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Abstract. No power law systolic freedom is possible for the product of mod 2 systoles of dimen-
sion 1 and codimension 1. This means that any closed n-dimensional Riemannian manifold M of
bounded local geometry obeys the following systolic inequality: the product of its mod 2 systoles
of dimensions 1 and n — 1 is bounded from above by c (1, £) Vol(M )12, if finite (if H1(M;Z/2)
is non-trivial).
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1. Results

Let M be a finite simplicial complex whose geometric realization is a closed n-dimen-
sional manifold. Denote by Vol(M ) the number of n-simplices in M. The k-dimensional
mod 2 systole sys; (M) is defined as the minimal number of k-simplices in a simplicial
k-cycle representing a non-trivial homology class in Hx(M;Z/2). If Hy(M;Z/2) is
trivial, then sys; (M) = +o0 by convention.

The following systolic inequality (which goes back to Loewner in the case of two-
dimensional torus) seems natural to conjecture:

sysg (M) - sys, (M) < cusys, (M) = ¢, Vol(M), (*)

where Hy (M) is assumed to be non-trivial to make the left-hand side finite. The phe-
nomenon of systolic freedom is the failure of (x) for n > 3. For the integral systoles
(defined similarly to the mod 2 systoles, but with Z instead of Z/2), this phenomenon
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was pioneered by Gromov [13]. In the integral case, there are numerous counterexam-
ples [2, 16] to (x) in all dimensions n > 3, even if the constant ¢, is allowed to depend
on the topological type of M. For the mod 2 systoles, the same question is much more
subtle, as the mod 2 systoles are often much smaller than the integral ones. It was Freed-
man [11, 12] who constructed the first counterexamples to (x) over Z/2, with k = 1 and

all n > 3. In his family of examples, the systolic ratio % has the magnitude

of /log(Vol(M)); these are examples of polylog systolic freedom. We prove that they are
(almost) tight in the sense that no power law systolic freedom can be observed for k = 1.

Theorem 1. For each € > 0, there is a constant ¢ = c(n, €) such that any triangulated n-
dimensional manifold M with non-trivial first homology H1(M ;7 ]2) obeys the following
systolic estimate:

sys; (M) - sys,_; (M) < ¢ Vol(M)'*.

This contrasts with the case of Z coefficients, in which there is no almost-rigidity as
in Theorem 1: Gromov’s examples already exhibit power law systolic freedom, and there
are examples of exponential systolic freedom [19].

As for systolic inequalities over Z /2 with k > 2, there is an estimate

sysg (M) - sys, (M) < ¢, Vol(M)?,

following from the trivial observation that the number of k-simplices in M is at most
(Zii) Vol(M). The outstanding result of [10] yields families of 11-dimensional trian-
gulated manifolds in which sys,(M) - sys,(M) grows faster than Vol(M)>¢. The idea
behind this result owes a lot to the relation between the systolic freedom over Z/2 and
quantum error correction codes. Having a cellulated manifold exhibiting systolic freedom
at the level of kth homology, one can consider the three-term portion of its cellular chain
complex around the kth term, and use it to build a quantum code with error correction
properties depending on the systolic freedom of the manifold (see [12] for the details).
The idea of [10] is to “reverse-engineer” manifolds starting from the breakthrough quan-
tum error correction codes of [15, 17]. In terms of this quantum analogy, Theorem | says
that for k = 1, manifolds do not produce any outstanding codes. With our methods, we
cannot say anything for k = 2, 3.

Systolic inequalities in the discrete setting

We will prove a discrete systolic estimate for general simplicial complexes rather than tri-
angulated manifolds. The systoles will be substituted by certain larger systolic invariants,
making the inequality stronger.

e For a non-zero homology class a € Hy (M ;7 /2), define sys, (M) as the minimal num-
ber of k-simplices in a simplicial k-cycle representing a.

e For a non-zero cohomology class @ € H¥(M; Z/2), define sys*(M) as the minimal
number of k-simplices in a simplicial k-cycle detected by «.
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e For a non-zero cohomology class o € HX(M;Z/2), define cut®(M) as the minimal
number of (n — k)-simplices in an (n — k)-dimensional subcomplex H that cuts « in
the sense that « vanishes when restricted to M \ H (in this difference M and H are
understood as geometric realizations, not the combinatorial complexes); in other words,
no singular k-cycle detected by « survives if we cut M along H (hence the name).

