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Abstract—Quantum Computing has been shown to provide
exponential performance improvements in several tasks, such as
cryptography, healthcare, etc. This paper presents a new frame-
work for quantum high-level synthesis, called QHLS, that aims
to facilitate programmers using quantum computers. Currently,
quantum-computer programmers need extensive linear algebra
and quantum mechanics knowledge, which can be challenging
for traditional software programmers. Additionally, the current
quantum programming paradigm is not scalable, and it can be
difficult to combine quantum circuits to create a more complex
functionality. QHLS addresses these issues by enabling the auto-
matic generation of quantum circuit descriptions directly from
high-level behavioral specifications (using languages like C or
C++). This simplifies the programming of a quantum computer,
making it more accessible to a wider range of programmers. Our
experiments show that QHLS can successfully translate high-
level software programs containing various types of statements
(such as arithmetic, logical, and conditional operations) into
functionally equivalent quantum circuits.

Index Terms—High-level synthesis (HLS), Quantum Circuits.

I. INTRODUCTION

Quantum computers have the potential to perform certain
computational tasks much faster than classical computers that
rely on CMOS technology. This is because quantum computers
use principles such as quantum entanglement and superposi-
tion, which allow them to perform certain operations more
efficiently than their classical counterparts, quantum com-
puters utilize quantum mechanic effects, including quantum
superposition and entanglement, enabling qubits to perform
computation on any states from |0⟩ to |1⟩ [1]. There has
been a great deal of research focused on developing quantum
algorithms that take advantage of these quantum principles to
achieve exponential speed-ups over classical algorithms [2].
For example, Shor’s algorithm showed that a quantum com-
puter could factorize large numbers in polynomial time, po-
tentially compromising current encryption standards [3]. There
are various approaches to building quantum computers, includ-
ing using superconducting materials, trapped ions, quantum
annealing, and photonics to create quantum entanglement and
superposition [4]–[7].

Python libraries like Qiskit, Cirq, and Tket provide quantum
computing platforms that enable the generation of quantum
circuits at the quantum gate or pulse level [8]–[10]. The
workflow is demonstrated in Figure 1 These platforms offer
diverse grammars and tools tailored for different quantum
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computing systems. However, programming high-level logic
on a quantum computer can be challenging for conventional
software developers. Moreover, it necessitates a strong grasp
of quantum mechanics and linear algebra to create efficient
quantum circuits [1]. This challenge becomes even more pro-
nounced when designing complex quantum circuits. Therefore,
there is a demand for a framework that simplifies quantum
computer programming and reduces its complexity.

Fig. 1: The workflow of quantum circuits execution. The
quantum circuit execution process involves several key steps.
It begins with classical programming, where the circuit is
designed and represented at the gate level on a classical
computer. Next, the circuit is transpiled and converted into
a pulse waveform to match a specific quantum computer’s
requirements. After this preparation, the quantum circuit is
executed on the quantum computer, and the resulting mea-
surement data is returned to the user.

High-level synthesis (HLS) is a widely adopted technique
in CMOS-based hardware design. It translates a behavioral
specification into a corresponding register-transfer-level (RTL)
description that realizes the intended behavior [11], [12]. HLS
tools accept C/C++ code as input and handle various behav-
ioral instructions such as arithmetic and logical operations,
conditional statements, and loops, which are then converted
into their RTL equivalents. Several commercial and academic
HLS frameworks, including Xilinx Vivado HLS, Stratus HLS,
Bambu, and HDL Coder, utilize C/C++ and Matlab to generate
RTL code [11], [13]–[15]. HLS greatly enhances hardware de-
sign efficiency and simplifies the development of sophisticated
hardware systems.

In this paper, we introduce the Quantum HLS (QHLS)
framework, which is the first HLS framework for quantum
circuits. QHLS allows designers to generate quantum circuits
from high-level software languages like C, without the need
for expert knowledge of quantum mechanics. Our framework
follows a modified design flow for creating quantum circuits.
We start by taking a high-level behavioral code as input
and use a Python framework to parse this description. The
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core engine of QHLS generates an Open Quantum Assembly
language (OpenQASM) file that describes the quantum circuit
at the gate level. The resulting OpenQASM description is
compatible with all current quantum programming tools.

Therefore, a designer can use a platform like Qiskit to
execute the computation with the generated circuit [8]. The
main contributions of this paper are:

• We propose and enhance the Quantum High-Level Syn-
thesis (QHLS) framework, which translates high-level
behavioral programming languages into corresponding
quantum circuits.

• We have developed quantum circuit primitives for use
in the QHLS framework, including those for emulat-
ing arithmetic circuits mentioned in Section IV-A, logic
operations in Section IV-B, conditional statements in
Section IV-C, iteration loops in Section IV-D, and array
operations in Section IV-E.

• We have evaluated the performance of the QHLS frame-
work on small benchmark programs typically used in tra-
ditional HLS frameworks. Since real quantum computers
only have a limited number of noisy qubits and classical
computers are unable to efficiently simulate quantum cir-
cuits with a large number of qubits, we have used tailored
benchmark programs that can be simulated on a noise-
free quantum simulator to evaluate the QHLS framework.
We have also estimated the quantum resources required
for these benchmark programs.

The remainder of the paper is organized as follows: In
Section II, we provide background information on quantum
computing, including an introduction to qubits and quantum
gates, and a discussion of current issues of quantum cir-
cuit design. Section III shows the related work of quantum
arithmetic circuit design and optimization. In Section IV, we
describe the methodology for designing the QHLS framework.
In Section V, we present our experimental results. Finally,
in Section VI, we conclude the paper and suggest potential
directions for future research.

