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Abstract

Consider a locally cartesian closed category with an object I and a class of trivial fibrations, which admit

sections and are stable under pushforward and retract as arrows. Define the fibrations to be those maps

whose Leibniz exponential with the generic point of I defines a trivial fibration. Then the fibrations are also

closed under pushforward.
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1. Introduction

Consider a locally cartesian closed category with an object I, thought of as some sort of “interval” –
though in our present context no interval structure is required. Suppose further that the category
comes with a class of trivial fibrations, which satisfy a few hypotheses to be enumerated below.
We define a map p : A → X to be a fibration just when the induced map to the pullback in the
naturality square for the evaluation transformation is a trivial fibration:

A
I × I

Aε A

X
I × I X

ε

pI×I

δ⇒p

ε∗p

p∗ε

�
p

ε

This notion of fibration was first considered by Thierry Coquand (Coquand, 2014, https://
www.cse.chalmers.se/coquand/diag.pdf). As noted in Proposition A.5, the map δ ⇒ p coincides
with the Leibniz exponential in the slice over I of p together with the “generic point,” an obser-
vation made by Awodey (2023). Our aim in this paper is to show that these fibrations satisfy the
Frobenius property: that fibrations are closed under pushforward along other fibrations under the
following hypotheses:

(TF1) Trivial fibrations have sections.
(TF2) Trivial fibrations satisfy the generalized Frobenius property: they are stable under pushfor-

ward, when considered as arrows in a slice category.1

(TF3) Trivial fibrations are stable under retract in the arrow category.
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An analogous result is proven for a different class of fibrations in Gambino and Sattler (2017),
which gives a more comprehensive history of this condition in the setting of (algebraic) weak
factorization systems. A weak factorization system satisfies the Frobenius condition when its right
class is stable under pullback alongmorphisms in its left class. In a locally cartesian closed category
when the fibrations define the right class of a weak factorization, the Frobenius property defined
above is logically equivalent to the Frobenius condition of Gambino and Sattler (2017).

The original proof of this result, due to Thierry Coquand, is written in the internal language of a
locally cartesian closed category (Angiuli et al., 2021). There was subsequent interest in developing
a categorical account of this proof by Steve Awodey and Christian Sattler among others. They
described the following proof strategy: when p : A → X is a fibration, one may construct a retract
diagram for any q : B → A:

(�AB)I × I �AI×I(B
I × I) (�AB)I × I

(�AB)ε �AI×I(Bε) (�AB)ε

κ ′

δ⇒p∗q (pI×I)∗(δ⇒q)

τ ′

δ⇒p∗q

κ τ

(1.1)

When q is a fibration, δ ⇒ q is a trivial fibration and hence so is the middle map in this diagram,
by stability under pushforward, and thus also the outer maps, by stability under retract. This is
what we want to show.

It remains to construct the retract diagram (1.1), which Awodey does in Awodey (2023) by
appealing to the universal properties of the functors involved. We adopt a more equational
approach with the aim of simplifying the diagram chases necessary to verify the various commu-
tativity conditions. In Section 4, we construct the six maps and prove that both squares commute
and that both horizontal composites are identities. This proves our main result, Theorem 4.5. The
proofs of the various commutativity conditions are diagram chases that are greatly simplified by
appealing to a theorem of Kelly and Street on the double functoriality of the mates correspon-
dence, recalled in Section 2. This result will be applied to the adjoint triples between the slices of a
locally cartesian closed category, the notation for which we introduce in Section 3.

Three supererogatory appendices are included to further the expository aims of this note.
In Section A, we elaborate on the claim made above that our fibrations are defined by Leibniz
exponential in the slice over I with the generic point. In Section B, we give a type-theoretic inter-
pretation of our proof of Theorem 4.5 and compare this with Coquand’s original proof. In the final
appendix Section C, we prove that under the natural functorial enhancements of our hypotheses
on the class of trivial fibrations that the corresponding structured fibrations admit a functorial
Frobenius operator in the sense of Gambino–Sattler (Gambino and Sattler, 2017). Moreover, we
demonstrate that the induced fibration structure on the pushforward is stable under substitution
under natural conditions. The functorial formulation of the Frobenius condition is necessary to
model the �-types of homotopy-type theory in a constructive meta-theory.

While this paper was under review, Reid Barton posted a new proof of the Frobenius condition
in the setting where the fibrations as defined here form the right class of a weak factorization
system. By arguing “on the left” – that is showing that pullback along a fibration preserves the left
class – instead of “on the right” as we do here, Barton gives a 1-categorical proof of the Frobenius
condition (Barton, 2024).

2. The Double Functoriality of the Mates Correspondence

Given a pair of adjunctions (F �U, η, ε) and (L� R, ι, ν) and a pair of functors as below, there is
a bijective correspondence between natural transformations as displayed at the upper-left and at
the lower-right implemented by pasting with the units and the counits:
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A C A C C

B D B B D

H

F � α L �→
⇓ ε

H

F � α L

K

U

K

R

⇓ ι

A A C A C

B D D B D

F
� β

H

L �→

⇓ ν

H

� β
⇓ η

K

U R

K

U R

The corresponding pairs of 2-cells α : LH ⇒KF and β : HU ⇒ RK are calledmates.
A pasting diagram calculation proves that the mates correspondence is functorial with respect

to pasting of squares in both the horizontal and vertical directions, as summarized by the following
theorem:

Theorem 2.1. (Kelly-Street 1974). Consider the pair of double categories Ladj and Radj whose:

• objects are categories,
• horizontal arrows are functors,
• vertical arrows are fully specified adjunctions pointing in the direction of the left adjoint, and
• squares of

– Ladj are natural transformations between the squares of functors formed by the left adjoints.
– Radj are natural transformations between the squares of functors formed by the right adjoints.

Then there is an isomorphism of double categories Ladj∼=Radj that is the identity on objects and
horizontal and vertical arrows and acts on squares by taking mates.

The upshot is that a pasting equation between diagrams of squares in Ladj holds if and only if
the corresponding pasting equation between diagrams of squares in Radj holds. We will use this
result liberally in what follows to reduce pasting equations to simpler pasting equations.