Theorem 2. For each ¢ > 0, there is a constant ¢ = c(n, &) such that any finite n-
dimensional simplicial complex M and any non-zero class a € H'(M; Z/2) obey the
following estimate:

sys®(M) - cut* (M) < ¢ Vol(M)! ¢,

To relate cut® to better known systolic quantities (and deduce Theorem 1), we make
two remarks.

(1) If we know that there is a non-trivial (n — 1)-cycle inside the minimizing complex H
from the definition of cut®, then we get a systolic estimate. This can be achieved by
assuming that there is a cohomology class 8 € H"~'(M ;7 /2) such that e — B8 # 0.
The Lusternik—Schnirelmann lemma applies: since « vanishes on the complement of
H, B restricts to H non-trivially. Therefore, there is a non-trivial (n — 1)-cycle in H
detected by B, and Theorem 2 implies that

sys®(M) - sysP (M) < ¢ Vol(M)' .

We comment that the inequality sys? (M) < cut® (M) can be strict, even for manifolds
(see Example 14).

(2) When M is a (triangulated) manifold, it is easy to see that any cycle representing
a* € Hy,_1(M; Z/2)—the Poincaré dual class to «—serves as an admissible cut-
ting complex in the definition of cut®, and cut®*(M) < sys,«(M). Interestingly, the
minimal H turns out to be a cycle representing a*, as we will show in Lemma 13.
Therefore, cut*(M) = sys,« (M), and Theorem 2, rephrased for manifolds, says that

sys*(M) - sys,, (M) < ¢ Vol(M)' €.

This estimate clearly implies Theorem 1.

Systolic inequalities in the continuous setting

Let M be a closed n-dimensional Riemannian manifold. The k-dimensional mod 2 systole
is defined as the infimum of the k-volumes of all (piecewise smooth or Lipschitz) k-cycles
representing non-trivial homology Hy (M ;7Z/2).

Following Freedman, we measure the systolic freedom of a sequence of manifolds M;
with volumes V; = Vol(M;) and non-trivial Hy, as follows. We scale the Riemannian
metric of each M;, if needed, to make its geometry locally bounded: this means that the
sectional curvatures are between —1 and 1 everywhere, and the injectivity radius is at
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least 1. After that we measure the systolic ratio
sysg (Mi) - sys, (M)
Vi

and express its growth as i — oo as a function of V. The faster this function grows the

more freedom the manifolds exhibit. A constant function corresponds to systolic rigidity.
Freedman’s examples had the growth rate of /log(-). Our main result implies that for
k = 1 the systolic ratio cannot grow faster than (-)¢, for arbitrarily small & > 0.

Theorem 3. For each € > 0, there is a constant ¢ = ¢(n, €) such that any closed Rieman-
nian n-manifold M of bounded local geometry and with non-trivial Hy(M ; Z./2) obeys
the following systolic estimate:

sys; (M) - sys,_; (M) < ¢ Vol(M)'*¢.

To deduce Theorem 3 from Theorem 1, we triangulate M carefully, and replace the
continuous systoles with the discrete ones. It is known [5-9,20] that a Riemannian mani-
fold M of bounded local geometry can be triangulated so that if we endow each simplex
with the standard euclidean metric with edge-length 1, then the resulting metric on M
is bi-Lipschitz to the original one (with the Lipschitz constant depending only on n).
In particular, the number of n-simplices approximately equals Vol(M) (maybe off by a
dimensional factor). For a sequence of Riemannian manifolds of bounded local geometry,
we have two ways to measure its systolic freedom: via the growth rate of the continuous
or discrete systolic ratio. It turns out they have the same magnitude [10, Theorem 1.1.1].
The non-obvious part of this claim is that a systolic cycle in the continuous setting can be
efficiently approximated by a discrete one in the triangulated manifold, without increasing
its volume too much. This is done via a “Federer—Fleming” type of argument: inside each
cell of the triangulation, the cycle is projected to the boundary radially from a random
point; then this is repeated for cells of lower dimensions, until the cycle is approximated
by a discrete one (see [10] for details). Therefore, Theorem 1 implies Theorem 3. We
remark that manifolds of bounded local geometry, when triangulated as above, have an
additional property of bounded “degree”, in the sense that every vertex of the triangulation
is incident to a uniformly bounded number of top-dimensional simplices; this property is
not needed in Theorem 1, making it somewhat stronger than the continuous version.