II. BACKGROUND

In this section, we introduce the concept of quantum circuits
and explain the motivation for developing the Quantum High-
Level Synthesis (QHLS) framework.

A. Quantum Superposition and Entanglement

Quantum entanglement is a quantum mechanical phe-
nomenon where the state of one qubit can instantaneously
change the state of other qubits in a predetermined way. A
pair of qubits can be entangled by connecting them together.
They are related in such a way that if the measurement
value of one is known, the state of the other qubit can
be determined based on the state of the measured qubit.
Quantum computers make use of this phenomenon through
the use of two-qubit gates like the CX gate to perform
computations [1]. The principles of quantum superposition
and entanglement allow two qubits to represent 4 parameters,
for example, |ab⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩, where
α2 + β2 + γ2 + δ2 = 1. This means that the number of

parameters grows exponentially with a linear increase in the
number of qubits, known as the Hilbert space [1]. This can
enable quantum computers to perform certain tasks faster
than classical algorithms, sometimes achieving an exponential
speed-up [3].

A quantum circuit consists of quantum bits (qubits) and
quantum gates. Unlike classical bits, qubits can exist in a
superposition state and are typically denoted using a bra-ket
notation, expressed as |⟩. A qubit in a superposition state can

be represented as |a⟩, where a = α |0⟩ + β |1⟩ =
[
α
β

]
, and

α2 + β2 = 1.
The state space of a single qubit encompasses all values

between 0 and 1 and is visually represented using a Bloch
Sphere, depicted in Figure 2. The Bloch Sphere’s x-y plane
corresponds to real states, while the z-axis represents the
imaginary component. When representing the state of a single
qubit, the basis states are identified as opposite points on the
Bloch Sphere, as illustrated in Figure 2.

Fig. 2: Bloch Sphere Single Qubit Visualisation.

When designing quantum circuits, each quantum gate can be
represented as a matrix, and the computation of the quantum
circuit is represented as matrix multiplication. Tensor products
are used for multiple qubits in the quantum circuit. However,
quantum gates can perform logic operations similar to those in
classical computers based on CMOS technology. For example,
the Pauli-X gate flips the phase of qubits from |0⟩ to |1⟩ or
from |1⟩ to |0⟩. The Control-X (CX) gate uses a control and
a target bit, flipping the target bit if the control bit is |1⟩.
The Toffoli (CCX) gate has two control bits and a target bit,
flipping the target bit when both control bits are 1. The SWAP
gate swaps the states of two qubits, exchanging the information
on those two qubits.

In the present day, quantum computers have limited qubits,
which are prone to errors due to decoherence and noise. As
a result, quantum computers are not yet able to outperform
classical computers in all tasks. However, both industry and
academia are working on developing error-resilient quantum
computers, and it is expected that they will eventually be able
to perform certain tasks faster than classical computers.

B. Motivation

Currently, programming a quantum computer requires ex-
tensive knowledge of quantum mechanics and linear algebra.
This can make it difficult for traditional software programmers
to program a quantum computer. In addition, the current
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quantum programming paradigm is not easy to scale and
integrate quantum circuits to achieve complex functionality.

To address these challenges, we propose the Quantum High-
Level Synthesis (QHLS) framework. QHLS is a framework
that allows quantum programmers to start with high-level
behavioral descriptions (such as C or C++) and automatically
generate the corresponding quantum circuit. This can reduce
the complexity of programming a quantum computer and make
it more accessible to traditional software programmers.

Moreover, to expand the functionality of quantum comput-
ers, our proposed QHLS framework can function complemen-
tary to the quantum circuit design and automation task that
addresses the design of classical algorithms. Several related
works also attempted to address the problem while generating
classical algorithms to achieve similar goals that this work
addresses [16]–[18]. For example, recently, atomic silicon
logic was proposed to be one potential replacement for CMOS
logic [19], where the design of atomic silicon is based on
quantum logic gates. The proposed QHLS strategy could be
potentially applied to the future atomic silicon binary logic.

To the best of our knowledge, this is the first HLS frame-
work for quantum circuits. Our proposed QHLS framework
allows designers to start with a high-level description and
generate a quantum circuit design without the need for expert
knowledge of quantum mechanics. In our framework, we mod-
ified the flow for designing a quantum circuit. We take a high-
level behavioral code as input and use a Python framework to
parse this behavioral description. An Open Quantum Assembly
Language (OpenQASM) file is generated that describes the
quantum circuit at the gate level. This OpenQASM description
is compatible with all current quantum programming tools,
and a designer can use a quantum programming platform like
Qiskit to execute the computation with the generated circuit.

Our proposed Quantum High-Level Synthesis (QHLS)
framework aims to simplify the process of designing quantum
circuits by allowing the use of high-level software languages,
such as C, for input. Currently, quantum programming lan-
guages only support gate-level programming, which requires
expert knowledge of quantum mechanics and linear algebra
and can be inefficient for generating complex quantum circuits.
Inspired by the success of High-Level Synthesis (HLS) in
automating the generation of RTL code from high-level soft-
ware descriptions in CMOS-based hardware design, our QHLS
framework aims to raise the programming abstraction level
for quantum circuits by allowing the use of software language
elements such as arithmetic and logical operations, conditional
statements, and loops. To the best of our knowledge, no HLS
framework currently exists for generating quantum circuits
from high-level behavioral languages. Our proposed QHLS
framework aims to fill this gap and facilitate the design
of quantum circuits without requiring expert knowledge of
quantum mechanics.

