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ABSTRACT
Environmental dimensions, such as temperature, precipitation, humidity, and vegeta-
tion type, influence the activity, survival, and geographic distribution of tick species.
Ticks are vectors of various pathogens that cause disease in humans, and Ixodes
scapularis and Amblyomma americanum are among the tick species that transmit
pathogens to humans across the central and eastern United States. Although their
potential geographic distributions have been assessed broadly via ecological niche
modeling, no comprehensive study has compared ecological niche signals between
ticks and tick-borne pathogens. We took advantage of National Ecological Observatory
Network (NEON) data for these two tick species and associated bacteria pathogens
across North America. We used two novel statistical tests that consider sampling
and absence data explicitly to perform these explorations: a univariate analysis based
on randomization and resampling, and a permutational multivariate analysis of
variance. Based on univariate analyses, in Amblyomma americanum, three pathogens
(Borrelia lonestari, Ehrlichia chaffeensis, and E. ewingii) were tested; pathogens showed
nonrandom distribution in at least one environmental dimension. Based on the
PERMANOVA test, the null hypothesis that the environmental position and variation
of pathogen-positive samples are equivalent to those of A. americanum could not be
rejected for any of the pathogens, except for the pathogen E. ewingii in maximum
and minimum vapor pressure and minimum temperature. For Ixodes scapularis,
six pathogens (A. phagocytophilum, Babesia microti, Borrelia burgdorferi sensu lato, B.
mayonii,B. miyamotoi, and Ehrlichia muris-like) were tested; onlyB. miyamotoiwas not
distinct from null expectations in all environmental dimensions, based on univariate
tests. In the PERMANOVA analyses, the pathogens departed from null expectations
for B. microti and B. burgdorferi sensu lato, with smaller niches in B. microti, and larger
niches in B. burgdorferi sensu lato, than the vector. More generally, this study shows
the value of large-scale data resources with consistent sampling methods, and known
absences of key pathogens in particular samples, for answering public health questions,
such as the relationship of presence and absence of pathogens in their hosts respect to
environmental conditions.
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INTRODUCTION
Ticks are important vectors of various pathogens including Borrelia burgdorferi
sensu stricto, Babesia microti, B. divergens, B. venatorum, B. duncani, Anaplasma
phagocytophilum, Ehrlichia chaffeensis, Rickettsia rickettsii, R. parkeri, and Francisella
tularensis (Sonenshine, 2018). Ixodes scapularis (black-legged tick) and Amblyomma
americanum (Lone Star tick) are among the tick species that transmit pathogens to humans
across the central and eastern United States (CDC, 2022a; CDC, 2022b; CDC, 2022c).
These two tick species have expanded their geographic distributions and established new
populations in recent years (Eisen et al., 2016; Molaei et al., 2019; Robinson et al., 2022).
Such shifts in tick geographic distributions are expected to influence the epidemiology of
pathogens transmitted by these ticks (Parham et al., 2015; Patz et al., 2000).

In the United States, around 476,000 people are known to have contracted Lyme
disease per year, such that many more are likely at risk to some degree (CDC, 2022a;
CDC, 2022b; CDC, 2022c). The number of reported cases has increased recently (18,000
in 2000 to 42,743 in 2017; CDC, 2022a; CDC, 2022b; CDC, 2022c) following patterns
of temperature increase, increasing surveillance effort, landscape change, and host
population changes (Alkishe, Raghavan & Peterson, 2021; Diuk-Wasser, Van Acker &
Fernandez, 2021; McMahon, Morand & Gray, 2018; Hansen et al., 2001), with most human
cases documented in the northeastern United States (e.g., 3-year average incidence 14.1
in District of Columbia and 116.5 in Maine; CDC, 2022a; CDC, 2022b; CDC, 2022c). In
Canada, likely owing to change in temperature and precipitation patterns, newly established
populations of I. scapularis have caused increases in Lyme disease cases in the region, from
144 cases in 2009 to 2,168 cases in 2022 (Wilson et al., 2022; Government of Canada, 2023).

