

1 Oceanic influence and lapse rate changes dominate the 2 recent amplified Saharan warming

3 **Li Zhuo¹, Brian E. J. Rose¹**

4 ¹Department of Atmospheric and Environmental Sciences, University at Albany, State University of New
5 York, Albany, NY, USA

6 **Key Points:**

- 7 · The observed Saharan warming since 1979 is largely a result of the SST change rather
8 than direct anthropogenic GHG radiative forcing.
- 9 · The dominant factor driving Saharan warming is the anomalous atmospheric energy
10 transport from the warming ocean.
- 11 · Lapse rate and water vapor feedbacks both amplify Saharan warming relative to the
12 average tropical land in response to the SST forcing.

Zhuo, L., & Rose, B. E. J. (2024). Oceanic influence and lapse rate changes
dominate the recent amplified Saharan warming. *Geophysical Research Letters*,
51, e2023GL106961. <https://doi.org/10.1029/2023GL106961>

Received 23 OCT 2023

Accepted 23 DEC 2023

Published 12 January 2024

Corresponding author: Li Zhuo, lzhuo@albany.edu

Abstract

The surface air temperature (SAT) over the Sahara Desert has increased at a much faster rate than average tropical land in recent decades. This study examines the relative roles of anthropogenic greenhouse gas (GHG) forcing and sea surface temperature (SST) change in the observed Saharan temperature increase during boreal warm season from 1979 to 2020 using atmospheric general circulation model simulations. It is found that the SST forcing dominates the observed Saharan warming. Further analysis shows that the warming ocean forces the Saharan SAT increase by moving more energy to the Sahara Desert, while the water vapor feedback plays a secondary role. The reason for the stronger Saharan warming than the average tropical land given the same SST forcing is also explored. We found that the largest contributor to the warming contrast is the lapse-rate feedback, which is attributable to the difference in the vertical warming profile.

Plain Language Summary

Sahara Desert has experienced a stronger warming than the tropical land on average since 1979. Debates continue on whether the amplified Saharan warming is a response to the remote SST change or the radiative forcing brought about by the increasing anthropogenic GHG. In this study, we quantify the relative contributions of these two forcing agents to the observed Saharan temperature increase. It is found that the observed Saharan warming is largely controlled by the remote SST forcing. As the ocean warms up, it acts to transport more energy to the Sahara Desert and warms the surface. The warming contrast between the Sahara Desert and the average tropical land is found to be dominated by the lapse-rate feedback, which favors the Saharan warming but suppresses the average tropical land warming. The difference in lapse-rate feedback is a result of the different vertical warming structure over the Sahara Desert and average tropical land.

1 Introduction

The increase of surface air temperature (SAT) over the Sahara Desert, one of the world's largest deserts, has been proceeding at a much faster rate than the average tropical land since 1979 (Cook & Vizy (2015); Lavaysse et al. (2016); Vizy & Cook (2017)), which is termed "Desert Amplification" (hereafter DA). The amplified Saharan warming is most pronounced during the boreal warm season (JJASON) and features a bottom-heavy vertical profile (Cook & Vizy (2015); Wei et al. (2017); Zhou (2021)).

Many studies have suggested that the amplified Saharan warming is a local response to the radiative forcing driven by escalating anthropogenic greenhouse gas (GHG) emissions (Cook & Vizy (2015); Liu et al. (2001); Liu et al. (2002); Zhou et al. (2015); Zhou et al. (2016)). For instance, through the analysis of a set of model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5) archive, Zhou et al. (2015) showed that the simulations with only natural forcings fail to reproduce the major features of the observed Saharan warming and DA. Similarly, in the future projection studies, the surface elevated radiative forcing resulting from the anthropogenic GHG is argued to be responsible for DA in the 21st century (Liu et al. (2001); Liu et al. (2002)).

A contrary view was advanced by Skinner et al. (2012), who showed that sea surface temperature (SST) change plays a dominant role in shaping the temperature increase over the Sahara Desert in the 21st century, while the influence of the change in GHG is negligible. The result from Skinner et al. (2012) highlights the dominance of SST forcing in determining the Saharan warming, which is consistent with previous work on land sea warming contrast (Andrews et al. (2009); Byrne & O'Gorman (2013); Byrne & O'Gorman (2018); Compo & Sardeshmukh (2009); Dommegget (2009); Lambert & Chiang (2007)). However, Skinner et al. (2012) did not examine the mechanism driving the SST-induced Saharan temperature response. The key role of SST forcing is also evidenced in studies highlighting the strong water vapor feedback over the Sahara Desert (Evan et al. (2015); Zhou et al. (2016); Zhuo

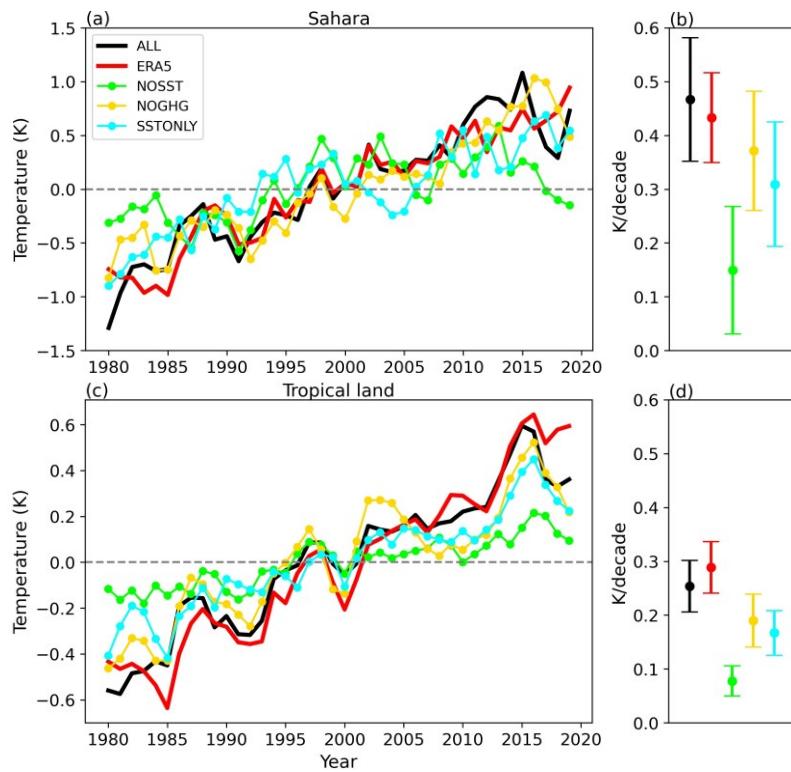
63 & Zhou (2022)), as most of the increased moisture over the land originates from the ocean
64 (Trenberth et al. (2007)).