Example 2.2. The units and counits of an adjunction (F �U, η, ε) each arise as mates of identity
transformations. By Theorem 2.1, the trivial pasting equality involving identity squares below-left
recovers, upon taking mates, the triangle identity below-right:

A A B A B A A B A B

A B B A B A B B A B

F

F

=

F

η

F

=

F

F F F

U

F

The other triangle identity can be recovered similarly.

Remark 2.3. Example 2.2 reveals that the mate of an isomorphism need not be an isomorphism.

Example 2.4. The conjugate bijection between a natural transformation α : L⇒ F between parallel
left adjoints L� R, F �U and a natural transformation β : U ⇒ R between their right adjoints is a
degenerate case of the mates correspondence in which the horizontal functors are identities.
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A A A A A

B B B B B

F � α L �→
⇓ ε

F � α L
U

R

⇓ ι

A A A A A

B B B B B

L
� β

L �→

⇓ ν
� β

⇓ η
U R U R

Remark 2.5. While the mate of an isomorphism need not be an isomorphism, the conjugate of
an isomorphism is necessarily an isomorphism, as conjugate pairs can be understood as 2-cells in
the vertical 2-categories contained in the double categories of Theorem 2.1.

In a very special case, something even stronger is true: given an adjunction (F �U, η, ε) and
conjugate pairs α : F ⇒ F and β : U ⇒U, then α is an identity if and only if β is an identity.

3. Adjoint Triples and Locally Cartesian Closed Categories

Consider a triple of adjoint functors

C D

L

⊥

R

⊥
U

The units and counits

1C UL LU 1D 1D RU UR 1C
ι µ η ν

compose to define units and counits for the composite adjunctions

C D C D C D

L

⊥

U

U

⊥

R

U

⊥

R

L

⊥

U

With respect to this adjoint triple:

Lemma 3.1. The counit µ of L�U and the unit η of U � R are conjugates with respect to LU � RU
and the identity adjunction, while the unit ι of L�U and the counit ν of U � R are conjugates with
respect to UL�UR.

Proof. The first of these identities is verified by the pasting diagram calculation, which computes
the conjugate of µ by pasting with the unit of LU � RU:

D D D D

D C C D

D D C D

U U � η

U

� µ L � ι
R

U R

=

D D

C D

U � η

R

The others are dual.
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In a locally cartesian closed category, every morphism p : A → X gives rise to an adjoint triple
p! � p∗ � p∗ between the slice categories over A and over X, which we write as:

/A /X

p!

⊥

p∗

⊥

p∗ (3.2)

so as to avoid giving an extraneous name for the locally cartesian closed category itself.
We fix the following notation for the units and counits of these adjunctions:

id/A p∗p! p!p
∗ id/X id/X p∗p

∗ p∗p∗ id/A
ι µ η ν

(3.3)

These natural transformations compose to define units and counits for the composite
adjunctions:

/A /X /A /X /A /X /X /X

p!

⊥

p∗

p∗

⊥

p∗

p∗

⊥

p∗

p!

⊥

p∗

�

−×A

⊥

(−)A

the latter of which defines product with and exponentiation with the object A ∈ /X.

Remark 3.4. It is natural to regard the leftmost adjoints of (3.2) as defining a strictly commutative
functor from the locally cartesian closed category to categories, sending X to /X and p : A → X to
p! : /A → /X. In particular, id! is the identity functor, so we may choose id∗ and id∗ to be identities
as well.

In general, for eachmorphism p : A → X, we choose – once and for all – right adjoints p! � p∗ �

p∗, choosing the identities when p is an identity. In this way, passing to slice categories defines a
normal pseudofunctor from the locally cartesian closed category to the 2-category of categories,
adjoint triples, and conjugate triples of natural transformations, which is a strict functor on the
leftmost adjoints.

We do not make use of the full pseudofunctoriality of the passage to adjoint triples. We do
however make use to the following elementary fact that follows easily from Theorem 2.1.

Lemma 3.5. Any commutative rectangle in a locally cartesian closed category

C B A

Z Y X

r

t s

q

p

y x

gives rise to pasting equations between the canonical natural isomorphisms:

/C /B /A /C /A /C /B /A /C /A

/Z /Y /X /Z /X /Z /Y /X /Z /X

∗

∗ ∗

∗

∗
=

∗

∗ ∗

∗

∗

∗ ∗

∗

∗ = ∗

∗ ∗

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Proof. Starting from the pasting equation between the identity natural transformations:

/C /B /A /C /A

/Z /Y /X /Z /X

r!

t! s!

q!

p! = t!

q!r!

p!

y! x! x!y!

we may take mates first and the vertical direction and then in the horizontal direction to obtain a
pasting equation between the conjugate isomorphisms.

/C /B /A /C /A

/Z /Y /X /Z /X

∗

∗ ∗

∗

∗
=

∗

∗ ∗

∗

∗ ∗ ∗ ∗

Repeating this procedure yields the corresponding pasting equation for the pushforward
functors.

Warning 3.6. While q!r! = (qr)!, the conjugate of this identity transformation typically defines
non-identity isomorphisms r∗q∗ ∼= (qr)∗ and q∗r∗ ∼= (qr)∗, which form a key component of the
pseudofunctor described in Remark 3.4. One could obtain analogous pasting equations in which
the right-hand squares involved the functors (qr)∗ and (qr)∗ at the cost of composing the left-hand
pasted rectangles with these isomorphisms.

Lemma 3.7. For any pullback square in a locally cartesian closed category

B A

Y X

s
�

q

p

x

all of the mates of the identity transformation p!q! = x!s! are isomorphisms including in particular

/B /A /B /A

/Y /X /Y /X

q!

s∗ ∼=�

q∗

p∗s∗

x!

∼=� p∗

x∗

(3.8)

The statement refers to all natural transformations obtained by iteratively applying the mates
correspondence, where applicable. For instance, after taking mates twice, the identity transforma-
tion p!q! = x!s! is carried to its conjugate transformation s∗x∗ ∼= q∗p∗, which is an isomorphism by
Remark 2.5. The iterated mate p∗q∗

∼= x∗s∗ is shown to be invertible similarly. The invertibility of
the mates on display in (3.8) is more delicate, requiring the pullback condition. We refer to these
as the Beck–Chevalley isomorphisms (Pavlović, 1991, Section 14).

