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Abstract—Deep learning in quantum computing seeks to lever-
age the unique properties of quantum systems, such as super-
position and entanglement, to enhance the performance of deep
learning algorithms. Quantum neural networks (QNNs), which
are designed to operate on quantum computers, have the potential
to enable faster and more efficient inference execution. However,
quantum computers are susceptible to noise, which can rapidly
degrade the coherence of quantum states and lead to errors in
quantum computations. As a result, deep neural networks (DNNs)
that operate on quantum computers may experience degraded
classification accuracy during inference. However, in this paper,
we demonstrate that this intrinsic quantum noise can actually
improve the robustness of DNNs against adversarial input at-
tacks. The noisy behavior of quantum computers can reduce the
impact of adversarial attacks, thereby improving the accuracy
of the degraded DNNs. To further enhance DNN robustness, we
perform am extensive exploration on the prowess of Quantum
Noise injection for Adversarial Defense (QNAD), which induces
carefully crafted crosstalk in the quantum computer. QNAD pre-
selects a subset of pretrained network weights to be perturbed
with injected crosstalk in the qubits, causing them to become
entangled due to interactions between neighboring qubits. When
evaluated on state-of-the-art network dataset configurations, the
proposed QNAD approach provides up to 268 % relative improve-
ment in accuracy, against adversarial input attacks compared to
conventional DNN implementations.

Index Terms—Quantum Computing, Quantum Machine
Learning, NISQ, Adversarial Attack, Deep Neural Networks.

[. INTRODUCTION

Deep learning [1] has emerged as a powerful tool for solving
complex problems in various domains, such as computer vi-
sion [2], natural language processing [3], and recommendation
systems [4]. One of the key strengths of deep learning is its
ability to automatically learn representations of data through
hierarchical layers of neural networks. However, this comes
at a significant computational cost. Deep learning models
typically require large amounts of data for training, as well as
high-performance computing resources to efficiently process
the massive amounts of data. This has led researchers to
explore the potential of quantum computers in accelerating
the execution of deep neural networks (DNNs).

Quantum computers are computing systems that use quan-
tum mechanics principles to perform computations [5]. They
have the potential to solve certain problems with improved
efficiency, that are difficult or impossible for classical com-
puters to solve. For example, Shor’s algorithm which factors
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numbers into their prime factors, leverages the principles of
quantum computing to furnish tremendous speedup over its
classical counterpart. Deep learning on quantum computers
can also benefit from the quantum properties of superposition
and entanglement to process information in parallel and per-
form computations more efficiently than classical computers
[6]. One of the most promising approaches in this direction
is the quantum neural network (QNN). QNNs are quantum
analogues of classical neural networks and are designed to
operate on quantum data. They use quantum gates to process
quantum states and train quantum circuits to perform various
tasks such as classification, regression, and clustering. QNNs
have shown promise in applications such as quantum image
processing and quantum machine learning [7].

However, quantum computers are susceptible to intrinsic
noise, arising due to various physical sources of interference,
such as temperature fluctuations, magnetic field noise, and
imperfections in the hardware components [8], [9]. Quantum
noise may lead to errors in quantum computations, which
can cause deviations from the ideal output and subvert the
accuracy of quantum algorithms. The impact of quantum
noise is particularly significant for deep learning algorithms
that rely on high-precision calculations and require a large
number of qubits to perform complex computations. Noise
can cause instability in quantum states, leading to erroneous
calculations in deep learning models. As a result, deep learning
algorithms, when executed on these noisy quantum computers
suffer degradation in classification accuracy during inference.

On the flip side, even though noisy quantum computers
furnish sub-par DNN performance, it can potentially lead
to adversarially robust DNN implementations. Vulnerability
of DNNs against adversarial attacks has been an important
security challenge in classicial deep learning. Adversarial
images are generated by estimating the gradients of the DNN
with respect to its input, and carefully perturbing the images
in the direction of maximum change in the classifier output.
Prior works have shown that the performance of DNNs can
be severely degraded by modifying the inputs of DNNs by a
small amount using adversarial algorithms [10], [11]. Several
recent works have proposed noise-injection techniques to
defend against adversarial attacks [12]-[15]. Parametric noise
injection involves trainable Gaussian noise into the activations
or weights of each DNN layer to improve the adversarial
robustness [12]. Furthermore, existing research have employed
synthetic or Gaussian noise in In-Memory Computing (IMC)
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architectures to perturb the activations/weights of DNNs to
improve robustness [16], [17]. However, improving adversarial
robustness of a DNN involving quantum hardware has not yet
been explored.

In this work, we propose QNAD (Quantum Noise Injection
for Adversarial Defense), an extensive_exploration that investi-
gates the prowess of hardware noise from quantum computers
towards enhancing the robustness of DNNs against adversarial
input attacks. QNAD mapped the multiply-accumulate opera-
tions in convolution and fully-connected layers of pre-trained
DNN models with quantum hardware designs for inference,
and investigated the impact of existing intrinsic noise pro-
files predominant in state-of-the-art quantum computers on
the adversarial robustness of the DNN. In order to further
bolster the adversarial defense, QNAD leverages the inherent
properties of quantum computing to introduce crosstalk in
the qubits, that in turn modifies the behavior of the DNN.
QNAD selects a specific subset of pre-trained network weights
using a gradient-based approach, that has the highest impact
on the output inference prediction of the DNN. The injection
of crosstalk in the qubits causes them to become entangled
through interactions with neighboring qubits, thereby perturb-
ing those highly important weights to counteract the impact of
adversarial attacks on the DNN. To the best of our knowledge,
this is the first work, that leverages quantum hardware to
bolster adversarial robustness in a DNN. The proposed QNAD
is flexible to be applied to various quantum architectures
(utilizing superconducting qubits) and DNN models. A point
to note here is that, QNAD does not aim to supplant existing
defense strategies against adversarial attacks. Instead, QNAD,
for the first time ever, performs an extensive exploration to
demonstrate the inherent capability of quantum circuit noise to
enhance the resilience of DNN executions. This enhancement
can serve as a supplementary approach alongside existing
adversarial defense techniques like adversarial training and
regularization, thereby adding an extra layer of security. We
make the following key contributions in this paper:

