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Abstract we apply a systems framework for analyzing the overall sustainability impacts of interventions

to a case of the rice-wheat cropping system of Punjab (India), where agricultural practices lead to air
pollution-related health impacts, over-exploitation of groundwater, over-use of fertilizers and reduced local crop
diversity. We use this case to quantify how varying degrees of change in interventions result in sustainability
impacts using an inclusive wealth-based approach. We show that either improving the existing cropping system
or inducing fundamental changes in the cropping system, can lead to substantial and wide-ranging sustainability
benefits. We also show that interventions that improve human health show the largest quantitative benefit due
to the assumed high marginal value of human life. Accurate localized estimates of marginal values of stocks are
needed for estimating overall sustainability impacts.

Plain Language Summary We use a systems-based approach for studying air pollution as a
challenge embedded in a broader network of sustainability issues, and analyze the cross-sectoral impacts of
policy interventions. We use the rice-wheat cropping system in Punjab, India, as a case study, since agricultural
practices in this system are associated with a number of inter-linked sustainability challenges such as

air pollution-related health impacts, over-exploitation of groundwater, over-use of fertilizers and reduced local
crop diversity. We analyze the sustainability impacts of varying degrees of policy-induced change in this system
and show that both incremental and fundamental changes can lead to wide-ranging sustainability benefits.

1. Introduction

A large number of recent studies have focused on the importance of understanding linkages between multi-
ple sectors relevant for sustainability. One example involves food, water, energy, and air pollution (Domingo
et al., 2021; Qureshi et al., 2016). As a result of these linkages, efforts to mitigate damages in one sector do not
operate in isolation: they are interventions affecting a complex system, and these interventions have impacts and
feedbacks across various sectors that in turn affect multiple facets of human and environmental well-being (N.
E. Selin, 2021).

A specific example of such a broader network of interconnected sustainability challenges involves agricultural
residue burning in India. The state of Punjab in north India, where rice and wheat are most commonly grown, is
the largest contributor to cereal crop residue burning in India (Jain et al., 2014), where farmers burn the stubble or
residues left on fields after crop harvest. This burning leads to 44,000-98,000 air pollution-related deaths annu-
ally (GBD MAPS Working Group, 2018; Lan et al., 2022). Previous studies have analyzed crop residue manage-
ment options with a focus on reducing air pollution attributable to residue burning (Bhuvaneshwari et al., 2019;
Shyamsundar et al., 2020; H. S. Sidhu et al., 2015). However, air pollution is also linked with over-exploitation
of groundwater, over-use of fertilizers, and reducing local crop diversity, associated with agricultural practices in
Punjab. Most studies on the region have analyzed its sustainability challenges in isolation, for example, studies
have evaluated the effect of electricity subsidies on groundwater use (Badiani-Magnusson & Jessoe, 2018; B. S.
Sidhu et al., 2020), the effect of the nitrogen fertilizer subsidy (A. Gulati & Banerjee, 2015), impacts of crop resi-
due burning on air quality (Jain et al., 2014; Jethva et al., 2019), or incentivizing crop diversification to include
pulses (Subramanian, 2016).

Policy options that can contribute to overall sustainability in this region have been proposed, but their impacts on
multiple, interacting sectors have not been comprehensively analyzed. That is, solutions to the inter-connected
sustainability challenges of agricultural residue burning have not been assessed within a common analytical
framework that would enable comparing and contrasting expected impacts of interventions on a range of metrics.
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Specifically, the multi-sectoral impacts of better residue management within the rice-wheat cropping system,
relative to a fundamental shift in crops grown in Punjab, remain uncharacterized. Current policy focus has been
on addressing air pollution through better residue management—the Government of India has implemented a ban
on residue burning and subsidizes post-harvest machinery that enables easy removal or treatment of agricultural
residues. However, some (Kumar et al., 2015; S. N. Sharma et al., 2010) have called for a change in Punjab's crop-
ping pattern itself—air pollution and other sustainability challenges in the region have their roots in the structural
aspects of the cropping system. Improvement in long-term sustainability-relevant outcomes can occur through
diversification of crops in Punjab, particularly to include pulses (S. N. Sharma et al., 2010). Studies from France
show that a fundamental shift from a cereal crop-based system to a diverse cropping system that includes pulses
may provide multiple environmental benefits (Magrini et al., 2016; Meynard et al., 2013).

Evaluating systemic impacts of interventions toward sustainability is also a methodological challenge. Much
previous research does not fully distinguish between degrees of change in interventions and the magnitude of
their effect on sustainability-relevant outcomes. Relatedly, multiple pathways may lead to sustainability within a
system (Feola, 2015; Genus & Coles, 2008; Rotmans et al., 2001) and better quantitative metrics are needed to
assess potential interventions and their sustainability-relevant outcomes. The degree of change toward sustaina-
bility in a system has been generally analyzed qualitatively (Loorbach et al., 2017) and categorized broadly into
two types—incremental changes characterized as optimization through improvement of existing systems and
transformative changes characterized by implementation of new technologies, institutions, and practices (Elzen
& Wieczorek, 2005; Folke et al., 2010; Frantzeskaki & Loorbach, 2010; Genus & Coles, 2008; Park et al., 2012;
Rotmans et al., 2001; Smith et al., 2005). A widely cited example of transformative change in the energy sector
is the transition from coal to natural gas-based system for cooking and heating in the Netherlands in 1960s,
which led to a technological as well as a socio-cultural shift in the institutional framework of energy supply and
public awareness about clean fuels (Correlje & Verbong, 2004; Rotmans et al., 2001). Incremental interventions
made at the margins of existing systems, such as efficiency improvements in coal power plants and internal
combustion engines, are not expected to lead to drastic reductions in greenhouse gas emissions in electricity and
transport sectors respectively (Elzen & Wieczorek, 2005; Loorbach, 2010; Markard et al., 2012). However, the
features of systemic change that designate it as incremental or transformative are not well-defined (Feola, 2015).
Geels (2006) and Fischer-Kowalski and Rotmans (2009) highlight the principle of radical incrementalism, where
incremental changes in existing systems lead to transformative changes in the long term (e.g., the gradual transfor-
mation of waste management from cesspools to sewer systems in Netherlands (Geels, 2006)). Smith et al. (2005)
argue that when resources for transition are available within the system, incremental systemic changes may lead
to sustainability through cumulative improvements in the existing system. Thus, varying degrees of systemic
interventions may lead to a range of sustainability-relevant outcomes.