Proof. The left-hand and right-hand mates of (3.8) are conjugates. Thus by Remark 2.5, it suffices
to prove the invertibility of the former, which we do by arguing that its component at any y : Z →

Y is an isomorphism. This component is given by the canonical map from the pullback of y over
s composed with q to the pullback of xy along p.

https://doi.org/10.1017/S0960129524000094 Published online by Cambridge University Press



Mathematical Structures in Computer Science 7

Z

Z B A

Z Y X

∗ ( )

∗

Since the upper right-hand square is a pullback, both rectangles are pullbacks, proving that this
comparison map is invertible as desired.

Remark 3.9. Now consider a morphism

B A

X

pq

q

p

in /X. The morphism q induces a conjugate pair of natural transformations

/X /X /X /X

−×B

−×A

⇓ q

(−)B

(−)A

⇑ q

defined as follows:

/B /X /X /X

/B /A /X /A /A

/A /A /X /A /B

/X /X /X /B

(pq)!

q! p!

� η

p∗

∼=

∼=

q∗ � µ
p∗

q∗

q∗(pq)∗

p∗

(pq)∗

∼=

(pq)∗

That is, these transformations are defined as whiskered composites of the counit µ and unit η

of q! � q∗ and q∗ � q∗, respectively, padded by the canonical isomorphisms between the functors
(pq)∗ ∼= q∗p∗ and p∗q∗

∼= (pq)∗. Note also that these isomorphisms are also conjugates, with the
isomorphism q∗p∗ ∼= (pq)∗ also the conjugate of the identity (pq)! = p!q!.

4. The Proof

Consider a locally cartesian closed category with a class of trivial fibrations. Pick an object I which
we think of as an “interval.” For any X, we have natural maps:

X
I

X
I × I X

� ε
(4.1)
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8 S. Hazratpour and E. Riehl

called projection and evaluation that are defined as components of the following composite
natural transformations associated with the map ! : I → ∗ from (3.3):

� �

/I /∗

/∗ /I /∗ /∗

!!

� µ

!∗ !∗

!∗ ε�

/∗ /I /∗

/I /I /∗

/∗ /∗ /∗

!∗

� ν

!!

!∗

!!

� µ!∗ !∗

(4.2)

Definition 4.3. Amap p : A → X is a fibration just when the induced map δ ⇒ p to the pullback in
the naturality square for the evaluation transformation is a trivial fibration:

A
I × I

Aε A

X
I × I X

ε

pI×I

δ⇒p

ε∗p

p∗ε

�
p

ε

(4.4)

The map δ ⇒ p encodes “evaluation at a generic point” in I in a sense elaborated upon in
Appendix A.

Our aim is to prove the following theorem.

Theorem 4.5. Coquand. Consider a locally cartesian closed category with an object I and a class
of trivial fibrations, which admit sections and are stable under pushforward and retract. Then the
fibrations are also closed under pushforward.

Our proof follows the outline described in the introduction. It remains only to construct the
retract diagram (1.1), which we achieve over a series of lemmas.

Lemma 4.6. The component of the whiskered counit

/XI /XI × I

/X /XI × I /XI × I

� ∗

⇓ ν

ε∗

�∗ (4.7)

at p : A → X is the map δ ⇒ p.

Proof. The domain � ∗�∗ε
∗ of the natural transformation (4.7) is right adjoint to the functor

ε!�
∗�!. The composite left adjoint ε!�

∗ sends x : Z → X
I to its transpose ε · (x× I) : Z × I → X,

so the right adjoint �∗ε
∗ sends p : A → X to pI : A

I → X
I. Thus, the functor � ∗�∗ε

∗ sends p to

pI × I.

This identifies the whiskered natural transformation νε∗ as a map from A
I × I to Aε over X

I ×

I. By the universal property of the pullback that defines Aε , to identify this map it suffices to
consider the pasted composite with µ : ε!ε

∗ ⇒ id, since this pasting corresponds to composing

with the pullback square and considering the resultingmapA
I × I → A overX. But then the pasted

composite in question

https://doi.org/10.1017/S0960129524000094 Published online by Cambridge University Press
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/X /X × I /X

/X × I /X × I /X

/X /X /X

∗
!

∗

!

∗ ∗

is the counit for the composite adjunction ε!�
∗ � �∗ε

∗. The left adjoint of this adjunction sends

x : Z → X
I to its transpose ε · (x× I) : Z × I → X, while the right adjoint sends p : A → X to

pI : A
I → X

I so the counit map is the map ε : A
I × I → A over X as claimed.

The commutative square below-left induces a commutative square between the left adjoints
below-center.

A × I A /A × I /A /A × I /A

X × I X /X × I /X /X × I /X

I× ( I× )!

!

! ( I× )∗

∗

⇑ ∗

! ∗

After taking mates first in the vertical direction, then in the horizontal direction, and then in
the vertical direction again, we obtain a canonical natural transformation displayed above-right
whose component at q : B → A defines a map κ : (�AB)ε → �AI×I(Bε).

Starting from the pullback square

A
I × I A

I

X
I × I X

I

�

pI×I
�

pI

�

by Lemma 3.7, a similar process – taking successive mates of identity transformations – defines a
pair of isomorphisms displayed below:

/AI × I /AI /AI × I

/XI × I /XI /XI × I

(pI×I)∗ ∼=
∼=pI∗

� ∗ �∗

(pI×I)∗

� ∗ �∗

(4.8)

Lemma 4.9. The pasted composites are equal

/AI × I /AI × I /AI × I /AI × I

/AI × I /AI /AI × I /XI × I /XI × I

/XI × I /XI /XI × I /XI × I /XI /XI × I

⇑ ν (pI×I)∗ (pI×I)∗

(pI×I)∗ ∼=
∼=pI∗

� ∗ �∗

(pI×I)∗

=

⇑ ν

� ∗ �∗ � ∗ �∗

Proof. Taking mates with respect to the vertical adjunctions, then the horizontal adjunctions, and
then the vertical adjunctions again yields the pasting equation:

https://doi.org/10.1017/S0960129524000094 Published online by Cambridge University Press



10 S. Hazratpour and E. Riehl

/A × I /A /A × I /A × I /A /A × I

/X × I /X /X × I /A × I /A × I

/X × I /X × I /X × I /X × I

( I× )!
I

!