¢ In this paper, we, for the first time, demonstrate that
intrinsic hardware noise in quantum circuits can improve
the robustness of DNNs against adversarial input attacks.

« We propose Quantum Noise injection study for Adversar-
ial Defense (QNAD), which injects regulated crosstalk in
the quantum computer to further improve the adversarial
robustness of the DNN. QNAD pre-selects a subset of
pretrained network weights to be perturbed with injected
crosstalk in the qubits, causing them to become entangled
due to interactions between neighboring qubits.

« When evaluated on state-of-the-art network-dataset con-
figurations, our proposed QNAD approach achieves up
to 183% relative improvement in the classification accu-
racy under adversarial attack, when exposed to intrinsic
quantum noise in the circuit. We also demonstrate that
introducing crosstalk into a conventionally trained DNN
during inference leads to upto 268% relative improvement
in accuracy of the DNN.

The rest of the paper is organized as follows. Section II

presents background information on deep learning in quan-
tum computing, quantum noise, and adversarial attacks and
defense. The attack model, along with the proposed QNAD
approach is delineated in Section III. Section IV demonstrates
the prowess of the QNAD methodology in defending adver-
sarial attacks. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Deep Learning in Quantum Computing

An area of active research involves adapting classical ma-
chine learning techniques for use in quantum systems. To this
end, several architectures have emerged, including Quantum
Convolutional Neural Networks, QuantumFlow , QuGAN, and
QuClassi. Quantum Convolutional Neural Networks (QCNN)
adapt the classical concept of spatial data encoding to quantum
machine leamning techniques [18]. QCNN uses dual qubit
unitaries and mid-circuit measurement to perform information
down-pooling, allowing for decision-making. This contrasts
with an opposite direction traversal of a MERA network [19].
QuClassi proposes a state-based detection scheme inspired by
classical machine learning methods [20]. It trains“weights” to
represent classifier states, where each state represents a prob-
ability of belonging to a specific class. The resulting output
layers are similar to those produced by classical classification
machine learning networks.

QuantumFlow seeks to replicate the transformations that
occur in classical neural networks and achieve a similar
transformation as the classical equation, y = f(z7 w+b) [21].
It uses phase flips, accumulation via a Hadamard gate, and an
entanglement operation to achieve this transformation. Quan-
tumFlow demonstrates the benefits of batch normalization,
revealing significant performance improvements when normal-
izing quantum data to reside around the XY plane instead
of clustering around either the |1} or |0} point. Additionally,
QuantumFlow illustrates the reduced parameter potential of
quantum machine learning, highlighting a quantum advantage.

Recently, researchers have explored the use of a quantum
convolutional network for high energy physics data analysis
[20]. A framework for encoding localized classical data is pre-
sented, followed by a fully entangled parameterized layer for
spatial data analysis. The promise of quantum convolutional
networks is demonstrated by their numerical analysis. It is
notable that all of these works have taken a classical machine
learning technique and modified it to adapt to the quantum
setting in different forms.

Despite such progress, deep learning algorithms, being
executed on quantum computers are susceptible to noise, that
leads to degradation in inference classification accuracy of
the network. Quantum circuits can be affected by various
types of intrinsic noise, such as thermal noise and shot noise.
Thermal noise arises due to fluctuations in the temperature of
the system, leading to random fluctuations in the energy levels
of the qubits. Shot noise, on the other hand, arises due to
the probabilistic nature of quantum measurements, leading to
random fluctuations in the number of particles passing through
the system. Both types of noise can cause errors in quantum
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gate operations and can limit the accuracy and reliability of
quantum computations. Not only noise, but these quantum
computers are also prone to crosstalk. In the context of
quantum computing, crosstalk refers to unwanted interactions
between qubits in a quantum circuit. These interactions can
arise due to coupling between different qubits, resulting in the
leakage of information from one qubit to another. Crosstalk
can lead to significant errors in quantum gate operations and
can limit the scalability of quantum computing systems. In this
paper, we leverage this inherent noise in quantum hardware,
coupled with regulated crosstalk to improve the adversarial
robustness in deep learning algorithms.

B. Adversarial Attacks and Defenses

Adversarial attacks and defenses are a growing area of
research in the field of machine learning. An adversarial attack
is an attempt to manipulate input data in order to cause a
machine learning model to produce incorrect or misleading
results. This can be achieved in a variety of ways, including
by adding noise to the input, modifying individual features
of the input, or by crafting adversarial examples that are
specifically designed to deceive the model. Adversarial attacks
have been shown to be effective against a wide range of
machine learning models, including deep neural networks,
support vector machines, and decision trees.