Theorem 3 can also be strengthened in a different direction: we stay in the continuous
realm, but replace the condition of bounded local geometry by its “macroscopic” cousin
as follows. Given 0 < vy < v, let us say that a Riemannian manifold M has (vq, v2)-
bounded macroscopic geometry if

o sys; (M) > 2,
e every ball of radius 1/4 has volume at least vy,
e every ball of radius 1 has volume at most vs.

These three conditions should be viewed as the analogues of a lower bound on injectiv-
ity radius, upper bound on sectional curvature, and lower bound on sectional curvature,
respectively.
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Theorem 4. For each g, vy, v > 0, there is a constant ¢ = c(g, vy, va) such that any
compact Riemannian n-manifold M of (vy, v2)-bounded macroscopic geometry exhibits
systolic almost-rigidity:

sys; (M) - sys, (M) < ¢ Vol(M)'*.

This theorem is more general than Theorem 3. Indeed, on a manifold of bounded local
geometry, the systolic bound sys; > 2 follows trivially from the bound on the injectivity
radius, and volumetric estimates are mere corollaries of the Rauch comparison theorem
(see, e.g., [4, Section 7.1.1]).

Remark 5. The referee asked us about the minimal set of conditions implying almost-
rigidity. Namely, what assumptions can one impose on a class of manifolds to prohibit the
following scenario: there exists € > 0 and a sequence of manifolds M; satisfying these
assumptions, with Vol M; — oo, and with sys, (M;) - sys,_; (M;) > ¢ Vol(M;)*¢? We do
not know if any of the three conditions of bounded macroscopic geometry in Theorem 4
can be omitted. We remark that the condition “every ball of radius 1/4 has volume at least
v1” is not sufficient by itself. To see that, recall that Freedman constructed a sequence of
three-dimensional manifolds M, (with an integer parameter g, which can be arbitrarily
large), which have bounded local geometry, diam(Mg) ~ log g, sys;(Mg) ~ /logg,
sys,(Mg) ~ g, Vol(M;) ~ g. They exhibit polylog systolic freedom. Scaling down the
metric on M, by a factor of g'/3/log g, we obtain a sequence of manifolds M ¢ With
volumes going to infinity, and diameters going to zero. So a lower bound on the volumes
of balls of radius 1/4 is present, but the sequence now has power law systolic freedom:
sys;(Myg) - sys,(Myg) ~ Vol(Mé’,)7/6.

Question 6. Does it suffice to assume that sys, > 2 to guarantee systolic almost-rigidity?
In other words, is there a sequence of manifolds M; with sys;(M;) > 2 and Vol M; — oo
such that sys;(M;) - sys,_,(M;) > ¢ Vol(M;)'*¢ (for some & > 0)? If the bound on the
1-systole alone is not enough, does it suffice to assume both sys, > 2 and a lower bound
on the volumes of balls of radius 1/4?

Structure of the paper

The proofs of discrete systolic estimates (mainly, of Theorem 2) are explained in Sec-
tion 2. The core idea is the “Schoen—Yau minimal surface” approach, after [14, 18].

Some further generalizations are considered in Section 3. There we deal with the
product of more than two systoles, and with a “macroscopic” systolic estimate, implying
Theorem 4.

2. Proofs in the discrete case

Let M be an n-dimensional simplicial complex. The distance between vertices is mea-
sured as the edge-length of the shortest path between them in the 1-skeleton of M.
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Definition 7. Let x be a vertex of M, and let r be a non-negative integer.

(1) The ball B(x,r) is the subcomplex of M defined as follows. If r = 0, B(x,0) = {x},
so assume r > 1. An inclusion-maximal k-simplex, 0 < k < n, is in B(x, r) if all
its vertices are distance at most r away from x and at least one of the vertices is at
distance less than r from x. An arbitrary simplex is in B(x, r) if it is a face of an
inclusion-maximal simplex as in the previous sentence.