65 According to Compo & Sardeshmukh (2009), the oceanic warming forces the land temperature
66 increase by moving extra energy from the ocean to the land. The key role of heat
67 transport anomaly between land and ocean in maintaining a constant land sea warming
68 ratio has also been reported by Lambert et al. (2011) and Toda et al. (2021). Without
69 the anthropogenic GHG forcing, it is expected that the heat transport anomaly acts as the
70 external forcing and increases the surface temperature over the Sahara Desert (Lambert
71 et al. (2011)). However, the SST-induced Saharan temperature increase is also subject to
72 local climate feedbacks, such as the water vapor and lapse-rate feedbacks (Colman & Soden
73 (2021)). The relative contributions of heat transport anomaly and climate feedbacks to the
74 observed Saharan temperature increase is still unclear.

75 In this study, we make use of an atmospheric general circulation model (AGCM) to quantify
76 the relative contributions of anthropogenic GHG radiative forcing and remote SST forcing
77 to the observed amplified Saharan warming in the boreal warm season since 1979. Note
78 that the SST forcing defined in our study denotes the net effects of the observed SST
79 change over the globe (Deser & Phillips (2009); Folland et al. (1998)). 1979 is chosen as
80 the beginning year for consistency with previous studies (Cook & Vizy (2015); Zhou et
81 al. (2015)) and availability of the satellite-derived SST (Deser et al. (2010)). As will be
82 shown later, SST forcing yields a much larger contribution to the recent observed Saharan
83 temperature increase than the direct anthropogenic GHG radiative forcing. To explore the
84 process whereby the SST forcing induces the Saharan warming, we isolate the effects of
85 the SST change in one experiment and perform a decomposition analysis of the observed
86 Saharan temperature increase, similar to previous studies on Arctic Amplification (Pithan
87 & Mauritsen (2014)). This decomposition allows us to assess the impacts of each physical
88 process on the observed temperature increase over the Sahara Desert, and the stronger
89 Saharan warming than the average tropical land given the same oceanic forcing. We focus
90 on the warming contrast between the Sahara Desert (20°N-30°N; 10°W-30°E) and the
91 average tropical land (30°S-30°N) as SST is prescribed in our simulations.

92 **2 Model simulations and datasets**

93 We utilize the NCAR Community Atmosphere Model version 4 (CAM4) in this study.
94 CAM4 is the atmospheric component of the Community Earth System Model (CESM)
95 (Hurrell et al. (2013)). CAM4 used here has 26 vertical levels and is run on a finite-volume
96 grid with a horizontal resolution of approximately 1.9 latitude and 2.5 longitude (Gent et
97 al. (2011)).


98 To isolate the SST effects from the anthropogenic GHG radiative forcing, here we force
99 the CAM4 model with different forcing combinations, following previous studies (Deser &
100 Phillips (2009); Folland et al. (1998); He & Soden (2015); Li et al. (2020); Shaw & Voigt
101 (2015); Shen et al. (2020)). In the ALL experiment, the model is forced with the observed
102 evolution of monthly SST, GHG and other forcings (ozone, solar variation, anthropogenic
103 and natural aerosols). In the NOSSST experiment, the atmospheric forcings are prescribed
104 as in ALL but the SST is fixed to the annual cycle in 1979. In the NOGHG experiment, the
105 model is forced with the same SST and other forcings as in ALL but with the GHG fixed to
106 the annual cycle in 1979. Note that these two mechanism-denial experiments only enable
107 the examination of the net effects of certain types of forcing, not their operating mechanism.
108 In order to isolate and elucidate the mechanism associated with the SST forcing, here we
109 conduct another process-oriented experiment in which only the year-to-year observed SST is
110 prescribed while the atmospheric forcings are fixed to the annual cycle in 1979 (SSTONLY).
111 All of these simulations start from 1st January 1979 and end on 31st December 2020.

112 The SST and sea ice concentration dataset used in this study is described in Hurrell et
113 al. (2008). The historical and Representative Concentration Pathway 8.5 (RCP8.5) atmo-

114 spheric forcings are used before and after December 2005, respectively. We utilize the fifth
 115 major global reanalysis produced by European Centre for Medium-Range Weather Forecasts
 116 (ERA5; Hersbach et al. (2020)) as the benchmark for the Saharan temperature response in
 117 all simulations. The radiative kernel dataset by Pendergrass et al. (2018) is employed in
 118 this study to perform the climate feedback and temperature decomposition analysis.

119 **3 Saharan warming and DA in model simulations**

120 The interannual variability and linear trends of the Saharan and average tropical land SAT
 121 in the boreal warm season are shown in Figure 1. We calculate the trends via ordinary
 122 least-squares regression and the uncertainty bounds denote the 95 % confidence interval.
 123 In ERA5, the Saharan temperature features a rapid increase at a rate of 0.43 ± 0.08 K
 124 per decade, which is close to the corresponding trend in ALL (0.47 ± 0.11 K per decade)
 125 (Figure 1b). The Pearson correlation coefficient between ERA5 and ALL is 0.77 (calculated
 126 without smoothing) and statistically significant at the 99 % level of confidence (Figure 1a).
 127 The spatial warming pattern over the Sahara Desert in ALL also bears close resemblance
 128 with that in ERA5 (Figures 2a, b). Comparison between ERA5 and ALL indicates that
 129 ALL has reliably reproduced the surface warming over the Sahara Desert to a large extent
 130 (Figure 1 and Figures 2a-b).