One of the most common types of adversarial attacks is the
so-called “Fast Gradient Sign Method (FGSM)” attack. This
involves adding a small amount of noise to an input image,
in order to cause a deep neural network to misclassify the
image. The attack is relatively simple to implement, but can be
highly effective. For example, Goodfellow et al. demonstrated
that an FGSM attack could be used to cause a state-of-the-
art deep neural network to misclassify an image of a panda
as a gibbon, simply by adding a small amount of noise to
the input [11]. Similarly, effective adversarial samples can
be generated by utilizing a multi-step iterative optimization-
based method (unlike “FGSM™), which is known as “Projected
Gradient Descent (PGD)” [22].

Adversarial attacks are a growing concern because they
can have serious real-world consequences. For example, an
attacker could use an adversarial attack to cause a self-driving
car to misclassify a stop sign as a yield sign, potentially
leading to a dangerous traffic situation. Similarly, an attacker
could use an adversarial attack to manipulate medical im-
ages, leading to incorrect diagnoses and potentially harming
patients. Because of these potential consequences, there is a
growing need for effective defenses against adversarial attacks.

There are a number of different strategies that can be used
to defend against adversarial attacks. One approach is to use
adversarial training, in which the machine learning model is
trained using both clean and adversarial examples. This can
improve the model’s ability to resist adversarial attacks, by
making it more robust to small perturbations in the input. For
example, Madry et al. demonstrated that adversarial training
could be used to improve the robustness of deep neural
networks against a range of adversarial attacks [10].

Another approach is to use input preprocessing techniques,
such as denoising or randomization, to make it more difficult
for attackers to craft adversarial examples. For example, Xie
et al. proposed a method called “randomization smoothing”,
in which the input is randomized using a stochastic function
before being fed into the machine learning model [23]. This
makes it more difficult for attackers to craft targeted adversar-
ial examples, because the exact input that will be fed into the
model is not known in advance. Recently, a method to improve
the robustness of deep neural networks against adversarial
attacks has been proposed by injecting parametric noise during
training [12]. The proposed method, called “Parametric Noise
Injection,” adds random noise to the input data of the neural
network in a controllable and trainable manner. This technique
helps to improve the performance of the neural network in
the presence of adversarial attacks, while also improving its
accuracy on clean data.

Adversarial attacks and defenses have important implica-
tions for a wide range of mission critical applications, and
hence, an active area of research. To the best of our knowledge,
this is the first paper to utilize the noise in quantum hardware
as a means of enhancing the adversarial robustness of deep
learning algorithms, thereby improving the safety and security
of such systems.

ITII. PROPOSED QNAD APPROACH

In this section, we first delineate our adversarial attack
model. Next, we outline our defense against such attacks by
leveraging the effect of inherent noise present in quantum
circuits. We proceed to examine the effects of the inherent
noise present in the quantum circuits and its effects on the
robustness of the mapped quantum neural network model
(QNN). This is accomplished under the presumption of a
preexisting mapping strategy, which possesses the capability to
effectuate the translation of a neural-network architecture into
a gate-based quantum circuit. An example of such a mapping
strategy is denoted in Figure 1.

A. Atntack Model

In this section, we define a threat model where the adversary
has a knowledge of the target DNN architecture. We define a
DNN model, fs : ¥ — RF, where, # represents the model
parameters, x is the input space and k is the number of
output classes. Let z; € x be an input instance, y; € R*
be the true label for that input and a be the adversarial
perturbation. The perturbation « is usually constrained to
belong to an allowable set A. We call the perturbed input
¥ = = + o, an adversarial example if it satisfies the relation
fo(z)i # (zi + a),a € A. Now, if I(fo(x;),y:) is a loss
function, the adversarial perturbation « can be computed by
solving the optimization problem maz.ea)l(fo(z + o), y).
Various adversarial attacks can be constructed by modifying
the optimization method as well as the constraint A. Two
of the most extensively studied and effective methods for
generating adversarial examples, utilized in this paper are Fast
Gradient Sign Method (FGSM) [11] and Projected Gradient
Descent (PGD) [22].
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E A CNN model with m convolution layers,
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layers mapped onto a quantum circuit.
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Fig. 1: A potential mapping of the layers of a traditional CNN
model onto a quantum circuit.

FGSM Method: In this paper, we first utilize the FGSM
method to generate adversarial attacks. FGSM is a popular and
straightforward method for generating adversarial examples. It
leverages the gradient information of the loss function with
respect to the input to craft perturbations that can lead to
misclassifications or incorrect predictions. FGSM is known
for its simplicity and efficiency, making it a widely used
technique for adversarial attacks. The key idea behind FGSM
is to compute the gradient of the loss function with respect to
the input data and then perturb the input by taking a small step
in the direction of the sign of the gradient. By using the sign
of the gradient, FGSM determines the direction that increases
the loss function the most, allowing for targeted perturbations
towards a specific class or untargeted perturbations to induce
misclassification. The equation for calculating the adversarial
attack can be represented as :

T =x+exsign(VI(0,z,y)) (1)

where, € is a small number that limits the amount of pertur-
bation, V is the gradient of the loss function with respect to
input z. This method adds a perturbation whose direction is the
same as the gradient of the cost function, thereby increasing
the value of the cost function. This method is invariant of the
magnitude of the gradient. The simplicity and efficiency of
FGSM make it an attractive choice for adversaries seeking to
generate adversarial examples quickly. It requires only a single
forward and backward pass through the network to compute
the gradient, making it computationally inexpensive compared
to more iterative methods like PGD.