III. RELATED WORK

The exponential computing power of quantum computing,
combined with the linear stacking of qubits, holds great
promise. Researchers have proposed various quantum circuits

to perform arithmetic calculations [20]–[22]. Quantum arith-
metic circuits are just one example of th many quantum
implementations that have the potential to provide quantum
advantage over classical algorithms [23]. Numerous research
efforts are focused on various perspectives, including optimiz-
ing qubit requirements, reducing quantum gate complexity, and
utilizing quantum data compression techniques to compress
data. Additionally, there is considerable attention given to the
design of complex arithmetic circuits [24]. The advantage of
quantum computers in executing algorithms involving arith-
metic is particularly relevant since arithmetic algorithms find
wide application in numerous real-world situations [25].

Currently, many quantum toolkits are developed for the
application for the implementation of quantum computers.
Qiskit from IBM, Tket from Quantinuum, Cirq from Google,
and Q# from Microsoft makes tremendous process on advance-
ment on quantum computing [8]–[10], [26]. These toolkits
enables local access to the quantum computers to the quantum
computer remotely from the local classical computers with
built-in compilation techniques for easier quantum circuit
design and implementation on a quantum computer. However,
a more abstract level of computation is lacking in their toolkit
assembly. More abstract levels might lead to easier design and
coding on more complex circuits with sophisticated functions.

The SILQ [27] framework achieved the uncomputation of
temporary quantum values to ensure that the body computation
is not affected by the measurement of the qubits, which does
not include any classical synthesis with C code conversion.
QCL is the first quantum programming language that enables
the definition of quantum operators, and the function is similar
to qiskit. Thus, those two libraries provide different functions
from the proposed QHLS.

High-Level Synthesis (HLS) is an extensively researched
area focused on automating the generation of RTL code from
high-level software descriptions such as C or C++ [28]. HLS
simplifies hardware design by enabling the same software code
to produce multiple Register Transfer Level (RTL) designs.
It finds valuable applications in the development of machine
learning hardware accelerators using FPGA or ASICS [29]–
[32], as well as in security chip and FPGA design [33],
[34]. The HLS process involves three phases: input program
compilation, micro-architecture development, and generation
of RTL circuit descriptions. The output from HLS can be
further utilized in subsequent stages, such as logic synthesis.

In contrast, the field of quantum circuit implementation cur-
rently lacks an equivalent framework, with existing quantum
programming languages only supporting gate-level program-
ming [11], [13]. This approach proves inefficient for gen-
erating complex quantum circuits and necessitates advanced
knowledge of programming on quantum computers. To address
this, the proposed Quantum High-Level Synthesis (QHLS)
seeks to enhance the programming paradigm by introducing
a higher level of programming that enables direct synthesis
from a behavioral coding language to a quantum circuit.
By leveraging software language elements like conditional
statements, loops, and arithmetic and logical computations,
QHLS allows for the generation of a quantum circuit without
any additional requirement of quantum computing expertise.
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Fig. 3: Overall QHLS Workflow. We have incorporated nu-
merous functions within the framework, enabling it to accept
behavioral language inputs (C code) and automatically gener-
ate OpenQASM code.

IV. PROPOSED QHLS

The proposed QHLS framework aims to simplify the pro-
cess of programming a quantum computer by using high-
level behavioral software languages to automatically generate
quantum circuits. The framework utilizes existing program-
ming languages to convert input specifications into a gate-level
quantum circuit, allowing for more efficient computation on a
quantum computer.

In this section, we will mention the details of our proposed
Quantum High-Level Synthesis. Figure 3 demonstrates the
overflow of the synthesis process of a quantum circuit. Our
proposed framework takes the original C code as input, and
the QHLS will process the quantum circuit utilizing integrated
functions including High-level Optimizing, Qubits Resource
Claiming, Quantum Circuit Scheduling, Quantum Logic Op-
eration, Quantum Arithmetic and Quantum Conditional State-
ments, in order to generate the Open Quantum Assembly
(OpenQASM) Code automatically.

In the following subsections, we will discuss how QHLS
translates the various facets of traditional behavioral descrip-
tion languages.

A. Quantum Arithmetic Circuit

The focus of this study is on quantum arithmetic operations,
for which we have designed the following quantum circuits:
quantum adder, quantum subtractor, quantum multiplier, and
quantum divider (refer to Figure 4). The proposed QHLS
uses existing high-level descriptions to generate these quantum
circuits that carry out arithmetic computations on a quantum
computer [20]–[22].

1) Quantum Adder: Figure 4a showcases the quantum
adder design employed in this study. The addition operation
utilizes CNOT gates and CCX gates [35]. Two binary numbers,
denoted as A and B, are added together, and the result is
stored in input A as A ← A + B. This approach minimizes

(a) Quantum adder. (b) Quantum subtractor.

(c) Quantum multiplier. (d) Quantum divider.

Fig. 4: Quantum arithmetic blocks.
qubit usage by overwriting one of the input registers while
leaving the other unchanged. An additional qubit is introduced
to handle the carry bit of the result.

This work utilized a half adder without a carry bit for easier
calculation and synthesis process. However, the full adder is
available to use in [35] with carry-in and carry-out qubits. The
QHLS works well with a half adder without a carry bit.

2) Quantum Subtractor: Figure 4b depicts the quantum
subtractor circuit utilized in our design. The subtraction oper-
ation leverages the property A−B = A+B [35]. The input
A and B are initialized by applying X gates to the desired bit,
as shown in Figure 4b, to invert the quantum state.

3) Quantum Multiplier: In this paper, we utilize the quan-
tum multiplier illustrated in Figure 4c [36]. It consists of
Toffoli gates and the quantum Ctrl-Add operation. The Ctrl-
Add circuit adds two numbers and replaces one of the input
registers when the control point is |1⟩. However, if the control
point is |0⟩, no operation is performed, and the state remains
unchanged. The quantum multiplier calculates the product of
two binary numbers, A and B, with the result stored in a
new register C, while the input registers A and B remain
unchanged. If the input bits A and B have the same bit length
n, the output C will have a bit length of 2n+ 1.