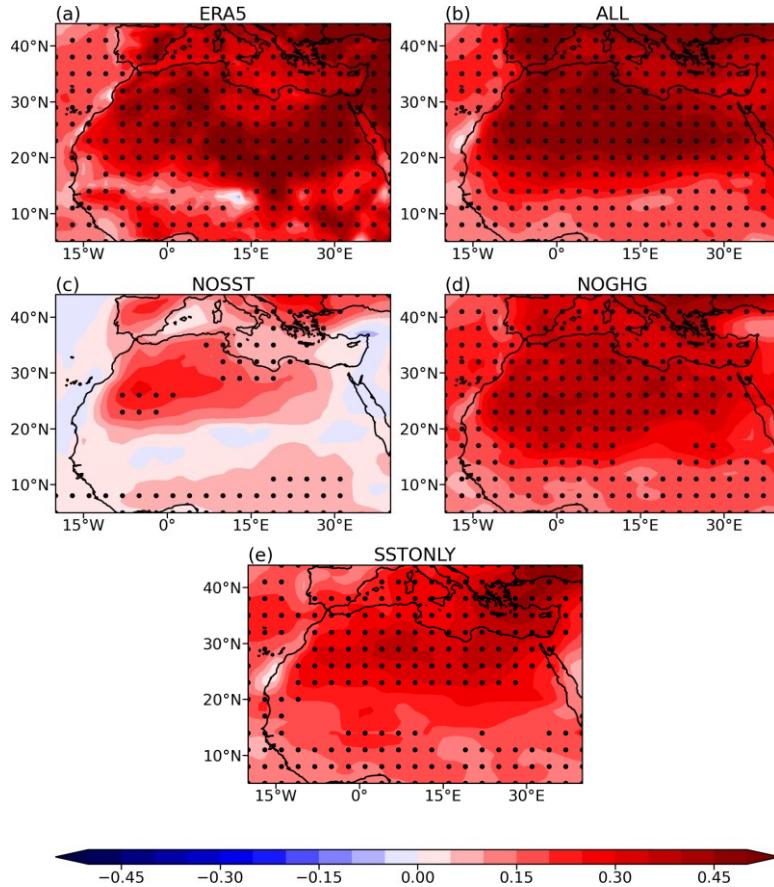
Figure 1. (a) Interannual variability of the SAT anomalies (K) over the Sahara Desert in the boreal warm season from ALL (black), ERA5 (red), NOSST (green), NOGHG (gold) and SSTONLY (cyan). All time series are smoothed with a 3-year running average. (b) corresponding linear trends (K/decade) of the SAT in (a). Error bars denote the 95 % confidence intervals. (c) and (d): same as (a) and (b) but for the average tropical land (30°S - 30°N).

131 In NOSST with the SST forcing turned off, the Saharan warming trend is reduced to
 132 0.15 ± 0.12 K per decade (Figure 1b). In comparison, when the GHG forcing is deacti-
 133 vated, the trend of the Saharan temperature is about 0.37 ± 0.11 K per decade, which still

134 accounts for 79 % of ALL (Figure 1b). Comparison between NOSST and NOGHG highlights
 135 the dominant role of SST forcing in the observed Saharan temperature increase. The
 136 discrepancy in the spatial warming pattern between different experiments also supports
 137 that the SST forcing makes a much larger contribution to the Saharan temperature increase
 138 than the anthropogenic GHG forcing (Figures 2a-d). Without the SST forcing, the Saharan
 139 warming is strongly damped and a large portion of the temperature trend is statistically
 140 insignificant (Figure 2c), consistent with Skinner et al. (2012). Note that the sum of the
 141 trend in SSTONLY (0.31 K per decade) and NOSST (0.15 K per decade) is close to that in
 142 ALL (0.47 K per decade) (Figure 1b), indicating the Saharan temperature response to the
 143 SST forcing and atmospheric radiative forcing are approximately linear and additive, which
 144 is in agreement with previous studies (Deser & Phillips (2009); Shen et al. (2020); Skinner
 145 et al. (2012)).

146 In comparison to the Sahara Desert, the average tropical land warms at a slower rate in
 147 ERA5 (0.29 ± 0.05 K per decade) and ALL (0.25 ± 0.05 K per decade) (Figure 1d). The
 148 average tropical land warming are weakened in both NOGHG and NOSST compared to
 149 ALL. However, the warming rate in NOSST (0.08 ± 0.05 K per decade) is less than half that
 150 of NOGHG (0.19 ± 0.05 K per decade) (Figure 1d), highlighting the dominant control of
 151 oceanic warming on the tropical land warming (Byrne & O'Gorman (2018); Byrne (2021)).
 152 DA is also evident in SSTONLY as the temperature trend over the Sahara Desert (0.31 ± 0.12
 153 K per decade) is about twice the average tropical land (0.17 ± 0.04 K per decade) (Figures
 154 1b, d).

155 **4 Surface temperature change attribution**


156 In this section, we will decompose the surface temperature change over the Sahara Desert
 157 and average tropical land in SSTONLY using a conventional surface temperature change
 158 attribution method (Goosse et al. (2018); Henry et al. (2021); Pithan & Mauritsen (2014);
 159 Stuecker et al. (2018)). By conducting such a decomposition, we aim to address these two
 160 questions: (i) how does the SST forcing force the Sahara Desert to warm up? (ii) With
 161 the same oceanic forcing, what drives the faster Saharan warming than the average tropical
 162 land?

163 We take the change as the difference of the variable averaged between the first (1979-1988)
 164 and last (2011-2020) decades of the simulation. One can decompose the SAT change ΔT_s
 165 over a specific area as follows (Goosse et al. (2018); Henry et al. (2021)):

$$166 \Delta T_s = \left(-\frac{1}{\bar{\lambda}_0} \right) (F + \Delta R_{PL} + \Delta R_{WV} + \Delta R_{LR} + \Delta R_{CD} + \Delta R_{AL} + Q_s + \Delta AET), \quad (1)$$

167 where $\bar{\lambda}_0$ is the global mean Planck feedback parameter ($W m^{-2} K^{-1}$), F is the radiative
 168 forcing, ΔR_{PL} , ΔR_{WV} , ΔR_{LR} , ΔR_{CD} , ΔR_{AL} represents the radiative energy flux anomaly
 169 ($W m^{-2}$) at the top of atmosphere (TOA) induced by the local deviation of Planck feedback
 170 (PL), water vapor feedback (WV), lapse-rate feedback (LR), cloud feedback (Cloud) and
 171 albedo feedback (Albedo), respectively. WV can be further decomposed into the longwave
 172 (LW_WV) and shortwave (SW_WV) components. Q_s is the surface heat source (SHEAT;
 173 $W m^{-2}$), ΔAET is the change in atmospheric horizontal energy transport (AHET; $W m^{-2}$).
 174 The calculation for each term is described in detail in Appendix A. All energy fluxes in
 175 Equation 1 are positive towards the atmosphere.

