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ARTICLE INFO ABSTRACT

Edited by: Dr H Thybo We utilized shear wave splitting analysis of teleseismic SKS, SKKS, and PKS phases to infer upper mantle
deformational fabrics across a substantial area of Southeast Asia, where splitting measurements were previously

Keywords: limited. We used newly available permanent and temporary broadband seismic networks deployed across the

Seismic anisotropy Indo-Burma subduction zone and the eastern Indochina peninsula. The resulting 492 well-constrained splitting

Shear wave splitting

. ) and 654 null measurements from 185 stations reveal clear large-scale patterns in the mantle deformational
Mantle deformational fabric

Trench parallel mantle flow fabrics in response to the highly oblique active subduction and a large transform plate boundary. We identified

Oblique subduction two distinct domains of mantle deformation fabrics in the western Burma microplate and the eastern Indochina

Hainan Plume peninsula. In the former, trench parallel N-S fast polarization directions with an average lag time (t) of 1.9 s are
observed beneath the Indo-Burman Ranges. We suggest the observed splitting is partly due to anisotropy in the
sub-slab region and relates to shear induced by the north moving Indian plate. The lithospheric fabric within the
Indo-Burman Ranges and underlying subducting slab fabric contribute to produce the observed average 5t of 1.9
s. The &t value decreases to an average of 1.0 s towards the back-arc until we reach the dextral Sagaing fault. In
the second domain, starting approximately 100 km east of the Sagaing fault, we observe a consistent E-W fast
direction with an average 5t of 1.10 s in the eastern Shan-Thai and Indochina blocks. We interpret the E-W fabric
as due to the deformation associated with the westward spreading of the Hainan mantle plume, possibly driven
by overriding plate motion. Low velocities in the shallow mantle and late Cenozoic intraplate volcanism in this
region support the plume-driven asthenospheric flow model in the Indochina peninsula. The sudden transition of
the fast polarization direction from N-S to E-W along the eastern edge of the Burma microplate indicates the
Sagaing fault acts as a mantle flow boundary between the subduction dominated trench parallel flow to the west
and plume induced asthenospheric flow to the east. We also observed no net splitting beneath the Bengal basin
which is most likely due to the presence of frozen vertical fabric resulting from the Kerguelen plume activity
during Early Cretaceous.

1. Introduction nature of upper mantle deformation and flow related to the largest
continental collision on earth (e.g. Tibet) as well as the mantle defor-
Southeast Asia offers an excellent natural laboratory to study the mation related to an active plume (e.g. Hainan Island). Active
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convergence of the Indo-Australia plate with the Eurasia plate has sha-
ped the Cenozoic tectonic evolution of southeast Asia (Keep and Schel-
lart, 2012; Zahirovic et al., 2014). The northward motion of the Indian
plate and its subsequent collision with Eurasia created a broad and
diffuse deformational zone with wide variation in crustal and litho-
spheric thickness (Le Pichon et al., 1992; Molnar and Tapponnier, 1975;
Replumaz and Tapponnier, 2003; Tapponnier et al., 1986). The colli-
sional front takes a sharp N-S bend along the eastern Himalayan syntaxis
(EHS) and transitions into an extremely oblique subduction where the
Indian plate is subducting beneath the Burma microplate, commonly
known as the Indo-Burma subduction zone (IBSZ; Fig. 1).

Observations of seismic anisotropy can help to infer both present-day
deformation in the upper mantle as well as preserved deformational
fabrics frozen into the mantle lithosphere (Long and Becker, 2010).
Within the dislocation creep domain in the upper mantle, simple shear
leads to the development of lattice-preferred orientation (LPO) of
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olivine, resulting in a directional dependence of seismic velocity
(Christensen, 1984; Karato et al., 2008; Savage, 1999; Silver and Chan,
1991) that can be measured via shear wave splitting (SWS). It is well
known that the polarization direction of the fast shear wave [¢] and the
time delay between the fast and slow shear waves [5t] are the two pa-
rameters that can be used to characterize SWS. Due to the lack of vertical
resolution, SWS measurements in a subduction system reflect an inte-
grated effect of anisotropy in the sub-slab mantle, slab, and mantle
wedge, which in other contexts can be difficult to isolate (Long and
Silver, 2009; Long and Wirth, 2013).