However, some marked contrasts exist between the geographic distributions of vector
tick species and those of human cases (CDC, 2022a; CDC, 2022b; CDC, 2022c). For
example, Lyme disease cases are concentrated in two major focal areas in the northeastern
and northcentral United States, whereas the vector tick (I. scapularis) has a much broader
distribution in eastern North America (Peterson & Raghavan, 2017), with few or no
human cases reported in the southern and western parts of the distribution of the species
(CDC, 2022a; CDC, 2022b; CDC, 2022c). The reasons for this contrast have not yet been
understood; possibilities include lack of awareness about Lyme disease, absence of the
pathogen, or presence of incompetent host populations in those areas (Radolf et al., 2021).

Environmental factors such as temperature, precipitation, humidity, and vegetation
type influence the activity, survival, and geographic distribution of different tick species
(Ogden et al., 2021; Paul et al., 2016). For example, I. scapularis nymphal development
does not occur below 0 ◦C or above 32 ◦C, with faster development rates at warmer
temperatures within this range; in general, though its life cycle length is determined by
temperatures (Ogden et al., 2004). Ixodes scapularis nymphs are active from March to
October, peaking from May to July, in northeastern states (Eisen et al., 2016); their active
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season is slightly later in the extreme northern United States and southeastern Canada
(April to November; Arsnoe, Tsao & Hickling, 2019). For A. americanum, nymphs are
active fromMay to September in Georgia, and fromMay to August in Missouri (Davidson,
Siefken & Creekmore, 1994; Kollars Jr et al., 2000). However, nymphs are considered to
present greatest risk for pathogen transmission, at least in part owing to their small size
compared to adult ticks (Heyman et al., 2010).

Ticks and tick-borne diseases are susceptible to climate change, as increased temperature
in areas with cold or temperate environments leads to longer periods of survival and activity
for ticks, and can cause diseases to emerge and reemerge (Bouchard et al., 2019;Hroobi et al.,
2021;Raghavan et al., 2021). Reservoir hosts play crucial roles inmaintaining and spreading
pathogens, yet are difficult to consider owing to their diversity and complexity (Gibb et
al., 2020; Salomon et al., 2021). Ecological niche modeling techniques have been used
extensively to understand and anticipate impacts of changing climates on the geographic
distributions of different tick species in North America (Alkishe et al., 2020; Alkishe &
Peterson, 2021; Alkishe & Peterson, 2022; Boorgula et al., 2020; Burtis et al., 2022; Raghavan
et al., 2019; Ripoche et al., 2022). However, understanding of the relationships among the
ecological niches of vectors and associated pathogens in environmental dimensions in
North America remains incipient.

In this contribution, we took advantage of the large-scale data resources of the National
Ecological Observatory Network (NEON). In particular, we analyzed two tick species
(I. scapularis, and A. americanum) and associated bacterial pathogens. NEON protocols
include regular sampling of different tick species and life stages using a dragging method.
Tick samples collected by NEON personnel are identified by experts to species, life stage,
and sex; nymphs are tested for presence or absence of bacterial and protozoan pathogens
(NEON, 2022a). Because no comprehensive study has yet been developed to explore
associations between ticks and associated pathogens, we used the NEON data to achieve
broad geographic coverage.We also employed new statistical approaches (Cobos & Peterson,
2022) to explore and test signals of ecological niches of pathogens, taking the sampling of
ticks into account explicitly to obtain absence data as well as presence data for pathogens. In
effect, the question being tested is whether the pathogen species have sets of environmental
requirements distinct from those of their tick vectors, or whether they are present where
the ticks are present, in terms of environmental conditions.

METHODS
Ticks and tick-borne pathogen data sets
Data packets summarizing detections of ticks and tick-borne pathogens were downloaded
from the National Ecological Observatory Network (NEON, available at https://data.
neonscience.org/data-products/DP1.10092.001; NEON, 2022b) for A. americanum and
I. scapularis (2014–2020) with a total of 59 and 39 sites sampled annually forA. americanum
and I. scapularis, respectively.We applied a data cleaning process to remove records holding
errors such as missing information or incorrect pathogen names. We ended up with 71,113
and 16,800 individual counts of A. americanum and I. scapularis, with 12 and 13 pathogens
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Table 1 Summary of ticks and tick-borne pathogens (cleaned data) fromNEON.

