IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

2037

QuBEC: Boosting Equivalence Checking for
Quantum Circuits With QEC Embedding

Chao Lu

Abstract—Quantum computing has proven to be capable of
accelerating many algorithms by performing tasks that classical
computers cannot. As quantum algorithms and implementations
grow more complex, the need for rigorous circuit verification
becomes critical, ensuring correct compilation and enhancing
circuit fidelity through error correction and assertions. In this
article, we propose QuBEC, a decision diagram-based quan-
tum equivalence checking approach, that requires less latency
compared to existing techniques, while accounting for circuits
with quantum error correction redundancy. QuBEC reduces
verification time on benchmark circuits by up to 443 x, while the
number of decision diagram nodes required is reduced by up to
798.31x, compared to state-of-the-art strategies. The proposed
QuBEC framework can contribute to the advancement of quan-
tum computing by enabling faster and more efficient verification
of quantum circuits, paving the way for the development of larger
and more complex quantum algorithms.

Index Terms—Quantum circuit equivalence checking, quantum
error correction (QEC), quantum verification.

I. INTRODUCTION

UANTUM computing is poised to bring the next tectonic

shift in computing. By harnessing the unique properties
of quantum mechanics, such as superposition, entanglement,
and interference, quantum computers can speed up a certain
class of problems in fields like chemistry [1], optimization [2],
and machine learning [3], beyond the abilities of most
high performance classical computers. To obtain the best
performance of quantum computers for solving humanity’s
most demanding problems, different stacks in the computing
paradigm must work in unison and in an optimal fashion. It
ranges from designing novel high-level algorithms to devel-
oping powerful low-level hardware. Besides algorithmic and
hardware efficiencies, equally important, is a highly profi-
cient compilation stack, and in the realities of today’s NISQ
hardware, the need for a performant compilation tool-chain

Manuscript received 7 August 2023; revised 18 November 2023; accepted
9 January 2024. Date of publication 2 February 2024; date of current
version 20 June 2024. This work was supported by NSF under Grant
2228725. This article was recommended by Associate Editor R. Wille.
(Corresponding author: Chao Lu.)

Chao Lu, Navnil Choudhury, and Kanad Basu are with the Department
of Electrical and Computer Engineering, University of Texas at
Dallas, Richardson, TX 75080 USA (e-mail: cxI1200053 @utdallas.edu;
nxc210017 @utdallas.edu; kxb190012 @utdallas.edu).

Utsav Banerjee is with the Department of Electronic Systems
Engineering, Indian Institute of Science, Bengaluru 560012, India (e-mail:
utsav @iisc.ac.in).

Abdullah Ash Saki is with IBM Research, New York, NY 10598 USA
(e-mail: axs1251@psu.edu).

Digital Object Identifier 10.1109/TCAD.2024.3361402

, Student Member, IEEE, Navnil Choudhury
Utsav Banerjee™, Member, IEEE, Abdullah Ash Saki™, Member, IEEE, and Kanad Basu

, Student Member, IEEE,
, Member, IEEE

is highly pronounced. This brings up a critical question for
consideration: “How do we verify that the compiled version
of a circuit is logically equivalent to the input circuit?”

While the compiler is expected to generate the most opti-
mized version of the output circuit, we need it to preserve the
logical integrity of the input circuit. Thus, the idea of quantum
verification becomes critical during the compilation process.
Quantum verification is a systematic approach to compare the
input circuit and its compiled version to certify both circuits
are logically equivalent. Numerous recent methodologies in
the field of quantum verification have been developed to
tackle specific challenges, and lay out a blueprint for the
future [4], [5], [6], [7]. However, none of the aforemen-
tioned works delves into QEC verification methodologies. Our
approaches facilitate accelerated execution speeds for equiv-
alence checking, even in scenarios involving large quantum
circuits. However, previous strategies cannot verify highly
intricate benchmark circuits in less than the 60 s threshold.
Therefore, in this article, we propose algorithmic optimizations
to make the verification process more scalable, which not only
can handle circuits with larger numbers of qubits but also
accomplish the verification task faster. Moreover, we extend
our verification algorithm to be applicable for quantum error
correction (QEC) as well.