4) Quantum Division: Figure 4d presents a generic quan-
tum integer division circuit, which can also perform the
modulo calculation [22]. It enables arbitrary integer division,
where the dividend, divisor, and quotient have the same bit
lengths. The circuit employs a restoring division algorithm
for modulus calculation [22]. The quantum division circuit
requires the quantum subtraction circuit and the quantum Ctrl-
Add operation that contains one more control qubit to control
whether the division calculation will be performed based on
the value of the computation. The quantum division circuit
comprises three parts: the dividend A, the divisor B, and the
quotient Q. The circuit performs the operation A divided by
B and stores the quotient in register Q, while the remainder
is stored in the dividend register A.

B. Logic Operation
Quantum computers employ quantum logic gates, which

differ from classical logic gates, offering unique computational
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capabilities. While fundamental classical logical operations
like “logic AND” and “logic OR” are not directly supported on
quantum computers, they can still be achieved by combining
multiple quantum gates. Figure 5 illustrates two variations
of quantum circuits implementing “logic AND” and “logic
OR” operations. In these circuits, the output is appended to a
new register while leaving the input register unchanged. These
quantum logic operations can be performed within conditional
statements and logic operations without altering the state of
the original input qubits.

Fig. 5: Quantum logic operation equivalence.

C. Conditional Statement Branches

The conditional statement is a vital feature of classical
computers, allowing calculations to be performed with dif-
ferent inputs based on specific predetermined conditions. In
light of this, we put forth the concept of quantum conditional
statement branches, which enable comparable computations
to those performed by classical conditional statements. To
achieve this, we develop sub-modules of conditional statement
quantum circuits that emulate the computations corresponding
to classical if statements on a quantum computer. Through our
proposed Quantum High-Level Synthesis (QHLS) approach,
we can generate arbitrary conditional statement branches to
perform computations, thereby surpassing the limitations of
small conditional statement prototypes that are unable to
handle real-world scenarios.

If we want to perform the computation when a < b, we
must first compare a and b in the quantum circuit and then
project the result onto the target bit. Next, we can append a
controlled-U gate to the target bit to execute the computation.
For cases where a ≥ b, we can compute a < b and project
the result onto the target bit. We can flip the state using
an X gate on the target bit to perform “a is not less than
b”. The remaining part of the circuit remains unchanged.
In the following sections, we will introduce several other
quantum circuits that demonstrate various types of conditional
statements that are used in behavioral descriptions.

1) General Conditional Statements: One of the funda-
mental logical operations in high-level programming is the
conditional statement, which allows for different computations
based on the evaluation of a condition. In QHLS, we leverage
the phenomenon of quantum entanglement to represent condi-
tional statements. This approach utilizes a control bit to enable
distinct computations on a target quantum gate, effectively
implementing an “if-then” operation. Figure 7a illustrates this
concept. In addition, QHLS employs the quantum subtractor,
as described in Section IV-A, to design quantum comparators

Fig. 6: Quantum Comparator to compute if a > 3, where a is
initialized in binary state of 5.

as shown in Figure 6. These comparators are instrumental
in implementing conditional statements. We consider various
scenarios, such as a == b, a ̸= b, a < b, a > b, a ≥ b, and
a ≤ b, where certain cases can be combined. In this section,
we initially focus on two crucial situations: a == b and a > b.
The remaining scenarios can be derived from these cases, as
explained later.

To begin with, let us consider the simplest scenario: a == b.
Figure 7b demonstrates how this function can be achieved
using the MCX gate. Initially, the input variable a is encoded
as a binary state. Subsequently, the original register is used
to encode the complement of b. After encoding, if the two
variables are equal, the register value should consist entirely
of 1s. We then apply the MCX gate to the original register,
and the comparison results are transferred to an ancilla qubit
for further computations.

As for the scenario a < b, the quantum circuit first compares
a and b and projects the result onto the target bit. Then, a
controlled-U gate is applied to the target bit to perform the
desired computation. For cases like a ≥ b, we can accomplish
the computation by evaluating a < b and projecting the
result onto the target bit. To compute “a is not less than
b”, we can append an X gate to the target bit to flip the
state. The remaining part of the circuit remains unchanged. In
the following sections, we will introduce additional quantum
circuits that demonstrate various types of conditional state-
ments, commonly used in behavioral descriptions. Figures 7d
and 7e illustrate the simple quantum circuit framework for
implementing conditional operations, enabling the realization
of ‘if and else’ as well as ‘if, else-if, and else’ statements.”

2) Complex Meshed Conditional Statements: In the pre-
vious sections, we focused on designing simple conditional
statements, as depicted in Figure 7. However, real-world
applications often demand more intricate decision branches.
Figure 8 presents an example of a conditional statement used
for handling complex meshed cases.

To accommodate the need for more complex conditionals
within these statements, the model can be executed recursively.
This involves replacing the consequent circuit or alternative
circuits with new conditional branches, enabling more so-
phisticated computations. For instance, if an additional con-
ditional branch is required in Figure 7e, the algorithm can
seamlessly append a new conditional statement branch to the
existing circuit in order to achieve the desired outcome. The
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(a) Control-U Gate. (b) Quantum conditional statement circuit.

(c) An if statement with
a 2-bit comparator.

(d) Conditional statement including
if and else statements.

(e) Conditional statements including if, else-if, and else statements.

