xi + x j)
2 = 0. Then since all edge-weights 

are positive, it must be the case that xi + x j = 0 for every edge 
(i, j) ∈ E . Let y ∈ Rn such that yv = 1 if v ∈ A and yv = −1 if v ∈
B . Since G is bipartite, every edge is between some vertex in A and 
some vertex in B , so (yi + y j)

2 = 0 for every edge. Therefore, y ∈
ker(S). The connectivity of G guarantees that scalings of y are the 
only vectors in the ker(S). Assume this is not the case, and there 
is a vector y′ ∈ ker(S) such that there exist vertices a, a′ ∈ A where 
y′
a 
= y′

a′ . Because the graph is connected, there must be a path P
from a to a′ where vertices in the path alternate being in A and B . 
Let a∗ ∈ A be the first vertex in A on the path such that y′

a 
= y′
a∗

and a† ∈ A the last vertex in A on the path before a∗ . Then a† and 
a∗ must share a neighbor b ∈ B on P , and therefore it must be the 
case that (y′

a†
+ y′

b
)2 = 0 and (y′

a∗ + y′
b
)2 = 0. This means y′

a†
= y′

a∗

which contradicts our selection of a† and a∗ . Since scalings of y are 
the only vectors in ker(S), rank(S) = n − 1. �

The connectivity of a bipartite graph G plays a subtle but im-

portant role in Theorem 4; without connectivity, the max cut of 
G would not have been unique, and the kernel of the constructed 
matrix S would be higher-dimensional. As the next result illus-
trates, it turns out the uniqueness of a max cut is a necessary 
condition for the existence of an optimal solution to (MC-D) with 
sufficiently high rank. We show this by finding a feasible solution 
to (MC-P) with rank greater than 1 but with objective value equal 
to the objective value attained by the reference solution. The key 
insight behind the construction is that the objective function of 
(MC-P) is affine, so any convex combination of optimal solutions 
gives an optimal solution. However, taking convex combinations 
does not necessarily preserve rank, so some of these optimal so-
lutions will have rank greater than 1. Because there must be an 
optimal solution to (MC-P) with rank greater than 1, there cannot 
be an optimal dual solution with rank n − 1.

Fig. 1. A graph with a unique max cut and optimal solution to (MC-P) with rank 
greater than 1.

Theorem 5. Let G be a graph with two distinct max cuts. Then there is 
an optimal solution to (MC-P) with rank greater than 1.

Proof. Let (A1, B1) and (A2, B2) be two distinct max cuts. Con-
sider the rank 1 solutions f and g associated with each cut given 
by f (v) = 1 if v ∈ A1 and f (v) = −1 if v ∈ B1 and g(v) = 1 if 
v ∈ A2 and g(v) = −1 if v ∈ B2 . Let F and G be the correspond-
ing PSD matrices where F i j = f (i) f ( j) and G i j = g(i)g( j). Observe 
for any ³ ∈ (0, 1), the convex combination of F and G given by 
H = ³F + (1 − ³)G is PSD and a feasible solution to (MC-P) since 
each diagonal entry of H is equal to 1.

Now we consider the objective values. Let

C =
1

2

∑

(i, j)∈E

w i j(1− F i j) =
1

2

∑

(i, j)∈E

w i j(1 − G i j)

where the second equality follows since F and G both correspond 
to optimal cuts and thus produce the same objective value. Since 
the objective function is affine, the objective value for H is also C :

1

2

∑

(i, j)∈E

w i j(1− H i j) =
1

2

∑

(i, j)∈E

w i j(1− ³F i j − (1− ³)G i j)

= ³C + (1 − ³)C = C .

Now that we have shown H attains the same objective value 
as the max cut, we must determine the rank of H . Let y ∈ (A1 ∩
A2) ∪ (B1 ∩ B2) so that f (y) = g(y). Note that because the cuts are 
distinct, such a y must exist. If not, then it must be the case that 
A1 = B2 and B1 = A2 , contradicting the distinctness of the cuts. 
Similarly, there must exist a v ∈ (A1 ∩ B2) ∪ (A2 ∩ B1) which means 
f (v) = −g(v). Together, this implies f (y) f (v) = −g(y)g(v). Con-
sider ³ = 1

2
, so that H yv = 0. Since H is PSD, H = V T V for 

some V , and rank(H) = rank(V ). If rank(V ) = 1, then H i j = ±1

for 1 ≤ i, j ≤ n. Therefore H yv = 0 implies 1 < rank(V ) = rank(H). 
Since H is a feasible solution to (MC-P) with rank greater than and 
obtaining the same objective value as F and G (the optimal rank 1 
solutions), the claim is complete. �

Theorem 5 tells us that only graphs with unique max cuts can 
have the corresponding reference solution as the unique optimal 
solution. Unfortunately, uniqueness of a max cut is not sufficient 
to guarantee uniqueness of the reference solution as the optimal 
primal solution (or existence of a rank (n − 1) optimal dual solu-
tion) in general as Fig. 1 illustrates: the graph has a unique max 
cut with value 12 given by ({v1, v3, v5}, {v2, v4}) and a rank 2 pri-
mal solution with objective value ∼ 12.05.