The addition of ancillary qubit creates a mismatch in the
number of qubits and gates between the original circuit and
the error-corrected circuit, and thus, makes the verification
process even more challenging. To alleviate the challenge,
we propose a two-step methodology for verifying quantum
circuits with QEC code (QECC) encoded into them. The first
step employs an intelligent circuit pruning pass to extract
the functioning information of the quantum circuit. Next,
the second step applies our scalable verification flow on the
pruned circuit to verify the logical equivalence. To the best
of our knowledge, our work is the first attempt to verify
the functionality of quantum circuits with embedded QECC.
To this end, we make the following contributions in this
article.

1) We propose a Position Match verification strategy based
on decision diagrams, that improves the state-of-the-art
verification methodology.

2) We propose a methodology that enables the verification
scheme to check the original functionality of a quantum
circuit without QEC.

3) We evaluate our equivalence checking strategy by com-
paring it with existing verification approaches. Our

1937-4151 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2024 at 13:58:45 UTC from IEEE Xplore. Restrictions apply.

2038

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

a3 a3
a2 q2

Equivalence?

71 @ 1] ¥any
Lrl {rf}

I
LT

q0 q0
a5 g1 g2 g3

g4 9’5 g'6 g7 g8 g'9

I
@,

=
Q@

o

"

Fig. 1. Example equivalence checking of two quantum circuits.

proposed QuBEC is seen to provide enhancement up
to 443x for time consumption, and up to 798.31x in
Decision-Diagram nodes consumption.

II. BACKGROUND

To ensure the correctness of a quantum circuit, the inverse
of the quantum circuit can be appended to the original circuit.
This is due to the invertible property of a quantum gate, which
will generate an identity gate as each gate cancels with its
inverse. However, quantum gates can cancel with each other
only as long as the order of the gates is maintained. Hence, an
efficient verification flow is required to verify quantum circuits
so that the complex intermediate states can be avoided, by
arranging the quantum circuit verification with each quantum
circuit’s gate order unchanged. The complexity and resource
consumption of a DD-based quantum circuit simulation heav-
ily depends on the state of qubits. Therefore, an optimized
strategy for quantum circuit verification is required to address
resource consumption, and improve verification efficiency on
a classical computer [4].

QEC is a critical part of the design process for quantum
computing, as it helps ensure that the computations are
carried out with the required level of fidelity. As part of the
automation goals of quantum circuit synthesis, software is
used to analyze quantum circuits and add QEC circuits to the
original design in order to control quantum noise. However,
current quantum circuit equivalence checking techniques are
unable to verify circuits that contain redundancy with ancilla
qubits and duplication, as this significantly alters the qubit and
circuit function. As a result, it is crucial to find verification
methods that can confirm the equivalence of quantum circuits,
even when one of them contains functional redundancy. To
the best of our knowledge, there are no quantum circuit
verification approaches with the QEC redundancy.

III. PROPOSED QUBEC

In this article, we propose QUBEC, a boosted quantum
circuit equivalence checking scheme with QEC embedding.
In this section, we initiate the discussion by examining the
intricate details of our proposed Position Match strategy.
This is motivated by the versatility inherent in our strategy,
enabling its applicability to circuits both with and without
QEC. Subsequently, we proceed to outline the implementation
of our strategy, specifically taking into account the inclusion
of QEC embedding.

The proposed approach stores the positions of previously
verified gates, and uses a greedy method to determine
the optimal path for the upcoming gates by utilizing this
information. For the remainder of this section, we will use

the following terminologies: the upcoming gate refers to the
gate that is awaiting verification, while the previous gate
is the gate that has just been verified in the last step. For
example, in Fig. 1, if gates g; and g’l are already verified,
they are considered previous gates, while gates g, and g}, are
considered the upcoming gates. Processing a gate refers to the
operation that the program will take the matrix of the quantum
gate and append to the quantum circuit. When two gates of two
different quantum circuits are deemed equivalent, we refer to
them as canceled. The following sections explain our proposed
QuBEC framework.