PGD Method: Apart from the FGSM method, we utilize
the Projected Gradient Descent (PGD) method, which is an
iterative optimization-based method for generating adversarial
examples. It aims to find the perturbation that maximizes
the loss function while staying within a predefined epsilon-
bound region around the original input. The basic idea behind
PGD is to perform multiple iterations of gradient ascent on
the loss function with respect to the input, while projecting
the perturbed input back onto the allowed region at each
iteration. The number of iterations is a crucial parameter in
PGD. More iterations generally lead to better approximations
of the optimal perturbation but also increase the computational
cost. In each iteration of PGD, the gradient of the loss function
with respect to the input is computed. This gradient represents
the direction in which the loss function increases the most.
The perturbed input is then updated by taking a small step
in the direction of the gradient. The step size determines the
magnitude of the perturbation at each iteration and is usually
chosen carefully to balance the convergence speed and the
likelihood of staying within the epsilon-bound region. After
each update, the perturbed input is projected back onto the
allowed region to enforce the constraints. The projection step
ensures that the perturbed input remains within predefined
boundaries, even if the gradient ascent step takes it outside
of those boundaries. In case of a PGD attack, the original
input (rg = x) is iteratively updated as follows:

Tr+1 = clip(zr + a.sign(Az, Loss(6, Tk, Yz, ),

2
fork=0,...,K -1 @

where « is the step size, K is the number of iterations and
the clip(-) function applies element-wise clipping such that
|zx — x| €,€ > 0 € R. We take xx as the final perturbed
spectral feature as an input for adversarial attack.

B. Translating a DNN model onto a Quantum Circuit

To enhance the security of our Quantum Neural Net-
work (QNN) model against adversarial attacks, which are
FGSM and PGD in the context of this paper, we propose
an exploratory approach, Quantum Noise-Assisted Defense
(QNAD). QNAD leverages both inherent and injected quantum
noise to provide robustness against adversarial design. To
achieve this, we begin by exploring the implementation of
a classical Deep Neural Network (DNN) architecture on a
quantum circuit.

To realize this implementation, it is crucial to convert the
classical properties of the models, such as weights and activa-
tions, into the quantum domain. This process involves mapping
each layer of the neural network onto a quantum circuit. To
facilitate this, we divide the mapping process in a quantum
circuit into three distinct stages. The first stage involves en-
coding the inputs by transforming classical data into quantum
variables. We achieve this by applying rotation (Rx, Rz) gates
on qubits, representing the classical information in a quantum
form. The next stage focuses on constructing the learnable
quantum circuit. Here, we translate each operation present in
the classical model, such as convolution and pooling, into
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the corresponding set of operations in the quantum circuit.
In the last stage, we obtain the classification accuracy and
fine-tune the quantum circuit based on the evaluated results.
This conversion process guarantees the precise preservation
of the functionality of classical operations within the quantum
framework. By formalizing the process and breaking it down
into these stages, we simplify the understanding and imple-
mentation of translating a classical neural network model into
a quantum circuit. The objective of our mapping approach is
to offer an intuitive means of comprehending the conversion
of a Deep Neural Network (DNN) architecture into a quantum
circuit. It should however be noted that the influence of noise
in quantum circuits on the mapped DNN architecture can vary
contingent upon the selected mapping strategy.

C. Analyzing General Effect of Inherent Quantum Noise

After the successful translation of our classical Deep Neural
Network (DNN) model into a Quantum Neural Network
(QNN) model on a quantum circuit, we proceed to analyze
the impact of noise on the QNN model within the quantum
circuit. Noise is an inherent characteristic of quantum com-
puters, stemming from the probabilistic nature of quantum
measurements and the interactions between quantum systems
and their surrounding environment [24].

Given the inherent nature of noise in quantum circuits,
it uniformly affects every layer that is mapped within the
quantum circuit. The presence of this inherent noise enhances
the performance of the model, by counteracting the impact of
adversarial input perturbations. To elaborate, we observe that
this noise predominantly impacts the Multiply-Accumulate
(MAC) operations of each layer. It can also be observed that,
since the presence of adversarial inputs also induces alterations
in the MAC operations, resulting in a reduction in model
performance, and the inference classification accuracy. Hence,
it becomes crucial to evaluate the impact of this inherent
noise on the Multiply-Accumulate (MAC) operations of each
layer within a Quantum Neural Network (QNN) model, as
demonstrated below:

F=> (z;+6z;) x (w; + dwy)

j=1

3

Equation 1 illustrates the MAC operation within a neural
network model, incorporating noise perturbation. This is rep-
resented by dx;, which denotes the change in input caused
by noise, and éw;, which indicates the change in weight
attributed to the same. The equation describes how a unit MAC
operation is affected by the presence of noise. Considering
that adversarial attacks perturb the input (z;), it is reasonable
to infer that a change (dx;) in the perturbed input due to
inherent noise leads to a more resilient model. The effect of the
noise subverts the adverse impact of input alterations, thereby
enhancing the model’s robustness. Subsequently, we confirm
our observations, noticing that the presence of noise actually
enhances the accuracy of the Quantum Neural Network (QNN)

Fig. 2: Injecting crosstalk to improve adversarial robustness.

model under adversarial attacks. This improvement can be at-
tributed to the impact of noisy MAC operations on activations,
which in turn directly influence the output accuracy of the
model. Therefore, the robustness of MAC operations directly
contributes to an increase in the overall model accuracy. Subse-
quently, we undertake an evaluation of the transferability of the
insights obtained from our model by applying them to different
DNN architectures. While achieving the optimal reduction of
adversarial noise effects may necessitate individual tuning of
each noise source, we observe that the values derived from
one model yield similar outcomes when applied to a different
model. The varied models share the same architecture but
undergo different training process. This observation can be
attributed to the fact that the impact of induced noise is
largely dependent upon the architecture of the circuit being
considered. While the outputs of a circuit are influenced by
the provided inputs, we note that the influence of inputs on
the noise within a circuit is negligible.