(2) The sphere S(x,r) is the subcomplex M consisting of all simplices of B(x, r) with
vertices at distance exactly r from x.

This definition might seem confusing, but it essentially defines spheres and balls as
the level and sublevel sets of the distance function from x measured in the geometric
realization of M with an auxiliary piecewise-Finsler metric F, described as follows. For
each k < n, consider a k-simplex A¥ in a k-dimensional linear space and endow it with
the norm whose unit ball is the Minkowski sum A% + (—A¥). In particular, the distance
between any disjoint faces of AX is 1. Now we define F by saying that its restriction to
any k-simplex of M is a flat Finsler metric isometric to AX.

From this interpretation it is seen that every sphere actually separates the inside from
the outside: every curve starting in B(x, r) and ending outside B(x, r) must intersect
S(x,r).

We write Vol for the number of # simplices in an n-complex, and Area for the number
of (n — 1)-simplices in an (n — 1)-complex.

Everywhere below, o denotes a non-trivial class in H 1 (M;7Z/2), and H denotes an
(n — 1)-dimensional subcomplex of M.

Lemma 8 (Co-area inequality). Vol B(x,r) > > 7_, Area S(x,i).

Proof. Toeach (n — 1)-simplex in S(x,i) we can assign an incident n-simplex in B(x,1),
and all those n-simplices are distinct. ]

Lemma 9 (Vitali cover). Suppose we have a ball B(x;,2p;) at each vertex of an (n — 1)-
complex H inside M. Then one can select a subcollection of those balls that covers H
but such that the corresponding balls B(x;, p;) do not overlap (no n-simplex belongs to
two balls from the subcollection).

Proof. Greedily add balls B(x;, p;) to the non-overlapping subcollection, in the non-
decreasing order of radii. |

Lemma 10 (Curve factoring). If a 1-cycle £ lies in a ball of radius r < WSQT_I, then
a([€]) = 0.

Proof. The cycle £ can be split as a sum of loops of length at most 2r + 1, and none of
those is detected by «. ]

Lemma 11 (Cut-and-paste trick). Suppose H cuts o, x € H, and r < WT_I Then the
complex H = [H \ (H N B(x,r))]U S(x,r) cuts a as well.
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Proof. Every connected component of a 1-cycle in the complement of H’ either avoids H
(and then it is not detected by « since H cuts «) or falls inside B(x, r) (and then it is not
detected by « by Lemma 10). ]

Proof of Theorem 2. LetV = Vol M, R = sys*(M), and let H be a cutting subcomplex
on which cut®(M) is attained.

Consider all singular (that is, not necessarily simplicial) loops detected by «. There
are two cases.

(1) Every such loop meets the (n — 2)-skeleton of M. Then H can be taken to be this
skeleton, Area H = 0, and there is nothing to prove.

(2) There is a loop avoiding the (n — 2)-skeleton of M. Deform it to the 1-skeleton of
M . Each of the edges of the deformed loop is incident to an n-dimensional simplex
of M. If these n-simplices are not all distinct, we can replace the loop with a shorter
one (still detected by ). Once we make it as short as possible, all incident 7-simplices
are distinct, and we conclude that R < V. We use this inequality in what follows.

The second inequality we observe is Area H < (n 4 1) V. Indeed, consider an (n — 1)-
simplex in H . If it is not incident to n-simplices in M, we can safely remove it from H
(but leave its boundary) preserving the cutting property of H. Therefore, to every (n — 1)-
simplex of H we can assign an incident n-simplex of M, and it follows that Area H <
n+DV.

If Area H > R'/%, then

R-Area H < (Area H)'t¢ < (n + 1)1 tepite,

50 in the rest of the argument we assume that Area H < R'/%.
For brevity, we write v(x,r) = Vol B(x, r) and h(x,r) = Area(H N B(x,r)).
A ball centered at x € H of positive radius divisible by 2 will be called good if

h(x,r) < v(x,r/2).

R1—¢

A sufficient condition for a ball of radius 0 < r < R divisible by 4 to be good is
r
h(x,r) < Fh(x,r/4).