Previous investigations of SWS (L. Chang et al., 2015; Le6n Soto
et al., 2012; McNamara et al., 1994; Sol et al., 2007; J. Wang and Zhao,
2008) and crustal deformation from GPS (Gan et al., 2007; Liang et al.,
2013; M. Wang and Shen, 2020) in the eastern India-Eurasian collisional
zone (Fig. 2) strongly suggests a vertically coherent upper mantle and
crustal deformation with a clockwise rotation around the EHS. This

90° 95°
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Fig. 1. (a) Distribution of seismic networks and simplified tectonic map of the study area; Red arrows show the absolute plate motion direction according to the
hotspot HS3-NUVEL 1A model (Gripp and Gordon, 2002). The orange upright triangles show Tengchong and Hainan volcanic centers. Yellow upright triangles show
Late Cenozoic volcanic centers in Myanmar (from Lee et al., 2016; Searle et al., 2007). The orange polygons show the distribution of Late Cenozoic (< 16 Ma)
intraplate volcanism from Yan et al., 2018. CMB - Central Myanmar Basin; EHS — Eastern Himalayan Syntaxis; GBD — Ganges Brahmaputra Delta; HN — Hainan; IBR —
Indo-Burman Range; IC — Indochina Block; MFT — Main Frontal Thrust; RRF — Red River Fault; SC — South China; SF - Sagaing Fault; SM - Shillong Massif; ST —
Shan-Thai Block; TC- Tengchong volcano; YC- Yangtze Craton; YN — Yunnan. (b) Zoom in view of the Ino-Burman subduction system showing the individual station of

BIMA seismic network.
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Fig. 2. Previous station average SKS measurements and GPS velocity vectors relative to stable Eurasia. GPS velocity vectors are sourced from (Devachandra et al.,
2014; Gupta et al., 2015; Kreemer et al., 2014; Marechal et al., 2016; Vernant et al., 2014; M. Wang and Shen, 2020). Previous SKS results are taken from the SWS

database (from Barruol et al., 2009). Abbreviations are the same as in Fig. 1.

clockwise rotational pattern disappears in the southern Yunnan Prov-
ince near 27°N where the fast direction changes from N-S to E-W (Z.
Huang et al., 2007; Lev et al., 2006). The question remains of what
drives the mantle flow in the IBSZ and the entire Indochina peninsula. In
the IBSZ margin, Russo (2012) first observed a trench parallel fast di-
rection using source-side shear wave splitting measurements and pro-
posed a regional mantle flow model influenced by slab segmentations.
Many of the splitting delay times exceed 3.0 s, which is rarely observed
elsewhere, suggesting possible receiver side contamination. Later, Liu
et al. (2019) proposed whole a India slab rollback model where both the
northward and eastward India-Eurasia convergent margins are rolling
back along with a large-scale toroidal flow resulting from a slab gap near
the EHS; however, the suggested slab gap is not visible in regional
travel-time tomographic models (Dubey et al., 2022; Shi et al., 2020)
and the westward toroidal flow is not supported by the current geo-
dynamic model where several lines of evidence suggest the eastward
asthenospheric flow dominating in southern Tibet. (Agius and Lebedev,
2013, 2017; Jolivet et al., 2018; Ye et al., 2016; Y. Yu et al., 2021).
Several recent studies (Fan et al., 2021; Kong et al., 2018; Y. Yu et al.,
2018) proposed a westward slab roll-back model that drives the mantle
deformation of the entire Burma block and eastern Indochina. Such
large-scale roll-back and associated corner flow do not seem to correlate
with the absence of back-arc extension and extensive volcanism. We
endeavor to determine whether the IBSZ controls mantle flow beneath
the western Burma block and eastern stable Indochina.

One key drawback of the previous studies is the lack of SWS spatial
coverage across critical tectonic units, especially along the Sagaing fault
and eastern Indochina peninsula. Our study covers the entire Indo-
Burma subduction regime encompassing the western deformation
front to the eastern Indochina peninsula. We have used SWS analysis of
the core refracted S waves (SKS, SKKS, PKS, collectively known as XKS)
to map the spatial distribution of seismic anisotropy. One contribution of
this study is to fill a large gap in shear wave splitting measurements
across a significant part of southeast Asia. Taking advantage of the dense
network coverage, this study aims to better understand the mantle flow
dynamics of this complex system by addressing several key questions
including the nature of the N-S to E-W transition of fast direction in the

Indochina peninsula, the role of the northward movement of the Indian
plate and lithospheric contribution to the overall anisotropy. Another
contribution of this study is to provide a framework that explains abrupt
changes in shear wave splitting measurements south of the EHS, across
the Sagaing Fault, and within the IBSZ.