Pathogens Negative Positive Total tests Prevalence

Amblyomma americanum
Anaplasma phagocytophilum 10,155 4 10,159 0.039
Babesia microti 37 0 37 0
Borrelia burgdorferi sensu lato 28 9 37 24.32
Borrelia lonestari 10,042 80 10,122 0.79
Borrelia mayonii 37 0 37 0
Borrelia miyamotoi 36 1 37 2.70
Borrelia sp. 10,068 91 10,159 0.89
Ehrlichia chaffeensis 10,074 48 10,122 0.47
Ehrlichia ewingii 10,075 47 10,122 0.46
Ehrlichia muris-like 37 0 37 0
Francisella tularensis 10,122 0 10,122 0
Rickettsia rickettsii 10,122 0 10,122 0
Grand Total 70,833 280 71,113 0.39

Ixodes scapularis
Anaplasma phagocytophilum 2,319 80 2,399 3.33
Babesia microti 2,180 63 2,243 2.80
Borrelia burgdorferi 7 0 7 0
Borrelia burgdorferi sensu lato 1,813 430 2,243 19.17
Borrelia lonestari 156 0 156 0
Borrelia mayonii 2,230 13 2,243 0.57
Borrelia miyamotoi 2,211 32 2,243 1.42
Borrelia sp. 1,944 455 2,399 18.96
Ehrlichia chaffeensis 156 0 156 0
Ehrlichia ewingii 156 0 156 0
Ehrlichia muris-like 2,234 9 2,243 0.40
Francisella tularensis 156 0 156 0
Rickettsia rickettsii 156 0 156 0
Grand Total 15,718 1,082 16,800 6.44

tested, respectively (Table 1). We excluded pathogens with <2,000 test results for lack
of statistical power, pathogens that are not considered to be transmitted effectively by
the vector (e.g., A. americanum, A. phagocytophilum, and Borrelia burgdorferi sensu lato),
and ‘‘Borrelia sp’’ from our analysis given uncertainty regarding the identity of pathogen
species. After data cleaning, we explored geographic patterns of prevalence for each tick
and pathogen combination.

Environmental data
We downloaded raster-format data layers summarizing monthly averages of maximum
temperature, minimum temperature, mean temperature, maximum vapor pressure deficit,
and minimum vapor pressure deficit, from the PRISM climate data archive at 4 km
spatial resolution (available at https://prism.oregonstate.edu/recent/). Vapor pressure
was incorporated in these analyses because it is a better reflection of water availability
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than precipitation (Cáceres et al., 2007). We selected these variables as they have been
considered important in determining nymphal tick abundance (Bertrand & Wilson, 1996;
Vail & Smith, 2002). Time periods for the variables downloaded corresponded to the
month of sampling and the month previous to sampling. We took the mean of values
for these two months, and created four different sets of environmental variables for each
record to explore different combinations of environmental information: set 1 (minimum
temperature, maximum vapor pressure deficit), set 2 (minimum temperature, minimum
vapor pressure deficit), set 3 (maximum and minimum vapor pressure deficit), and set 4
(minimum and maximum vapor pressure deficit, minimum temperature). We ended up
using only set 4 after assessing linear correlations, which contains three variables (minimum
and maximum vapor pressure deficit, minimum temperature). Set 4 was the only set of
environmental variables for which all pairwise correlation coefficients were |r |< 0.8. We
performed all of these preparatory analyses using the packages raster (Hijmans, 2019) and
stats in R version 4.2.2 (R Core Team, 2017).