Here, we formalize an analytical approach that can be used to quantify the sustainability impacts of interven-
tions that involve varying degrees of change in a system, evaluating them across a range of metrics. We develop
and test this approach using the agricultural sector of Punjab (India) as a case study. We analyze interventions
proposed in existing policy discussions and measure policy-induced changes in sustainability-relevant outcomes
using metrics that align with the inclusive wealth methodology of measuring capital stocks (inclusive wealth has
been used as a sustainability metric to represent comprehensive human well-being (Arrow et al., 2012; Dasgupta
et al., 2021; Managi & Kumar, 2018; Polasky et al., 2015)). We use the human-technical-environmental (HTE)
framework (Selin & Selin, 2022)—a multi-dimensional generalizable systems framework that consists of human,
technical, environmental, institutional, and knowledge components—to represent sustainability challenges in the
agricultural system of Punjab. This systems perspective allows us to: one, identify the leverage points within
the system where interventions can be implemented; two, understand the pathways through which interventions
change system structure and examine the degree of change; and three, quantitatively estimate the impacts of inter-
ventions on sustainability-relevant outcomes. Finally, we use our analysis to draw conclusions about the potential
for selected interventions to address air pollution and related sustainability challenges in Punjab.

2. Methods
2.1. The Human-Technical-Environmental (HTE) Systems Framework

The Human-Technical-Environmental (HTE) framework provides a system-oriented analytical framework based
on an straightforward matrix approach, which we use to analyze the sustainability challenges and interventions
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in the agricultural system of Punjab. We follow the methodology outlined in the HTE framework (Selin &
Selin, 2022) along four steps.

2.1.1. Itemize System Components

First, we itemize the components which form the building blocks of the system (Table 1)—human (H), technical
(T), environmental (E), institutional (I), and knowledge (K) components are distinctly numbered within each
category. We identified the relevant components in each category from previous studies on specific sustainability
challenges in the agricultural system of Punjab on air pollution, groundwater exploitation, agricultural subsidies,
and crop diversification (Badiani-Magnusson & Jessoe, 2018; A. Gulati & Banerjee, 2015; Jain et al., 2014;
Jethva et al., 2019, B. S. Sidhu et al., 2020; Subramanian, 2016). See Data Table SD1 in Supporting Informa-
tion S2 for a detailed list of components' attributes, that is, characteristics that represent the state of a component
at any given time.

2.1.2. Constructing the Interaction Matrix

The human, technical, and environmental components identified above interact with each other within the insti-
tutional and knowledge landscape. We use previous studies on specific sustainability challenges to inform our
construction of this interaction matrix that qualitatively represents how system components are connected and
influence each other. Table 2 presents the interaction matrix where each row represents components that influ-
ences components in a column (see Data Table SD2 in Supporting Information S2 for a detailed matrix). Note
that alpha-numeric codes used for interactions are linked to the system components—H, T, E represent human,
technical, and environmental components respectively and numbers represent different components. for example,
HI1-T2 represents an interaction between farmers in Punjab (human component 1) and crop residues (technical
component 2).

2.1.3. Pathways of Interaction

We use the completed HTE matrix to identify key pathways of interaction between system components that have
impacts on sustainability-relevant outcomes in the system (Figure 1). We identify pathways by first selecting key
interactions that are important for human and environmental well-being, and then tracing the path of interac-
tions that lead to the selected interaction or are influenced by it (Selin & Selin, 2022). These pathways highlight
the following interactions: (I) residue burning releases greenhouse gases and air pollutants which cause health
damages to residents of India; (II) incorporating residues into the soil using a Happy Seeder prevents residue
burning; (III) excess use of agricultural inputs leads to environmental challenges; and (IV) crops grown in Punjab
are procured by the government for the Public Distribution System.

In the first pathway (Pathway I), the key interactions identified are the impacts of agricultural residue burn-
ing, widely practiced in the rice-cropped areas of Punjab, on the emission of greenhouse gases (GHGs) and air
pollutants like PM, 5, which causes elevated levels of pollution in the densely populated Indo-Gangetic Plain
including Delhi (Jain et al., 2014; Jethva et al., 2019; Kulkarni et al., 2020) (the key interactions in the associated
pathway are represented as H1-T2, T2-E1, and E1-H2). Residue burning is banned in India, and farmers may
be fined between 2,500 and 15,000 INR (35-208 USD) depending on size of the landholding (Bhuvaneshwari
etal., 2019; Dutta, 2018). But farmers are often unaware of the adverse impacts of residue burning and the Punjab
Government has been reluctant to enforce compliance to the ban since farmers form more a third of the state's
voting population (Dutta, 2018; Ellis-Petersen, 2019; Slater, 2018; Yadav, 2019). Farmers burn 80%-90% of rice
residues since there is a short time period (2-3 weeks) between harvesting rice and planting wheat. Labor and
machinery costs associated with residue removal are high and rice residue is not suitable as food for livestock,
unlike other crop residue, due to its high silica content (Bhatt, 2020; Bhuvaneshwari et al., 2019; Gupta, 2011;
Jitendra et al., 2017). An ex-situ alternative to burning is selling residues to industry. Currently, there is no
large-scale industrial use of residues but residues can potentially be used for cofiring in coal power plants, as feed-
stock in biomass power plants, and in the pulp and paper industry (Ministry of Agriculture, 2014; TERI, 2018).

In the second pathway (Pathway II), the key interactions identified involve the use of in situ residue management
technologies like the Happy Seeder (interactions H1-T11 and T11-T2) which reduce air pollution due to residue
burning (interactions T2-E1 and E1-H2) and provide a range of other economic and environmental benefits. The
Happy Seeder is a tractor-mounted device developed to avoid burning of residues by drilling seeds into residues
left on the field (H. S. Sidhu et al., 2007, 2015). It reduces water and fertilizer input requirements, potentially
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Table 2
Interaction Matrix Between System Components (HS = Happy Seeder; PDS = Public Distribution System)
Human (H) Technical (T) Environmental (E)
Human (H) (H-H) (H1-T1) Farmers decide on crops (H1-E2) Farmers decide on land used for
to grow; (H1-T2) Farmers burn cropping; (H1-E3) Farmers pump excess
residues; (H1-T3) Farmers use groundwater

excess fertilizer; (H1-T5) Farmers
install and use irrigation pumps;
(H1-T11) Farmers use HS

