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Abstract—Quantum computing has holds considerable poten-
tial for accelerating computational tasks beyond the capabilities
of classical computation. However, a major obstacle arises from
the delicate nature of quantum hardware, where quantum gates
and qubits, the fundamental components of a quantum circuit
(QC), are vulnerable to external interference. Consequently, even
a simple QC can produce significantly noisy output. This noise
introduces uncertainty, making it difficult to ascertain whether
the output represents meaningful computation or merely random
noise. This uncertainty raises questions regarding the fidelity
of a QC and the extent to which we can rely on its output.
Existing classification-based approaches for output estimation
have limitations, including the potential for incorrect results due
to misclassification or the requirement for a large number of
measurements, which can be expensive. To circumvent this, in
this paper, we propose QuEST, which introduces an efficient
technique for estimating the output of a QC by analyzing
probability distributions of post-measurement data. Specifically,
the QuEST framework employs Gaussian distribution functions
to compare the measured distribution of a circuit with a pre-
trained distribution obtained from a training circuit dataset.
Moreover, we reformulate this problem by leveraging the proper-
ties of sequential time series, thereby deriving a straightforward
and intuitive metric to measure the confidence of the QC
output. By utilizing this metric, the QuEST framework monitors
fidelity evolution over time as the QC interacts with its external
environment, enabling the system to preemptively halt QC
execution upon reaching a specified confidence threshold. When
evaluated against state-of-the-art benchmark quantum circuits,
our proposed QuEST framework accurately estimates the output
of 100% of the benchmark circuits, while significantly achieving
speedup up to 58.3× compared to a standard QC execution.
These results highlight the efficiency of our framework and its
potential for practical quantum computing applications.

Index Terms—Quantum Computing, Output Estimation, Sta-
tistical distribution, Time Series.

I. INTRODUCTION

Quantum computers, like Google’s Sycamore processor, ex-
ploit quantum mechanics to outperform classical counterparts
with qubits and entanglement, as seen in Simon’s problem.
However, they face challenges like noise, limited qubits, and
connectivity. Noisy Intermediate-Scale Quantum (NISQ) com-
puting mitigates these issues using error-mitigation techniques.
Transpilation, mapping quantum circuits to physical qubits, is
essential but complex due to varying qubit characteristics and
restricted connectivity [1]. This can introduce additional noise,
even with high-quality qubits.

To maximize the utility of current NISQ processors, it
is vital to develop a methodology for accurately predicting
‡Authors have equal contribution.
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quantum circuit outputs with high fidelity, avoiding resource-
intensive, noisy transpilation processes. Quantum hardware
providers are already offering tools to optimize circuits using
simplified noise models. Measurement on modern quantum
computers involves coupling sensitive equipment, introducing
noise, to gather quantum state information. Processing this
quantum data through repeated measurements (shots) on clas-
sical computers converges toward a correct solution [2]. How-
ever, classification-based methods have limitations, and the
need for a high number of measurements, incurring significant
costs. Additionally, repeated circuit execution on cutting-edge
quantum computers leads to congestion, with users enduring
lengthy waiting times. To optimize resource allocation and
traffic management, it is crucial to identify circuits that do not
require multiple iterations, enhancing efficiency.

In this paper, we present QuEST, a framework designed
to address the critical need for efficient and reliable quantum
circuit (QC) execution on noisy intermediate-scale quantum
(NISQ) computers. QuEST employs Gaussian distribution
functions to compare the measured distribution of a circuit
with a pre-trained distribution from a comprehensive training
circuit dataset encompassing several implementations of an
extensive variety of quantum circuits. The use of Gaussian
distribution in our framework is driven by the noise inherent in
quantum computers, which reduces confidence in correctness
due to altered measurement outcomes. By using sequential
time series properties, we reformulate the problem and create
a simple metric to measure QC output confidence. QuEST
not only accurately estimates quantum circuit outputs but
also monitors fidelity evolution as the QC interacts with its
environment. This allows for preemptive QC execution halts
based on a confidence level associated with the Gaussian
distribution’s z-score, optimizing resource utilization and min-
imizing potential execution errors. Furthermore, when predic-
tion confidence is low, QuEST incorporates multiple execution
instances from the time series to boost the z-score, increasing
confidence in the output estimate. We tested QuEST on state-
of-the-art benchmark quantum circuits and achieved 100%
accurate estimation while significantly speeding up execution,
up to 34.84× compared to standard QC execution. These
results underscore the efficiency and practical potential of
our framework in quantum computing applications. The key
contributions of this paper are as follows:

• In this paper, we, for the first time, propose QuEST, a
framework which addresses the need for efficient and re-
liable estimation of quantum circuit output in the presence
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of noise in NISQ computers.
• QuEST employs Gaussian distribution functions to com-

pare the measured distribution of a circuit with a pre-
trained distribution obtained from a comprehensive train-
ing circuit dataset, enabling accurate estimation of quan-
tum circuit outputs.