Indeed, by the co-area inequality (Lemma 8) one has

; 1 r/2—1

h(x,r) < Ri—c mt;r/4h()€,l)

r/2—1

4
- Z Area S(x,1)
,

t=r/4

r
R1—¢

IA

4
FU()C, r/2)

IA
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Here we used the minimality of A, which implies & (x,t) < Area S(x, ), since otherwise
we can apply the cut-and-paste trick (Lemma 11), decreasing the area of H and preserving
its cutting property.

We will prove below that for every x € H there is a good ball centered at x. Having a
cover of H by good balls, we pick a Vitali subcover |_J B(x;,2r;) D H such that the balls
B(x;, ri) do not overlap (by Lemma 9). This will conclude the proof:

R-Area H < R h(x;.2r;) <4R®) v(x.r;) <4V

Now we show that around every x € H one can place a good ball. In the range
[R'~%, R], pick a longest sequence of integers of the form ro = 4™, ry = 4"+ ry =
4m+N We assume it has at least two elements (R% > 43), since for small R the state-
ment of the theorem holds vacuously. Observe that 4V = ry/ro > R®/16. If for some
1 <i < N the ball B(x, r;) obeys the estimate

ri
h(x,r;) < Fh(x,ri/@,

then we have found a good ball, so assume these estimates all fail. If i (x, rg) = 0, then
B(x, rg) is good. If h(x, o) > 1, we have the following:

RY® > Area H > h(x,rN)
> 4V h(x, ry-1)
> 4NN p(x, ry_s)
> ...

> 4NaN=1 4l h(x, o)
> (4N)(N+l)/2

RE\ (Eloga R-1)/2
> — .
(%)

This inequality fails for all large R > Ry (¢), but for all R < Ry(¢) the statement of the
theorem holds trivially. ]

Remark 12. A careful analysis of this proof shows that the growth rate V'!*# can be
replaced by V exp(2(log V)/ ﬁ). This function grows slower than any power V1t¢.
Unfortunately, this proof cannot be refined to give the growth rate V polylog V, as is
tempting to conjecture.

In fact, Theorem 2 holds (with the same proof) for any coefficient ring A4, not just Z /2,
if we define the systole sys®(M) as the shortest edge-length of a loop detected by
a € H'(M:; A), and define cut®(M) in the same way as with Z/2 coefficients. For
example, if A = Z/p, then sys® might capture some loops not detected by the Z/2-
cohomology, but in return, the cutting complexes from the definition of cut* will have to
cut those loops as well. However, we need to assume A = 7 /2 in order to relate cut® to
the systolic invariants (and finish the proof of Theorem 1). We do it for general k, as we
will need it in the next section.
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Lemma 13 (Minimality forces regularity). Let o € H*(M:Z/2) be a non-trivial coho-
mology class, and let H be an (n — k)-dimensional subcomplex in M on which cut®* (M)
is attained. If M is a manifold, then the top-dimensional simplices of H form an (n — k)-
cycle representing o*. Hence, cut® (M) = sys «(M).

Proof. 1t suffices to show that H contains an (n — k)-cycle representing «*; if so, then
this cycle is among the subcomplexes defining cut®, and so by minimality it is equal to
H.Leti: H — M denote the inclusion, and suppose for the sake of contradiction that
i«(Hy—x(H)) does not contain o*. Then there is some hyperplane of H,,_; (M) that con-
tains i (H,_x (H)) but not «*. By the universal coefficient theorem, this hyperplane can
be expressed as pairing with some g € H” % (M) with B(a*) # 0. In this case B|g = 0
while ¢ — B # 0, contradicting the Lusternik—Schnirelmann lemma because we have
assumed that a|p\ g = 0. [ ]

Note that the same proof shows that for any field coefficients, there is a cycle repre-
senting * with support H. However, unless the coefficients are Z/2 we do not control
the coefficient of each simplex in H. Only with Z /2 coefficients does it make sense to say
that H itself forms a cycle achieving sys,« (M ). This completes the proof of Theorem 1.