Technical (T) (T1-H1) Farmers earn income from sale of (T1-T2) Crop harvesting creates (T1-E3) Crops require groundwater; (T3-El,
crops; (T1-H3) Crops in PDS affect protein residues; (T1-T3,T1-T4) Crops need T6-E1, T7-E1) Fertilizers, diesel & electricity
availability in low-income households; fertilizers and pesticides; (T11-T2) release GHGs & PM2.5; (T2-E1) Residue
(T2-H1) Farmers earn income from sale of HS incorporates residues into soil & burning releases GHGs & PM2.5; (T11-E3)
residues; (T3-H1, T4-H1, T6-H1, T7-H1) (T11-T1) increases crop yield; (T11- HS reduces water requirement; (T2-E4)
Agricultural inputs add to farming costs; T7) HS uses diesel Incorporated residues improve soil health;
(T11-H1) HS rental adds to farming cost (T3-E4) Excess urea affects soil health

Environmental (E)  (E1-H2) Air pollution adversely affects the (E2-T1) Land used for cropping (E1-E1) Ecosystem processes and dynamics
health of residents of India determines production of crops; determine air pollution concentrations

(E3-T6, E3-T7) Groundwater
extraction determines electricity
and diesel use; (E4-T3) Soil health
affects fertilizer requirement

Note. Human, technical, and environmental component categories are represented by H, T, and E respectively, and numbers represent the components. For example,
interaction HI-T1 is an interaction between farmers (human component 1) and crops (technical component 1), where the human component (H1) influences the
technical component (T1).

Intervention: “Ban”

l F b i HIT2 Residue burning emits
. | Resiue burmingemits | LE2Emens bum rsidoss (11T2) | poluants 10 (12.E1)
l Farmers burn residues (H1-T2) ‘ pollutants to air (T2-E1)

+ X

K Farmers rent baling machines (H1-T10)
N N\ e |

=
N\
AN * Farmers rent baling machines (HI-T10) l Crop harvesting creates N\
- \ residues (T1-T2) \ Storage & processing facilities
\\ Air pollution affects the health set up for residues (T13-T2, T14-T2)

residues (T1-T2) of residents of India (E1-H2) .

Pathway I) Residue burning releases greenhouse gases (GHGs) and air pollutants which
cause health damages to residents of India

Air pollution affects the health
of residents of India (E1-H2)

Storage & processing facilities
set up for residues (T13-T2, T14-T2)

Power plants s
use residues as
(T12-T2)

N\

Sale of residues provides
income for farmers (T2-H1)

Pathway Ia) Ex-situ alternative to residue burning: farmers
Intervention: sell residues to power plants
“Residues for power”

Groundwater extraction determines ‘

A HS reduces crop water requirement (T11-E3) 5 cloetriity and dicsel vae (E2.T6, B3-T7)

,{ Groundwater extraction determines
/

J electricity and diesel use (E3-T6, E3-T7)
Crop harvesting - - - Incorporated residues Soil health influences /
Ny HS incorporates residues into soil (T11-T2) [—4
creates residues (T1-T2) A* P ( ) \/"| improve soil health | fertilizer requirement / Power generation, diesel combustion
/| HS rental, agricultural inputs and yield "\ | (T2E4) _——""1| (E4-T3) ———{ Farmers pump excess groundwater (H1-E3) | and fertilizer production/application
Farmers use HS (H1-T11) f—»/ influence farming cost and income e l Inter i emit pollutants to air (T3-E1, T6-E1, T7-
\ | (T11-H1, T3-H1, T6-H1,T7-H1, TI-H1) “Subsidy reform” || ED) and )
T i Residuc burning, power generation, diesel — Farmers s oveess frtzers (11T | cause adverse health impacts (E1-H2)
Intervention: \ . " and fertilizer \ Agricultural inputs add to farming costs (T3-HI,
“Happy Seeder use” \ { HS increases diesel use (T11-T7) |——— emit pollutants to air and TEHLTTHD
PPy \ cause adverse health impacts (T3-E1, T6-E1, T7- >
f HS increases crop yield (T11-T1) E1, T2-El, E1-H2) \1 Excess urea causes soil nutrient imbalance and

affects soil health (T3-E4)

Pathway II) Incorporating residues into the soil using a Happy Seeder (HS)
prevents residue burning Pathway III) Excess use of agricultural inputs presents environmental challenges

Land used for cropping

Sale of id for f TI-HI
detrnines crop pradtion (E2-T1) ale of crops provides income for farmers ( )|

Crops in the PDS influence protein
/" availability for low-income houscholds (T!1-H3)

Intervention:
“Pulses ——{ Farmers grow rice and wheat (H1-T1) 3 Crops grown determine use of agricultural inputs (T1-
procurement” A T3, T1-T4, T1-E3, E3-T6, E3-T7) & associated

impacts: on farming costs (T3-H1,T4-H1,T6-H1,T7-
H1), air pollutants and human health (T3-E1, T6-E1,
T7-E1, E1-H2) and soil health (T3-E4)

Milling facilities set up for
pulses (T15-T1)

\| Crop harvesting creates residues (T1-T2), residue . . . .
burning (H1-T2) has impacts on air pollutants and Pathway IV) Crops grown in Punjab are procured by the Government of India for

human health (T2-E1, E1-H2) the Public Distribution System (PDS)

Figure 1. Pathways of interaction between system components. Note: Each box in the figure represents an interaction; arrows represent the direction of influence; H, T,
E represent human, technical and environmental components respectively and numbers represent each component (e.g., H1 = farmers in Punjab as specified in Table 1).
Direct structural changes are represented by red boxes/black text if they are modifications or red boxes/red text if they are additional human-technical-environmental
interactions; Indirect quantitative changes are represented by blue boxes and black text (see Text S3 and Table S3 in Supporting Information S1 for details on direct and
indirect changes). Common interaction across pathways I, II, and IV highlighted in bold = “Crop harvesting creates resides (T1-T2)”.
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leads to higher long term yields (after 3-5 years of use) (Shyamsundar et al., 2020; H. S. Sidhu et al., 2015),
and is considered the most economical of alternative residue management options to burning (Government of
India, 2019; Shyamsundar et al., 2020). The Government of India subsidizes 50% of the cost of the machine for
individual farmers and 80% of the cost for cooperatives where farmers can rent the machines. Although they
have been commercially available for a decade, Happy Seeders were only used on about 20% of rice-cropped
land in 2018 (Anon, 2019; Goyal, 2019) due to insufficient awareness about the technology, upfront cost being
significantly higher than current practices, requirement of a heavy tractor, and because potential yield-increasing
benefits are not experienced immediately (Ailawadi & Bhattacharyya, 2006; Ashok, 2017; Gupta, 2011; Jitendra
et al., 2017; Shyamsundar et al., 2020; H. S. Sidhu et al., 2015; Tallis et al., 2017).