Fig. 7: Quantum conditional statement variants.

resulting circuit, shown in Figure 9, incorporates an extra
conditional statement branch with a simple if-else statement as
demonstrated in Figure 7d. Please note that if the conditional

Boolean Conditional
Circuit

Consequent
Circuit

Alternative
Circuit

True False

Begin

END

Boolean
Conditional

Circuit 1

Consequent 1
Boolean

Conditional
Circuits 2

True False

Begin

Consequent 2 Alternative 2

END

(a) (b)

True False

Fig. 8: (a) Conditional Statement for IF-THEN-ELSE. (b)
Nested Conditional Statement by combining multiple IF-
THEN-ELSE.

Fig. 9: Complex meshed conditional statement circuit example.

statement branch necessitates an “else-if” statement with one
Multiple-Controlled X (MCX) gate, additional modification
is necessary that is on each ancilla qubit for the conditional
operations, ensuring that the clauses are executed only once,
preventing any redundant computations.

Listing 1: Complex meshed behavioral code.
int main() {

int a = 5;
if (a > 3) {

int b = a + 8;
} else if (a >= 8){

int b = a + 3;
} else if (a<5) {

int b = a - 5;
}
else {
int b = a x 2

}
}
return b;

}

Listing 1 demonstrates a meshed conditional statement in
behavioral language. To generate a quantum circuit with the
corresponding behavioral code, first, the QHLS generates a
quantum circuit by initializing the binary representation of
the integer number a. The circuit then proceeds with the
conditional statements. Initially, QHLS generates a quantum
comparator circuit to determine whether a > 3. Here, we
illustrate the quantum subtraction circuit, as depicted in Fig-
ure 6. This circuit performs the calculation 3 − 5, as shown
in Figure 10, and the return bit indicates whether the result is
positive or negative. If the measurement yields 1, indicating
that the condition is satisfied, the subsequent quantum circuit
performs the computation b = a+ 8. Therefore, the quantum
circuit proceeds with this calculation. Once the computation
is completed, the output of the quantum circuit should contain
the measured values of a and b. These measured values can
then be utilized for further calculations or returned to the user,
depending on the specific requirements.
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Fig. 10: Quantum Circuit that performs the arithmetic calcu-
lation 3-5 and returns the logic computation if 5 > 3.

D. Iteration Loops

Loops are fundamental programming structures widely used
in classical programming. To enable the quantum computer to
perform iterative tasks akin to classical computers, we have
incorporated loops into the proposed QHLS. In doing so, we
have identified two types of loops that a program may contain:
bounded loops and unbounded loops.

The first “For” loop showcased in Listing 2 allows the
program to calculate the exact number of iterations needed to
complete the execution of the loop’s contents. To optimize the
program within the QHLS framework, our initial step involves
applying high-level optimizations that unroll the loop. This
unrolling process entails executing the body statement within
the loop five times consecutively. Subsequently, the quantum
circuit performs the division computation five times within a
single circuit, prior to proceeding with the measurement.

Listing 2: Behavioral Code example showing bounded loop
in C.
int main() {

int a = 7;
for(i=1; i<=5; ++i){

a = a / 3;
}
return 0;

}

Listing 3: Behavioral Code example showing unbounded
loop in C.
int main() {

int a = 15;
while (a >= 2){

a = a / 3;
}
return 0;

}

The program’s iteration times for the second while loop
in Listing 3 are determined by the computation results. The
quantum circuit executes the body statement each time and
utilizes the statement’s outcome to evaluate the conditional
statements, which determine if the unbounded loop has com-
pleted its computation, as depicted in Figure 11. The com-
putation continues until the stopping conditional statement is
satisfied. More detailed explanations of these types of loops
can be found in Sections IV-D1 and IV-D2 correspondingly.

1) Bounded Loops: When quantum circuits involve loops,
they need to be measured to determine whether the program

Start

condition
circuit

statement
circuit

End

True
False

Start

Iteration
times

execeeded?

statement
circuit

End

No Yes

Start

statement
circuit

End

...

statement
circuit

...

(a) (b) (c)

Fig. 11: (a). Bounded loop flow chart. (b). Unrolled Bounded
Loop. (c) Unbounded Loop flow chart.

should continue executing the loop. However, this approach is
inefficient as each iteration of the loop requires communication
between the quantum processor and classical processor for
measurement. Additionally, multiple quantum circuits may be
required to perform quantum entanglement.

To design a quantum circuit with bounded loops, the number
of iterations can be readily determined without relying on
the computation results from the loop’s body statements (as
depicted in Figure 11 (a)). In such cases, optimizations can be
employed to consolidate the repeated statements into a single
quantum circuit. These optimizations are typically performed
at a higher level, directly analyzing the original C code,
examining variables, and unrolling the bounded loops. By
reducing the number of iterations, the computation can be
completed with just one execution of the quantum circuit,
eliminating the need to measure the result after each iteration.
After optimization, the loop count is converted into a quantum
circuit representation for computation. This allows the quan-
tum circuit to proceed with the computation without requiring
measurement at each iteration, continuing until the end of
the computation. Consequently, the statement clauses can be
generated and appended to the previous quantum circuits,
completing the computation efficiently.

2) Unbounded Loops: In classical computers, HLS utilizes
various approaches to implement unbounded loops, including
using HLS pragmas to allow providing hints to the loop
behaviors. Some HLS optimization algorithms are performed
to get rid of unbounded loops by moving them to a software
layer where it is easier to address with a CPU [14].