Pathogen niche exploration
We created visualizations of environmental conditions used by the two ticks and associated
pathogens compared to monthly-specific conditions in the United States using three
variables (minimum temperature, maximum vapor pressure deficit, and minimum vapor
pressure deficit). We used two statistical tests to detect signals of pathogen ecological niche
in data derived from testing ticks for such pathogens, and thus taking into account both
presence and absence data in the NEON testing results. First, permutational multivariate
analyses of variance (PERMANOVA; Anderson, 2017) were used to detect overall signals
of niche difference between tick and pathogen, comparing the complete data set (positive
and negative test results) against positive cases for detection of the pathogen.

This analysis allowed us to test the null hypothesis that either the position (centroid)
or the spread (dispersion) of the two samples are equivalent (Cobos & Peterson, 2022).
This hypothesis is rejected when the position and/or dispersion of the samples are
not demonstrably equivalent. Second, non-parametric univariate analyses were used
to understand changes in position and breadth of pathogen niches compared to null
distributions of those niche characteristics derived from resampling from the whole dataset
(Cobos & Peterson, 2022). The null hypothesis in this test is that the pathogen niche position
or breadth cannot be distinguished from that of the tick. Mean, median, standard deviation
(SD), and range were used to test the null hypothesis. When the hypothesis was rejected,
the pathogen niche position (mean and median) or breadth (SD and range) could be lower
(i.e., observed value below the 2.5th percentile of the null distribution derived from all
data) or higher (i.e., observed value above the 97.5th percentile of the null distribution).
We performed these tests using 1,000 random samples of size equivalent to the number
of positive tests from the overall dataset to generate null distributions against which the
observed value of the statistic was compared. It is worth mentioning that, as the two tests
are based on different concepts and procedures, they complement one other, in the sense
that they both help to detect signals of pathogen environmental preference; the univariate
approach aids in interpretation of the type of signal more explicitly than the multivariate
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Table 2 Results derived from the univariate niche comparisons for bacterial pathogens detected in the
tick Amblyomma americanum, with lower or higher representing statistically significant signals for the
observed value (more extreme than the central 95%). Variables assessed include minimum temperature
(tmin), maximum vapor pressure deficit (vpdmax), and minimum vapor pressure deficit (vpdmin).

Central tendency Variation

Variables Mean Median Standard
deviation

Range

Borrelia lonestari
tmin – – – –
vpdmax lower lower higher –
vpdmin – – – higher

Ehrlichia chaffeensis
tmin – – – higher
vpdmax – higher higher –
vpdmin – – higher –

Ehrlichia ewingii
tmin lower – –
vpdmax – – higher higher
vpdmin – higher lower

tests. All analyses described above were performed in R, using functions available at
https://github.com/marlonecobos/host-pathogen (Cobos & Peterson, 2022); the code used
for our examples is available at https://github.com/Abduelkeesh/Broad-scale-ecological-
niche-of-pathogens.git.

RESULTS
After data cleaning, we had data on occurrence and pathogen status for 71,113 A.
americanum ticks for 12 pathogens, and for 16,800 I. scapularis ticks for 13 pathogens.
After removing from consideration pathogens with small sample sizes and those with zero
prevalences, we had 40,525 (57% of the data), and 13,614 (81% of the data) ticks tested
for three and six pathogens for A. americanum and I. scapularis, respectively (Tables
1–3). Borrelia lonestari, Ehrlichia chaffeensis, and E. ewingii were therefore explored
for Amblyomma americanum. Anaplasma phagocytophilum, Babesia microti, Borrelia
burgdorferi sensu lato, B. mayonii, B. miyamotoi, and Ehrlichia muris-like, were explored
for I. scapularis records.

Sample sizes differed between the two tick species (Table 1) owing to geographic
differences in their range limits and abundances across eastern North America. The two
species of ticks were collected at NEON sites during 2014–2020 in several locations
across the central and eastern United States (Fig. 1). Amblyomma americanum was
collected from seven states: Kansas (15 locations), Oklahoma (one location), Alabama (15
locations), Tennessee (six locations), Florida (seven locations), Virginia (nine locations),
and Maryland (six locations). Ixodes scapularis was sampled in six states: Wisconsin
(seven locations), Massachusetts (seven locations), Maryland (six locations), Virginia (12
locations), Tennessee (six locations), and Alabama (one location). Prevalences of pathogens
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Table 3 Results derived from the univariate niche comparisons for bacterial pathogens detected in the
tick Ixodes scapularis, with lower or higher representing statistically significant signals for the observed
value (more extreme than the central 95%). Variables assessed include minimum temperature (tmin),
maximum vapor pressure deficit (vpdmax), and minimum vapor pressure deficit (vpdmin).