A. Proposed Position Match Approach

The proposed Position Match approach is applied to perform
equivalence checking between two quantum circuits. To this
end, it requires checking the positions of unverified quantum
gates on both quantum circuits. To facilitate this, we introduce
an active qubit pool to store the current active qubits, which
are qubits that the previously verified quantum gates used.
This increases the likelihood of cancelation between gates
and ensures that the quantum gates executed on inactive
qubits are not processed before the ones that are already in
the active pool. The size of the active qubit pool can also
affect the equivalence checking flow. If the capacity is too
small, complex quantum gates such as the multiple-controlled-
X (MCX) gate, which contains a high number of qubits,
might exceed the pool’s maximum size. As a result, the MCX
gate might never be checked for equivalence, or some qubits’
information of the MCX gate will be lost. Conversely, if
the active qubit pool is too large, several quantum gates that
are not in the same position might be processed together,
reducing verification efficiency and increasing the number of
intermediate nodes.

Algorithm 1 presents our proposed Position Match approach
to accelerate the quantum circuit equivalence checking pro-
cess. The algorithm takes as input two quantum circuits,
circl and circ2, that need to be verified, and applies several
optimization methodologies, including “fuseSingleQubitGate,”
“reconstructSWAPs,” “removeDiagonalGatesBeforeMeasure,”
and “reorderOperations” from the MQT/QCEC library [4].
Once the optimization is complete, the proposed Position
Match algorithm is executed. The equivalence checking starts
by processing the first gate of circ/ and adding the qubits
used in the gate to the active qubit pool, with the maximum
size set to the size of the input gate (lines 1-3). For the
while loop in the algorithm, the verification has two options to
proceed: the second quantum gate in circl or the first inverse
gate in circ2 (lines 4-7). The algorithm checks whether the
qubits required for both gates are in the active qubit pool. If
one gate is in the pool and the other is not, the algorithm

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2024 at 13:58:45 UTC from IEEE Xplore. Restrictions apply.

LU et al.: QuBEC: BOOSTING EQUIVALENCE CHECKING FOR QUANTUM CIRCUITS WITH QEC EMBEDDING

Algorithm 1 Position Match Strategy

Input: Two quantum circuits that is pending to be verified
(circl, circ2).
Output: Boolean: Whether two quantum circuits are
equivalent.
1: pool = set with maximum number of(max (size(qubits
required for the first gate in circl), size(qubits required
for the first gate in circ2)));

2: process one gate of circl;

3: pool.add(qubits required for the first gate in circl)

4: while remaining gates on both circuits to proceed do

5: setl = qubits required for next gate in circl;

6: set2 = qubits required for next gate in circ2;

7: maxSize = max(length(setl), length(set2));

8: if (setl in pool) & not(set2 in pool) then

9: Proceed with next gate in circl;

10: else if not(setl in pool) & (set2 in pool) then

11: proceed with next gate in circ2;

12: else

13: Compare the nodes consumption with circl, circ2
and select the best path with least nodes consumption;

14: if pool is not full then

15: pool.add(current gate’s corresponding qubits)

16: else

17: pool = set(max size(qubits required for

current gate in circl), size(qubits required for current
gate in circ2));

18: pool.add(current gate’s corresponding qubits)
19: end if
20: end if

21: end while

22: while One circuit finishes the equivalence checking do
23: Proceed the remaining gates;

24: end while

25: if the resultant DD is identity DD then

26: return True;

27: else

28: return False;

29: end if

prioritizes the gate that is in the active qubit pool (lines 8 and
9). If both gates are not in the pool, the algorithm performs
a greedy node check for both paths and selects the path that
requires fewer DD nodes using the required algorithm (lines
10-13). After the path is selected, the active qubit pool is
updated with the new qubits from the gates that were just
verified (lines 14 and 15). If the maximum size of the active
qubit pool is reached, the algorithm removes the previous pool
and creates a new pool with a maximum size equivalent to
the highest number of qubits required among the gates that
are pending verification (lines 16-19). The new qubits of the
previous gate are added to the active qubit pool. The process
is repeated until all the quantum gates in one quantum circuit
are processed (line 20). Once the checking of one quantum
circuit is concluded, the algorithm will stop using the active
qubit pool and process the rest of the gates in the other circuit

2039

(lines 22-24). Once completed, the algorithm will compare the
two circuits for equivalence by checking whether the resultant
DD is an identity DD (lines 25-29).