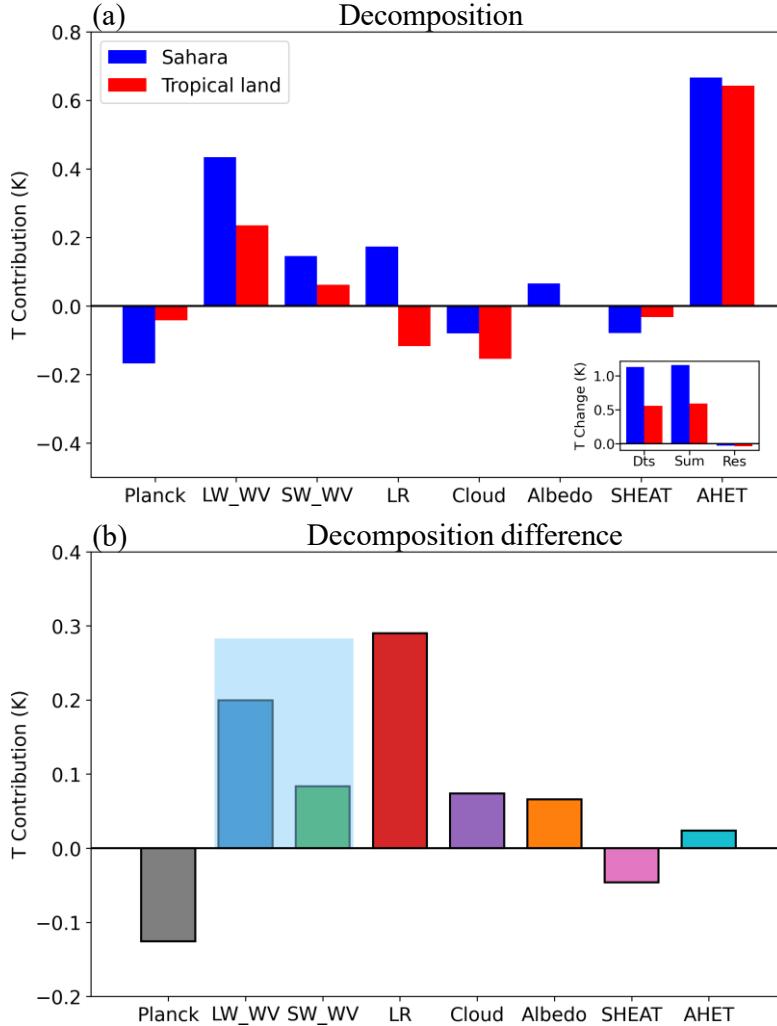
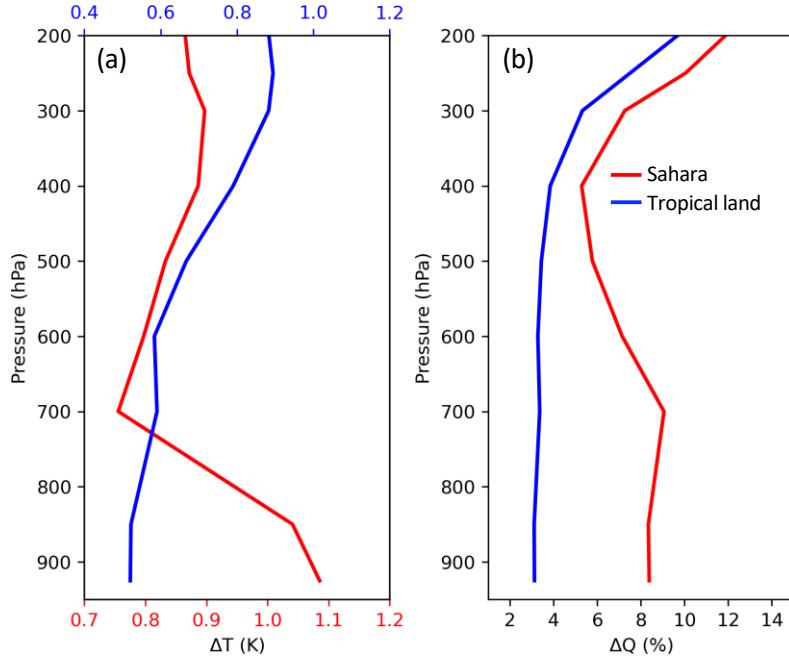

176 Figure 3a shows the result of the surface temperature change decomposition for the Sahara
 177 Desert and average tropical land. Note that in SSTONLY, the atmospheric forcings are
 178 turned off ($F = 0$) and are not shown in the figure. The residuals (Res) for the Sahara
 179 Desert (-0.03 K) and average tropical land (-0.04 K) are two and one orders of magnitude
 180 smaller than the corresponding modeled temperature change (Dts), indicating that the
 181 decomposition explains most of the Saharan and average tropical land warming (Figure 3a).

Figure 2. Spatial patterns of the SAT trends (K/decade) in the boreal warm season from (a) ERA5, (b) ALL, (c) NOSST, (d) NOGHG and (e) SSTONLY. The area dotted denotes the region with SAT trends that are statistically significant at the 99% level of confidence.


Figure 3a highlights the dominant role of the change in AHET (0.67 K) in the Saharan temperature increase. Change in AHET also dominates the temperature increase over the average tropical land (0.64 K). This indicates that as the ocean warms up, more energy is transported from the warming ocean to the land and warms the surface (Compo & Sardeshmukh (2009); Lambert et al. (2011); Toda et al. (2021)). It is interesting to note secondary contribution comes from the water vapor feedback, with the longwave and shortwave water vapor feedback in total explains about 0.58 K temperature increase (Figure 3a). This agrees well with previous work highlighting the strongest water vapor feedback over the driest regions on Earth (Vizy & Cook (2017); Zhou et al. (2016); Zhou (2016)). The dominant contributions of change in AHET and water vapor feedback suggests that without the anthropogenic GHG radiative forcing, AHET anomaly brought about by the warming ocean acts as the external forcing and increases the Saharan surface temperature (Lambert et al. (2011)). In the meantime, the temperature increase driven by the AHET anomaly is strongly amplified by the local water vapor feedback (Figure 3a).

It is noteworthy that the lapse-rate feedback favors the Saharan warming while hampering the temperature increase over the average tropical land (Figure 3a). The difference in lapse-rate feedback makes the largest contribution to the warming contrast between the Sahara Desert and average tropical land (Figure 3b). The discrepancy in lapse-rate feedback can be attributed to the different vertical warming profile between the average tropical land

Figure 3. (a) Decomposition of the surface temperature change in boreal warm season for the Sahara Desert (blue) and average tropical land (red) in SSTONLY. Small figure inserted shows the left term (Dts), sum of the right terms (Sum), and the residual (Res) of Equation 1. (b) The difference for each term in (a) between Sahara Desert and the average tropical land. The transparent light blue bar denotes the total water vapor feedback difference (LW_WV+SW_WV). Positive values denote that the term favors DA.

and Sahara Desert (Figure 4a). In SSTONLY, the average tropical land is characterized by a top-heavy warming profile, which dampens the surface warming (Figure 4a; Colman & Soden (2021); Soden et al. (2008)). In contrast to the average tropical land, Sahara Desert is characterized by a bottom-heavy warming profile, with the maximum temperature increase in the lower troposphere (Figure 4a). As a result, the lapse-rate feedback over the Sahara Desert acts to enhance the local temperature increase (Figure 3a). The unique bottom-heavy warming profile over the Sahara Desert has also been reported by previous studies based on observational (Wei et al. (2017)) and reanalysis datasets (Cook & Vizy (2015)). The Saharan bottom-heavy warming profile has also been found in ERA5 (Figure S1a). It is tempting to explain the top-heavy warming profile over the average tropical land in SSTONLY as a result of radiative-convective adjustment (Emanuel (2007); Holloway & Neelin (2007); Jeevanjee et al. (2022)). However, a recent result from Wang & Huang

Figure 4. (a) Temperature change (K) in boreal warm season averaged over the Sahara Desert (red), tropical land (blue) as a function of pressure in SSTONLY. Saharan and tropical land temperature change corresponds to the bottom and top axis, respectively. (b) same as (a) but for the fractional change (%) in specific humidity (kg/kg).