!
∗

( I× )!

!
∗

! ∗
?
=

( I× )!

⇑

( I× )!⇑

which holds if and only if

/AI × I /XI × I /XI /AI × I /AI /XI

/AI × I /XI × I /XI × I /AI × I /AI × I /XI × I

(pI×I)! �!

⇑ ι � ∗ ?
=

�!

⇑ ι � ∗

pI
!

∼= � ∗

(pI×I)! (pI×I)!

This is because we can post-compose the first pasting equality with the inverse of the displayed
Beck–Chevalley isomorphism to get the second pasting equality and vice versa. Upon takingmates
in the vertical direction, this reduces to a pasting equation between identities, which of course
holds.

The natural isomorphism (4.8) composes with κ to define a natural transformation:

/AI × I /AI /AI × I /A

/XI × I /XI /XI × I /X

(pI×I)∗ ∼=
∼=pI∗

� ∗ �∗

(pI×I)∗ ⇑ κ

ε∗

p∗

� ∗ �∗ ε∗

(4.10)

whose component at q : B → A defines a map κ ′ : (�AB)I × I → �AI×I(B
I × I).

Lemma 4.11. For any p : A → X and q : B → A, the square of maps in /XI × I commutes

(�AB)I × I �AI×IB
I × I

(�AB)ε �AI×I(Bε)

κ ′

δ⇒p∗q (pI×I)∗(δ⇒q)

κ

Proof. Here the top-right natural transformation in the statement is the left pasted composite,
while the left-bottom natural transformation is the right pasted composite:

/AI × I /AI × I /A /AI × I /AI × I /A

/AI × I /AI /AI × I /A /XI × I /XI × I /X

/XI × I /XI /XI × I /X /XI × I /XI /XI × I /X

⇑ ν

∗

(pI×I)∗ (pI×I)∗ ⇑ κ

∗

p∗

(pI×I)∗ ∼=
∼=pI∗

∗
∗

(pI×I)∗ ⇑ κ

∗

p∗

?
=

⇑ ν

∗

∗ ∗ ∗ ∗ ∗ ∗

This follows immediately from Lemma 4.9.
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It remains to construct the right-hand square of the retract diagram (1.1). This is where we use
the hypothesis that p : A → X is a fibration.

Lemma 4.12. A section s to δ ⇒ p induces a natural transformation

/AI × I /A

/XI × I /X

(pI×I)∗ ⇓ τ

ε∗

p∗

ε∗

that defines a retraction to κ : ε∗p∗ ⇒ (pI × I)∗ε
∗. In particular, such a natural transformation

exists when p : A → X is a fibration.

Proof. Any section s to δ ⇒ p defines a commutative diagram

A
I × I

Aε A

X
I × I X

ε

pI×I

δ⇒p

s

ε∗p

p∗ε

�
p

ε

(4.13)

On account of the commutative diagram (4.13), the natural isomorphism between pullbacks
factors as follows:

/Aε /A

/XI × I /X

∼=

(p∗ε)∗

(ε∗p)∗

ε∗

p∗ =

/Aε /Aε /A

/AI × I /A

/XI × I /XI × I /X

∼=

(p∗ε)∗

∼=

∼=

s∗

ε∗
(ε∗p)∗

(pI×I)∗

ε∗

p∗

by Lemma 3.5 and Warning 3.6. This gives rise to a pasting equation between the mates

/Aε /A

/XI × I /X

∼=(ε∗p)∗

(p∗ε)∗

p∗

ε∗

=

/Aε /Aε /A

/AI × I /A

/XI × I /XI × I /X

(ε∗p)∗

s∗ ⇑ σ

(p∗ε)∗

∼=

(pI×I)∗ ⇑ κ

ε∗

p∗

ε∗

where the unlabeled natural transformation in the left-hand square is the Beck–Chevalley isomor-
phism associated with the pullback. Composing σ with the pair of unlabeled isomorphisms in the
diagram above, we obtain a retract τ : �AI×I(Bε)→ (�AB)ε to κ : (�AB)ε → �AI×I(Bε).
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12 S. Hazratpour and E. Riehl

Consider the pasted composite:

/AI × I /AI /AI × I /A

/XI × I /XI /XI × I /X

(pI×I)∗ ∼=
∼=pI∗

� ∗ �∗

(pI×I)∗ ⇓ τ

ε∗

p∗

� ∗ �∗ ε∗

(4.14)

whose unlabeled isomorphisms are the inverses of the isomorphisms (4.8). This defines the final
natural transformation τ ′ : �AI×I(B

I × I)⇒ (�AB)I × I, appearing in the diagram (1.1). The
proof of Theorem 4.5 is completed by the following proposition.

Proposition 4.15. The maps that we have constructed for any map q : B → A and any fibration
p : A → X assemble into a retract diagram:

(�AB)I × I �AI×I(B
I × I) (�AB)I × I

(�AB)ε �AI×I(Bε) (�AB)ε

κ ′

δ⇒p∗q (pI×I)∗(δ⇒q)

τ ′

δ⇒p∗q

κ τ

Proof. Lemma 4.11 verifies the commutativity of the left-hand square under weaker hypothe-
ses, while Lemma 4.12 proves that the bottom composite τ · κ is the identity. To see that

τ ′ : �AI×I(B
I × I)⇒ (�AB)I × I is a retract of κ ′ : (�AB)I × I → �AI×I(B

I × I), we show that
(4.14) is a retract of (4.10). This follows easily from Lemma 4.12 and the observation that the
unlabeled isomorphisms (4.8) in these diagrams are pairwise inverses.