In the third pathway (Pathway III), the key interactions are the impacts of excess use of agricultural inputs in
Punjab, driven by existing institutional structures, on air pollution and greenhouse gas emissions (arising from
fertilizer manufacturing and application, power production and diesel combustion), as well as declining water
table and soil health in the region (interactions H1-E3, H1-T3, T3-E1, T6-E1, T7-E1l, E1-H2, T3-E4). Farmers
pump excess quantities of groundwater (primarily using electric pumps (B. S. Sidhu et al., 2020)) to irrigate
rice due to a number of factors —the Punjab Government charges farmers a flat power tariff which implies zero
marginal cost of using excess electricity for pumping; and poor quality of power supply where farmers have
access to 6-10 hr/day of electricity incentivizes over-pumping when electricity is available (with unreliable
power supply adding to diesel costs through generator use as well) (B. S. Sidhu et al., 2020). This has led to much
of Punjab's groundwater being overexploited with the water table declining at an annual rate of 0.2—-0.6 m (Patle
et al., 2016; Singh, 2020b) and consequently rising energy consumption to pump groundwater from increasingly
greater depths. Similarly, fertilizer subsidy structures have led to excessive use of urea—nitrogen-based urea
fertilizer (N) is price-controlled by the Government of India while the market prices of phosphorus (P) and
potash (K)-based fertilizers have increased significantly, as only the subsidy on these remains fixed (A. Gulati &
Banerjee, 2015). The recommended ratio of N:P:K application is 4:2:1 but reports suggest that fertilizer applica-
tion in Punjab is in the ratio of 31:8:1 leading to an imbalance in soil nutrient ratios (Anand, 2010; Chaba, 2019;
A. Gulati & Banerjee, 2015; Jitendra, 2020).

In the fourth and final pathway (Pathway IV), the key interactions are the impacts of crops grown in Punjab
(interaction H1-T'1) on protein availability in the population (interaction T1-H3), as well as the use of agricultural
inputs (interactions T1-T3, T1-T4, T1-E3) and post-harvest residue burning (interaction T1-T2), and associated
human and environmental impacts. Crops grown in Punjab are sold to low-income households across India at
subsidized prices and constitute the majority of these households' caloric requirements (Rampal, 2018). Rice and
wheat are procured by the Central Government (through the Food Corporation of India), supplied to the Public
Distribution System (PDS), and sold through “low-price” shops regulated by state governments. More than 800
million people access the PDS (Puri, 2017; World Bank, 2019) and each beneficiary is entitled to receive 5 kg
of rice per month according to the National Food Security Act (Press Information Bureau, 2013). For those who
rely on the PDS, this implies that higher protein alternatives like pulses (e.g., lentils) which are not supplied
through the PDS are too expensive and excluded from their diets as reflected in low per capita protein availa-
bility estimates (Rampal, 2018; M. Sharma et al., 2020). The high yielding varieties (HYV) of rice and wheat
grown by farmers in Punjab (rice during June—October and wheat during October—May) are largely driven by
guaranteed prices or Minimum Support Prices (MSP), meant to protect farmers against price fluctuations on
the market. The Green Revolution (in 1960s and 1970s) targeted high agricultural productivity and promoted
HYV varieties, along with expanding agricultural infrastructure such as irrigation facilities and electricity provi-
sion (Chand, 2008; Pingali, 2012). Between 1960 and 2012, land under rice and wheat cultivation in Punjab
increased from 5% to 36% of cropped area and 30%—45% of cropped area respectively, while cultivation of all
other crops (including pulses which constituted 19% of cropped area in 1960) declined (Kumar et al., 2015).
HYYV rice and wheat need higher fertilizer and water inputs than traditional varieties of rice and wheat (Manan
et al., 2018) as well as other locally suitable crops such as pulses (Punjab Agricultural University, 2019, 2020;
Subramanian, 2016). Additionally, the majority of residues from other crops, such as pulses, are not burnt but
used as fodder or fuel (Bhuvaneshwari et al., 2019; Jain et al., 2014).

2.1.4. Identifying Interventions to Change System Interactions

We identify five interventions in the agricultural sector in Punjab that can be implemented by the Government
of India and/or the State Government of Punjab (Figure 1) and affect one or more interaction pathways. All
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interventions are policy options that are either currently partly in effect or discussed widely in policy, develop-
ment and academic circles (A. Gulati & Banerjee, 2015; M. Gulati & Pahuja, 2015; Ministry of Agriculture, 2014;
Puri, 2017; H. S. Sidhu et al., 2015; B. S. Sidhu et al., 2020; TERI, 2006), and were selected on the basis of
interviews conducted with researchers who specialize in different aspects of the agricultural sector of Punjab (see
Text S5 in Supporting Information S1). These interventions are: (a) an effective ban on residue burning (“Ban”),
(b) use of residues in power plants (“Residues for power”), (c) promoting wide-scale Happy Seeder use (“Happy
Seeder use”), (d) power and fertilizer subsidy reform (“Subsidy reform”) and (e) government procurement of
pulses to incentivize crop diversification (‘“Pulses procurement”). In the HTE framework, interventions involve
changes in institutional and knowledge components and target one or more of the interaction pathways discussed
above. As represented in Figure 1, interventions lead to direct structural changes (including modifications (red
boxes, black text) or additions (red boxes, red text)) in human-technical-environmental interactions, which lead
to indirect quantitative changes (blue boxes, black text) in attributes of system components in other interactions.
Section 3.2 elaborates on each intervention and associated impacts within this system.