D. Injecting Crosstalk Noise in Specific Localities

While inherent noise in a quantum system offers a certain
resilience against adversarial inputs, it does not restore the
model’s accuracy to a significant extent. Consequently, moti-
vated by the robustness provided by inherent noise, within our
approach, we propose investigating the effects of deliberate
noise injection into the Quantum Neural Network (QNN)
model. This is elucidated in Figure 2, where the highlighted
nodes are susceptible to adversarial attack, and consequently
their corresponding mapped counterparts on the quantum
circuits are also susceptible to attack.

Given our knowledge of the QNN model’s architecture
following the mapping process, we propose the controlled
introduction of regulated crosstalk noise into the circuit. The
rationale behind this approach stems from the fact that in-
troducing regulated crosstalk necessitates knowledge of the
specific region within the quantum circuit where it should
be injected. This is because it is important to exercise cau-
tion when introducing higher levels of crosstalk, as it can
potentially have adverse effects on the model’s performance.
To circumvent the potential adverse effects of crosstalk, it is
crucial to precisely localize the operations in the QNN model
where crosstalk needs to be inserted. Referring to equation
(1), we note that MAC operations depend on both the weights
(w;) of a neural network layer and its inputs (z;). Existing
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research has also demonstrated the importance of weight
perturbation for defense against adversarial attacks [25], [26].
Therefore, we suggest the incorporation of crosstalk noise into
the phase-gates of qubits within the quantum computer, which
correspond to weights in the classical model.

To further localize the amount of crosstalk, in this approach,
we focus on the weights that have the greatest impact on the
model’s performance. To achieve this, we suggest identifying
the weights within our neural network model that carry the
highest significance in influencing the output accuracy of the
NN model. By selectively targeting these influential weights,
we can effectively limit the impact of crosstalk while maximiz-
ing its potential benefits in improving the overall performance
of the QNN model. Following this, we describe our critical
weight selection approach.

1) Critical Weight selection: A traditional DNN architec-
ture is composed of several hidden layers primarily comprising
convolution, pooling, batch normalization and fully connected
layers etc. An exhaustive search for finding vulnerable weights
in these layers becomes computationally intensive, and thus
we consider it an impractical endeavour. To circumvent this
obstacle, we utilize a gradient-based important weight selec-
tion approach. In this method, we apply a set of inputs to the
model for feed forward inference and then perform a backward
gradient calculation using the model’s loss. Thereafter, we
evaluate the weights with the highest absolute gradient values
in this process, and these weights are considered to contribute
the most to the output of the DNN model. Elaborating on this,
let us assume, DN Ny (X ) is a d— layer neural network with
c-dimensional output and o; are the corresponding activation
functions for the connection between layer ¢ and 7 + 1.
Assuming y! as the one-hot coded vectors, and §] = p;, as
the softmax probability for the it" observation, falling in rt?
class depending on the feature values X and weights W :

exp B X;
> e—1 exp(BLX;)
Here, X; is the feature vector. We replace the simplistic
multinomial logit structure 85X; using feature vectors by a
suitable neural network structure. In order to calculate the
gradient of the network loss L for an input sample, let us
consider a particular weight w. Then,
4L
bz

Ui =pir =P(Yi=r)= “)

= Yr—Ur (3)

where z, = (DN Ny (X)),. By chain rule, we can easily
5L

compute the gradients 5= as following:

. 6L 6z

t=1 6_%%

6L
== ©)

Here, ‘%‘ heavily depends on network structure involving the
specific weight w. By analyzing the gradients (g—i), we iden-
tify the critical weights from the set of all weights W using
the absolute gradient values. Next, we proceed to determine
the specific quantum phase gates and corresponding qubits

where these weights have been mapped in the circuit. This

is accomplished under the assumption of the existence of a
viable mapping strategy which could be utilized to map the
DNN architecture onto the quantum circuit, as shown in Figure
2. Upon identifying the qubits and gates, we can attain the
regions within the quantum circuit where crosstalk can be
induced. This localization allows us to minimize the adverse
effects associated with crosstalk. Subsequently, we select suit-
able qubits within the localized region for the insertion of
crosstalk. These qubits are chosen from the physical layout of
the quantum backend, and they should be neighboring qubits
to our target qubit, where we intend to induce crosstalk.

2) Noise insertion: In the final step of our approach,
we proceed to introduce crosstalk into the identified qubits,
precisely regulating the amount to be inserted within each
designated region. Throughout this process, we meticulously
evaluate the effects of the introduced crosstalk and fine-tune
its magnitude and parameters to attain optimal outcomes. This
iterative refinement allows us to achieve the desired balance
between the beneficial effects of crosstalk and any potential
detrimental impact, ensuring optimal operation for our QNN
model. The induction of crosstalk noise in a quantum circuit
primarily involves the utilization of two-qubit Controlled-NOT
(CNOT) gates. The tuning process of the crosstalk entails
regulating the number of CNOT gates to be inserted into
the quantum circuit. Subsequently, we analyze the observed
enhancement in model accuracy resulting from our proposed
approach. By systematically introducing and fine-tuning the
crosstalk noise within the quantum circuit, we can assess
the positive impact on the accuracy of the model. Moreover,
CNOT gates are introduced in pairs. This is done to prevent
the possibility of affecting the forward function, since an
even number of CNOT gates results in an identity operation.
However, the crosstalk effect due to the CNOT gates can still
be perceived. This evaluation demonstrates the effectiveness
of our approach in improving the overall performance of the
Quantum Neural Network (QNN) model.