2. Background

The present N25°E motion of the Indian plate relative to Eurasia
(MORVEL56-NNR model, Argus et al., 2011) has a convergent compo-
nent of 12-24 mmy ! with a dextral component of ~40 mmy! relative to
the Burma platelet (Mallick et al., 2019; Oryan et al., 2023; Steckler
et al., 2016). The highly oblique convergence of India along the IBSZ
results in strain partitioning of which about half is accommodated by the
dextral motion of the Sagaing Fault (Fitch, 1972; Khin et al., 2017;
Vigny, 2003). This ~1200 km long fault forms the eastern boundary of
the Burma microplate and has an estimated displacement of 400 to 1000
km since the Miocene (Mitchell, 1993; Morley, 2017; Morley and Arboit,
2019; Y. Wang et al., 2014). The oblique convergence also facilitates the
northward movement of the overriding Burma microplate relative to the
adjacent Sunda plate (Bertrand and Rangin, 2003; Maurin and Rangin,
2009; Morley, 2002). Another unique feature of this subaerial subduc-
tion system is its very limited magmatic arc, despite experiencing a
substantial sediment influx from the world’s largest delta: the
Ganges-Brahmaputra Delta (GBD). The ongoing subduction since the
Oligocene results in thrusting and crustal shortening of the upper plate
(Maurin and Rangin, 2009; Najman et al., 2020), forming the
Indo-Burman range (IBR).

Unlike the southern Andaman-Sumatra-Java segments where the
Wadati-Benioff zone (WBZ) extends down to ~670 km (Kayal, 2008),
the slab earthquakes of the IBSZ have a maximum depth of ~180 km
(Dasgupta et al., 2003; Hurukawa et al., 2012; Ni et al., 1989; Rao and
Kalpna, 2005; Satyabala, 2003; Stork et al., 2008). Both global and
regional traveltime tomographic models have imaged an east-dipping
high-velocity slab-like structure descending 100-200 km below the
WBZ seismic zone (J. Huang and Zhao, 2006; Koulakov, 2011; Lei and
Zhao, 2016; C. Li et al., 2008; Wei et al., 2012); however, there are
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significant variations in slab structure and depth extent among these
models due to the lack of sufficient station coverage. Recent tomo-
graphic models with increased resolution have all found high velocity
slab-like structures extending down to the mantle transition zone (MTZ)
(Lei and Zhao, 2016; Wei et al., 2012; Yao et al., 2021).

The Sagaing Fault forms the eastern boundary of the stable Sunda-
land block, an amalgamated continental block formed during the
Indonesian Orogeny in the Late Triassic. (Metcalfe, 2011, 2013; Ng
et al., 2015; Searle et al., 2012; Sone and Metcalfe, 2008). The segment
of the Sundaland block situated southeast of the EHS is recognized as the
Indochina peninsula. This tectonic block comprises of the Shan-Thai
(ST) and Indochina (IC) blocks and has undergone southeast extrusion
and clockwise rotation due to the early India-Eurasia collision(S. Li
et al., 2017; Richter and Fuller, 1996; Sato et al., 2007; Takemoto et al.,
2009; Z. Yang et al., 2001).

3. Data and methods
3.1. Data

We used data collected from recently deployed temporary and per-
manent broadband seismic networks deployed in Bangladesh, Myanmar,
and Thailand. Among these stations, the Bangladesh-India-Myanmar
Array (BIMA) network covers the entire subduction margin, spanning
from the western Bengal basin to the eastern central Myanmar basin
(CMB) (Fig. 1). Active since early 2018, this profile network consists of
61 stations, deployed in Bangladesh and Myanmar (FDSN
XR_2018-2022, Sandvol et al, 2018). The Earth Observatory of
Singapore (EOS) network stations are distributed along the Sagaing
Fault and the CMB. GFZ stations are mostly located in the northern CMB
close to the EHS (FDSN 6C_2018-2022, Tilmann et al., 2021). The
Myanmar National Seismic Network (MM), which consists of nine
broadband seismic stations, first came online in early 2016 (FDSN
MM_2016, Department of Meteorology and Hydrology - National
Earthquake Data Center, 2016). TM (FDSN TM_2008_2021) and TSAR
networks are distributed in Thailand, covering the southern part of the
Shan-Thai block and the Indo-China block. Overall, we have used 185
permanent and temporary stations with a recording period ranging from
early 2009 to late 2022. Teleseismic events of magnitude greater than
5.8 have been used to ensure high signal-to-noise (SNR) of the incoming
core refracted shear waves. The epicentral distance ranges of 85°—120°,
95°—-180°, and 120-180° were selected for analyzing SKS, SKKS, and
PKS phases, respectively. The spatial distribution of the teleseismic
events is shown in the supplementary material (Fig. S1.2), available in
the online version of this article.