2.2. Implementing the HTE Framework Within a Quantitative Model

We implement the interaction matrix developed using the HTE framework in a quantitative system model that
simulates the evolution of attributes over a period of 10 years (2019-2029) for the state of Punjab (India) (see Text
S1 in Supporting Information S1 for model details). We used 2019 as the baseline year and validated the model
for the year 2019 with independent data (previous studies and government reports) for key attributes used in this
work, including a sensitivity analysis of key sustainability outcomes to input parameters (details in Text S2 of the
Supporting Information S1). We then use our quantitative model to evaluate changes in sustainability-relevant
outcomes over a period of 10 years (2019-2029) by estimating cumulative change in capital stocks that comprise
the foundations of human well-being (Arrow et al., 2012; Dasgupta et al., 2021; Fenichel et al., 2016; Polasky
et al., 2015). To do this, we use data from previous studies on sustainability challenges in the agricultural system
of Punjab (see Data Tables SD3-SD6 in Supporting Information S2). Finally, we apply our model to examine
five potential interventions to the system (see Text S3 in Supporting Information S1 for details on interventions).
For each intervention, we quantify the following: direct structural changes in the system (representing the ease of
implementation and measured as the number of human-technical-environmental interactions structurally modi-
fied by an intervention), indirect quantitative changes in the system (representing the range of impacts and meas-
ured as the number of human-technical-environmental interactions in which attributes of system components are
quantitatively altered downstream of direct changes), and the impacts on sustainability as measured by changes
in capital stocks and inclusive wealth. Change in capital stocks includes changes in human capital, natural capital
and carbon damages. Change in human capital includes human health impacts and farmers' net income (used as
a proxy for farmers' wealth), while change in natural capital is measured by estimating change in groundwater
stock (Aly & Managi, 2018; Fenichel et al., 2016). Carbon damages represent the cost of climate-related exter-
nalities produced by extraction of natural capital (Arrow et al., 2012). Impact on inclusive wealth is estimated by
multiplying the change in capital stock over 2019-2029 by marginal values of capital stocks, assuming uniform
impacts across the time period (details in Text S4 of the Supporting Information S1). We additionally estimate
the public expenses associated with each intervention (including subsidies and investment in campaigns and
infrastructure) as a partial measure of feasibility of policy implementation.

3. Results
3.1. Baseline Scenario (No New Policy) and Impacts on Sustainability (2019-2029)

We implement the interactions described in the pathways above in our quantitative model. Our model eval-
uation for the year 2019 (details in Text S2 of the Supporting Information S1) shows that model estimates
of key attributes of components (residues burnt in Punjab, emission of GHG and PM, ;, premature mortality
attributable to PM, 5 exposure, fertilizer, fuel and groundwater use, farmers' income and public expenses) are in
close agreement with estimates from previous studies and reports. Sensitivity analysis (Text S2 in Supporting
Information S1) of key model outputs to model input parameters using a OAT approach (where we vary base-
line model inputs by +20%) shows: GHG emissions and PM2.5 are most sensitive to residue-to-product ratio
(£10% and +15% respectively) as more residues generated per ton of product lead to higher residue burning
and associated emissions; and energy use is most sensitive to water table depth (diesel +10% and electricity
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+20%) as more energy is required to pump groundwater from greater depths for irrigation. Farming costs show
low sensitivity (<2%) to agricultural inputs as they largely depend on crop yield and residue management
costs. The challenge of conducting sensitivity analysis is the unavailability of uncertainty estimates of model
input parameters from literature and further work can contribute toward developing realistic ranges for input
parameters.

Table 4 presents the impact of continuing current practices of rice-wheat cropping in Punjab on sustainability
metrics as estimated by our model for the period 2019-2029. We estimate changes in premature mortality (human
capital), farmers' income (human capital), groundwater extraction (natural capital) and carbon damages using
Equations M, I, W, and G specified in Table 3. For this baseline scenario (No New Policy), we assume that no new
policy interventions are implemented during this period, and we estimate that agricultural subsidies (fertilizer
and power) cost 532 billion INR (7.4 billion USD; at a discount rate of 5%) in public expenses (see Equation 18
in Text S1 of the Supporting Information S1).

3.2. Interventions and Impacts on Sustainability (2019-2029)

In this section, for each intervention, we present a brief summary of the intervention followed by outlining the
direct and indirect changes in the system induced and the quantitative impacts on sustainability as measured by
changes in capital stocks. For changes in capital stocks, we estimate changes in premature mortality (human
capital), farmers' income (human capital), groundwater extraction (natural capital) and carbon damages using
Equations M, I, W, and G specified in Table 3. Details on each intervention are provided in Text S3 of Supporting
Information S1, with detailed direct (structural) and indirect (quantitative) changes in Table S4 of the Supporting
Information S1 and detailed quantitative impacts of interventions on sustainability metrics presented in Data
Tables SD7—SD14 of the Supporting Information S2.

In the “Ban” intervention (Figure 1-Pathway I-Intervention I) an effective ban on rice residue burning is
implemented, with the Government of Punjab paying farmers 1000 INR/ton (14 USD/ton) of rice production
(Mathur, 2019) and conducting an awareness campaign for farmers. Existing political constraints to implement-
ing a ban include conflict of interest between local stakeholders, high administrative burden, and lack of effective
monitoring (Dutta, 2018; Ellis-Petersen, 2019; Slater, 2018; Yadav, 2019). Paying farmers to prevent residue
burning may increase public expenses by about 22% (an additional 1.6 billion USD over 2019-2029) relative to
a No New Policy scenario.

This intervention involves two direct changes in system structure (farmers do not burn residues and storage
facilities are established for residues), which lead to indirect quantitative changes in three interactions (between
residues, air pollutants (GHG and PM, ;) and human health). An effective ban on rice residue burning results in
an estimated 530,000 lives saved due to lower PM, 5 emissions, and reduction in GHG emissions by 46% over a
10-year period.

In the “Residues for power” intervention (Figure 1-Pathway I-Intervention 2), rice residues are used as feedstock
in coal or biomass power plants. The Government of India-owned National Thermal Power Corporation (NTPC)
uses residues for cofiring (10%) in its coal power plants, paying farmers 5500 INR/ton (76 USD/ton) of residues
(Ghosal, 2017; Special Correspondent, 2017). Alternately, the Punjab Government sets up 600 MW of biomass
power plants to utilize rice residues (TERI, 2018). Cofiring with residues (10%) in coal power plants involves
high capital costs (an estimated 412 million USD (Griffin et al., 2014; Singh, 2015a) equivalent to 34% of the
government's current annual expenses on power and fertilizer subsidies), while setting up 600 MW of biomass
power (80 biomass power plants each of size 7.5 MW (Singh, 2015a)) is estimated to cost 375 million USD. This
does not include costs of residue processing and storage—transport to and from storage facilities and storage
and processing of residues adds about 42 USD/ton residue, adding to the cost of power production (Kurinji &
Kumar, 2020).

This intervention involves four direct structural changes (farmers do not burn residues; farmers rent baling
machines for residue removal; processing and storage facilities are established for residues; residues are used in
power plants as feedstock) and indirectly leads to quantitative changes in four interactions (between residues, air
pollutants (GHG and PM2.5) and human health; residues and farmers' incomes). If residues are used for cofir-
ing (10% of NTPC's installed coal power capacity or 4 GW (NTPC, 2022)), this would utilize the rice residues
previously burnt, preventing about 532,000 premature deaths, reducing GHG emissions by 10% and increase
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372 billion cubic 764 Mt CO,eq 152 Mt CO,eq

762000 INR/ha

760,000 lives?