• The framework leverages the properties of sequential time
series to reformulate the problem and develop a straight-
forward metric for measuring quantum circuit output with
an associated confidence. This allows for monitoring the
evolution of fidelity over time as the quantum circuit
interacts with its external environment.

• When evaluated against state-of-the-art benchmark quan-
tum circuits, our proposed QuEST framework accurately
estimates the output of 100% of the benchmark circuits,
while significantly achieving speedup of up to 34.84×
compared to a standard quantum circuit execution.

The rest of the paper is organized as follows. Section II
outlines the background information on quantum circuits
and noise in quantum computers and the related efforts in
this domain. The corresponding methodology to develop the
proposed QuEST framework is depicted in Section III. The
efficiency of QuEST is demonstrated in Section IV. Finally,
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Basics of Quantum Circuits

Quantum computers can be categorized into two types:
quantum annealers and universal gate-based processors. This
work specifically focuses on gate-based computers. In gate-
based quantum computing, qubits undergo a series of quantum
gate operations, following a quantum circuit (QC) description.
These gates induce transformations on the qubit states, repre-
sented by unitary matrices, ensuring computation reversibility.

Quantum computing typically involves three key stages:
state preparation, computation, and measurements. In the state
preparation stage, input qubits are initialized, often using
quantum phenomena like superposition. This enables qubits
to exist in multiple states simultaneously, facilitating parallel
exploration of potential solutions.

The computation stage utilizes a sequence of gates defined
by the quantum circuit to manipulate and transform qubit
states. This stage performs core computational tasks of a
quantum algorithm, leveraging quantum parallelism and en-
tanglement for exponentially efficient computations.

In the final stage, measurements collapse qubits from quan-
tum superposition to classical states. This transition provides
classical information for interpretation by classical systems,
forming the basis of quantum computing and driving advance-
ments in cryptography, optimization, and simulation.

B. Noise in Quantum Computers

Research into quantum gate fidelity and qubit noise is active
in the realm of NISQ systems. Randomized benchmarking, a
well-established protocol, has been a prominent method for

assessing quantum operation error rates [3]. Recent advance-
ments aim to broaden its applicability to a wider range of
quantum operations [4] and make it more adaptable for larger
circuits involving multiple qubits [5].

Achieving precise measurements on real quantum hardware
is essential due to higher error rates in quantum gates. Early
research focused on improving output fidelity through cir-
cuit compilation techniques, like gate scheduling and CNOT
rerouting [6], [7]. Contemporary efforts emphasize optimiz-
ing hardware-specific aspects and adopting noise-aware qubit
mapping strategies [1], [8]. Transpiling quantum circuits ac-
cording to the processor’s architecture and noise characteristics
is now crucial for achieving optimal performance.

Fidelity estimation in quantum computing is a complex field
with diverse approaches. Some use quantum algorithms for
their speedup [9], while others explore statistical techniques
and polynomial fitting [10]. Machine learning, including shal-
low neural networks [11], and newer architectures like graph
transformers [12], is also being applied.

However, challenges remain in ensuring convergence for
qubit discriminator methods. Currently, there’s no system-
atic way to bound classification errors, leading to extensive
quantum circuit sampling and testing against a threshold.
This inefficiency underscores the limitations of current qubit
discriminator methods.