Algorithm 1 Quantum Crosstalk noise Injection

Input: QNN after Adversarial attack
Output: Noise Injected QNN

1: W; = Set of important weights obtained from Eqgs. [2-4]

2: Sort(List[W;])

3: for W; in List[W;] do

4:  Extract Q;, Op; + W;

5 List [Quimp]-appe“d[Qi]s List [Opimp]-append[opi]

6: end for

7: for qu in List [Quip,p] do

8:  Extract(List AV_Q [Available neighboring qubits(qu)])

9: if AV_Q not empty then

10: op ¢ Opjmp corresponding to Qi

11: X_talk + Evaluate crosstalk to be inserted into
operation

12: Inject_Noise (qu, op, X_talk)

13:  end if

14: end for
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Fig. 3: Impact of FGSM attack for LeNet on MNIST and
corresponding improvement in accuracy under QNAD.

Our approach for inserting crosstalk is presented in Algo-
rithm 1. In this algorithm, we aim to defend against adversarial
attacks by determining the location and quantity of crosstalk
to be inserted into the QNN model. The algorithm begins
by obtaining the QNN model after the adversarial attack
has been performed (line I). We then identify the critical
weights in the model using their absolute gradients (%), as
described in Equations 2 to 4 (line 2). These weights are
sorted in a list based on their importance, which indicates
their influence on the model’s accuracy. Next, we determine
the corresponding qubit and the rotation operation on that qubit
for each weight gradient in the classical model. We add the
qubits and operations to individual lists, denoted as Qunp
and Opj,p, respectively (lines 3-5). For each qubit in the
Quimp list, we identify the neighboring qubits and assess their
availability in the quantum circuit (lines 7 and 8). Availability
is determined based on whether the qubit is undergoing any
operations in conjunction with the QNN model. Neighboring
qubits refer to one-hop and two-hop qubits in the physical
architecture that are adjacent to the qubit under consideration.
If there are no available neighboring qubits, it implies that
crosstalk cannot be introduced via noise injection. However,
if neighboring qubits are available, we obtain the operation
corresponding to the qubit (lines 9-10). Subsequently, we
evaluate the amount of crosstalk to be inserted and proceed
with the insertion into the qubit (lines 11-12). This process
is repeated for each weight in the list of important weights.
Finally, we obtain the QNN model with the injected noise after
completing the injection process for all important weights.

The process of inserting noise through crosstalk offers
advantages over general noise injection. It provides greater
control over the noise injection procedure, thereby enhancing
the feasibility of mitigating the effects of adversarial attacks.

IV. EVALUATION
A. Experimental setup

In order to evaluate the efficiency of our proposed QNAD
approach in enhancing the adversarial robustness, we utilize
three network dataset configurations — LeNet on MNIST,
AlexNet on CIFAR 10 and VGG-16 on CIFAR 100 datasets.
While these models provide substantial depth and complexity
in terms of network dimensions and computations, datasets
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Fig. 4: Variation in classification accuracy for varying crosstalk
levels under FGSM attack on LeNet-MNIST configuration.

CIFAR 10 and CIFAR 100, with 10 and 100 output classes
respectively, are being traditionally used in existing research
to evaluate computer vision workloads. The networks are
developed using PyTorch framework, and are trained on cloud,
following which, they are deployed in the quantum computer
for inference. The baseline classification accuracies for LeNet
on MNIST, AlexNet on CIFAR 10 and VGG-16 on CIFAR
100 are 98.2%, 73.7% and 64.3% respectively. Subsequently,
we execute both the FGSM and PGD adversarial attacks on all
the network-dataset configurations and evulate the efficiency of
QNAD in defending such attacks. To counteract the potential
attacks, we employ a defensive strategy by extracting the
intrinsic noise characteristics of the IBM Quantum’s physical
backend, namely ibm_nairobi. Subsequently, we conduct an
estimation of the noise resulting from crosstalk on the same
quantum backend. The outcomes of these analyses are pre-
sented in the subsequent section.

B. Experimental Results

In this section, we study the effect of varying amounts of
inherent noise present in quantum systems, as well as the
effects of induced crosstalk on different DNN models mapped
on QNN’s. For this purpose, present three case studies.

1) Case I - LeNet on MNIST: We first assess the perfor-
mance of QNAD by employing a LeNet model trained on an
MNIST dataset for two different attack scenarios.

Efficiency on FGSM Attack: In this experiment, we conduct
an analysis where we apply the FGSM attack to the incoming
input vectors. We increase the perturbation magnitude, de-
noted by epsilon (€), and observe the resulting degradation
in the classification accuracy of the network. The experi-
mental results, depicted in Figure 3, demonstrate how the
classification accuracy changes with varying epsilon values.
Subsequently, we utilize a quantum circuit to map the Deep
Neural Network (DNN) model and evaluate the accuracy of the
newly established Quantum Neural Network (QNN) model.
The figure also showcases the improvement in classification
accuracy achieved by QNAD. Based on the results depicted
in Figure 3, it is evident that the inherent noise inherent in the
quantum system plays a crucial role in enhancing the accuracy
of the model following an adversarial attack. The figure clearly
demonstrates that as the perturbation in the input increases, the
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effectiveness of the intrinsic noise in improving robustness also
increases, leading to a significant improvement in accuracy of
up to 144%.