Change in capital stock

meters

(10600 USD/ha)

—(10-15)

—(52-75)

43

—(330-536)

Change in monetary

value of capital stock
(billion USD)®

Net decline of 389-646 billion USD

Impact on inclusive

wealth

Note. Given the relatively constant cropped area and yield of rice and wheat in Punjab between 2010 and 2016 [103], we assume that rice and wheat production remains constant in Punjab over 2019-2029.

aProtein constitutes 8.5% of total macronutrients by weight for rice and wheat grown in Punjab and supplied through the PDS. "Energy use includes electricity and diesel for irrigation and farm
machinery, and fertilizer manufacturing. “Environmental impact of nitrogen fertilizer application is quantified in terms of carbon damages. ‘Loss of 690,000 lives attributed to primary PM, s emissions

from residue burning. “We estimate the change in monetary value of capital stocks by multiplying the change in capital stock (as estimated by our model) with marginal values of stocks as estimated in

previous studies. See Text S4 in Supporting Information S1 for details.

farmers' income by 24%. Utilizing rice residues in 600 MW of biomass plants would
prevent 167,000 premature deaths, reduce GHG emissions by 6%, and increase farm-
ers' income by 5%.

In the “Happy Seeder use” intervention (Figure 1-Pathway II-Intervention 3),
promoting wide-scale Happy Seeder use implies Happy Seeders are used on 90% of
rice-cropped land and the machines are easily available to rent at 50% subsidy, along
with government investment in farmer training camps (Government of India, 2019).
This would reduce annual government expenditure by 5% (96 million USD annually)
despite additional subsidy costs for the Happy Seeder due to lower subsidies on ferti-
lizer and electricity. Existing market infrastructure and public subsidies for the Happy
Seeder and potential long-term financial benefits for the government implies that this
intervention will not be politically challenging to implement.

This intervention directly changes the interaction between farmers and Happy Seed-
ers and leads to indirect quantitative changes in components' attributes in 15 interac-
tions, including interactions between Happy Seeders, agricultural inputs and farming
costs, and those between agricultural inputs/residues, air pollutants, and human health.
Wide-scale Happy Seeder use would lead to 547,000 fewer premature deaths due to
lower PM, 5 emissions, 55%—56% lower GHG emissions and marginal reduction (2%)
in groundwater consumption over a 10-year period. It also leads to 15% reduction
in urea use (by incorporating nutrients in rice residues into the soil) but we do not
quantify the non-carbon benefit of reducing nitrogen pollution due to lack of available
data on the localized impact of nitrogen pollution. Yield increases after 4 years of
Happy Seeder use, along with lower expenditure on agricultural inputs, leads to higher
incomes for farmers.

In the “Subsidy reform” intervention (Figure 1-Pathway IlI-Intervention 4), the
Government of India and State Government of Punjab reform power or ferti-
lizer subsidies to disincentivize excess use of agricultural inputs. We assume
farmers reduce groundwater use for irrigating rice by 33% (studies show that
farmers can reduce groundwater use by a third without adversely affecting yield
(Dhillon et al., 2018; Kaur et al., 2010; B. S. Sidhu et al., 2020)) and in an alter-
nate scenario, farmers reduce urea usage by 29% to levels recommended by the
Punjab Agricultural University (Punjab Agricultural University, 2019, 2020). To
incentivize lower power or fertilizer use, policy reform can include a Direct Bene-
fit Transfer (DBT) scheme in which farmers have access to either metered power
or rationed but guaranteed hours of power supply for irrigation, and the allotted
power subsidy is transferred directly to farmers (M. Gulati & Pahuja, 2015; Sally &
Sharma, 2018). Similarly, a DBT scheme can be implemented for fertilizers where
farmers buy all fertilizers at market prices and the subsidy is directly transferred
to farmers, to reduce over-consumption of low-cost urea (Chaba, 2019; A. Gulati
& Banerjee, 2015; Jitendra, 2020). Rationed but guaranteed power may increase
annual public expenses on subsidies by about 13%—-15% (165-185 million USD
annually), while lower fertilizer usage would reduce expenses by about 11% (130
million USD annually). Input subsidy reform requires overcoming political chal-
lenges due to the long-standing existence of input subsidies for farmers, like unme-
tered power and low-cost urea (Monari, 2002; B. S. Sidhu et al., 2020), and multiple
stakeholders need to work together to develop a sustainable and equitable subsidy
structure.

Power subsidy reform directly changes the interaction between farmers and ground-
water, and leads to indirect quantitative changes in five interactions (groundwater and
energy inputs; energy inputs, air pollutants (GHG/PM, ,) and health; energy inputs
and farming costs). Fertilizer subsidy reform directly changes the interactions between
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farmers and fertilizers, and leads to indirect quantitative changes in five interactions (fertilizers, air pollutants
(GHG/PM, ;) and human health; fertilizer and soil health; fertilizers and farming costs).

Reducing groundwater usage by 33% for rice leads to 22% lower annual groundwater extraction and would slow
the decline in the water table in Punjab, without affecting yield. If electricity is currently available for 60% of the
required time for irrigation (with diesel used for the remaining time) (Mukherji et al., 2009), guaranteed power
leads to 16%—18% higher farmer income through lower diesel usage and marginally lower associated GHG and
PM, ; emissions (2%—5%). Reducing fertilizer usage by about 29% (to levels recommended by Punjab Agricul-
tural University) leads to marginally lower PM, ; emissions (2%-3%) and 7% lower GHG emissions, without
affecting yield.

In the “Pulses procurement” intervention (Figure 1-Pathway IV-Intervention 5) the Government of India procures
pulses (we select pigeon pea for our estimates), along with rice and wheat, at guaranteed Minimum Support
Prices (announced annually for 19 foodgrains by the government). This intervention involves a fundamental shift
in the dominant technology of the system, that is, from rice-wheat cropping to a system including pulses. Farmers
are generally in favor of shifting cultivation away from rice, largely driven by concerns about depleting ground-
water in Punjab, but guaranteed procurement specifically of rice disincentivizes this shift (Bhatt, 2020). The price
volatility of pulses in the open market, rising imports and low water requirements make this an attractive option
for both government and farmers (Puri, 2017; Subramanian, 2016). Public expenses on input subsidies would
reduce by 19% (1.8 billion USD) but this does not include the additional subsidy on pulses sold through the PDS,
if consumers are to keep their monthly expenses on foodgrains constant.