Example 14. We construct a triangulated manifold M of dimension n with a cohomology
class @ € H'(M;Z/2) such that sys? (M) < cut*(M) for any class B € H" (M ;Z/2)
with @ — B # 0. Let M, and M, be large identical triangulated copies of S x S7~1. We
form M as the connected sum of M; and M, by removing an n-simplex from each and
identifying their boundaries. We assume n > 3, although the argument is easily adapted
for n = 2. For n > 3, the Mayer—Vietoris sequence implies

Hn_l(M,Z/Z) = Hn_l(Ml;Z/Z) &) Hn_l(Mz;Z/z) >~ 7o X L.

We select o € H!(M ;7 /2) such that a* is the class (1, 1) in H,—;(M:; Z,). Given any
cycle representing «*, we may split it into an M part and an M, part and add faces from
the common boundary of the n-simplex to each part, to obtain a non-trivial cycle on each
of My and M,. Thus we have

cut*(M) = sysy« (M) > 2sys,_; (M) —2(n + 1).

On the other hand, for any B € H"~! such that B pairs non-trivially with a* = (1, 1),
either B pairs non-trivially with (1, 0) or B pairs non-trivially with (0, 1). Each of (1, 0)
and (0, 1) in H,—1(M;Z/2) can be represented by a cycle of size sys,_;(M7), so we
have

sysP (M) < sys,_; (M) < cut*(M).

3. Generalizations

The following result follows from Theorem 2 by induction.
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Theorem 15. For each ¢ > 0, there is a constant C = C(n, &) such that the follow-
ing holds. Let M be a simplicial n-complex with cohomology classes ay, ..., €
HY (M Z/2) whose cup-product is non-zero. Then

sys®t (M) - ... - sys® (M) - cut® ="~ (M) < C Vol(M)'*¢.
We remark that Lemma 13 applies and gives, in the case when M is a manifold,
Ut =T (M) = 550, oy (M)

Results very close to Theorem 15 for k = n — 1 have been known even with ¢ = 0
(cf. [14, Theorem 3], [3, Theorem 1], [1, Theorem 1.18]). For k < n — 2 one cannot plug
e=0.

Proof of Theorem 15. Assume ¢ < 1. Take H to be a minimal (n — 1)-subcomplex of M
such that «; vanishes when restricted to M \ H. The proof in Section 2 implies that

sys*' (M) - Area(H) < c(n, &/3) Vol(M)1+8/3_

The Lusternik—Schnirelmann lemma tells us that the product of the remaining ¢; is
non-trivial on H; hence, the induction assumption applies for H in place of M. The
systoles in H dominate the corresponding systoles in M, since the intrinsic distances
in H dominate the extrinsic ones: sys® (M) < sys®!# (H), 2 <i < k. Any (n — k)-
dimensional subcomplex of H that cuts ap — -+ — o |g also cuts o] — -+ — o in

M, as one can deduce from the Lusternik—Schnirelmann lemma, so cut*!™~"~"% (M) <
cut®2 == |a (). Assembling this all together, we get

sys*' (M) - sys®2 (M) - ... sys* (M) - cut® "% (M)

< sys®' (M) - sys®!H (H) - .. .- sys®# (H) . cut®> I8 ()

< sys™ (M) - C(n — 1,£/3) Area(H )" +¢/3

<C(n—1,8/3)' T3 (sys* (M) - Area(H))' T¢/3

<C(n—1,¢/3)"73(c(n, e/3) Vol(M) ' Te/3)1+e/3

< C(n, &) Vol(M)'*¢. [

Another version of the same theorem holds in the continuous setting, with the assump-

tion of locally bounded geometry replaced by its macroscopic cousin. We work in the
setting of Riemannian polyhedra, that is, finite pure' simplicial complexes whose top-
dimensional faces are endowed with Riemannian metrics matching on the common faces.
We say that a subspace H C M is a k-dimensional subpolyhedron if it admits the structure

of a finite pure k-dimensional simplicial complex whose cells are embedded smoothly
in the cells of M. The piecewise Riemannian metric is inherited from the ambient

'In a pure simplicial n-complex, a simplex of any dimension is contained in an n-dimensional
simplex.
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polyhedron, allowing one to measure intrinsic distances and volumes. Any subpolyhe-
dron H admits a thin tubular neighborhood that deformation retracts onto H, and the
Lusternik—Schnirelmann lemma for cohomology is applicable in the following form: if
alp\g =0, Blg =0, then « — B vanishes as a cohomology class of M. The systole
sys®(M) is the infimum of the k-volumes of all (piecewise smooth or Lipschitz) k-cycles
detected by « € Hy (M ;Z/2). The cutting area cut® (M) is the infimum of the k-volumes
of all those k-dimensional subpolyhedra H C M that cut ¢ in the sense that o vanishes
on M\ H.