Unbounded loops pose a challenge as the calculation of
the loop body is required to determine when the loop should
terminate. As a result, it is not easy to determine the number of
iterations for unbounded loops through high-level optimization
or loop unrolling techniques. When measurement is necessary
within unbounded loops, conditional constructs are employed
to determine if the loop has completed its computation. This
implementation involves iterating the conditional statements
discussed in section IV-C, as illustrated in Figure 11 (c).
Due to the difficulty of measuring the quantum state during
the intermediate stages of quantum circuits, we propose a
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Array Initialization Iterate elements in
the array

Process  the
computation on the
element of the array

Measure the value
of the computation

Store the measured
value to classical

computer for further
computation

Classical Computer Quantum Computer

Fig. 12: Workflow of quantum array operation demonstration.

hybrid framework that combines both classical and quan-
tum computers to complete this task. In this framework,
the quantum computer performs the computational operations
within the loop body and returns the desired variable for the
conditional judgment to decide whether the iteration should
continue. Thus, the computation is accomplished through
the collaboration of classical and quantum computers. An
example code showcasing an unbounded loop is demonstrated
in Section IV-G.

E. Arrays

Within the QHLS framework, we have incorporated array
functions. However, it is not efficient to store arrays directly in
a quantum computer due to the instability of qubits for infor-
mation storage. The presence of noise in a quantum computer
further complicates the storage of information. Therefore, we
store the array in a classical computer and transfer the required
information into the quantum computer when computation is
needed. The workflow of this computation process is depicted
in Figure 12. In this framework, each element in the array is
initialized and the computation is performed on the quantum
computer. The resulting values are then stored back in the
classical computer. For a simple C code example illustrated in
Listing 4, the classical computer feeds each element into the
quantum computer. The quantum circuit remains unchanged
except for the initialization of values.

Listing 4: The behavioral code for array operation.
int main() {

int myNumbers[] = {1, 2, 3, 4};
for ( int i = 0; i < 10; i++ ) {

myNumbers[ i ] = i + 5;
}
return myNumbers;

}

F. Qubits Resource Determination

In order to automatically generate quantum circuits using
QHLS, it is essential to determine the necessary qubit re-
sources. This information is crucial for organizing the quan-
tum gates within the circuit effectively. Our proposed QHLS
framework employs three distinct scenarios to ascertain the
required qubits. The first scenario focuses on input variables.
The number of qubits is determined by the count of input
variables present in the program. The second scenario arises
during calculations, specifically for multiplication and division

TABLE I: Total gate count of quantum circuits with n qubit
length.

Quantum Algorithms X gate CX gate CCX gate
Adder 0 5n+ 6 2n− 2

Subtractor 2n or 3n 5n+ 6 2n− 2
Quantum Modulus 2n2 7n2 − 11n 5n2 − 4n

Multiplication 0 4n2 − 10n+ 6 3n2 − n− 1
And Logic 0 2n n
Or Logic 0 0 n

operations. In multiplication circuits, there must be enough
available qubits to store the product of the multiplication
operation. Similarly, division circuits require empty qubits
to store the quotient. The third scenario revolves around
logical operations, including computations involving condi-
tional statements. To determine the required number of qubits
for a given high-level program, one needs to consider the
count of inputs and operations that will be executed until
the quantum circuit produces the output. By considering these
three scenarios, QHLS is capable of accurately determining the
appropriate number of qubits required for automatic quantum
circuit generation.

Table I shows the quantum resource required for each
operation concerning the qubit length of the quantum circuits.
From the table, the multiplication and integer division circuit
increases in the complexity of O(n2) for qubit length, and the
other operations increase linearly.

G. Examples

The QHLS framework utilizes Python script to parse the
command lines from the C language to generate the quantum
circuits that correspond to the operation functions. The connec-
tion between each operator appends the quantum operators on
the qubit where the qubits are assigned for different variables
or empty qubits to assist with the computation. For the specific
synthesis methodology, the proposed QHLS will parse the
names of variables and assign each variable to certain qubits.
The quantum operators can be appended to the corresponding
qubits to finish the required computations. Extra qubits are
imported if the required operation requires ancilla qubits to
assist with the computation. For the unbounded loops, we
will generate the quantum circuits corresponding to body
operators, and measure the corresponding termination criterion
to determine the next step of operations.

The proposed QHLS framework simplifies the creation of
quantum circuits that correspond to logical operations, arith-
metic calculations, and conditional statements on a quantum
computer. By utilizing these three circuit types in combination,
it is possible to produce a wide range of quantum circuits
capable of performing complex tasks. To illustrate the potential
of our proposed QHLS framework, we will provide two
example quantum circuit designs in this section, ICRC and
GCD benchmark code that is originally written in C language.

1) ICRC Benchmark Circuit: The ICRC circuit is utilized
to evaluate the performance of the HLS software with bit
operations in a bounded loop. Listing 5 displays the C pro-
gramming language that we will perform the ICRC benchmark
circuit. To begin with, the QHLS examines the original code by
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(a) Quantum circuit to obtain variable “ans”.

(b) Quantum circuit for the loop of icrc.c code.

Fig. 13: Quantum ICRC circuit.

expanding the loops. In this instance, the loop is executed eight
times. The variable i used for iteration is taken out of the code
once the number of iterations is determined. Then, the variable
‘ans’ is calculated by performing bitwise operations such as
logical ‘XOR’ and bit shifting. Quantum SWAP gates can be
utilized to perform the bit-shifting operation. The QHLS resets
the first 7 bits of the variable and swaps the first bit with the
8th bit, the second bit with the 9th bit, and so on until all bits
have been swapped. The quantum circuit needed to obtain the
variable ans is depicted in Figure 13a.