3.2. Methods

We have utilized the method of Silver & Chan (1991) to determine
the optimal splitting parameters. Using a grid-search approach, the
best-fitting splitting parameters are estimated by rotating and
time-shifting the seismogram pair that minimizes the energy in the
transverse component. An ideal window length has been manually
selected, and it typically begins 10-15 s before the incoming XKS waves
and includes at least one full cycle of clear arrival. Before measurements,
individual seismograms were passed through a bandpass with a corner
frequency of 0.03-1.0 Hz to isolate the XKS energy. Uncertainty esti-
mates were carried out following the F-test approach of Silver & Chan
(1991) and verified using the bootstrapping method (Sandvol and
Hearn, 1994). Each splitting result has undergone quality control by
visual inspection to eliminate unreliable results, such as instances where
the uncertainties are underestimated. This approach involves the in-
spection of every splitting waveform, particle motion, transverse energy
contour map, and residual tangential energy of the corrected tangential
component. Using these criteria, all results are subjectively ranked from
Q1 to Q4 (excellent, good, fair, poor) [see supplementary material,
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Fig. S2.1]. Reliable results all have linear particle motions after applying
optimal rotation and time shifts, a clear global minimum energy on the
transverse contour map, and small residual energy on the corrected
tangential component (Fig. 3). We have also observed null measure-
ments, where a clear S wave arrival is present on the radial component
but there is no energy in the transverse components. Station average
splitting parameters were calculated taking circular (fast directions) and
arithmetic averages (lag times) of Q1 and Q2 quality measurements.

4. Results

A total of 492 well-constrained (Q1 and Q2) splitting parameters and
654 nulls were obtained from 160 different stations. We performed 900
SKS, 212 SKKS, and 34 PKS measurements by analyzing 191 events. In
addition, 25 stations were analyzed but did not produce any measurable
splitting results, due to either noisy horizontal components with low
SNR (especially in Thailand) or limited active service days. These sta-
tions are distinct from the null stations which had good SNR waveforms
that did not split from a variety of azimuths. The station average split-
ting measurements are shown in Fig. 4. We primarily observed three
distinct types of splitting patterns in our study area. In the western
Bengal basin and outer fold belt of the IBR, there is little evidence of
splitting. We found 264 well-defined nulls in 28 stations of the BIMA
network in Bangladesh. Only a single station (BA17) has a few wave-
forms with measurable splitting with a maximum lag time of 0.4 s,
comparable to typical crustal splitting values (Silver, 1996). Reasonable
back-azimuth coverage [supplementary material, Fig. S2.3(a)] ensures
that the observed nulls are not resulting from the incoming shear wave
being parallel or perpendicular to the fast axis of the anisotropic
medium.

In the central IBR and CMB, we observed a consistent trench parallel
N-S fast direction with a circular mean of —3.0 £+ 9.5°. Along the sub-
duction zone, the fast directions vary slightly from N—NW to N—NE
direction as we move from south to north following the curvature of the
IBR orogen. The average lag time in the IBR is 1.9 + 0.4 s, higher than
the global average of ~1.0 s for continents (Silver, 1996). Similar trends
were also reported in previous studies, although with limited station
coverage (Fan et al., 2021; Saikia et al., 2018). The projection of null and
splitting measurements at 210 km ray piercing points shows that the
higher lag time values of IBR do not overlap with the nulls region in
Bengal basin (see supplementary material, Fig. S6.1). The maximum
average lag time is observed at station MPO1 (2.8 + 0.5 s), located in the
westernmost part of the IBR. The lag time reduces to ~1.0 s in the CMB.
The average lag time along the Sagaing fault is higher (1.3 & 0.4 s) than
the surrounding regions, and the fast direction aligns closely with the
strike of the fault with a circular mean of —16.1 £+ 12.7°.

In Thailand, the fast direction changes from N-S to nearly E-W. All
stations in the IC block have a consistent E-W fast direction with an
average lag time of ~1.1 s. Previous studies using sparsely distributed
stations also reported E-W fast axes (L. Liu et al., 2019; Y. Yu et al.,
2018). Interestingly, some stations in the southern ST block in the Shan
Plateau have no splitting measurement (i.e., null shear wave splitting).

4.1. Multiple anisotropic layers

In order to look into the potential existence of multiple anisotropic
layers, we examined the back-azimuth dependency of the splitting pa-
rameters. Periodic variations of apparent splitting parameters relative to
the back azimuth are often indicative of multiple anisotropic layers
(Silver and Savage, 1994). Complete azimuthal coverage has not been
achieved for most of the temporary networks due to the uneven distri-
bution of teleseismic events; however, some stations with reasonably
good coverage do not show any periodic variations in splitting param-
eters with respect to BAZ modulo 90 (supplementary material,
Fig. S3.1). The lack of a distinct periodic back-azimuthal dependency of
the splitting parameters implies the existence of a single anisotropic
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Fig. 3. Example of teleseismic splitting results for the same event recorded at (a) station MS03 with larger &t; (b) station MP21 with average 5t. The location of the

stations is marked in Fig. 1(b).

layer with a horizontal axis of symmetry. It is important to note that,
with the exception of MDY, most stations still have some gaps in the
back-azimuth coverage where existence of multiple layers cannot be
ruled out.