(2021) shows that the circulation adjustment also plays an important role in shaping the lapse rate change over the tropics in response to SST increase. Previous work has also reported larger deviation of the tropical land from moist adiabatic than the tropical ocean (Byrne & O’Gorman (2013); Chiang & Lintner (2005); Jakob et al. (2019)), suggesting that the lapse rate change over the land in the tropics is more sensitive to processes other than radiative-convective adjustment relative to the tropical ocean. For this reason, we refrain from explaining the lapse-rate change over the average tropical land in SSTONLY from the moist adiabatic perspective solely. The relative contributions of radiation, convection and circulation adjustment to the change in the lapse rate over the Sahara Desert and average tropical land in response to the oceanic forcing needs further in-depth research in the future.

Apart from the lapse-rate feedback, water vapor feedback also favors DA (Figure 3b). The contribution of longwave and shortwave water vapor feedback in total to the warming contrast between Sahara Desert and the average tropical land is close to that of lapse-rate feedback (Figure 3b). The stronger water vapor feedback over the Sahara Desert is likely a result of the stronger Saharan moistening in comparison to the average tropical land (Figure 4b), which has also been highlighted in previous studies (Wei et al., 2017). However, the difference in the radiative kernel over the Sahara Desert and the average tropical land could also factor into the water vapor feedback discrepancy (Previdi et al. (2021)). Decomposition of the water vapor feedback difference into the moistening, radiative kernel and their covariance is beyond the scope of this paper and will be a subject of future studies.

It is worth noting that the water vapor and lapse-rate feedback have same signs over the Sahara Desert (Figure 3a), contrary to the conventional view that they generally counteract each other in the climate system (Colman (2003); Dessler (2013); Ingram (2013); Sanderson et al. (2010); Soden & Held (2006); Zhang et al. (1994)). The cancellation between the water

237 vapor and lapse-rate feedback is argued to be closely tied to the deep intense convection
 238 (Hansen et al. (1984)); Taylor et al. (2011)). Our results highlight that over extreme dry
 239 regions like the Sahara Desert in the tropics, lapse-rate and water vapor feedbacks are likely
 240 to both enhance the surface warming. It is worthwhile to check whether the same result
 241 applies to other dry regions on Earth, like the desert in Australia and the Arabian Peninsula
 242 in future studies.

243 Our result indicates that the lapse-rate change plays a predominant role in DA, which is
 244 broadly consistent with previous studies on land-ocean warming contrast (Byrne & O’Gorman
 245 (2013); Byrne & O’Gorman (2018); Joshi et al. (2008)) and Mediterranean amplification
 246 (Brogli et al. (2019); Kröner et al. (2017)). However, there is a lack of agreement on the
 247 role of water vapor feedback in land-sea warming contrast (Byrne & O’Gorman (2013);
 248 Dommelenget & Flöter (2011); Toda et al. (2021)). Different from the results based on ideal-
 249 ized simulations (Byrne & O’Gorman (2013)), Figures 3a and 3b indicate that water vapor
 250 feedback is an important contributor to the warming contrast between the Sahara Desert
 251 and average tropical land, alluding to the possibility that it could also factor into the dif-
 252 ference between the Saharan and oceanic warming (Dommelenget & Flöter (2011); Toda et
 253 al. (2021)). Our result also suggests the likelihood that water vapor feedback may make an
 254 important contribution to the land-sea warming contrast and Mediterranean amplification.
 255 Nevertheless, the prescription of SST in our study prevents us from assessing the effects of
 256 water vapor feedback on the warming contrast between Sahara Desert and the surrounding
 257 ocean. Simulations based on fully coupled ocean-atmosphere models are expected to be
 258 carried out in future studies to provide more insights into the role of water vapor feedback
 259 in the stronger warming of average tropical land, Sahara Desert and southern Europe than
 260 the ocean.

261 **5 Conclusion and discussion**

262 In this study, we quantify the relative contributions of the direct anthropogenic GHG ra-
 263 diative forcing and remote SST change to the observed Saharan warming in the boreal
 264 warm season since 1979 using AGCM simulations. The simulation forced with the observed
 265 monthly evolving SST, GHG and other atmospheric forcings reproduced the Saharan warm-
 266 ing successfully in terms of the interannual variability and spatial warming pattern. The
 267 warming contrast between the Sahara Desert and the average tropical land is also well
 268 simulated in the experiment. By deactivating the anthropogenic GHG forcing and SST
 269 change separately in two mechanism-denial experiments, we found that the observed Sahar-
 270 an warming in the boreal warm season is predominantly determined by the remote SST
 271 forcing, which is consistent with previous work (Lambert & Chiang (2007); Skinner et al.
 272 (2012)). It is worthwhile to evaluate the contributions of SST change in different regions to
 273 the observed Saharan warming, which will help identify the ocean basin that predominates
 274 the Saharan temperature change. However, such examination needs additional experiments
 275 that deactivate the SST forcing in different ocean basins (Kosaka & Xie (2013); Park et al.
 276 (2016)), which is beyond the scope of this study and will be left to a future work.

277 The surface temperature decomposition technique based on the atmospheric energy budget
 278 is employed in this study to explore the mechanism responsible for the SST forcing-induced
 279 Saharan temperature increase. In the experiment with only the SST forcing on, the largest
 280 contribution to the Saharan temperature increase comes from the change in atmospheric
 281 horizontal energy transport. This is consistent with the conclusion of Lambert et al. (2011)
 282 that without the direct anthropogenic GHG forcing, the extra energy from the ocean acts as
 283 the external forcing and drives the land warming. The second largest term from the budget
 284 is the water vapor feedback, which is in line with previous work highlighting the strong water
 285 vapor feedback over the Sahara Desert (Zhou et al. (2016)). Our result indicates that change
 286 in energy transport plays a leading role in the observed Saharan warming. Examination of
 287 the change in sensible and latent energy flux into the Sahara Desert is not conducted in
 288 this paper and will be a subject of future study. Another interesting issue unexplored is the
 289 vertical structure of the change in energy flux into the Sahara Desert. Recent studies showed

290 that the vertical structure of the energy flux into the Arctic has important implications for
 291 the Arctic amplification (Cardinale et al. (2021); Cardinale & Rose (2022); Cardinale &
 292 Rose (2023)). Exploration of the corresponding vertical structure over the Sahara Desert
 293 and the link to the Saharan warming also needs further in-depth research.