We conducted a study to analyze the impact of crosstalk
injection on model accuracy. Following Algorithm 1 described
earlier, we selectively chose important weights for crosstalk
insertion. By regulating and localizing the amount of crosstalk
injection, we observed the change in accuracy as the level of
crosstalk varied. The results, depicted in Figure 4, illustrate
the relationship between crosstalk amount and accuracy. The
degree of crosstalk is measured by the ratio of the number
of weights in the Quantum Neural Network (QNN) model
affected by crosstalk, to the total number of weights.

Figure 4 demonstrates that the model’s performance im-
proves with increasing crosstalk up to a certain threshold.
However, exceeding this threshold leads to a gradual decrease
in accuracy. We further examined the influence of crosstalk
on QNN models under various levels of adversarial attacks.
Interestingly, we found that the optimal crosstalk level for
achieving maximum accuracy varied depending on the inten-
sity of the attack. Additionally, we observed that there is a
threshold specific to each attack level, beyond which accuracy
starts to decline. Moreover, incorporating both crosstalk and
inherent noise significantly enhances the accuracy of the QNN
model. The combined approach leads to a remarkable increase
in model accuracy, reaching up to 235%, as shown in Figure 3.
Efficiency on PGD Attack: In this experiment, we evaluate
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Fig. 5: Impact of PGD attack on LeNet-MNIST configuration
and corresponding improvement in classification accuracy
furnished by QNAD.
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Fig. 6: Variation in classification accuracy for varying crosstalk
levels under PGD attack on LeNet-MNIST configuration.
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Fig. 7: Impact of FGSM attack on AlexNet-CIFAR 10 con-

figuration and corresponding improvement in classification
accuracy by QNAD.
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Fig. 8: Variation in classification accuracy for varying crosstalk
levels under FGSM attack with differing intensity on AlexNet-
CIFAR 10 configuration.

the efficiency of QNAD under the PGD attack for LeNet-
MNIST configuration. The corresponding degradation in clas-
sification accuracy for varying attack intensities is represented
in Figure 5. As shown in the figure, the iterative nature
of the PGD attack leads to a slightly higher degradation in
classification accuracy compared to the FGSM attack. The
PGD attack, with its multiple iterations, results in a more
pronounced impact on the model’s accuracy. This degradation
in accuracy is mitigated by up to 183%, with the aid of
inherent noise in the quantum circuit.

We conducted a study to investigate the effect of crosstalk
injection on model accuracy. By selectively inserting crosstalk
into key weights using Algorithm 1, we controlled its level.
The resulting accuracy was observed as we varied the crosstalk
amount. Figure 6 illustrates the relationship between crosstalk
and accuracy, where crosstalk is measured by the fraction
of affected weights in the QNN model. Figure 6 shows that
increasing crosstalk initially improves model performance, but
surpassing a threshold leads to a decline in accuracy. We
examined crosstalk’s impact on QNN models under different
adversarial attack levels and found that the optimal crosstalk
level varied based on attack intensity. Each attack level had a
specific threshold where accuracy started to decline. Moreover,
incorporating both crosstalk and inherent noise significantly
boosted the QNN model’s accuracy by up to 285%, as demon-
strated in Figure 5.
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2) Case 2 - AlexNet on CIFAR 10: In this experiment, to

evaluate the performance of QNAD, we utilize an AlexNet
model trained on an CIFAR 10 dataset and examine its
effectiveness under both the attack scenarios.
Efficiency on FGSM Attack: In this experiment, we assess
the effectiveness of QNAD against the FGSM attack on the
AlexNet-CIFAR 10 configuration. We analyze the resulting
degradation in classification accuracy for different attack in-
tensities, as depicted in Figure 7. The CIFAR-10 dataset on
AlexNet exhibits similar trends as MNIST, albeit with a higher
value of epsilon (¢). Nonetheless, the integration of inherent
noise in the quantum circuit aids in mitigating the accuracy
degradation, contributing to improved performance by up to
26%, even at higher € values.

We conducted a study on the effect of crosstalk injection
on model accuracy. By selectively introducing crosstalk into
key weights, we controlled its level. Figure 8 shows the
relationship between crosstalk and accuracy, with crosstalk
measured by the fraction of affected weights in the QNN
model. Increasing crosstalk initially improves performance,
but surpassing a threshold leads to a decline in accuracy.
Crosstalk’s impact on QNN models varied based on attack
intensity, with each level having a specific accuracy threshold.
Furthermore, incorporating both crosstalk and inherent noise
significantly boosted model accuracy by 34%, as shown in
Figure 7. It is important to note that the observed improvement
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Fig. 9: Impact of PGD attack for AlexNet-CIFAR 10 con-
figuration and corresponding improvement in classification
accuracy furnished by QNAD.
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Fig. 10: Variation in classification accuracy for varying
crosstalk levels under PGD attack of differing intensity on
AlexNet-CIFAR 10 configuration.
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Fig. 11: Impact of FGSM attack for VGG16-CIFAR 100
configuration and corresponding improvement in accuracy
under QNAD.
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Fig. 12: Variation in classification accuracy for varying
crosstalk levels under FGSM attack of differing intensity on
VGG16-CIFAR 100 configuration.
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Fig. 13: Impact of PGD attack for VGG16-CIFAR 100 con-
figuration and corresponding improvement in classification
accuracy by QNAD.

in accuracy for this case is relatively low compared to Case
1. This can be attributed to the fact that the initial network
accuracy is less affected by the attack in this scenario. In
cases where the reduction in accuracy is more significant, our
proposed QNAD approach has demonstrated a higher improve-
ment in accuracy, thus enhancing the adversarial robustness of
the network. The effectiveness of QNAD is more pronounced
when the initial impact of the attack on the classification
accuracy is greater, as shown in Case 1.