Listing 5: The behavioral benchmark code “icrc.c”.
unsigned short icrc(unsigned short crc, unsigned char onech

)
{

int i;
unsigned short ans=(crcˆonech << 8);

for (int i=0;i<8;i++) {
if (ans & 0x8000)

ans = (ans << 1) ˆ 4129;
else

ans <<= 1;
}
return ans;

}

Afterward, we will make use of the proposed quantum if-else
circuit, which has been explained in detail in Section IV-C,
for the if statement. To perform the logic operation ans &
0x8000, we perform a bitwise AND operation between ans
and 0x8000. Since only one bit in 0x8000 is significant to the
result (the other bits are all zeros), we can use only one AND
operator to perform the computation. This optimization sig-
nificantly reduces the quantum gate overhead. The generated
quantum circuit is displayed in Figure 13b. To construct the
circuit, registers are required for all input variables, one bit for
the if statement, and 32 bits for the logical ‘XOR’ operations.
After the computation is completed, the circuit only needs to
measure the qubits that correspond to the variable ans in order
to acquire the desired output.

2) GCD Benchmark Circuit: The GCD benchmark circuit,
depicted in Listing 6, showcases the use of an unbounded loop
in determining the Greatest Common Divisor (GCD) through
an if statement and a while loop. Initially, the quantum circuit
executes an if statement to swap the values of variables x and

y if x is found to be less than y. Subsequently, the quantum
circuit proceeds with the modulus operation and stores the
result for subsequent operations. The quantum circuit for
the first if statement is illustrated in Figure 14a. Within
the unbounded while loop, the quantum circuit performs the
modulus computation, which can be realized using the integer
division circuit, while retaining the remainder. The other two
operations can be completed on a classical computer to finalize
the computation. Thus, the while loop portion of the quantum
circuit is presented in Figure 14b.

Listing 6: The behavioral benchmark code gcd.c.
int gcd(int x, int y )
{

int t;
if( x < y ) {

t = y;
y = x;
x = t;

}
while( y > 0 ) {

int f = x % y;
x = y;
y = f;

}
return x;

}

(a) Quantum Circuit for If Statement
part of the GCD benchmark code.

(b) While loop of the
GCD benchmark code.

Fig. 14: Quantum Circuit for the GCD benchmark circuit.

V. EXPERIMENTAL EVALUATION

This section presents an evaluation of the proposed Quan-
tum High-Level Synthesis (QHLS) using standard bench-
mark algorithms that involve arithmetic and logical operations
in traditional High-Level Synthesis (HLS) frameworks like
Bambu. We utilized four benchmark programs, namely ARF,
GSM NORM, GSM DIV (i.e., two subfunctions of the GSM
benchmark), ICRC, and GCD using QHLS. These high-level
behavioral codes were used to assess the capabilities of QHLS
and the quantum computer’s resource requirements. QHLS is
the first HLS framework for quantum circuits, Hence, there
is no prior research to compare it to. However, the authors
anticipate that future researchers will build on QHLS and
improve its performance and efficiency.

The reason that we did not integrate Deutsch-Jozsa, Grover
search, or Shor’s factoring algorithms into the QHLS frame-
work is that there remains a notable absence of classical mod-
eling algorithms for quantum algorithms. Numerous quantum
oracle designs are still being explored to achieve scalable
and efficient automation. Therefore, we do not integrate the
mentioned quantum algorithm in the QHLS framework.

Simulating complicated tasks on a quantum computer is a
challenging task for a classical computer. At present, the Qiskit
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TABLE II: Benchmark C code with program statistics and quantum resource requirement. From the code, it only requires a
maximum of 2 seconds to generate the quantum circuits, showing the scalability of such computation.

Benchmark Program Statistics Quantum Resource Requirements

Variables Loops Iteration
Count

If
Statements

Arithmetic
Operations

Logic
Operations Qubits X CX CCX SWAP

Time consumption
on generating
quantum circuit(s)

ARF 16 0 N/A 0 28 0 1056 0 13896 17529 0 2.00
GSM NORM 11 0 N/A 5 5 7 484 175 857 534 48 1.15

GSM DIV 8 1 15 16 30 46 272 960 7470 5642 930 0.72
ICRC 4 1 8 8 0 26 104 8 0 272 248 0.59
GCD 4 1 N/A 2 1 0 128 2028 6983 5150 0 N/A

TABLE III: Reduced benchmarks with quantum resource and simulation time of small quantum circuits.

Reduced Benchmark Circuits Quantum Resource Requirements

Qubits X CX CCX SWAP
Circuit
generation
time (s)

Qiskit
Simulation
time (s)

Lines of code
required for
Qiskit (estimation)

Lines of code
required for
QHLS

Reduced ARF 27 0 116 49 0 0.24 0.16 165 3
Reduced GSM NORM 24 22 108 534 69 0.13 0.11 733 3

Reduced GSM DIV 28 60 430 218 8 0.15 0.10 716 3
Reduced ICRC 18 1 0 36 248 0.23 0.15 285 3
Reduced GCD 16 16 42 32 0 N/A N/A 90 7

library only supports a maximum of 32 qubits for quantum
simulations. However, regular integer representation needs 32
bits to represent a single number. As a result, even though
our benchmarks are small for HLS, they are still too big for a
quantum simulator. Therefore, we reduced the bit length to 4
and made some adjustments to the parameters to simulate our
benchmark programs. We use quantum X gates to initialize
the qubits to a binary number.