III. PROPOSED QUEST FRAMEWORK

In this section, we demonstrate our proposed framework,
QuEST, with the aim of reducing the cost of quantum com-
putation. The cost of computing is mainly incurred due to
the noise present in quantum circuits, which necessitates
several instances of a circuit to be executed before obtaining
a satisfactory output confidence. QuEST enables a significant
reduction in computation time, by decreasing the number
of computing instances for each circuit by leveraging time
series analysis of quantum circuit execution, accompanied by
statistical decisions. Figure 1 illustrates the process flow of
our proposed framework, consisting of two major components:
Statistical Distribution obtained by Quantum Circuit execution,
followed by Output Estimation. Subsequently, the Quantum
circuit is executed on a quantum computer to obtain the
normalized prediction magnitude Nmi from prediction count
Pci for each computation instance si. We will construct a
normal distribution and determine the confidence threshold
T H and generate the confidence interval Cm.

Following this, in QuEST, we utilize time series analysis
of outputs. This is performed in order to take advantage of
early preempting, i.e., stop execution and exit when T H is
achieved. Otherwise, we move on to stack all instances and
boost confidence until T H is achieved.

A. Statistical Distribution from Quantum Circuit Execution

Qubits are fundamental units in quantum computing that
allow for the encoding of 2n states using n-bits. However, the
practical performance of quantum computers is significantly
affected by the presence of noise. This noise introduces errors,
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Fig. 1: Process Flow of the Proposed QuEST Framework.

Fig. 2: An example of a circuit with three measured qubits.

Fig. 3: Prediction Count Pc for one computation instance (1K).

resulting in a reduction in the fidelity of the output produced
by quantum circuits. In order to subvert the influence of the
noise, significant amount of calculation instances S ≜ si . . . sn
are required to achieve accurate results with relatively high
confidence. These instances are represented by the number of
‘shots’ during execution of a quantum circuit.

Although a single quantum computer can execute multiple
circuits consecutively, the noise has a different impact on
each individual circuit. Performing a statistical distribution for
each circuit individually during execution adds an unnecessary
overhead, and is infeasible. To subvert this, we propose using
a standard benchmark suite of NISQ circuits that encompasses
various different architectures, in order to encompass the

TABLE I: Prediction count for a 3-bit output quantum circuit.

Prediction Output Counts Magnitude

Ins 000 001 010 011 100 101 110 111 Msi Nmi

1 8 55 17 80 55 693 22 70 8.66 1.26
2 11 90 13 27 58 705 45 51 7.83 1.14
3 8 65 19 79 54 688 17 70 8.71 1.26
4 16 67 9 105 44 637 21 101 6.07 0.88

different scenarios of the impact of noise on a circuit. To
this end, for a prediction distribution of a quantum circuit,
we propose to obtain Msi, which is a metric that determines
the ratio of the prediction magnitudes of the highest value to
the second highest, aggregated over the benchmark suite of
NISQ circuits we consider.

For example, Figure 2 illustrates a quantum circuit that mea-
sures 3 qubits (Bernstein-Vazirani circuit). Hence, there are 23

potential outputs for this circuit and its prediction distribution
for the minimum computation instance si is demonstrated
in Figure 3. Typically, one output has a significantly higher
prediction count Pci than the rest of the outputs, such as
“011” P011i in Figure 3. Meanwhile, the output with the
second highest Pci is “010” P010i. Ideally, the Pci of the
correct output should be significantly higher than the rest
of the possible outcomes such as P011i, in Figure 3. Msi,
aggregated over our benchmark suite is evaluated, in order to
obtain the distribution curve. For circuits with a probability
distribution as output, we consider the ratio of the number of
times the probability distribution occurs to the total number
of executions. The highest value yielded by this ratio is
designated as P1st and the output distribution with the second
highest number of occurrences is assigned to P2nd. Following
this, the quantum circuits are executed on the backend.

The ratio, Msi is computed as follows :

Msi =
P1st

P2nd
, for si : (P1st : P011i, P2nd : P010i) (1)

In Equation 1, we obtain P1st as P011, and P2nd as P010, from
Figure 3. Table I shows an example of four sequential com-
putation instances from a quantum circuit with 3-bit output.
Columns 2-9 show the prediction count for each output, Msi
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represents the magnitude of P1st and P2nd for each instance,
Nmi represents the normalized magnitude for each instance.