At the inception, the active qubit pool is initialized with
the qubits used in the first quantum gate of the circuit. The
algorithm checks whether the qubits required for a specific
gate are already present in the active qubit pool. Otherwise,
they are added to the pool. The algorithm prioritizes verifying
gates that are using qubits already present in the active qubit
pool, as opposed to gates involving qubits not included in
the pool. This prioritization ensures that gates with available
qubits are processed efficiently. After a quantum gate has been
verified, the qubits used in that gate are added to the active
qubit pool. The active qubit pool has a dynamic maximum
pool size, which varies with the size of quantum gates being
verified, and is initially set to the size of the initial quantum
gate. If the size limit is reached, the algorithm will perform an
update to accommodate the qubits required for the next gate.
This involves creating a new pool with a maximum size that
corresponds to the highest number of qubits required among
the gates pending verification. The qubits from the previous
gate are also added to this new pool. This step ensures that
the pool always contains the qubits relevant to the ongoing
verification process. The functional equivalence of the two
quantum circuits can be determined based on the inverse
property of quantum gates, similar to [4].

However, our initial position match algorithm exhibits
shortcomings in specific edge cases, resulting in increased
consumption of intermediate DD nodes throughout the verifi-
cation process. This is illustrated in Fig. 3, where the QuBEC
will not process the CX gate at (2, 1) until all quantum
gates in the oracle U finished processing, which eliminates the
possibility of canceling gates from both circuits. This issue is
addressed by incorporating a preprocessing technique known
as “reconstructing bridge gates,” that converts the four gates
bridge gate into a single CX gate prior to commencement of
the verification process.

A bridge gate is functionally similar to a SWAP gate where
it is used to perform a CX gate where there is no physical
connection between them. A typical pattern of a bridge gate
is demonstrated in Fig. 3. By applying this preprocessing
technique, the bridge pattern will be replaced with a single CX
gates only on the original gate and target qubits. Such corner
cases can be avoided by eliminating quantum gates that are
on the ancilla qubits, and the active qubits pool will function
correctly, thus, potentially preventing a slowdown.

B. Quantum Verification With Quantum Error Correction

The challenge of fully solving quantum circuit verification
for QEC circuits remains an open problem. In this article,
we, for the first time, introduce a solution for quantum circuit
verification, which include circuits embedded with QEC. Our
approach identifies and eliminates QEC redundancies from a
given circuit, to facilitate the equivalence checking process.

Currently, there are various QEC design principles proposed
for different architectures [8]. However, QECC is still heavily
dependent on manual design for specific quantum circuits

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2024 at 13:58:45 UTC from IEEE Xplore. Restrictions apply.

2040 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024
90+ — 1)) (0.4082 + 0.1082;, 0.8165) |- ’X‘J
o
0
@
w:
a5
ar:
s
qo:
quo: @7
qu1 :
qi2
Q13
G
40+ —{[) (04082 +0.4082;,0.8165)} —py a0+ —{[v) (0.4082 + 04082, 0.8165) }TM T A
o ! @ & (- o %
qz : qa: @4‘7@ ‘\ { @777
c: L &
| 0 1 2
(b) ()
Fig. 2. Proposed verification strategy for QEC-based circuits. (a) Quantum circuit with QEC redundancy. (b) Original circuit. (¢c) Pruned quantum QEC
circuit.

qo: R qo
e e 7] el o
PO D I NI

o 1

Fig. 3. Example of a corner case. Preprocessing operation converts a bridge
CX gates into a single CX gate, in order to avoid failing quantum gate
cancelation.

and hardware architectures. As a result, it is challenging
to automatically verify whether redundancy and additional
circuitry are encoded for QEC. In this article, we introduce
a verification flow that integrates the QEC algorithm with
QuBEC. This allows us to verify whether the original quantum
circuit is functionally identical to the final circuit, which
includes the error correction code. Therefore, once the automa-
tion of the QEC is implemented, QuBEC can validate the QEC
circuit without knowing its functionality.