Efficiency on PGD Attack: In this experiment, we evaluate
our QNAD’s effectiveness against the PGD attack on the
AlexNet-CIFAR 10 configuration. We examine the impact on
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TABLE I: Summary of results.

Adversarial Relative accuracy
attack Model-dataset Optimal e improvement (%)
LeNet-MNIST 0.3 235.17
FGSM (1] AlexNet-CIFAR-10 6 34.61
VGGI6-CIFAR-T0D 6 58.07
LeNet-MNIST 0.3 268.28
PGD 221 AlexNet-CIFAR-10 6 42.16
VGGI6-CIFAR-T0D 6 59.25
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Fig. 14: Variation in classification accuracy for varying
crosstalk levels under PGD attack of varying intensity on
VGG16-CIFAR 100 configuration.

classification accuracy at various attack intensities, shown in
Figure 9. The CIFAR-10 dataset on AlexNet shows similar
patterns to MNIST, but with a larger epsilon (¢) value. How-
ever, incorporating inherent noise in the quantum circuit helps
reduce accuracy degradation and enhances performance by up
to 28%, even at higher e values.

We investigated the impact of crosstalk injection on model
accuracy by selectively introducing it into specific weights.
Figure 10 demonstrates the relationship between crosstalk
and accuracy, measured as the fraction of affected weights
in the QNN model. Increasing crosstalk initially enhances
performance, but exceeding a threshold results in decreased
accuracy. Crosstalk’s effect on QNN models varies with
attack intensity, each having a specific accuracy threshold.
Furthermore, incorporating both crosstalk and inherent noise
significantly improves model accuracy by 42% (Figure 9).

3) Case 3 - VGGI16 on CIFAR 100: In this experiment, we
assess the performance of QNAD by employing an VGG16
model trained on the CIFAR 100 dataset. We evaluate its
effectiveness in two attack scenarios, FGSM and PGD.
Efficiency on FGSM Attack: In this experiment, we evaluate
our QNAD approach against the FGSM attack on VGGI16-
CIFAR 100 configuration. Figure 11 illustrates the impact on
classification accuracy at various attack intensities. Incorpo-
rating inherent noise in the quantum circuit reduces accuracy
degradation and improves performance by up to 43%, even as
intensity of adversarial attack, i.e., €, increases.

We studied crosstalk injection’s impact on model accuracy
by selectively introducing it into specific weights. Figure
12 shows the relationship between crosstalk and accuracy,
measured as the fraction of affected weights in the QNN
model. Increasing crosstalk initially improves performance,
but exceeding a threshold decreases accuracy. Crosstalk’s

effect varies with attack intensity, each with a specific accuracy
threshold. Additionally, incorporating crosstalk and inherent
noise significantly boosts model accuracy by 58% (Figure 11).
Efficiency on PGD Attack: We test our QNAD approach
against the PGD attack on VGG16-CIFAR 100 configuration.
Figure 13 shows the impact on classification accuracy at
varying attack intensities. Incorporating inherent noise in the

quantum circuit minimizes accuracy degradation and boosts
performance by up to 44%, even at higher € values. Moreover,

we examined the impact of selectively introducing crosstalk
into specific weights on model accuracy. Figure 14 illus-
trates the relationship between crosstalk and model accuracy,
measured as the fraction of affected weights in the QNN
model. Initially, increasing crosstalk improves performance,
but surpassing a threshold decreases accuracy. Crosstalk’s
effect varies with attack intensity, each with its own accu-
racy threshold. Moreover, the incorporation of crosstalk and
inherent noise significantly enhances model accuracy by 59%,
as demonstrated in Figure 13.

Summary of results: The results obtained by our experi-
ments are summarized in Table I. The first column indicates
the attack model considered for our experiments. Following
this, the second column describes the dataset on which the
experiments were evaluated. The third column depicts the e
or attack intensity, for which our defense provides the highest
robustness. Finally, columns four and five show the accuracy
of the QNN models before and after the operation of our
proposed defense strategy. We observe relative improvement
in accuracy of up to 268.28%, furnished by QNAD, for
PGD attack performed on LeNet-MNIST configuration, with
intensity € of 0.3. The results from Table I underscore the
efficacy of QNAD in enhancing robustness against attacks
driven by adversarial inputs. Moreover, since it utilizes in-
herent properties of quantum circuits, QNAD preserves the
extensibility of its integration into pre-existing adversarial
defense frameworks, particularly when such frameworks are
implemented within a quantum circuitry paradigm.

V. CONCLUSION

In conclusion, this paper shows that intrinsic quantum noise
can improve the robustness of DNNs against adversarial input
attacks. The noisy behavior of quantum computers reduces the
impact of attacks, enhancing the accuracy of compromised
DNNs. To further enhance DNN robustness, we propose
QNAD, that induces carefully crafted crosstalk in the quan-
tum computer by perturbing a subset of pretrained network
weights, causing entanglement among neighboring qubits.
Experimental evaluations demonstrate that QNAD achieves up
to 268% relative improvement against adversarial input attacks
compared to conventional DNN implementations on state-of-
the-art network dataset configurations. These findings high-
light the potential of leveraging quantum noise and crosstalk
injection techniques for enhancing DNN security in adversarial
scenarios. Further exploration is imperative to substantiate the
validity of these intuitions and their supposed effects on the
resilience of DNN models mapped onto a quantum computer.
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