294 The feature of DA is also present in our simulations. As the SST forcing accounts for most
 295 of the Saharan warming, we focus on the warming contrast between the Sahara Desert and
 296 average tropical land under the same SST forcing. The result from the surface temperature
 297 decomposition highlights the central role of lapse-rate feedback in DA. The warming profile
 298 over the Sahara Desert features a bottom-heavy vertical structure, making the lapse-rate
 299 feedback positive and favoring Saharan warming, which is different from the average tropi-
 300 cal land. Previous work argues that the water vapor feedback and lapse-rate feedback tend
 301 to have opposing signs in most regions (Held & Shell (2012); Lambert & Taylor (2014);
 302 Soden & Held (2006); Taylor et al. (2011)). Our result indicates that the Sahara Desert is
 303 the exception in that the water vapor feedback and lapse-rate feedback over this area both
 304 enhances the surface warming. The key question unexplored in our study is the physical
 305 process responsible for the bottom-heavy Saharan warming profile. Located in the descend-
 306 ing branch of the Hadley cell, Sahara Desert is different from the average tropical land and
 307 far from radiative-convective equilibrium because the convective activity is strongly damp-
 308 ened in this area. Different physical processes may interact or compete with each other
 309 in determining the lapse-rate change over the Sahara Desert. Unraveling the underlying
 310 physical mechanism for the bottom-heavy warming profile over the Sahara Desert will also
 311 shed light on the consistency between the effects of the lapse-rate and water vapor feedback
 312 on the Saharan warming. Attribution of the lapse-rate change over the Sahara Desert into
 313 different physical process will be the subject of future studies. Another interesting feature
 314 from the temperature decomposition is the positive albedo feedback over the Sahara Desert
 315 (Figure 3a), which is likely a result of the change in soil moisture. As the Sahara Desert is
 316 projected to become more humid in the end of the 21st century (Pausata et al. (2020)), it
 317 may be worthwhile to evaluate the effects of albedo feedback on the Saharan warming in
 318 the 21st century in future studies.

319 **Appendix A Calculation of each term in Equation 1**

320 The radiative kernels and difference in the variables from two climate states are used to
 321 calculate the climate feedbacks in Equation 1 (Block & Mauritsen (2013); Jenkins & Dai
 322 (2021); Soden et al. (2008)):

$$323 \Delta R_{PL} = K_{ts} * \Delta T_s + \int_{p_{TOA}}^{p_0} K_{ta} * \Delta T_a \, dp, \quad (A1)$$

$$324 \Delta R_{WV} = \int_{p_{TOA}}^{p_0} K_w * \Delta q \, dp, \quad (A2)$$

$$326 \Delta R_{LR} = \int_{p_{TOA}}^{p_0} K_{ta} * (\Delta T_a - \Delta T_s) \, dp, \quad (A3)$$

$$328 \Delta R_{CD} = dC_{RF} - (K_a - K_a^c) * \Delta a - (K_{ts} - K_{ts}^c) * \Delta T_s - \int_{p_{TOA}}^{p_0} (K_{ta} - K_{ta}^c) * \Delta T_a \, dp \\ 329 - \int_{p_{TOA}}^{p_0} (K_w - K_w^c) * \Delta q \, dp - (G - G^c), \quad (A4)$$

$$331 \Delta R_{AL} = K_a * \Delta a, \quad (A5)$$

332 where K_{ts} , K_{ta} , K_w , K_a denotes the all-sky surface temperature, atmospheric temperature,
 333 water vapor and albedo kernel at TOA, respectively. Δ represents the difference between
 334 two climate states. T_a and q are the temperature (K) and specific humidity ($kg\ kg^{-1}$) on
 335 the every pressure level. a is the surface albedo. p_0 and p_{TOA} are the pressure at the surface
 336 and tropopause, respectively. p_{TOA} is prescribed as 100 hPa at the Equator and decreases
 337 by cosine of latitude to 300 hPa at Poles (Pendergrass et al. (2018)). dC_{RF} represents
 338 the cloud radiative effect, which is estimated as the change in the cloud radiative forcing
 339 between two climate states (Soden et al. (2008)). K_{ts}^c , K_{ta}^c , K_w^c , K_a^c are the corresponding
 340 clear-sky kernels. G and G^c are the all-sky and clear-sky forcing from GHG or aerosols.
 341 Note that in SSTONLY, both G and G^c equal to zero as the GHG and aerosol forcing are
 342 turned off.

343 The surface heat source (Q_s) is estimated as the change in the surface energy flux (R_{BOA})
 344 from two climate states. The surface energy flux includes the surface sensible heat flux,
 345 latent heat flux and net radiation flux. ΔAET is estimated based on the difference between
 346 the surface heat source, TOA energy flux (R_{TOA}) and atmospheric energy storage change
 347 ($\frac{\partial E}{\partial t}$):

$$348 \Delta AET = \Delta(R_{BOA} - R_{TOA} + \frac{\partial E}{\partial t}), \quad (A6)$$

349 where E is the vertically integrated moist static energy from the surface to tropopause. Ac-
 350 cording to our calculation, the atmospheric energy storage change is two orders of magnitude
 351 smaller than the change in energy flux in Equation A6.

352 **Appendix B Open Research**

353 The model simulation data are available in Zhuo (2023).

354 **Acknowledgments**

355 This research is supported by the National Science Foundation (NSF) (AGS-1952745). The
 356 first author thanks Matthew Jenkins for the insightful discussions on the climate feedback
 357 calculation using radiative kernels. Gratitude is extended to two anonymous reviewers for
 358 the insightful comments and suggestions that helped improve the quality of our work.

359 **References**

360 Andrews, T., Forster, P. M., & Gregory, J. M. (2009). A surface energy perspective on
 361 climate change. *Journal of Climate*, 22(10), 2557–2570.

362 Block, K., & Mauritsen, T. (2013). Forcing and feedback in the mpi-esm-lr coupled model
 363 under abruptly quadrupled co₂. *Journal of Advances in Modeling Earth Systems*, 5(4),
 364 676–691.

365 Brogli, R., Kröner, N., Sørland, S. L., Lüthi, D., & Schär, C. (2019). The role of hadley
 366 circulation and lapse-rate changes for the future european summer climate. *Journal of
 367 Climate*, 32(2), 385–404.