Fig. 2(a) shows the original circuit for Shor’s error correc-
tion circuit [9]. Most QECC approaches involve duplicating
and measuring the original qubits, alongside the introduction
of ancilla bits to provide redundancy for correcting bit-flip and
phase-shift errors. The measured bits are intended to serve the
same purpose as the original qubits, enabling the algorithm
to determine the correct result based on the majority of the
measured outcomes. Based on the specification of the QECC,
the error correction redundancy does not interfere or change
the original computation output. Hence, we can assume that
the QEC redundancy on the original circuit will not contain
any gates to change the information of the qubits, if all
quantum gates on the other qubits are pruned. Therefore, the
pruned circuit will have the same functionality as the original
without any redundancy for quantum noise. For separate qubit
states, the duplication method is relatively simpler, compared
to entangled states. Fig. 2(b) demonstrates the qubit state
duplication circuit for three qubits, which can be accomplished
easily by inserting CX gates. Please note that this pruning

technique has to be performed after the quantum circuit is
reshaped by reconstructing SWAP gates, since the information
of qubits can be changed by using SWAP gates, which may
prune out important information and keep the redundancy in
the resultant circuit.

To illustrate the pruning approach, let us use a circuit with a
single qubit go in a superposition state and phase initialization
|Yr) as an example. The error-corrected code, shown in Fig. 2,
duplicates qubits gg, g5, and g19. Bit-flip error correction is
marked in red, while phase-shifting error correction is marked
in blue. After computation, these qubits are measured for error
correction, and the duplicated qubits vote for the majority
output. To verify equivalence with the original 15-qubit QEC
circuit, we prune out the duplicated qubits and gates, leaving
only the function codes on both sides of the QEC circuit.
This pruned circuit can be verified using our Position Match
approach mentioned in Section III-A. Even if the two circuits
have a different number of qubits, the original circuit will
automatically append two empty qubits to match the pruned
3-qubit circuits for equivalence checking.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the results of our experi-
ments for evaluating our proposed QuBEC. We evaluate the
results furnished by our approach by conducting a comparative
study against the state-of-the-art approaches [10].

A. Experimental Setup

In this article, QuUBEC is based on the open-source code
MQT/QCEC, which is available in GitHub. We conducted
the experiments on Windows 11 Enterprise 22H2 version
with an Intel Xeon W-2265 CPU processor. The experiments
were implemented using g+ version 11.3.0 compiler and
CMake version 3.22.1 on a VirtualBox virtual machine with
Ubuntu 22.04.1 LTS, with 6 CPU cores assigned to the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2024 at 13:58:45 UTC from IEEE Xplore. Restrictions apply.