A. Results

Table II presents the quantum resource required for the
corresponding benchmark code. The first column of the table
displays the name of the benchmark program, followed by
six columns showing the program statistics and four columns
showing the resource requirements in terms of qubits and
quantum gates. Columns 8 to 12 furnish the quantum resource
requirements to generate the corresponding quantum circuits.
The last column shows the time consumption for generating
the corresponding quantum circuits in seconds. Table II shows
the time consumption of the original circuit synthesis of
standard quantum circuits to show the scalability of the pro-
posed synthesis methodology. Table III demonstrates quantum
resource requirement and simulation time consumption of the
reduced benchmark code, which are based on the original
benchmark circuit mentioned in Table II. The first column in
Table III shows the name of the reduced benchmark circuit
and columns 2 to 6 demonstrate the quantum gates required
to generate the corresponding quantum circuit. Columns 7
and 8 demonstrate the time consumption for quantum circuit
generation and quantum circuit simulation time. Notice that
different input values of GCD benchmark circuit will influence
the time consumption for circuit generation and simulation
because of the uncertainty of iteration numbers. The last two
columns demonstrate the lines of code required for Qiskit
and QHLS framework. Reduced GCD requires a few more
lines to deal with the unbounded loop and initialization of the
next quantum circuit cycle. Based on Table III, the QHLS can
reduce lines of code from the maximum of 716 to only 3 lines

with around 238.6X reduction of code requirement to generate
the corresponding quantum circuit.

The values in Table II correspond to the actual resource
requirements when operating on 32-qubit data. For instance,
the ARF program requires 11 addition operations and 17 mul-
tiplication operations for computation. In addition, initializing
the 16 input variables requires 16×32 = 512 qubits, and extra
qubits are needed to store the product for the 17 multiplication
operations. As a result, the total number of qubits required for
ARF is 512 + 17× 32 = 1056 qubits. Furthermore, for 32-bit
inputs, each quantum adder necessitates 166 CX gates and 62
CCX gates, while the quantum multiplier necessitates 710 CX
gates and 991 CCX gates to execute the program.

We conducted simulations for two subfunctions of GSM:
GSM NORM and GSM DIV. For GSM NORM, the quantum
circuit includes one input variable, denoted as ‘a’, which is
used seven times. The circuit also uses an integer value of -
1073741824, four hexadecimal numbers (0xff000000, 0xff00,
0xFF, and 0xffff0000), and other integers such as 7, 15, 23, and
8, along with four if statements. To initialize the variables, we
require 15 × 32 = 480 qubits. The four if statements require
32 CCX gates and four qubits for conditional operations.
Moreover, 128 X gates and 2 × 127 = 254 CCX gates and
1 CX gate are required to perform the logical computation.
To generate the quantum circuit, we need 43 X gates, 760
CX gates, 248 CCX gates, and 48 SWAP gates for value
initialization, logical operation, and calculation, as shown in
Table II.

For GSM DIV, QHLS performs a high-level optimization
that determines the number of loop iterations and unrolls the
loop accordingly. To process two variable inputs, 32 bits are
needed for each input, and for two longword format inputs,
64 bits are required for each. In addition, an internal variable
called “div” needs 32 bits for initialization. The circuit also
requires two sets of bit shifting operations, one if statement
with a comparator, a subtractor, and an adder for each loop
to execute. Therefore, for GSM DIV, a total of 7470 CX
gates, 5642 CCX gates, and 930 SWAP gates are necessary to
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complete the computation.
For ICRC, the circuit design is illustrated in Figure 13.

The circuit utilizes XOR logic operations for the variables
crc and onech and projects the output on the variable ans. A
bit-shifter function block consisting of SWAP gates generates
the variable ans. For each bit, two CX gates and one CCX
gate are necessary to perform a logic XOR operation. The
loop contains one logic operation, two sets of controlled-SWAP
operations, one CCX operation, one X gate, and a reset gate
to reset the if statement. All of these statements are repeated
eight times, requiring a total of 8 X gates, 32 CX gates, 272
CCX gates, 248 SWAP gates, and 8 reset gates to complete
the computation.

In the case of the GCD benchmark circuit, executing it as
an unbounded loop poses challenges for the quantum circuit.
Without classical control gates, it becomes difficult for the
quantum circuit to perform this task efficiently. To overcome
this limitation, we employ multiple instances of the same quan-
tum circuit and return the desired result when the algorithm
reaches its termination condition. The original C code for this
benchmark circuit includes two distinct quantum circuits. The
first circuit is responsible for swapping the values of variables
x and y if x is greater than y. This quantum circuit requires
four registers to complete the computation. On the other
hand, the classical computer requires an additional register to
achieve the same computation. By utilizing SWAP gates, the
quantum computer can perform the computation without the
need for extra registers. Consequently, executing the C code
on a quantum computer without specific code optimization
for generating a quantum circuit incurs additional resource
consumption. As for the while loop, it primarily consists of
the logical operation of checking whether y is greater than
0 and the integer division calculation within the quantum
circuit. Therefore, the quantum circuit requires four variables,
an unbounded loop, two conditional statements (including the
unbounded while loop), and one arithmetic operation to final-
ize the computation. The corresponding quantum circuit for
this benchmark circuit requires 128 qubits, 2028 X gates, 6983
CX gates, and 5150 CCX gates to complete the computation.

VI. CONCLUSION

This paper introduces a novel Quantum High-level Synthe-
sis (QHLS) framework that automates the conversion of high-
level behavioral languages into quantum circuits, which can
alleviate the burden of programming more complex quantum
circuits. To the best of our knowledge, this is the first approach
towards High-level synthesis of quantum computing, with
various quantum arithmetic, logical operations, conditional
statement circuits, bounded loops, unbounded loops, as well
as arrays that correspond to software language constructs. We
evaluated our framework on HLS benchmark programs using
a quantum simulator, considering the limitations of qubits
and noise levels on current quantum hardware. To limit the
complexity, only small circuits were analyzed. In the future,
we aim to enhance the QHLS framework by reducing the
quantum resource usage and introducing quantum algorithms
for more lightweight circuit design and generation, as well as

improving this technique by adding pragmas and optimization
directives, which are similar to traditional HLS.
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