4.2. Depth of the anisotropic layer

The presence of smooth spatial variations in splitting parameters
combined with dense station spacing with decent azimuthal coverage
and a single anisotropic layer enables us to apply the spatial coherency
technique to estimate the anisotropic depth (K. H. Liu and Gao, 2011). In
this method, the spatial variation factor, defined by the weighted sum of
the standard deviation of the fast axes (circular) and lag times, is
calculated over a depth range of 0 to 400 km in overlapping rectangular
blocks (Gao and Liu, 2012). The minimum variation factor corresponds
to the optimal depth of the anisotropy (see details in supplementary
material, section S4). The curve of variation factors in the eastern
Indo-China block has a flat bottom with minimum variation factors
obtained for depths of ~200-300 km using a block size of 0.25°, indi-
cating that the primary anisotropy source is below the lithospheric depth
(Fig. 5). For IBR and CMB regions, the variation factors did not converge
well, probably due to the variation of the splitting parameter with depth,
different depths dominating in different sub-regions, or insufficient
azimuthal coverage.

5. Discussion
5.1. Trench parallel flow in the IBR

We measured an average lag time of 1.9 s along the IBR margin with
trench parallel fast axes, which is larger than that of most other sub-
ducting slabs (Long and Silver, 2008). Several studies proposed slab
roll-back with toroidal flow model to explain the observed mantle
deformation fabric (Fan et al., 2021; L. Liu et al., 2019); however, such
roll-back would require well-developed back-arc extension or
compression depending on the overriding plate mobility (Nakakuki and
Mura, 2013; Schellart and Moresi, 2013). Late Cenozoic surface de-
formations in the ST and IC blocks are primarily dextral and sinistral
motion along major fault systems and widespread sedimentary basin
inversion (Searle and Morley, 2011). Earthquakes in Yunnan, Laos,
northeast Myanmar, and north Thailand are dominated by strike-slip
focal mechanisms, primarily following a NE-SW to ENE-WSE trend
(Morley, 2007; Socquet and Pubellier, 2005). Additionally, we observe
only a low volume of Quaternary volcanism in central Myanmar (Lee
et al., 2016; Maury et al., 2004; L. Y. Zhang et al., 2020) whereas slab
roll-back usually results in extensive volcanism from asthenospheric
upwelling (e.g., MORB-like diabase dykes in the Chinese Altai, J. Wang
et al., 2020; alkaline volcanic complex in the Mediterranean, Prelevic
et al., 2015; mafic intrusions in North Sumatra, X. Yu et al., 2023).
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Fig. 4. Station average teleseismic shear wave splitting results of the study area. The green box shows the rectangular area that was considered for calculating the

depth of the anisotropy beneath the IC block (Fig. 5).
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Fig. 5. Spatial variation factors plotted against the depth of anisotropy for the
IC block.

In the absence of active slab roll-back, other mechanisms are needed
to explain the observed large lag time. Predominant surface deformation
in the IBR is ~E-W thrusting with crustal shortening and N-S strike-slip
faulting (Betka et al., 2018; Maurin and Rangin, 2009; Najman et al.,
2020) due to the oblique convergence since Oligocene (Mon et al.,
2020). When we examine the individual splitting measurements, larger
8t values correlate with the higher topography (Fig. 6) of the IBR. The
strong correlation with the topography as well as lithospheric thickness
(Pasyanos et al., 2014) indicate that the IBR anisotropy has a significant
lithospheric contribution resulting from E-W tectonic compression with
crustal thickening and N-S shearing associated with the ongoing
convergence. Additionally, the subducting Indian slab reaches a
maximum depth of 60 km beneath the IBR, making a shallow angle
subduction before dipping more steeply (Hayes et al., 2018; Hurukawa
et al,, 2012). Slab anisotropy may have developed from the E-W
convergence, thus also contributing to the total IBR anisotropy, which
could account for the large (~2 s) lag times.