Finally, to prove the commutativity of the right-hand square in the retract diagram, we must
show that the pasted composite

/AI × I /AI /AI × I /A

/XI × I /XI /XI × I /X

/XI × I /XI × I /X

(pI×I)∗ ∼=
∼=pI∗

� ∗ �∗

(pI×I)∗ ⇓ τ

ε∗

p∗

� ∗ �∗ ε∗

⇓ ν

ε∗

equals the pasted composite

/AI × I /AI /AI × I /A

/AI × I /AI × I /A

/XI × I /XI × I /X

� ∗ �∗ ε∗

(pI×I)∗

⇓ ν

(pI×I)∗ ⇓ τ

ε∗

p∗

ε∗

but, as in the proof of Lemma 4.11, this follows immediately from Lemma 4.9.
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Note

1 Pushforward defines a functor between slice categories. The Frobenius property concerns stability of the objects of these

categories under the pushforward functor, while the generalized Frobenius property concerns stability of the morphisms under

the pushforward functor, which implies the object version (Gambino and Sattler, 2017, Section 6).
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Appendix A. Evaluation at the generic point

In this section, we explain the connection between the notion of fibration introduced in
Definition 4.3 and evaluation at the generic point in the slice over I. We first explain the meaning
of the phrase “evaluate at the generic point in the slice over I.” We continue working with the
notation for adjoint triples introduced in (3.2) and (3.3).

Remark A.1. The diagonal δ defines a map over I displayed below-left

I I × I

I

δ

π
� /I /I

(−)I

⇑ δ

that is thought of as the “generic point” of I when considered as an object in /I: in the slice over I,
the domain of δ is the terminal object, while the codomain of δ is the object “I,” pulled back to this
slice. The natural transformation that defines “evaluation at the generic point in the slice over I” is
the corresponding restriction map displayed above-right from exponentiation with I, considered
as an object over I, to exponentiation with the terminal object in the slice over I, the latter being
naturally isomorphic to the identity functor. By Remark 3.9, this natural transformation is defined
by the pasting diagram:
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/I /I

/I × I /I × I

/I /I × I /I

/I /I

� η

π∗

∼=

π∗

δ∗

δ∗

∼=

Its restriction along !∗ : /∗ → /I specializes this “evaluation at the generic point in the slice over
I” natural transformation to objects that are pulled back to live in the slice over I. We refer to this
restricted natural transformation as “evaluation at the generic point of I.” Upon pasting with the
natural isomorphisms defined by taking iterated mates of the identity transformation associated
with the pullback square below-left

I × I I

I ∗

π

µ

�
!

εδ
I
�

/∗ /I /I /I

/I /I × I /I × I

/I /I × I /I /I

/∗ /I /I /I

!∗

µ∗

!∗ π∗∼=

� η

π∗

∼=

µ∗

∼=

δ∗

δ∗

!∗

!∗ π∗ ∼=

(A.2)

we may regard the “evaluation at the generic point of I” natural transformation as a map whose

component at X ∈ /∗ has the form εI : X
I × I → X × I.

The components of the natural transformation (A.2) lie in the slice over I. The natural transfor-
mation (A.2) may be transposed across the adjunction !! � !∗ by post-whiskering with !! : /I → /∗

and pasting with the counit µ to define a natural transformation:

/∗ /I /I /I /∗

/I /I × I /I × I

/I /I × I /I /I

/∗ /I /I /I /∗

/∗ /∗ /∗ /∗

!∗ !!

µ∗

!∗ π∗∼=

� η

π∗

∼=

µ∗

∼=

δ∗

δ∗

!∗

!∗ π∗ ∼=
!!

� µ!∗ !∗

(A.3)
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The effect of the adjoint transposition from (A.2) to (A.3) on the component at X ∈ /∗ is to post-
compose with the projection � : X × I → X and forget that this map lies over I.

Note that the boundary of the natural transformation (A.3) agrees with the boundary of the
natural transformation ε defined in (4.2), and we will show that these natural transformations
agree.

Lemma A.4. The counit ε of the adjunction !!!
∗ � !∗!

∗ is equal to the composite of the “evaluation
at the generic point” natural transformation followed by the projection away from I. That is, for any
X ∈ /∗,

X
I × I X × I

X

ε

εδ
I

�

Proof. We must show that the pasted composite (A.3) agrees with the counit ε. Taking mates in
the vertical direction of the latter gives the identity, while for the former this yields

/∗ /I /I /I /∗

/I /I × I /I × I

/I /I × I /I /I

/∗ /I /I /I /∗

/∗ /∗ /∗ /∗

!
∗ !!

∗

!
∗ ∗ ∗

∗

∗

∗

!
∗

!! !

!!

!! !!

Thus, we must show that this pasted natural transformation is the identity. As this natural
transformation is the transpose along !! � !∗ of the natural transformation

/∗ /I /I /I

/I /I × I /I × I

/I /I × I /I /I

/∗ /I /I /I

!
∗

∗

!
∗ ∗ ∗

∗

∗

∗

!
∗

!! !

/∗ /I /I /∗ /I

/I /I × I /I /I /I

/∗ /I /I /∗ /I

!
∗

!
∗ ∗

!
∗

!
∗

∗

∗
?
=

!!

!
∗

!! !

!
∗

it suffices to show that this equals the whiskered unit ι!∗, that is, that the pasting equation displayed
above right holds. Taking mates in the horizontal direction yields a pasting equation between
natural transformations that are each post-whiskered with !!.
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/∗ /I /I /∗ /I

/I /I × I /I /I /I

/∗ /I /I /∗ /I

!!

!
∗ ∗

!
∗

!!

!

!

?
=

!!

!!

!! !

!!

This pasting equation holds because the top rows of these natural transformations, where the non-
identity cells live, are equal, as can be seen by taking mates once more in the vertical direction.

Proposition A.5. For any p : A → X, the map δ ⇒ p is isomorphic to the Leibniz exponential in the
slice over I of the map p× I with the diagonal δ : I → I × I.

Proof. By applying the functor !∗ : /∗ → /I, the map p can be pulled back to define a map
p× I : A × I → X × I in the slice over I. By Lemma A.4, the pullback (4.4) factors as below-left

A
I × AI

I × I

A A× I A A A× I

X
I × I X× XXI

I × I X× I

δ
I

pI×I

δ⇒p

δ
I

pI×I

δ⇒p

∗p

(p×I)∗ δ
I

p×I p ∗p

(p×I)∗ δ
I

p×I

δ
I

δ
I

and thus it suffices to consider the pullback diagram above-right which lives in /I. By Remark A.1,
the top and bottom horizontal components are defined by evaluation with the generic point in
the slice over I for the objects A × I and X × I, respectively. Thus, this diagram defines the Leibniz
exponential with the generic point in the slice over I as claimed.