This intervention involves three direct structural changes (farmers diversify crop production, land use shifts from
rice to pulses, and milling facilities are established for pulses) which leads to quantitative changes in 14 interac-
tions indirectly (those between crops and agricultural inputs, crops and residues, and associated human and envi-
ronmental impacts). A shift of 50% of rice-cultivated land in Punjab to pulses (as incentivized through monetary
benefits by the neighboring state government of Haryana (Singh, 2020b)) would prevent almost 418,000 prema-
ture deaths due to lower PM, 5 emissions, as well as prevent about 210,000 premature deaths by increasing the
protein availability through crops grown in Punjab by an additional 1.2% (an estimated benefit of 103-169 billion
USD in health capital relative to our base case). This shift from rice to pulses would also reduce GHG emissions
by 40% and groundwater consumption by 21%. Urea consumption reduces by 20% but the monetary non-carbon
benefits of lower nitrogen pollution are yet to be estimated. Farmers' incomes reduce by 10% due to lower yield
of pulses, in spite of pulses being procured at guaranteed prices.

Table 5 presents the results of our analysis of interventions (in order of increasing inclusive wealth relative to a
No New Policy scenario) and highlights the degree of change in system structure and in sustainability metrics. Of
the interventions considered, “Pulses procurement” provides the largest increase in inclusive wealth, followed by
“Happy Seeder use.” These two interventions also lead to the widest range of impacts in the system (high number
of indirect quantitative changes in system components). On the other hand, “Subsidy reform” led to the small-
est increase in inclusive wealth and provide a narrow range of benefits in primarily reducing GHG emissions
and groundwater extraction respectively; however, these inclusive wealth estimates do not include the localized
non-carbon benefits of reducing fertilizer use and further work is needed in estimating the regional marginal
value of groundwater stock.

In Figure 2, we summarize our evaluation of policy interventions and show direct and indirect changes in the
system (x and y-axes respectively) and corresponding impact on inclusive wealth relative to a base case where no
new policy is implemented (logarithm of increase in inclusive wealth relative to No New Policy scenario repre-
sented as the size of circles with values specified alongside interventions). An ideal intervention can be expected
to lie in the top left corner of the graph represented by a circle of large radius—easy to implement (few direct
structural changes), with a wide range of impacts (large number of interactions in which system attributes are
changed quantitatively) and substantial improvement in sustainability (large increase in inclusive wealth relative
to the base case). Of the interventions considered, “Happy Seeder use” meets the said criteria—it involves few
direct changes (high ease of implementation) given the existing market infrastructure, leads to the widest range of
impacts (indirect changes) providing benefits for farmers' incomes, air quality, climate and soil, and large increase
in inclusive wealth. Additionally, the intervention involves overall reduction in public expenses, implying that it is
feasible to implement. Figure 2 also shows “Ban’ and “Residues for power” induce few indirect changes (narrow
range of impacts), but at the same time provide a large sustainability benefit. These interventions primarily reduce
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Happy Seeder use

($260-482 billion )
Pulses procurement
($311-504 billion)
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Power subsidy reform
($0-1 billion)

Residues for
ower

($234-479 billion)
Ban on residue burning
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Direct structural changes in system

Indirect quantitative changes in system
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Fertilizer subsidy reform
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Figure 2. Mapping the impacts of interventions on system structure and improvement in inclusive wealth relative to No New
Policy scenario (2019-2029). Note: Size of circle represents logarithm of change in inclusive wealth relative to a No New
Policy scenario; values alongside interventions represent change in inclusive wealth relative to No New Policy scenario.

air pollutants without benefits for soil and groundwater, but significantly reduce premature mortality attributable
to PM, 5 exposure which leads to a large increase in inclusive wealth.

4. Conclusions

Of the interventions considered, “Happy Seeder use” and “Pulses procurement” provide the widest range and
highest magnitude of sustainability benefits. Considering changes to health capital alone, tripling Happy Seeder
use may reduce premature mortality attributable to air pollution to a greater extent (an estimated 228-372 billion
USD saved) compared to a 50% shift in cultivation from rice to pulses (an estimated 179-292 billion USD
saved). However, if the health impact of higher plant protein intake from pulses is taken into account (estimated
benefit of 104—169 billion USD), subsidizing and incentivizing consumption of pulses in low-income households
has a greater benefit for overall human health in India. Shifting cultivation from rice to pulses in Punjab also
provides substantial benefits for groundwater levels (in contrast to marginal reduction in groundwater usage with
wide-scale use of Happy Seeders) but may reduce farmers' incomes due to lower yield of pulses, even if pulses
are procured at guaranteed prices. This is the only intervention in this study that may lead to a net increase in
inclusive wealth (an estimated 72 billion USD between 2019 and 2029), if air pollution from residue burning is
completely eliminated.

We identify through our analysis that interventions that do not result in a fundamental change in the dominant
technology of a system can nevertheless have wide-ranging social and environmental benefits. Wide-scale use
of Happy Seeder improves residue management within the existing rice-wheat cropping system, and provides
substantial benefits for farmer incomes, soil health, climate and air quality without requiring a fundamental shift
in crops grown. Thus incremental changes in a system can lead to a broad range of impacts and large quantitative
improvement in sustainability as measured by an inclusive wealth-based approach.

The results of the assessment of sustainability outcomes show the greatest impact for those interventions that
reduce air pollution, partially due to assumptions in the inclusive wealth methodology. In this work, interventions
that incentivize residue removal instead of burning, either by directly paying farmers or establishing a market for
residues, primarily improve air quality and human health without benefits for other human and environmental
metrics, and yet lead to a large quantitative sustainability improvement due to the high shadow price associated
with human life (known as the value of a statistical life). The high marginal value of human life implies that
health capital often exceeds all other forms of capital (Agarwal & Sawhney, 2021). Within this system, eliminat-
ing air pollution from agricultural activities would save lives equivalent to 366—594 billion USD, with an addi-
tional 104-169 billion USD saved by an additional 1.2% protein intake from pulses procured only from Punjab.
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Compared to the health capital impact, the estimated environmental damage caused by carbon emissions (from
direct fuel use in farm machinery and fertilizer manufacturing and application) is 62—-86 billion USD annually.