Absolute plate motion (APM) induced fabric could also contribute to
the observed anisotropy in the IBR. The Indian plate close to the IBR is
moving N7°W at a rate of ~52 mmyr’!, according to the HS3-NUVEL1A
model (Gripp and Gordon, 2002). Several geodynamic models suggest
the down dip motion of the Indian slab stopped as it transitioned from
oceanic to continental crust (G. Zhang et al., 2021; Zheng et al., 2020).
The northward motion of dipping Indian slab along with the Indian plate
motion could induce simple shear in the surrounding mantle. Assuming
the presence of A-type LPO fabric and alignment of fast directions with
the mantle flow direction, this deformation could produce the observed
trench parallel flow around the slab. In the mantle wedge, the combi-
nation of high-water content and elevated stress conditions may pro-
mote the formation of B-type olivine fabric, as suggested by Fan et al.,
2024. However, the presence of short-lived, low-volume arc volcanoes is
not consistent with pervasive high water content in this mantle wedge
(Zhang et al., 2020). Therefore, the fore-arc water enriched zone suit-
able for B-type development should be limited where water content can
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Fig. 6. (a) Individual splitting measurements of the Indo-Burma subduction zone plotted at 210 km depth ray piercing points. Contours represent the slab surface
from the SLAB2.0 model at 20 km intervals (Hayes et al., 2018). Yellow triangles show Late Cenozoic volcanoes (from Lee et al., 2016; Searle et al., 2007). Black lines
show the locations for profiles; (b) E-W elevation profile with individual splitting lag times in the northern [latitude ~23°N] region; (c) Elevation profile with
individual splitting lag times in the southern [latitude ~19°N] region. Profile width is within 1° from the respective line.

exceed ~200 ppm H/Si (Karato et al., 2008). 5.2. Effect of the Sagaing fault

We see a sudden increase in lag time close to the SF, especially along
the southern portion of the plate boundary (Fig. 6). The dextral motion



M.M. Islam et al.

along the SF could induce significant shear parallel anisotropy. We note
that the offset along the Sagaing Fault is estimated to be 332 + 128 km
(Curray, 2005). Stress-aligned microcrack and shear fabric along the
faults could produce anisotropy in the upper crust (Cochran et al., 2006;
Crampin, 1990; Crampin and Chastin, 2003; Y. Liu et al., 2008; H. Zhang
et al.,, 2007). The deeper section of the SF is composed of highly
deformed metamorphic gneiss and schist of Mesozoic or older origin [e.
g., Sagaing Metamorphics] (Bertrand et al., 2001; Thein, 2017). This
highly evolved metamorphic fault core of the SF could also increase the
strength of the anisotropic fabric. In addition, receiver function studies
by Wang et al. (2019) and Zheng et al. (2020) indicate that the SF ex-
tends below the Moho in the uppermost mantle. Wu et al. (2021)
identified a linear low S wave velocity zone aligned with the Sagaing
fault down to 40 km depth. A similar low-velocity anomaly is also
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observed in other studies (Feng et al., 2020; Wang et al., 2019). The
low-velocity uppermost mantle may indicate a warmer than ambient
uppermost mantle that would be an ideal place for strain localization
and development of a N-S fabric due to the dextral motion. At the
continental scale, the SF appears to act as a boundary between the N-S
fast direction related to trench-parallel flow and the flow field domi-
nated by E-W fast direction, detailed inspection shows that some mea-
surements immediately to the east of the surface trace of the SF still
show predominant N-S direction (Fig. 4& 6). Measurements are sparse in
the Shan plateau, but a clear E-W fabric is apparent 100 to 120 km east
of the SF.

# of measurements

0 10 20 30
So-

(b)

Fig. 7. (a) Nulls and non-null splitting measurements found in Bengal basin in this (yellow) study and previous studies (red) with available shear wave splitting
results in surrounding area. The blue and purple bars represent the individual and station average measurements, respectively. Brown polygon shows the surface
extent of the basalt flow. Red dotted line encloses the Early Cretaceous Rajmahal-Sylhet plume head (from Kale, 2020). DF — Dauki Fault; (b) Back-azimuth coverage

of the events that produced null splitting results in Bengal basin.
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5.3. Splitting nulls in the Bengal basin