Central tendency Variation

Variables Mean Median Standard
deviation

Range

Anaplasma phagocytophilum
tmin – – – –
vpdmax – – – lower
vpdmin – – – lower

Babesia microti
tmin lower – lower lower
vpdmax lower – lower lower
vpdmin lower – lower lower

Borrelia burgdorferi sensu lato
tmin lower – lower higher
vpdmax lower – lower –
vpdmin – – lower higher

Borrelia mayonii
tmin lower lower lower lower
vpdmax lower – lower lower
vpdmin lower – lower lower

Babesia miyamotoi
tmin – – – –
vpdmax – – – –
vpdmin – – – –

Ehrlichia muris-like
tmin – – lower lower
vpdmax – – lower lower
vpdmin – – lower lower

in A. americanum ranged 0.1%−1.2% among sites and years; prevalences of pathogens in
I. scapularis ranged 2.5%-15.6% among sites and years.

Considering sample sizes, prevalence of A. americanum-associated pathogens was high
for B. lonestari, in Kansas, Maryland, Tennessee, and Florida, compared with other states
(Fig. 1). Even though sample size was low for B. burgdorferi sensu lato and B. miyamotoi,
prevalence was high for those two pathogens in Maryland; in Virginia, prevalence was
high only for B. burgdorferi sensu lato (Fig. 1). The prevalence of I. scapularis-associated
pathogens was high for B. burgdorferi sensu lato Massachusetts, Wisconsin, Maryland, and
Virginia; in Tennessee, prevalence was notably lower (Fig. 2).

Amblyomma americanum and its pathogens
Results from univariate tests showed significant signals of pathogen niche for B. lonestari
in A. americanum in niche position and breadth, for maximum vapor pressure deficit
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Figure 1 Sample size and prevalence of pathogens in Amblyomma americanum from collection sites
across seven states. Map data source credit: GADM (https://gadm.org).

Full-size DOI: 10.7717/peerj.17944/fig-1

(Table 2, Fig. 3). For E. chaffeensis, a significant signal of niche was detected in niche
breadth and for minimum temperature (Table 2). A significant pathogen niche signal was
detected for E. ewingii for niche position in terms of minimum temperature, and for niche
breadth in maximum vapor pressure. For this pathogen, minimum vapor pressure showed
significant signals in both niche breadth and position (Table 2; Table S1).

PERMANOVA results showed that no signal of pathogen ecological niche could
be detected for B. lonestari in A. americanum under two environmental dimensions of
maximum vapor pressure deficit and minimum temperature; minimum vapor pressure
deficit and minimum temperature; and minimum vapor pressure deficit and maximum
vapor pressure deficit (Fig. 4). For E. ewingii in A. americanum, a signal of niche was
detected with PERMANOVA analyses (p < 0.05) in two of the explorations performed (Fig.
4, and Fig. S3).

Ixodes scapularis and its pathogens
In univariate analyses, significant signals of pathogen niche were detected in terms of
niche breadth for maximum and minimum vapor pressure deficit in A. phagocytophilum.
For B. microti, significant signals of both niche position and breadth were observed for
minimum temperature, and maximum and minimum vapor pressure deficit (Fig. 5). For
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Figure 2 Sample size and prevalence of pathogens in Ixodes scapularis from collection sites across six
states. Map data source credit: GADM (https://gadm.org).