368 Byrne, M. P. (2021). Amplified warming of extreme temperatures over tropical land. *Nature
 369 Geoscience*, 14(11), 837–841.

370 Byrne, M. P., & O’Gorman, P. A. (2013). Land–ocean warming contrast over a wide range
 371 of climates: Convective quasi-equilibrium theory and idealized simulations. *Journal of
 372 Climate*, 26(12), 4000–4016.

373 Byrne, M. P., & O’Gorman, P. A. (2018). Trends in continental temperature and humidity
 374 directly linked to ocean warming. *Proceedings of the National Academy of Sciences*,
 375 115(19), 4863–4868.

376 Cardinale, C. J., & Rose, B. E. (2022). The arctic surface heating efficiency of tropospheric
377 energy flux events. *Journal of Climate*, 35(18), 5897–5913.

378 Cardinale, C. J., & Rose, B. E. (2023). The increasing efficiency of the poleward energy
379 transport into the arctic in a warming climate. *Geophysical Research Letters*, 50(2),
380 e2022GL100834.

381 Cardinale, C. J., Rose, B. E., Lang, A. L., & Donohoe, A. (2021). Stratospheric and
382 tropospheric flux contributions to the polar cap energy budgets. *Journal of Climate*,
383 34(11), 4261–4278.

384 Chiang, J. C., & Lintner, B. R. (2005). Mechanisms of remote tropical surface warming
385 during el niño. *Journal of climate*, 18(20), 4130–4149.

386 Colman, R. (2003). A comparison of climate feedbacks in general circulation models. *Climate
387 Dynamics*, 20(7-8), 865–873.

388 Colman, R., & Soden, B. J. (2021). Water vapor and lapse rate feedbacks in the climate
389 system. *Reviews of Modern Physics*, 93(4), 045002.

390 Compo, G. P., & Sardeshmukh, P. D. (2009). Oceanic influences on recent continental
391 warming. *Climate Dynamics*, 32, 333–342.

392 Cook, K. H., & Vizy, E. K. (2015). Detection and analysis of an amplified warming of the
393 sahara desert. *Journal of Climate*, 28(16), 6560–6580.

394 Deser, C., Alexander, M. A., Xie, S.-P., & Phillips, A. S. (2010). Sea surface temperature
395 variability: Patterns and mechanisms. *Annual review of marine science*, 2, 115–143.

396 Deser, C., & Phillips, A. S. (2009). Atmospheric circulation trends, 1950–2000: The relative
397 roles of sea surface temperature forcing and direct atmospheric radiative forcing. *Journal
398 of Climate*, 22(2), 396–413.

399 Dessler, A. E. (2013). Observations of climate feedbacks over 2000–10 and comparisons to
400 climate models. *Journal of Climate*, 26(1), 333–342.

401 Dommenget, D. (2009). The ocean’s role in continental climate variability and change.
402 *Journal of Climate*, 22(18), 4939–4952.

403 Dommenget, D., & Flöter, J. (2011). Conceptual understanding of climate change with a
404 globally resolved energy balance model. *Climate dynamics*, 37, 2143–2165.

405 Emanuel, K. (2007). Quasi-equilibrium dynamics of the tropical atmosphere. *The Global
406 Circulation of the Atmosphere*, 186, 218.

407 Evan, A. T., Flamant, C., Lavaysse, C., Kocha, C., & Saci, A. (2015). Water vapor–forced
408 greenhouse warming over the sahara desert and the recent recovery from the sahelian
409 drought. *Journal of Climate*, 28(1), 108–123.

410 Folland, C. K., Sexton, D. M., Karoly, D. J., Johnson, C. E., Rowell, D. P., & Parker,
411 D. E. (1998). Influences of anthropogenic and oceanic forcing on recent climate change.
412 *Geophysical Research Letters*, 25(3), 353–356.

413 Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R.,
414 ... others (2011). The community climate system model version 4. *Journal of climate*,
415 24(19), 4973–4991.

416 Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., ...
417 others (2018). Quantifying climate feedbacks in polar regions. *Nature communications*,
418 9(1), 1919.

419 Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., ... Lerner, J. (1984).
420 Climate sensitivity: Analysis of feedback mechanisms. *Climate processes and climate*
421 *sensitivity*, 29, 130–163.

422 He, J., & Soden, B. J. (2015). Anthropogenic weakening of the tropical circulation: The
423 relative roles of direct co2 forcing and sea surface temperature change. *Journal of Climate*,
424 28(22), 8728–8742.

425 Held, I. M., & Shell, K. M. (2012). Using relative humidity as a state variable in climate
426 feedback analysis. *Journal of Climate*, 25(8), 2578–2582.

427 Henry, M., Merlis, T. M., Lutsko, N. J., & Rose, B. E. (2021). Decomposing the drivers of
428 polar amplification with a single-column model. *Journal of Climate*, 34(6), 2355–2365.

429 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., ...
430 others (2020). The era5 global reanalysis. *Quarterly Journal of the Royal Meteorological*
431 *Society*, 146(730), 1999–2049.

432 Holloway, C. E., & Neelin, J. D. (2007). The convective cold top and quasi equilibrium.
433 *Journal of the atmospheric sciences*, 64(5), 1467–1487.

434 Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., & Rosinski, J. (2008). A new sea surface
435 temperature and sea ice boundary dataset for the community atmosphere model. *Journal*
436 *of Climate*, 21(19), 5145–5153.

437 Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., ... others
438 (2013). The community earth system model: a framework for collaborative research.
439 *Bulletin of the American Meteorological Society*, 94(9), 1339–1360.

440 Ingram, W. (2013). Some implications of a new approach to the water vapour feedback.
441 *Climate Dynamics*, 40(3-4), 925–933.

442 Jakob, C., Singh, M., & Jungandreas, L. (2019). Radiative convective equilibrium and
443 organized convection: An observational perspective. *Journal of Geophysical Research: Atmospheres*,
444 124(10), 5418–5430.

445 Jeevanjee, N., Held, I., & Ramaswamy, V. (2022). Manabe's radiative–convective equilibrium.
446 *Bulletin of the American Meteorological Society*, 103(11), E2559–E2569.

447 Jenkins, M., & Dai, A. (2021). The impact of sea-ice loss on arctic climate feedbacks and
448 their role for arctic amplification. *Geophysical Research Letters*, 48(15), e2021GL094599.

449 Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M., & Johns, T. C. (2008). Mechanisms
450 for the land/sea warming contrast exhibited by simulations of climate change.
451 *Climate dynamics*, 30, 455–465.

452 Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial pacific
453 surface cooling. *Nature*, 501(7467), 403–407.