Appendix B. Type-theoretic interpretation of the proof

In this section, we re-express the proof given above in type theory. For a clear exposition of the
type theory for a locally cartesian closed category, see Newstead (2018). We first redescribe the
retract diagram (1.1). Suppose a map p : A → X is classified by a type α : X → U, and a map

q : B → A is classified by a type β : X.α → U. The Leibniz exponential δ ⇒ p : A
I × I → Aε then

has the following type:

x : I → X , i : I � (δ ⇒ p) :

⎛

⎝

∏

j:I

α(x(j))

⎞

⎠ → α(x(i))

and given a term a :
∏

j:I α(x(j)) in the same context, we have (δ ⇒ p) (a)� a(i). Thus, the map

δ ⇒ p∗q : (�AB)I × I → (�AB)ε has the type:

x : I → X , i : I � (δ ⇒ p∗q) :

⎛

⎝

∏

j:I

∏

a:α(x(j))

β(x(j), a)

⎞

⎠ →

⎛

⎝

∏

a:α(x(i))

β(x(i), a)

⎞

⎠
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The map κ : (�AB)ε → �AI×I(Bε) is given by the following term:

x : I → X , i : I � κ :

⎛

⎝

∏

a:α(x(i))

β(x(i), a)

⎞

⎠ →

⎛

⎜

⎝

∏

a:
∏

k:I α(x(k))

β(x(i), a(i))

⎞

⎟

⎠
,

and given a term w :
∏

a:α(x(i)) β(x(i), a) in the same context, we have

κ(w)� λa.w(a(i)) .

The map κ ′ : (�AB)I × I → �AI×I(B
I × I), constructed from κ , corresponds to a term

x : I → X , i : I � κ ′ :

⎛

⎝

∏

j:I

∏

a:α(x(j))

β(x(j), a)

⎞

⎠ →

⎛

⎜

⎝

∏

a:
∏

k:I α(x(k))

∏

j:I

β(x(j), a(j))

⎞

⎟

⎠
,

and given a term v :
∏

j:I

∏

a:α(x(j)) β(x(j), a) in the same context, we have

κ ′(v)� λa. λj. v(j, a(j)) .

The composite pasting of the two isomorphisms in the diagram (4.10), evaluated at the component
ε∗(q), corresponds to the canonical isomorphism of types

∏

j:I

∏

a:
∏

j:I α(x(j))

β(x(j), a(j)) ∼=
∏

a:
∏

j:I α(x(j))

∏

j:I

β(x(j), a(j)) (B.1)

induced by changing the order of the �-types. Furthermore, we can see that the diagram in

Lemma 4.11 commutes since the left-bottom composite is v �→ v(i) �→ λa. v(i, a(i)) and the top-
right one is v �→ λa. λj. v(j, a(j)) �→ λa. v(i, a(i)) and by function extensionality, we conclude that
the two compositions are classified by the same term.

Now we examine the types of τ and τ ′. A section s to the map δ ⇒ p corresponds to a term:

x : I → X , i : I � s : α(x(i))→
∏

j:I

α(x(j)) (B.2)

such that for every term a : α(x(i)) in the same context, s(a)(i)= a. The retract τ : �AI×I(Bε)→
(�AB)ε of κ corresponds to the term:

x : I → X , i : I � λg. λa. g(s(a)) :

⎛

⎜

⎝

∏

a:
∏

k:I α(x(k))

β(x(i), a(i))

⎞

⎟

⎠
→

⎛

⎝

∏

a:α(x(i))

β(x(i), a)

⎞

⎠ ,

Note that the type of g(s(a)) is β(x(i), a(i))[s(a)/a]= β(x(i), a) since s(a)(i)= a. To see that this
map is indeed a retraction of κ , observe that for any term w :

∏

a:α(x(i)) β(x(i), a), we have

λg. λa. g(s(a)) ◦ λw. λa.w(a(i)) (w)= (λg. λa. g(s(a)))(λa.w(a(i)))

= λa. (λa.w(a(i)) s(a))

= λa.w(s(a) (i))

= λa.w(a)

where the first three equalities are the usual reduction by function application and the last equality
is by substitution along s(a)i= a. Therefore, by function extensionality, we have

λg. λa. g(s(a)) ◦ λw. λa.w(a(i))= id
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The retract τ ′ : �AI×I(B
I × I)→ (�AB)I × I of κ ′ is given by the following term:

x : I → X , i : I � λf . λj. λa. f (s(a), j) :

⎛

⎜

⎝

∏

a:
∏

k:I α(x(k))

∏

j:I

β(x(j), a(j))

⎞

⎟

⎠
→

⎛

⎝

∏

j:I

∏

a:α(x(j))

β(x(j), a)

⎞

⎠

Here is where we make use of the generic point i : I appearing in the context. We apply the section
s when i is replaced by j to a term a : α(x(j)) to produce a term s(a) : �k:Iα(x(k)).

That τ ′ is a retract of κ ′ follows from the fact that τ is a retract of κ and the invertible 2-cells
pasted to the left of κ and τ are pairwise inverses induced by changing the order of �-types in
(B.1). More explicitly, for every v :

∏

j:I

∏

a:α(x(j)) β(x(j), a),

τ ′ ◦ κ ′ (v)= τ ′(λa. λj. v(j, a(j)))= λj. λa. (λa. λj. v(j, a(j))(s(a), j)= λj. λa. v(j, s(a)(j))= λj. λv. v(j, a)

where the last equality holds because s(a)(j)= a. Function extensionality implies that τ ′ ◦ κ ′ = id.
This concludes the description of (1.1).

Finally, we see that the type-theoretic version of our proof matches Coquand’s type-theoretic
proof, which uses (1.1) to construct a section to the map ∂ ⇒ p∗q using a section t to ∂ ⇒ q.