LU et al.: QuBEC: BOOSTING EQUIVALENCE CHECKING FOR QUANTUM CIRCUITS WITH QEC EMBEDDING 2041
TABLE I
COMPARISON OF OUR PROPOSED POSITION MATCH STRATEGY AGAINST EXISTING EQUIVALENCE CHECKING ALGORITHMS
B k Time Consumption (ms) Nodes Overhead
Circuits Acceleration Acceleration Acceleration Acceleration
Lookahead Proportional Position Match Best Strategy over over Lookahead Proportional Position Match ~ Best Strategy over over
Lookahead Proportional Lookahead Proportional
dk27_225, 97 45 47 Proportional 2.06 x 0.96 x 225 565 240 Lookahead 0.94 x 235 x
peler8_248, 109 38 54 Proportional 2.02 x 0.70 x 681 497 220 PositionMatch 3.10 x 226 x
5xpl_194, 173 183 138 PositionMatch 1.25 x 133 x 971 1482 728 PositionMatch 1.33 x 2.04 x
alul_198, 113 69 39 PositionMatch 2.90 x 1.77 x 457 1330 636 Lookahead 0.72 x 2.09 x
mipd_245, 485 393 314 PositionMatch 1.54 x 1.25 x 2243 1131 381 PositionMatch 5.89 x 2.97 x
dk17_224, 188 166 122 PositionMatch 1.54 x 1.36 x 777 636 311 PositionMatch 2.50 x 2.05 x
add6_196, 1873 1674 794 PositionMatch 2.36 x 2.11 x 4388 2838 1434 PositionMatch 3.06 x 1.98 x
C7552_205, 213 445 131 PositionMatch 1.63 x 3.40 x 458 422 344 PositionMatch 1.33 x 1.23 x
cu_219, 134 118 84 PositionMatch 1.60 x 1.40 x 763 654 384 PositionMatch 1.99 x 1.70 x
example2_231, 711 594 379 PositionMatch 1.88 x 157 x 1550 982 528 PositionMatch 2.94 x 1.86 x
c2_181, 460 175 89 PositionMatch 5.17 x 1.97 x 2787 1036 357 PositionMatch 7.81 x 2.90 x
rd73_312, 389 251 57 PositionMatch 6.82 x 440 x 2283 8679 869 PositionMatch 2.63 x 9.99 x
cm150a_210, 8340 433 90 PositionMatch 92.67 x 481 x 426,300 8270 534 PositionMatch 79831 x 15.49 x
cm163a_213, 189 140 74 PositionMatch 2.55 x 1.89 x 816 1121 387 PositionMatch 2.11 x 2.90 x
sym9_317, 217 828 54 PositionMatch 4.02 x 15.33 x 1355 43,448 460 PositionMatch 295 x 94.45 x
mod5adder_306, 2654 60,000 221 PositionMatch 12.01 x 271.49 x 95,318 Did not Finish 3724 PositionMatch 25.60 x N/A
rd84_313, 23,019 11,967 235 PositionMatch 97.95 x 50.92 x 248,935 275,939 5147 PositionMatch 4837 x 53.61 x
cml5la_211, 345 199 133 PositionMatch 2.59 x 1.50 x 1882 2994 700 PositionMatch 2.69 x 428 x
apla_203 415 319 265 PositionMatch 1.57 x 1.20 x 911 828 410 PositionMatch 222 x 2.02 x
adder_n64 113 46101 115 Lookahead 0.98 x 400.88 x 2380 1054342 2380 PositionMatch 1.00 x 443.00 x
gram_n20 415 319 265 PositionMatch 1.57 x 120 x 911 828 410 Positi 2.22 x 2.02 x
irtual machine. To evaluate the perf f QUBEC ey
virtual machine. To evaluate the performance of Qu , We QUANTUM VERIFICATION WITH QEC STABILIZER CODE
conducted experiments on 19 benchmark circuits utilized in
existing state-of-the-art research [10]. The results obtained Pruned [o oo ton | DD
. . . Quantum Circuit QEC Gates | Cricuit’s Ti Nod
were then compared with those of the previous equivalence Gates ime () odes
checking strategies. Bit-Flip QEC Circuit 9 1 40 3
Phase-Shifting QEC Circuit 13 3 50 3
Shor’s QEC Circuit 46 11 130 7

B. Result of Position Match Verification Strategy

In this section, we conduct an evaluation of the results
furnished utilizing QuBEC on the benchmarks used in [4].
Additionally, we included several commonly utilized quantum
circuits, to underscore the scalability of QuBEC. Table I
presents the results pertaining to the 21 benchmark circuits
examined in this study, encompassing both the current state-
of-the-art approaches and QuBEC. The best technique for each
benchmark is determined based on the DD nodes consumption,
and time consumption. Column 1 consists of the benchmarks
we used to evaluate QuBEC. Columns 2-7 demonstrate
the time consumption. Columns 2—4 correspond to runtime
of Lookahead, Proportional, and Position Match techniques,
respectively. Column 5 indicates the best verification strategy
for each benchmark used. Columns 6 and 7 demonstrate the
improvement in acceleration furnished by our Position Match
strategy over Lookahead and Proportional strategies, respec-
tively. Columns 8-13 describe results obtained corresponding
to node overhead and have identical outline as columns 2-7.

As seen in Table I, QUBEC performs significantly better in
terms of time consumption when compared to both Lookahead
and Proportional approaches. Compared with Lookahead tech-
nique, QuUBEC furnishes up to 97.95x acceleration (for
benchmark rd84_313) over the former. Similarly, our position-
match strategy outperforms the Proportional technique by
yielding an acceleration greater than 400.88x (for benchmark
adder_n64). In terms of node consumption, QuUBEC provides
substantial improvement over both existing techniques, reduc-
ing the node overhead by up to 798.31x and 443x over
Lookahead and Proportional strategies, respectively, as shown
in Table L.