We highlight two caveats to representing sustainability impacts using monetary values. One, certain forms of
capital may be critical and irreplaceable by other stocks, and representing change in inclusive wealth only in
monetary values avoids the question of what forms of capital should constitute inclusive wealth and how it should
be distributed (Ekins et al., 2003; Neumayer, 2010; Polasky et al., 2015). As a result, interventions that benefit
health capital to a large extent may be preferred to others that lead to lower but broader benefits for other forms
of capital. Two, estimating changes in inclusive wealth involves knowing the monetary values that reflect the true
contribution of capital stocks to well-being and while a number of studies focus on estimating the value of capital
stocks in the US (Fenichel et al., 2016; Keeler et al., 2016; Shindell, 2015), further work is needed in evaluating
marginal values of stocks in Punjab and India. The cost of nitrogen pollution due to excess fertilizer application
or the cost of excessive groundwater extraction are localized and there is no spatially generalizable monetary
value of damages. An accurate estimation of location-specific marginal values of capital stocks can help in better
evaluating the impact of interventions on overall sustainability.

This work's quantitative estimates of key attributes of components for 2019 show close agreement with estimates
from previous studies and reports (Text S2 in Supporting Information S1). However, the challenge in comparing
our future projections with other studies is the unavailability of similar projections in existing literature. Our
analysis of sustainability impacts of interventions is additionally limited by the assumption that impacts are
uniform across time and interventions are implemented independent of each other. Our goal was to use distinct
interventions in rice wheat cropping system of Punjab to exemplify varying degrees of change within a system
and compare the magnitude of their impacts. Future research can contribute toward developing projections of
sustainability impacts that account for temporal aspects of impacts, quantify overlapping impacts in the case of
combined interventions, and evaluate realistic ranges for input parameters and uncertainties.

5. Discussion

In this paper we use a generalizable systems framework and a quantitative model to assess the sustainability
impacts of policy interventions in the agricultural system of Punjab, India. We focused on five interventions:
“Ban” on residue burning, “Residues for power,” “Happy Seeder use,” and “Subsidy reform” aim to improve the
existing cropping system through better agricultural practices; while “Pulses procurement” by the government
aims to fundamentally shift cropping and consumption patterns. We examined three aspects of change associ-
ated with these five policy interventions—direct structural changes in system interactions, indirect quantitative
changes in attributes of system components and quantitative impacts on sustainability metrics. For the inter-
ventions considered, these aspects represent ease of implementation, range of system impacts and magnitude
of impact on sustainability respectively. We showed that both improving the existing cropping system (through
“Happy Seeder use”) and fundamentally shifting cropping patterns (through “Pulses procurement”) can lead to
wide-ranging and substantial sustainability benefits.

There are some considerations needed in implementing “Happy Seeder use” and “Pulses procurement” interven-
tions. Happy Seeder use raises concerns about longer term “lock-in” of existing systems —incorporation of rice
residues that currently have no alternate value may intensify the rice-wheat cropping system without addressing
concerns about depleting groundwater resources in Punjab. Further modeling work could examine a longer time
horizon to analyze the long-term impacts of rice-cropping on groundwater status in the region, accounting for
non-linear relationships between groundwater availability and crop yield and tipping points within the system.
Government procurement of pulses is associated with uncertainties unexamined in this work. First, the uncer-
tainty in yield of pulses is higher than cereal crops due to sensitivity to rainfall (Subramanian, 2016) and farmers
need sufficient incentive to shift cropping patterns toward pulses. Second, diversion of particularly expensive
grains such as pulses to the open market needs to be minimized. By our estimates, annual public expenses reduce
by 389 million USD if leakage in the PDS system is reduced from 20% (Puri, 2017) to zero (see Text S3 in
Supporting Information S1 for details). Third, availability of pulses does not ensure consumption (Chakrabarti
et al., 2016) and PDS customers may need an impetus to shift consumption from rice toward pulses. A subsidy
scheme that allows transfer of funds directly to beneficiaries could potentially reduce leakage in the system by
eliminating illegal beneficiary cards and also allow beneficiaries to exercise choice over purchase of foodgrains
(George & McKay, 2019; Puri, 2017).
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In this work, we showed that interventions that lead to a fundamental shift in dominant technologies may not
involve a transformation in the configuration of human and institutional system elements, that is, how farmers and
consumers interact with agricultural markets. Previous studies have associated crop diversification with a trans-
formative change in the agri-food system including supply chains and markets (Magrini et al., 2016; Meynard
et al., 2013). We highlighted the institutional structures driving cropping patterns in Punjab to show that a shift
in cultivation from rice to pulses, while providing the largest increase in inclusive wealth and requiring a shift in
consumption patterns, does not require a radical overhauling of the existing socio-political landscape (relation-
ships between farmers, consumers and markets and institutional frameworks and regulations) within which the
system operates.

A transformative change—as defined by a shift in technologies, institutions and practices—in the agricultural
system of Punjab may be brought about by agricultural market reform that expands farmers' access to agricul-
tural markets and reduces dependence on government procurement. Increasing the venues available to farmers
for selling crops may improve farmer livelihoods and incentivize crop diversification, leading to a shift away
from the dominant rice-wheat cropping system of Punjab. Interventions that seek to expand farmers' access to
agricultural markets may do so by promoting contract farming or open market transactions. Contract farming
may not suitable for small farmers as companies often prefer farmers with large landholdings to reduce trans-
action costs (Singh, 2012). Three agricultural acts in India (introduced in 2020 but repealed in 2021) aimed to
liberalize the agricultural sector by removing the existing mandate of state-managed markets being the first point
of sale for produce and foodgrains. They were controversial for a number of reasons—fear of reduced income
security for farmers and corporate interests overriding farmers', and the potential loss of revenues (collected
as fees at state-managed markets) that fund rural development in Punjab (Hussain, 2020; Krishnamurthy &
Chatterjee, 2020; Singh, 2020a). Further work could examine the impacts of agricultural liberalization on the
interactions between farmers, markets and institutions, crop diversification, and sustainability.

Policies that involve localized trade-offs in benefits for improvement in sustainability elsewhere raise concerns
about the equity impacts of interventions and their long-term support and effectiveness. We estimate that a 50%
shift in cultivated area from rice to pulses in Punjab may save 187 billion USD in human health impacts across
India between 2019 and 2029, but simultaneously reduce Punjab farmers' income by 5 billion USD. Similarly,
power subsidy reform involving rationing of subsidized power may provide greater benefits to wealthier farmers
by excluding landless farmers from its benefits or adversely affecting small-scale farmers who buy water from
other farmers (B. S. Sidhu et al., 2020; Singh, 2012). Future studies can use the analytical approach developed in
this work to examine the distributional impacts of policy interventions.
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