A section t to the map δ ⇒ q corresponds to a term:

x : I → X , i : I , a :
∏

k:I

α(x(k))� t : β(x(i), a(i))→
∏

j:I

β(x(j), a(j))

such that for every term b : β(x(i), a(i)) in the same context, t(b)(i)= b. The section (pI × I)∗(t) to

(pI × I)∗(δ ⇒ q) is given by the term:

x : I → X , i : I � λg. λa. t(g(a)) :

⎛

⎜

⎝

∏

a:
∏

k:I α(x(k))

β(x(i), a(i))

⎞

⎟

⎠
→

⎛

⎜

⎝

∏

a:
∏

k:I α(x(k))

∏

j:I

β(x(j), a(j))

⎞

⎟

⎠

The retract diagram (1.1) constructs a section to δ ⇒ p∗q given by the composite map τ ′ ◦

(pI × I)∗(t) ◦ κ . This map, when applied to the term w :
∏

a:α(x(i)) β(x(i), a) in the same context,
is calculated as follows:

(λf . λj. λa. f (s(a), j)) (λg. λa. t(g(a))) (λa.w(a(i)))= (λf . λj. λa. f (s(a), j)) (λa. t(λa.w(a(i))(a)))

= (λf . λj. λa. f (s(a), j)) (λa. t(w(a(i))))

= λj. λa. (λa. t(w(a(i))))(s(a), j))

= λj. λa. t(w(s(a)(i)))(j)

Notice that although s(a)(j)= a, it is not necessary that s(a) i= a holds. Therefore, the last term
above cannot be simplified further.

Appendix C. Frobenius for structured fibrations

In this section, we consider the constructive content of our proof that the fibrations of
Definition 4.3 are stable under pushforward. We show that under the natural functorial enhance-
ments of the hypotheses on the class of trivial fibrations stated in Theorem 4.5 that we may define
a functorial Frobenius operator in the sense of Gambino–Sattler (Gambino and Sattler, 2017),
demonstrating that our proof that the fibrations are closed under pushforward defines a map of
structured fibrations. In parallel, we prove, subject to further natural hypotheses on the structured
trivial fibrations, that the fibration structures we define on pushforwards of structured fibrations
are stable under substitution in a sense we now describe.
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“Stability under substitution” refers to an important property of classes of fibrations namely,
their stability under pullbacks along arbitrary maps. For instance, if our hypothesized class of
trivial fibrations is stable under pullback, then the class of fibrations defined by (4.4) is again stable
under pullback since a pullback square as below-left gives rise to a pullback square as below-right:

C A C
I × I A

I × I

Z X Cε Aε

r

g

�
p

�

gI×I

δ⇒r
�

δ⇒p

f 〈f I×I,g〉

(C.1)

Thus, if p is a fibration in the sense of Definition 4.3, then so is r.
In constructive settings, it is natural to ask a bit more. There one frequently encounters struc-

tured trivial fibrations and structured fibrations encoded by categories over the arrow category.
Two further constructive properties – the pullback stability of the structured fibrations and the
existence of canonical fibration structures on pullbacks of structured fibrations – are encoded in
the following axiomatization, introduced by Shulman under the name notion of fibered structure
(Shulman, 2019, 3.1) and by Swan under the name fibred notion of structure (Swan, 2022, 3.2).

For the remainder of this section, we work in a fixed locally cartesian closed category E , if neces-
sary replacing E by an equivalent category so that we may choose pullbacks to make cod : E2 → E

into a cloven Grothendieck fibration.

Definition C.2. Swan 2022, 3.2. A fibred notion of structure is a category over the arrow cate-
gory u : F → E2 so that cod · u : F → E is a Grothendieck fibration, u is a cartesian functor, and
u “creates cartesian lifts,” meaning it restricts to define a discrete fibration u : Fcart → E2

cart on the
subcategories of cartesian arrows:

F E2

E

u

cod·u cod

Swan observes that under these hypotheses, the Grothendieck fibration cod · u : F → E can be
split so that u strictly preserves the splitting (Swan, 2022, 5.1).

Our first assumption is

(STF0) The trivial fibrations define a fibered notion of structure u : TFib→ E2.

As our aim is to understand the pullback stability of the pushforward of structured fibrations,
we use the following definition, which isolates just one of the axioms in Definition C.2, since it
captures the property that is most directly related to stability under substitution.

Definition C.3. A category of stably structured fibrations over E is given by a discrete fibration
u : Fcart → E2

cart.

A fibred notion of structure restricts to define a category of stably structured fibrations,
by restricting to the wide subcategory of cartesian arrows. In particular, by (STF0), the trivial
fibrations define a category of stable structured fibrations u : TFibcart → E2

cart. The intention of
Definition C.3 is to allow us to introduce a category of structured fibrations over the category of
arrows and pullback squares without worrying about what more general morphisms of structured
fibrations might be.

The main idea of Definition C.3 is that a fibration structure on a map p induces a universal
fibration structure on its pullback r. If, as suggested by the definition of fibration given in (4.4),
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a fibration structure on p is defined to be a trivial fibration structure on δ ⇒ p, then we have a
category of stably structured fibrations as well defined by pullback.

Definition C.4. Define the category of stably structured fibrations by:

Fibcart TFibcart

E2
cart E2

cart

δ⇒(−)

u
�

u

δ⇒(−)

(C.5)

To define a stable functorial Frobenius operator, we require additional assumptions on the
class of trivial fibrations, each of which is a natural constructive enhancement of the assumptions
(TF1)–(TF3) enumerated in the introduction.

Definition C.6. The free retract is formed by the following pushout of categories:

2 1

3 R

d1

!

�

r

The category R contains two objects – r the “retract” and c the “center” – and two non-identity
morphisms – d2 : r → c the section and d0 : c→ r the retraction.

Lemma C.7. The category of maps with a specified section defines a category of stably structured
fibrations:

ER
cart ER

E2
cart E2

d0
�

d0

Proof. A section to a map pulls back to define a section to its pullback (Shulman, 2019, 3.4).