Full-size DOI: 10.7717/peerj.17944/fig-2

B. burgdorferi sensu lato, significant signal for niche position was detected for minimum
temperature and maximum vapor pressure deficit; a significant signal for niche breadth
was detected in minimum temperature and minimum vapor pressure deficit (Fig. S2).
Borrelia mayonii showed a significant signal in niche position and breadth for minimum
temperature, maximum vapor pressure deficit, and minimum vapor pressure deficit.
For E. muris-like, a significant signal in terms of niche breadth was found for minimum
temperature, maximum vapor pressure deficit, and minimum vapor pressure deficit. For
B. miyamotoi, no statistically significant results were found (Table 3).

We found statistically significant signals of ecological niche for the pathogens B. microti
and B. burgdorferi sensu lato in I. scapularis based on PERMANOVA analyses (Fig. 6 and
Fig. S4). The multivariate approach did not detect statistically significant results for any of
the other four pathogens explored.
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Figure 3 Results from univariate non-parametric tests to detect signals of niche for the pathogen
Borrelia lonestari in Amblyomma americanum. Variables assessed include minimum temperature
(Min.tem), maximum vapor pressure deficit (Max.vap.pre.deficit), and minimum vapor pressure deficit
(Min.vap.pre.deficit).

Full-size DOI: 10.7717/peerj.17944/fig-3

DISCUSSION
Animal hosts play crucial roles in spreading and maintaining zoonotic pathogens, yet
understanding this mechanism is not easy in view of the complex transmission system of
many of the pathogens. In tick-borne disease systems, many tick species use a wide variety
of wildlife hosts during different life stages, creating complex transmission pathways
and opportunities for diverse infections and co-infections. The complexity also comes
from other ecological factors that may influence the roles of hosts, ticks, and tick-borne
pathogen dynamics, such as the relationship between abundances of important hosts and
tick abundances, land-cover pattern and configuration, climate and climate change, and
land use (Tsao et al., 2021). In this regard, we focused on understanding the relationship
between ticks and their associated pathogens from an environmental perspective using
variables describing aspects of climate.

The analyses presented above took advantage of the national-scale tick collections and
pathogen testing conducted under the aegis of theNational EcologicalObservatoryNetwork
(NEON). Although NEON has been in operation only since 2006 (NEON, 2022), its broad
geographic scope and consistent methodologies implemented across a network of 81 sites
(although only 46 have contributed data on ticks) make it a unique resource that makes
possible broad-scope, geographic-scale analyses such as those that we have presented.
To the extent that NEON achieves long-term sustainability, consistency, quality, and
continuity in its data streams, this data resource can illuminate many important facets of
biology across the United States.
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Figure 4 Results from PERMANOVA analyses to detect signals of ecological niche for Borrelia lones-
tari in Amblyomma americanum. Ellipses were created with a 95% confidence limit, P values are shown
for each comparison. Variables assessed include minimum temperature (Min.tem), maximum vapor pres-
sure deficit (Max.vap.pre.deficit), and minimum vapor pressure deficit (Min.vap.pre.deficit).

Full-size DOI: 10.7717/peerj.17944/fig-4

This study is based on tick collections from locations in seven states for A. americanum
and six states for I. scapularis, with all data drawn from the NEON data repository. These
sampling sites were distributed across Kansas, Oklahoma, Tennessee, Alabama, Florida,
Virginia, Maryland, Wisconsin, and Massachusetts (Figs. 1 and 2), which may have limited
our ability to detect full niche signals, and may produce some bias of importance in
interpreting our results in addition to not considering reservoir host biology. Prevalence of
B. burgdorferi sensu lato (the causative agent of Lyme disease) was high only in I. scapularis
from the northeastern (Massachusetts, Maryland) and midwestern (Wisconsin) states,
where Lyme disease is common (CDC, 2021), but sampling in the NEON program did not
cover much of the environmental diversity of sites where that pathogen species occurs.
Other caveats that may affect our outcomes include the coverage of environmental diversity
represented in the input datasets (i.e., we can only detect differences between niches if they
are manifested over the region that was sampled), and sample size effects that magnify
statistical power in well-sampled species compared to other species with smaller samples.
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Figure 5 Results from univariate non-parametric tests to detect signals of niche for the pathogen
Babesia microti in Ixodes scapularis. Variables assessed include minimum temperature (Min.tem),
maximum vapor pressure deficit (Max.vap.pre.deficit), and minimum vapor pressure deficit
(Min.vap.pre.deficit).