Theorem 16. For each ¢, vy, vy > 0, there is a constant C = C(g, vy, v2) such that the
following holds. Let M be a compact Riemannian n-polyhedron such that sys; (M) > 2,
every ball of radius 1/4 has volume at least vy, and every ball of radius 1 has volume
at most vy. Let ay, ..., € HY(M;Z/2) be cohomology classes with non-zero cup-
product. Then

sys® U (M) - ... - sys® (M) - cut® =% (M) < C Vol(M)'*¢.
Note that this theorem implies Theorem 4.

Proof of Theorem 16. Tt suffices to prove this for k = 1 and then induct. In the case k = 1,
leta =y, R =sys*(M), V = Vol M, and proceed along the same scheme as in the proof
of Theorem 2. Trivially, 2v | R| < V (think of a necklace made of beads of radius 1/4
along the systole), so R < V, where < indicates an inequality that holds up to a factor
depending on ¢, vy, v3. Let A be the infimum of the areas of (n — 1)-subpolyhedra such
that o vanishes on their complement. We need to show that R - A < V!¢ If A > R/%,
then, as before,
R-A< Al+a 5 VH_S,

but the last inequality requires an explanation. Pick a set of disjoint balls of radius 1/4
such that the concentric balls of radius 3/4 cover M, and for each of these find a con-
centric sphere of radius between 3/4 and 1 that has area at most 4v, (by the co-area
inequality). The union of these spheres has area at most 4v,V /vy, and « vanishes on
the complement of this union by the curve factoring lemma (here we use the assumption
sys;(M) > 2). Therefore, A < 4v,V /v;.

From now on assume that A < R'/%. Let H be an almost-minimizing subpolyhedron
for which « vanishes on its complement, with A < Area H < A + §, where § = vy /R.

A ball centered at x € H of radius r € [1, R] will be called good if

13
R1—¢
where we use again the notation v(x, ) = Vol B(x,r) and h(x,r) = Area(H N B(x,r)).

It suffices to show that every x € H is the center of a good ball. Once that is done,
we pick a Vitali cover of H by good balls B(x;, r;) such that the balls B(x;, r; /3) do not
intersect, and conclude just as in Section 2:

h(x,r) < v(x,r/3),

R-A <R h(xi.r;) <13R* v(x.r;/3) < 13R°V S V'Fe,
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We start by looking at balls B(x, R), B(x, R/4),..., B(x, R/4"), where N =
lelog, R] is the integer defined by R/4V+! < R1=¢ < R/4N or equivalently 4V <
R® < 4N*1 (note that N > 0 since R > 1). If at least one of these balls obeys the inequal-

1ty
r

R1—¢

h(x,r) < h(x,r/4),

then it is good, since

IA

r 12 (773
Rl_ah(x,r/4) F/r.M (Area S(x,t) + 8)dt

12 3
EFU()C,I'/3)+R85§ Rl*&‘
If none of them are good, then for each 0 < m < N — 1 we have

R/4m
h(x, R/4™) > #h(x,RMmH) > 4N=mp () R4,

v(x,r/3).

and assembling these,
R > A > h(x,R)
> 4V h(x, R/4)
> oo
> 4N 4Vh(x, R/4N)
> (4N+1)N/2h(x,R1_£)
> R€(8]0g4 R—l)/2h(x’ 1)
The function Ré(Eloga R=1)/2 grows (in R) faster than R1=¢+1/¢ o for R > Ro(e,vy)
large enough we have

h(x’ 1) < R1/€—8(810g4R—1)/2 < 131}] < 13U(X, 1/3)

Rl1—¢ — R1-¢ ’
proving that the ball B(x, 1) is good. For R < Ry(e, vq) the statement of the theorem
follows from the above-mentioned observation 4 < V. ]
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