454 Kröner, N., Kotlarski, S., Fischer, E., Lüthi, D., Zubler, E., & Schär, C. (2017). Separating
455 climate change signals into thermodynamic, lapse-rate and circulation effects: theory and
456 application to the european summer climate. *Climate Dynamics*, 48, 3425–3440.

457 Lambert, F. H., & Chiang, J. C. (2007). Control of land-ocean temperature contrast by
458 ocean heat uptake. *Geophysical research letters*, 34(13).

459 Lambert, F. H., & Taylor, P. C. (2014). Regional variation of the tropical water vapor and
460 lapse rate feedbacks. *Geophysical Research Letters*, 41(21), 7634–7641.

461 Lambert, F. H., Webb, M. J., & Joshi, M. M. (2011). The relationship between land–
462 ocean surface temperature contrast and radiative forcing. *Journal of Climate*, 24(13),
463 3239–3256.

464 Lavaysse, C., Flamant, C., Evan, A., Janicot, S., & Gaetani, M. (2016). Recent climato-
465 logical trend of the saharan heat low and its impact on the west african climate. *Climate
466 Dynamics*, 47, 3479–3498.

467 Li, X., Ting, M., You, Y., Lee, D.-E., Westervelt, D. M., & Ming, Y. (2020). South
468 asian summer monsoon response to aerosol-forced sea surface temperatures. *Geophysical
469 Research Letters*, 47(1), e2019GL085329.

470 Liu, P., Meehl, G. A., & Wu, G. (2002). Multi-model trends in the sahara induced by
471 increasing co2. *Geophysical Research Letters*, 29(18), 28–1.

472 Liu, P., Washington, W. M., Meehl, G. A., Wu, G., & Potter, G. L. (2001). Historical and
473 future trends of the sahara desert. *Geophysical research letters*, 28(14), 2683–2686.

474 Park, J.-y., Bader, J., & Matei, D. (2016). Anthropogenic mediterranean warming essential
475 driver for present and future sahel rainfall. *Nature Climate Change*, 6(10), 941–945.

476 Pausata, F. S., Gaetani, M., Messori, G., Berg, A., de Souza, D. M., Sage, R. F., & De-
477 Menocal, P. B. (2020). The greening of the sahara: Past changes and future implications.
478 *One Earth*, 2(3), 235–250.

479 Pendergrass, A. G., Conley, A., & Vitt, F. M. (2018). Surface and top-of-atmosphere
480 radiative feedback kernels for cesm-cam5. *Earth System Science Data*, 10(1), 317–324.

481 Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feed-
482 backs in contemporary climate models. *Nature geoscience*, 7(3), 181–184.

483 Previdi, M., Smith, K. L., & Polvani, L. M. (2021). Arctic amplification of climate change:
484 a review of underlying mechanisms. *Environmental Research Letters*, 16(9), 093003.

485 Sanderson, B. M., Shell, K. M., & Ingram, W. (2010). Climate feedbacks determined using
486 radiative kernels in a multi-thousand member ensemble of aogcms. *Climate dynamics*,
487 35, 1219–1236.

488 Shaw, T., & Voigt, A. (2015). Tug of war on summertime circulation between radiative
489 forcing and sea surface warming. *Nature Geoscience*, 8(7), 560–566.

490 Shen, Z., Ming, Y., & Held, I. M. (2020). Using the fast impact of anthropogenic aerosols
491 on regional land temperature to constrain aerosol forcing. *Science Advances*, 6(32),
492 eabb5297.

493 Skinner, C. B., Ashfaq, M., & Diffenbaugh, N. S. (2012). Influence of twenty-first-century
494 atmospheric and sea surface temperature forcing on west african climate. *Journal of
495 Climate*, 25(2), 527–542.

496 Soden, B. J., & Held, I. M. (2006). An assessment of climate feedbacks in coupled ocean–
497 atmosphere models. *Journal of climate*, 19(14), 3354–3360.

498 Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008).
499 Quantifying climate feedbacks using radiative kernels. *Journal of Climate*, 21(14), 3504–
500 3520.

501 Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S.-P.,
502 ... others (2018). Polar amplification dominated by local forcing and feedbacks. *Nature
503 Climate Change*, 8(12), 1076–1081.

504 Taylor, P. C., Ellingson, R. G., & Cai, M. (2011). Geographical distribution of climate
505 feedbacks in the near ccsm3. o. *Journal of climate*, 24(11), 2737–2753.

506 Toda, M., Watanabe, M., & Yoshimori, M. (2021). An energy budget framework to un-
507 derstand mechanisms of land–ocean warming contrast induced by increasing greenhouse
508 gases. part i: Near-equilibrium state. *Journal of Climate*, 34(23), 9279–9292.

509 Trenberth, K. E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the
510 global water budget and its annual cycle using observational and model data. *Journal of
511 Hydrometeorology*, 8(4), 758–769.

512 Vizy, E. K., & Cook, K. H. (2017). Seasonality of the observed amplified sahara warming
513 trend and implications for sahel rainfall. *Journal of Climate*, 30(9), 3073–3094.

514 Wang, Y., & Huang, Y. (2021). A single-column simulation-based decomposition of the
515 tropical upper-tropospheric warming. *Journal of Climate*, 34(13), 5337–5348.

516 Wei, N., Zhou, L., Dai, Y., Xia, G., & Hua, W. (2017). Observational evidence for desert
517 amplification using multiple satellite datasets. *Scientific Reports*, 7(1), 2043.

518 Zhang, M., Hack, J., Kiehl, J., & Cess, R. (1994). Diagnostic study of climate feedback
519 processes in atmospheric general circulation models. *Journal of Geophysical Research:
520 Atmospheres*, 99(D3), 5525–5537.

521 Zhou, L. (2016). Desert amplification in a warming climate. *Scientific Reports*, 6(1), 31065.

522 Zhou, L. (2021). Diurnal asymmetry of desert amplification and its possible connections
523 to planetary boundary layer height: a case study for the arabian peninsula. *Climate
524 Dynamics*, 56(9-10), 3131–3156.

525 Zhou, L., Chen, H., & Dai, Y. (2015). Stronger warming amplification over drier ecoregions
526 observed since 1979. *Environmental Research Letters*, 10(6), 064012.

527 Zhou, L., Chen, H., Hua, W., Dai, Y., & Wei, N. (2016). Mechanisms for stronger warming
528 over drier ecoregions observed since 1979. *Climate dynamics*, 47, 2955–2974.

529 Zhuo, L. (2023). *Model simulations* [Dataset]. Zenodo. Retrieved from <https://zenodo.org/records/10019700>

530

531 Zhuo, L., & Zhou, L. (2022). Moisture transport and water vapour budget over the sahara
532 desert. *International Journal of Climatology*, 42(13), 6829–6843.