4. General graphs

In Section 3, we showed that the uniqueness of a max cut for a 
graph is a necessary but insufficient condition to guarantee the ref-
erence solution is the unique optimal solution to (MC-P). We also 
proved that bipartiteness is sufficient in connected graphs, though 

3



R. Mirka and D.P. Williamson Operations Research Letters 53 (2024) 107067

it turns out it is not necessary. The following theorem provides an 
equivalent condition for the reference solution to be an optimal 
primal solution.

Theorem 6. Let G = (V , E) be a graph with a unique max cut, W its 
weight matrix, and M ⊂ E the set of edges in its max cut. For v ∈ V , let 
γv =

∑

(v, j)∈M w v j −
∑

(v, j)∈E\M w v j . Then the rank 1 reference solu-
tion corresponding to the max cut is an optimal primal solution if and 
only if S = W + diag(γ ) is PSD.

Proof. We begin by showing optimality of the reference solution 
implies S is PSD. Let X be the primal solution corresponding to the 
reference solution; an off-diagonal entry Xi j = 1 if i and j are in 
the same side of the cut and −1 otherwise. Furthermore, since X is 
assumed to be optimal, by complementary slackness conditions we 
know that XT = 0 for any optimal dual solution T . In particular, 
Xi · T i = 0 for i = 1, . . .n, where Xi and T i are the ith row of X
and T , respectively. This means

0 = Xi · T i = γi +
∑

(i, j)∈E\M

w i j −
∑

(i, j)∈M

w i j .

Rearranging shows that γi =
∑

(i, j)∈M w i j −
∑

(i, j)∈E\M w i j and T
must be equal to S . Since T was assumed to be optimal for (MC-

D), this implies S is optimal for (MC-D) and therefore is PSD as 
claimed.

On the other hand, if S is PSD, it is a feasible dual solution. Note 
the value of the max cut for G , and thus the reference solution, is 
∑

e∈M we . The corresponding objective value for S is

1

2
W tot +

1

4

∑

v∈V

γv

=
1

2
W tot +

1

4

∑

v∈V

⎛

¿

∑

(v, j)∈M

w v j −
∑

(v, j)∈E\M

w v j

À

£

=
1

2
W tot +

1

4

⎛

¿2
∑

e∈M

we − 2
∑

e∈E\M

we

À

£

=
1

2
W tot +

1

4

⎛

¿2W tot − 4
∑

e∈E\M

we

À

£

= W tot −
∑

e∈E\M

we =
∑

e∈M

we.

Since the dual objective value for S matches the primal objective 
value for the reference solution, both must be optimal. �

Clearly if the reference solution is the unique optimal solu-
tion, then the matrix S from Theorem 6 is still PSD (where we 
do not assume that the reference solution is the unique optimal 
solution). However, while Theorem 6 guarantees the optimality of 
the reference solution to (MC-P) (if S is PSD), it does not nec-

essarily guarantee the existence of a rank (n − 1) optimal dual 
solution to (MC-D) or the uniqueness of the optimality of the ref-
erence solution. Consider a triangle with edge weights w1 = 1 and 
w2 = w3 = 2. In this case,

S =

¤

£

1 1 2

1 1 2

2 2 4

¤

⎦

which is PSD (showing the optimality of the reference solution) 
but itself only has rank (n − 2). This example illustrates why we 

may not be able to immediately conclude the reference solution is 
the unique primal solution even if S is PSD; however, we conjec-
ture this is the case:

Conjecture 7. Let G = (V , E) be a graph with a unique max cut, W its 
weight matrix, and M ⊂ E the set of edges in its max cut. For v ∈ V , let 
γv =

∑

(v, j)∈M w v j −
∑

(v, j)∈E\M w v j . If the rank 1 reference solution 
corresponding to the max cut is an optimal primal solution or, equiva-
lently, S = W +diag(γ ) is PSD, then the reference solution is the unique 
optimal primal solution.