C. Result of QEC Verification

QuBEC is evaluated using three quantum circuits, as shown
in Table II. The first column describes the circuit name,

followed by the second and third columns, which present the
number of gates in unpruned and pruned circuits, respectively,
while the last two columns represent the verification time and
the number of DD nodes used. These three circuits with 9,
13, and 46 quantum gates with QEC redundancy are pruned
to 1, 3, and 11 gates, respectively, to perform the verification
with the original circuit without QEC redundancy. We also
obtain the time consumption and DD nodes overhead for the
equivalence checking process. Table II demonstrates that the
QuBEC can verify the quantum circuits within a short-time
interval of 40 us and requiring as low as three DD nodes.
This is because the scale of the pruned quantum circuit is
smaller than the benchmark circuits shown in Section IV-B.
Please note that QuBEC requires the measured qubit to be
the functional qubits only, while the ancilla qubits are not
measured. This might not hold for some QEC strategies
when the ancilla qubits requires measurement. We intend
to address these corner cases in the future. Nevertheless,
to the best of our knowledge, QUBEC is the first step
toward QEC-based equivalence checking for quantum circuit
verification.

V. CONCLUSION

In this article, we proposed QuBEC, a boosted equivalence
checking strategy with embedded QEC code for quantum
circuit verification. Our proposed Position Match strategy is
based on active qubit pools, that reduces the decision diagram
nodes overhead along with time consumption. When evaluated
across a set of 21 benchmark circuits, the Position Match
algorithm outperforms state-of-the-art approaches for 18 out
of 21 benchmarks, with up to 443 x reduction in time con-
sumption and 798.31x reduction in DD nodes consumption.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2024 at 13:58:45 UTC from IEEE Xplore. Restrictions apply.

2042

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

Furthermore, we propose an approach that can verify circuits
with QEC redundancy. In the future, we intend to improve the
scalability of the proposed approach.

[1]
[2]

[3]

[4]

REFERENCES

J. P. Lowe et al., Quantum Chemistry. Amsterdam, The Netherlands:
Elsevier, 2011.

Y. Li, M. Tian, G. Liu, C. Peng, and L. Jiao, “Quantum optimization and
quantum learning: A survey,” IEEE Access, vol. 8, pp. 23568-23593,
2020.

C. Lu, S. Kundu, A. Arunachalam, and K. Basu, “Survey on quantum
noise-aware machine learning,” in Proc. IEEE 15th Dallas Circuit Syst.
Conf. (DCAS), 2022, pp. 1-2.

L. Burgholzer and R. Wille, “Advanced equivalence checking for
quantum circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 40, no. 9, pp. 1810-1824, Sep. 2021.

[5]

[6]

[7]

[8]
[9]

[10]

C.-Y. Wei, Y.-H. Tsai, C.-S. Jhang, and J.-H. R. Jiang, “Accurate BDD-
based unitary operator manipulation for scalable and robust quantum
circuit verification,” in Proc. 59th ACM/IEEE Design Autom. Conf.,
2022, pp. 523-528.

T.-F. Chen, J.-H. R. Jiang, and M.-H. Hsieh, “Partial equivalence
checking of quantum circuits,” in Proc. IEEE Int. Conf. Quantum
Comput. Eng. (QCE), 2022, pp. 594-604.

X. Hong, M. Ying, Y. Feng, X. Zhou, and S. Li, “Approximate equiv-
alence checking of noisy quantum circuits,” in Proc. 58th ACM/IEEE
Design Autom. Conf. (DAC), 2021, pp. 637-642.

J. Roffe, “Quantum error correction: An introductory guide,” Contem.
Phys., vol. 60, no. 3, pp. 226-245, 2019.

P. W. Shor, “Scheme for reducing decoherence
computer memory,” Phys. Rev. A, vol
Art. no. R2493.

L. Burgholzer and R. Wille, “Improved DD-based equivalence checking
of quantum circuits,” in Proc. 25th Asia South Pacific Design Autom.
Conf., 2020, pp. 127-132.

in quantum
52, no. 4, 1995,

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2024 at 13:58:45 UTC from IEEE Xplore. Restrictions apply.