In order for our stably structured trivial fibrations to have a stable choice of section, we require
an assumption, giving a constructive enhancement of (TF1):

(STF1) There is a map of discrete fibrations:

TFibcart ER
cart

E2
cart

u

s

d0

In other words, we ask that every trivial fibration has a section and that such sections can be chosen
so as to be stable under pullbacks.

Assumption (TF2) asks that trivial fibrations, when considered as arrows in a slice category,
are stable under pushforward along arbitrary maps. By the Beck–Chevalley property, pushforward
can be regarded as a functor between the categories of composable triples and composable pairs
of arrows, respectively, and cartesian natural transformations – natural transformations whose
components are pullback squares – between them:
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E4
cart E3

cart

E

�

cod cod

On objects this functor acts by sending a composable triple (r, q, p) as below-left, to the compos-
able pair (p∗r, p∗q) below-right, where p∗q denotes the action of the pushforward functor on the
object q, while p∗r denotes the action on the morphism r in the slice over domp:

C B �AC �AB

A X X

r

qr

q
�→

p∗r

p∗(qr) p∗q
p

This construction is functorial in pullback squares between the composable triples but is not
functorial on the larger category of natural transformations between composable triples.

Now use a pullback to form the category whose objects are triples comprised of a structured
trivial fibration followed by a composable pair of maps out of its codomain, as below-left:

TFibcart ×E E3
cart E4

cart TFibcart ×E E2
cart E3

cart

TFibcart E2
cart TFibcart E2

cart

ev01

u×id

�
ev01 ev01

u×id

�
ev01

u u

Another pullback defines a similar category whose objects are pairs comprised of a structured
trivial fibration together with a map out of its codomain, as above-right. Our next assumption is a
constructive enhancement of (TF2):

(STF2) There is a lift of the pushforward functor:

TFibcart ×E E3
cart TFibcart ×E E2

cart

E4
cart E3

cart

u×id u×id

�

Example C.8. The condition (TF2) is closely related to the generalized functorial Frobenius con-
dition of Gambino and Sattler (2017, Section 6). Gambino and Sattler show that if the category of
structured trivial fibrations is defined by a right lifting data, then this condition follows from the
functorial Frobenius condition which dually considers a lift of the pullback to a functor defined
on the category of cospans comprised of a structured trivial fibration and a structured left map. In
particular, this condition is satisfied when the left maps are the monomorphisms.

Example C.9. In Awodey (2023, Section 2), Awodey considers a related setting of a t : 1 → � and
shows that for any object X there is an associated polynomial monad:

TX : /X /X × � /X
t∗ �!

Algebras for this monad define a fibred notion of structure for which (TF2) holds. In fact, this is
a instance of C.8 where J is the category of pullbacks of the universal cofibration t and pullback
squares between them.
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Our final assumption enhances (TF3) the stability of trivial fibrations under retracts in the
arrow category. By forming a pullback, we may define a category whose objects are retract
diagrams of arrows in which the center arrow is a structured trivial fibration:

TFibcart ×E2

cart
E

2×R

cart TFibcart

E
R×2

cart E2
cart

u×id
�

u

evc

In this category, the morphisms are natural transformations whose components define pullback
squares between the center and the retract arrows, with the center morphism a morphism of
structured trivial fibrations.

Our final assumption is

(STF3) There is a lift of the evaluation at the retract functor:

TFibcart ×E2

cart
E

2×R

cart TFibcart

E
R×2

cart E2
cart

u×id

evr

u

evr

Example C.10. When the structured trivial fibrations are defined by right lifting data, retracts of
such maps inherit canonically specified right lifting data in such a way that (STF3) holds.

Now we put these assumptions together. Consider the pushforward functor � : E3
cart → E2

cart
that sends a composable pair (q, p) to p∗q, pushing forward the arrow q as an object along p.

Proposition C.11. The pushforward functor lifts to the stably structured category Fibcart:

Fibcart ×E Fibcart Fibcart

E3
cart E2

cart

u×u

�

u

�

that defines a cartesian functor.

Proof. On account of the pullback (C.5), it suffices to show that the composite functor has a lift:

Fibcart ×E Fibcart TFibcart

E3
cart E2

cart E2
cart

u×u

δ⇒�

u

� δ⇒(−)

Our proof of Theorem 4.5 demonstrates that the bottom-left composite factors as:

Fibcart ×E Fibcart E2
cart ×E Fibcart E

2×R

cart E2u×id evr

through the construction of the retract diagram (1.1) associated with a composable pair of
morphisms, the second of which is a fibration.

https://doi.org/10.1017/S0960129524000094 Published online by Cambridge University Press



Mathematical Structures in Computer Science 23

The retract diagram is constructed from the diagram that sends a composable pair (q, p) ∈
E2
cart ×E Fibcart to the diagram:

B
I

B
I × I B

A
I

A
I × I A

X
I

X
I × I X

qI

� ε

qI×I q

pI

� ε

pI×I p

� ε

The domain and codomains of � and ε are cartesian functors. It follows that their naturality
squares for a pair of composable morphisms pull back along any f : X

′ → X to define natural-
ity squares for the pulled back morphisms. To build the retract diagram from this data, we first
form the pullbacks in the right-hand squares to define the maps δ ⇒ q and δ ⇒ p. By (STF0) and
Definition C.4, this defines a cartesian functor from Fib×E Fib to the category of such diagrams
where the pullback corner maps are structured trivial fibrations.

Then by (STF1) there is a further cartesian functor that extends this diagram by incorpo-
rating the canonical section s to δ ⇒ p. A further cartesian functor then constructs the retract
diagram (1.1). Here, the Beck–Chevalley condition tells us that constructions of the vertical mor-
phisms and the canonical transformations κ and κ ′ are stable under pullback; the Beck–Chevalley
condition and (STF1) provide the pullback stability of the construction of the morphisms τ and
τ ′. Finally, (STF2) provides a pullback stable trivial fibration structure on the center morphism.
This defines the desired lift:

Fibcart ×E Fibcart TFibcart ×E2

cart
E

2×R

cart TFibcart

E2
cart ×E Fibcart E

2×R

cart E2
cart

id×u

evr

u

evr

To conclude, (STF3) defines the lifted functor projecting to the retract.
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