5. Conclusion

In this work, we have partially characterized graphs for which 
we can find a rank n − 1 solution to (MC-D). This goal was moti-

vated by the desire to classify instances when the reference solu-
tion of a max cut is the unique optimal solution to (MC-P). We 
show in Theorem 4 that this is always the case for connected 
bipartite graphs. In order to classify further, we had to first ex-
plore when the reference solution is an optimal solution to (MC-P). 
Theorem 5 shows that uniqueness of a max cut is a necessary con-
dition, and Theorem 6 shows that given the uniqueness of a max 
cut, whether the reference solution is an optimal primal solution is 
equivalent to whether a matrix with entries depending only on the 
edge-weights of G and its max cut is positive semidefinite. These 
results do not completely characterize when there is a unique op-
timal solution with rank 1, but we conjecture this is the case when 
the conditions of Theorem 6 are met. A deeper understanding of 
classes of graphs when the matrix S given in Theorem 6 is PSD 
could provide useful insights into proving Conjecture 7.

In addition to settling Conjecture 7, there are several poten-
tial directions of future study which we present now. Conjecture 7
claims for a general graph that if the GW-relaxation is exact and 
the graph has a unique max cut, then the reference solution corre-
sponding to the max cut is the unique optimizer of the relaxation, 
and Theorem 4 proves this for connected bipartite graphs. In gen-
eral, we do not know when the GW-relaxation is exact, but we 
do know it remains exact for bipartite graphs even if they are not 
connected. However, in this case, the max cuts are not unique and 
therefore the optimal solution to (MC-P) is not unique either. One 
might explore whether the bipartiteness can still be exploited to 
analyze the optimum solutions in this setting. In particular, one 
set of optimal solutions is given by selecting a unit vector (or ref-
erence solution) for each connected component of the bipartite 
graph. A reasonable assertion might be that all optimum solu-
tions are then convex combinations of solutions of this type. One 
could also investigate an analogous question about the rank of op-
timal solutions and how it potentially corresponds to the number 
of connected components. For general graphs, if the GW-relaxation 
is exact, but there are several max cuts, can we understand the 
form these optimal solutions to (MC-P) take? Are they always con-
vex combinations of reference solutions?

Additionally, while Theorem 6 provides one condition for the 
reference solution being an optimal solution to (MC-P) in general 
graphs, more can be said in the case of planar graphs if the max 
cut SDP (MC-P) is modified slightly.

Barahona and Mahjoub [2] consider the SDP given by adding 
the following constraints to (MC-P): for all i, j, k ∈ V ,

v i · v j + v i · vk + v j · vk ≥ −1

−v i · v j − v i · vk + v j · vk ≥ −1

−v i · v j + v i · vk − v j · vk ≥ −1

v i · v j − v i · vk − v j · vk ≥ −1.

4
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We will refer to (MC-P) with these additional constraints as (MC2-

P). They show that (MC2-P) has optimal objective value equal to 
that of the max cut for any planar graph instance. Furthermore, 
we can observe that the reference solution of a max cut given by 
u1, u2 ∈ Rn is still a feasible solution to (MC2-P); all constraints 
are satisfied if v i, v j, vk ∈ {u1, u2} for all i, j, k ∈ V . Thus, since the 
objective value of (MC2-P) is equal to the value of the max cut 
for planar graphs, and the reference solution is a feasible solution 
achieving the value of the max cut, it must be an optimal solution 
to (MC2-P). Therefore, we can immediately focus on the unique-
ness of the reference solution as an optimal solution to (MC2-P).

To do so, we can again consider finding sufficiently high rank 
solutions to the dual program of (MC2-P). The new dual (MC2-D) 
has the following form:

minimize

[

1
2
W tot + 1

4

n
∑

i=1

γi

+
n
∑

i=1

n
∑

j=i+1

n
∑

k= j+1

(

³i jk + ´i jk + δi jk + γi jk

)

]

(MC2-D) subject to W + diag(γ ) + T � 0,

where T is the symmetric matrix such that T ii = 0 for all i and

T i j =
∑

k<i

(

−³ki j − ´ki j + δki j + λki j

)

+
∑

i<k< j

(

−³ikj + ´ikj − δikj + λikj

)

+
∑

j<k

(

−³i jk + ´i jk + δi jk − λi jk

)

for i < j.

Unfortunately, the large number of dual variables adds signif-
icant complexity to the analysis of potential high-rank dual so-
lutions. While we believe the reference solution should be the 

unique optimal solution to (MC2-P) for planar graphs, we were un-
able to find a general form of a sufficiently high rank solution to 
(MC2-D) which would prove this. It would be an interesting di-
rection of research to understand more about optimal solutions to 
(MC2-D). In particular, can this SDP be used to classify when the 
reference solution is the unique optimal primal solution for planar 
graphs?
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