We have observed null shear wave splitting in the western part of the
study area where the outer fold belt of IBR merges with the Bengal basin.
Similar null measurements have been observed in previous studies
(Fig. 7) where the stations are mostly located in the northeast Sylhet
trough and northern GBD (Saikia et al., 2018; Tiwari et al., 2018) areas.
When examining the individual splitting measurements of a single
event, we also observed a systematic occurrence of nulls in the Bengal
basin, while large 5t values were observed in the IBR regions (see sup-
plementary material, Fig. $6.2). Since XKS splitting is a path-integrated
effect, multiple thin layers of anisotropic media with perpendicular
anisotropic orientations will produce apparent null results if their 8t
values are similar (Menke and Levin, 2003; Saltzer et al., 2000). The
western limit of N-S trench parallel flow and the associated transition
into an apparent isotropic mantle cannot be determined due to the lack
of station coverage; however, the observation of N-S fast directions
around 92.5°E (Saikia et al., 2018; Singh et al., 2006) indicates the
dominance of trench parallel flow up to the outer portion of the fold and
thrust belt beneath the IBR. This slab induced mantle flow most likely
extends further west under the Bengal basin. On the other hand, the
northwestern Shillong plateau and adjacent areas of the Bengal basin
have NE-SW fast axes (Roy et al., 2014; Singh et al., 2007) (Fig. 7). It is
surprising that we find this region of no splitting given the likely mantle
deformation caused by APM related basal shear or trench parallel
sub-slab mantle flow. One possibility is that there is a complex,
multiple-layer anisotropy that could make single station measurements
appear to be nulls. One way to test this possibility is to look for the
presence of residual tangential energy on the corrected transverse
components. After careful inspection, we found little evidence of the
residual tangential energy that can convincingly prove the presence of
multiple anisotropic layers. Of the 264 well-defined null results, only ~7
% of them have residual energy of at least 25 % of the corresponding
corrected radial components.

A frozen vertically oriented anisotropic fabric from Kerguelen plume
activity is another possible explanation for the lack of splitting in this
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region. Late Cretaceous (113-118 Ma) Rajmahal and Sylhet traps are
considered to be the hotspot trail of this plume activity (Baksi, 1995;
Basu et al., 2001; Kent et al., 2002; Ray et al., 2005), or perhaps the
initial plume head. Geochemical analysis of major, trace elements and
Nd-Sr-Pb isotopes shows the similarities among the Sylhet traps basalt,
Rajmahal traps, and the Kerguelen plateau basalt samples (Ghatak and
Basu, 2011). Trap basalts are also present in the subsurface stratigraphy
in the northwest Bengal basin (Brammer et al., 1995; Khan and Mumi-
nullah, 1980). This ~ 800 km wide Kerguelen plume-head under the
Bengal basin has also been inferred from the sediment thickness (16-20
km) relative to the crustal thickness (16-19 km), associated high ve-
locities in the lower crust (Singh et al., 2016), and the presence of
seaward dipping reflectors (Frielingsdorf et al., 2008). Such large-scale
hot injection of plume material could disrupt the ambient mantle flow
and produce a vertically orientated LPO fabric. Several plate recon-
struction models (Kent et al., 2002; Reeves et al., 2016; Thompson et al.,
2019) suggest that the Indian plate had not initiated its fast northward
drift during the Kerguelen plume activity, which probably helped to
produce such a large plume induced basalt province with vertical lith-
ospheric fabric.

5.4. Mantle flow and the Hainan plume

East of the SF, the fast direction becomes E-W, which prevails over
the entire ST and IC blocks (Fig. 8). The development of 2D corner flow
due to the viscous coupling between the down-going slab and the
overlying wedge could induce the observed E-W fabric (Long and Silver,
2008; Long and Wirth, 2013). Previous studies show (Fig. 2& 8) that the
presence of such E-W to NE-SW splitting extends to Vietnam (Bai et al.,
2009). The trench normal convergence is likely too slow to produce
significant downdip motion of the slab (Mallick et al., 2019) that could
develop such extensive corner flow as suggested by some authors (Fan
etal., 2021; Kong et al., 2018). Limited arc volcanism implies that there
is little slab dehydration and an active corner flow system which
transfers fluids to the mantle wedge might be lacking (Hasegawa et al.,
2005; Iwamori and Zhao, 2000; J. Wang and Zhao, 2008). Both global
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Fig. 8. Available station average splitting measurements integrated with newer results from this study. Previous results are from SWS database (from Barruol et al.,
2009). The green arrow shows the direction of the absolute plate motion according to the HS3-NUVEL 1A model. The orange polygon shows the distribution of Late
Cenozoic (< 16 Ma) intraplate volcanism. The yellow triangle shows the Hainan volcano. Abbreviations are the same as in Fig. 1.
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Fig. 9. All station average shear wave splitting measurements of the SE Asia plotted against lithospheric thickness (from Pasyanos et al., 2014).

and regional body wave tomographic models (Koulakov, 2011; Sim-
mons et al., 2010; Wei et al., 2012) reveal that there is very little lith-
ospheric mantle (Fig. 9) across most of southeast Asia, suggesting that
the dominant E-W flow is indicative of present-day mantle finite strain
patterns. Furthermore, the observed E-W fast direction is also different
from the present crustal deformation and strike of the regional tectonic
features (Taylor and Yin, 2009). When examining global and regional

tomographic models, we also see that the uppermost mantle beneath
nearly all of Southeast Asia is dominated by a broad low-velocity zone
that can be linked to the Hainan plume beneath the South China sea
(Toyokuni et al., 2022; T. Yang et al., 2014; Zhao et al., 2021). Several
body wave tomographic models also found a low velocity body beneath
the Hainan volcano that reaches the lower mantle (Z. Huang et al., 2015;
Lei et al., 2009; Zhao and Liu, 2010). Late Cenozoic intraplate volcanism