Full-size DOI: 10.7717/peerj.17944/fig-5

We used monthly weather summaries from the PRISM data archive, which allowed
us to relate occurrence records to specific environmental conditions corresponding
to a particular time and place. This sort of environmental data is coarse-resolution
(macroclimate) rather than fine-resolution (microclimate), although the latter may have
more direct influences on ticks (Bacon et al., 2022). In this sense, our models may be more
about broad geographic range limits, as opposed to the details of abundances and local
population fitness (Martínez-Meyer et al., 2013).

However, our goal in this study was to detect niche signals that might contrast between
two tick vectors and their many associated bacterial pathogens. Our analyses and graphical
explorations allowed us to assess whether pathogen niches exist that may be more than
just that the pathogen is following the same tick niches. For instance, A. americanum and
B. lonestari appeared to have similar niche breadths in terms of minimum temperature
and minimum vapor pressure deficit (Fig. 3). We saw contrasting niches for I. scapularis
and its pathogen B. microti (Fig. 4), suggesting that pathogens may have environmental
requirements that do not always match exactly the environmental requirements of their
tick host.

Our analysis appears to be the first in terms of comparing and contrasting ecological
niche signals between ticks and tick-borne pathogens in such detail and across such broad
scales. MacDonald, McComb & Sambado (2022) assessed local-scale community ecology
of Lyme disease and human incidence in California. This study is different, in that we
took advantage of the broad-scale sampling and intensive testing of ticks in the NEON
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Figure 6 Results from PERMANOVA analyses to detect signals of ecological niche for Babesia microti
in Ixodes scapularis. Ellipses were created with 95% confidence limit, P values are shown for each com-
parison. Variables assessed include minimum temperature (Min.tem), maximum vapor pressure deficit
(Max.vap.pre.deficit), and minimum vapor pressure deficit (Min.vap.pre.deficit).

Full-size DOI: 10.7717/peerj.17944/fig-6

initiative, and also a new methodological protocol that controls explicitly for the sampling
that produced the set of positive detections in the study (Cobos & Peterson, 2022)—this
approach allowed us to test for niche differences while controlling explicitly for sampling
intensity. Although our two niche-focused analyses (multivariate and univariate analysis)
have different underlying concepts, they complement each other to provide a good tool for
detecting signals of niche similarity and dissimilarity (Cobos & Peterson, 2022).

We could not detect any clear signal of dissimilar niches for A. americanum and
the pathogen B. lonestari in any of our analyses except under mean (niche position) of
maximum vapor pressure deficit, and SD (niche breadth), where the pathogen has a higher
and narrower niche than the tick vector, respectively, based on univariate tests (Fig. 4). We
note, however, that univariate and multivariate test results often contrast, given that the
former do not consider variable interactions, and that the latter consider the effects of all
of the independent variables together.
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In this example, the data available for analysis contained few infected ticks compared
to the number of samples; most importantly, the somewhat limited number of locations
that contributed relevant ticks in the NEON project makes it difficult to detect full signals
of niche dissimilarity. It is crucial that we understand the relationship between ticks and
tick-borne pathogens (Estrada-Peña et al., 2021). Thus, it is necessary to have data that
cover as many areas as possible to detect complete signals of niches and to contrast suitable
and unsuitable conditions fully (Soberón & Peterson, 2005).

Finally, the types of analyses performed here can be important in public healthmitigation
efforts, as they help to understand why a pathogen is in some areas, but not in others, even
though the vector tick species occurs similarly. For instance, our findings showed that B.
burgdorferi does not prefer more arid conditions, which may begin to answer why Lyme
disease is not as common in southern and midwestern states, where climate conditions
are warmer and less humid than areas to the north and northeast. Such broad-scale
assessments become possible only with the combination of broad-scale data availability
and the development of specific analytical tools that are appropriate for such questions.
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