Fig. 10. A conceptual model showing the mantle flow in response to northward motion of the subducting Indian plate and westward plume head migration. Dark
green lines show the station average XKS splitting measurements. The red and green arrows show the mantle flow direction and APM direction of the Indian plate,

respectively. The orange patches show Late Cenozoic intraplate volcanism.
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in Indochina (Fig. 1& 8) with a mixture of a depleted MORB-type and
enriched mantle type 2 (EMII) source (Kimura et al., 2018; Yan et al.,
2018) is the surface exposure of the westward spreading of the Hainan
mantle plume head. The low water content suppressed the melt pro-
ductivity and upwelling velocity which eventually stalled the plume at
the asthenospheric depth (Gu et al., 2019; Kimura et al., 2018), and it
probably started extending beneath the lithosphere of the Indochina and
South China Sea. The dominant east-west fabric is consistent with
asymmetric spreading of the Hainan plume head that has thermally
eroded much of the lithospheric mantle. This westward flow appears to
extend from Hainan all the way to the Sagaing fault along the eastern
edge of the Burma microplate. The Sunda plate is also moving westward
according to the hotspot reference frame (HS3-NUVEL-1A) which might
have induced the upwelling plume material to be horizontally deflected
or sheared in the direction of APM (Walker et al., 2005) towards Indo-
china (Fig. 10). A similar N-S mantle deformation fabric has also been
associated with the Afar plume where the northward movement of the
Arabian plate carried the plume head and produced linear N-S basaltic
volcanism in the western margin of the Arabian Peninsula (Chang and
Van der Lee, 2011; Hansen et al., 2006). The presence of thick litho-
spheric mantle in the Sichuan basin may act as a barrier to prevent
plume material from spreading to the north and resulting in more
diverse fast directions near the Sichuan basin (Fig. 9).

5.5. Nulls in Shan plateau

We observed nulls at several stations beneath the ST block in the
Shan plateau. Although the extent of the null zone cannot be demarcated
precisely due to the sparse station coverage, the clustering of the null
measurements (supplementary material, Fig. S6.1) suggests a large re-
gion of isotropic seismic velocities structure rather than anomalous
stations. One possibility is the initiation of asthenospheric upwelling and
the development of vertical olivine strain fabric. In the NW corner of our
nulls zone, Singu volcano exhibits an alkaline mafic OIB-type character
(Maury et al., 2004; L. Y. Zhang et al., 2020) that also has the signature
of enriched isotopes derived from small scale asthenospheric injection.
Zhang et al. (2020) proposed a model of asthenospheric upwelling
through a slab window around ~22°N to explain the isotropic distri-
bution of the melts. However, without additional geological and
geophysical evidence, it is difficult to constrain the existence of such an
upwelling, in particular as few regional tomographic models indicate
the presence of a hot asthenospheric mantle beneath the Shan plateau
(Koulakov, 2011; Wei et al., 2012). The null region could be a transition
zone between the S-SW directed extrusion-dominated asthenospheric
flow and plume-induced E-W flow. These two competing mantle flow
systems could result in no net anisotropy in this area.

6. Conclusion

Measurements of the splitting of core phases (SKS, SKKS, PKS) at 107
stations not previously analyzed indicate the complex nature of the
mantle deformation fabric of the highly oblique Indo-Burma subduction
system and surrounding regions. The northward Indian motion may
have generated trench parallel simple shear around the slab that dom-
inates the entire length of the fore-arc region. Along the Indo-Burma-
Ranges, the combination of the sub-slab, slab, and lithospheric fabric
results in an observed average lag time of 1.9 s. With the transition up to
100 km east of the Sagaing fault, the E-W fast axes (fluctuating between
ENE-WSW and ESE-WNW directions) dominate the rest of the eastern
Indochina peninsula. This pattern likely arises from the westward
spreading of Hainan plume material under thin lithospheric mantle,
probably enhanced by the westward directed absolute plate motion. In
the Bengal basin, the absence of splitting is interpreted to reflect the
presence of frozen vertical anisotropic fabric associated with Kereguelen
plume activity during the Cretaceous rifting episodes of India-Antarctica
break up. Additional three-dimensional anisotropic studies and
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geodynamic modeling are required to unravel the more detailed struc-
ture of the mantle deformation field beneath this part of the plate
boundary.
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