Following the generation of Msi, it can be observed that
for different benchmarks, different normal distributions are
achieved. However, we are able to normalize the data obtained,
since the variance in the peak of the normal graph does not
change. Normalizing further reduces the error margin. For all
quantum circuit benchmarks, we calculate the Msi for each
computation instance si, and construct a normal distribution
to map all the potentialMsi (We will later discuss the bench-
marks in the QASMBench suite, which consist of specific
circuits used for our experiments [13]. These benchmarks
serve as standardized sets of quantum circuits to evaluate
and compare different quantum algorithms and architectures,
including the impact of noise.). Since we are using different
benchmark circuits, we will normalize all Msis into Nmis
from the same benchmark with the following equation:

Nm
normalized
i =

Msi

Avg(
∑
Msi)

(2)

Therefore, we can obtain the normal distribution of the nor-
malized Nmis from all benchmarks, as shown in Figure 4.

B. Output Estimation from Quantum Circuit Execution

Following the generation of the Nmi, output estimation is
performed for each new quantum circuit being executed. This
is accomplished by taking all the instances of the new quantum
circuit and evaluating its Z-score, which is an integral part of
constructing confidence intervals, and subsequently, to evalu-
ate confidence. A higher confidence threshold will result in a
wider confidence interval. This is because a higher confidence
level demands a greater level of precision, which necessitates
a wider range of plausible values in the confidence interval.
Following the generation of the confidence, we evaluate the
output using Probability of Successful Trial (PST), in order to
ascertain whether the generated output is correct.

Z − Score =
Nmi − µ

σ
(3)

Here Z-score, which defines the position of the Nmi in
terms of distance from the mean. µ is the mean of the
obtained normal distribution, and σ is the standard deviation of
normal distribution. This confidence obtained from the z-score

0 1σ 2σ-1σ-2σ 3σ-3σ

Normal
Distribution

of Nmi

Conf > 95%Conf < 95%

1.96σ

Fig. 4: Example Normal Distribution for Predication Magni-
tude Nmi.

Algorithm 1 Output Determination from QC Execution

Input: T H, Psi

Output: Predicted Output Po

1: Initialize P1st, P2nd = Pc1

2: Ms = P1st

P2nd
, Mci =

P1st

P2nd
, Nmi = Mci

Avg(
∑

Msi)

3: Z = Nmi−µ
σ

4: while Z < T H do
5: P1stn, P2ndn ← Pcn

6: P1st =
∑
P1st1 . . .P1stn

7: P2nd =
∑
P2nd1 . . .P2ndn

8: Mci =
P1st

P2nd

9: Nmi = Mci

Avg(
∑

Msi)

10: end while
11: if PST (Z) > 0.55 then
12: Extract RMSE,Nmi , Conf

13: else goto: while
14: end if
15: if RMSE > 0 then Exit
16: else goto: while
17: end if
18: Po ← Output of P1st

furnished by our model is checked against the pre-specified
threshold.

There can be two cases that can arise following the confi-
dence level checking, which demonstrates the advantages of
the time-series-based approach in QuEST.

• Case 1: When the calculated confidence, is higher than
the desired confidence margin, the model employs an
early preempt. In other words, it stops the execution
before completing all iterations. This early preemption
can occur after at least two instances have been executed.
By implementing this approach, a significant amount of
computational time is saved.

• Case 2: When the obtained confidence level is lower than
the desired confidence level, a repetition of the process is
performed starting from distribution generation until Z-
score checking. This repetitive process incorporates each
subsequent instance in the time series, on top of the
initial instances. As a result, the confidence is changed
during each iteration, allowing the possibility of crossing
the threshold, following which, PST will be evaluated to
determine termination of execution.

In both of the aforementioned scenarios, upon completion of
the computational execution, we assess the Root Mean Square
Error (RMSE) values to determine the position of the output
within the distribution. If the RMSE is found to be imaginary,
we disregard the value as it indicates an erroneous output
caused by the influence of inherent noise in a quantum circuit.

In our framework, QuEST, after obtaining a pre-specified
confidence threshold T H, and comparing the confidence ob-
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tained with T H for all benchmarks, we leverage it to optimize
the computation instances S required for determining the final
output as well as execution completion stage. Algorithm 1
demonstrates the process flow of Output Estimation. We will
initialize the P1st and P2nd with the first computation instance
si [lines 1 and 2]. In case the normalized Nmi furnishes
a confidence level, estimated from Z-score, is higher than
pre-specified threshold T H, the execution preemptively stops
since its output confidence has been satisfied [lines 3 and 4].
If the normalized Nmi outputs a confidence value that is lesser
than confidence margin metric however, then for all possible
outputs, for every other computation instance, we will stack
the Pcis, and determine the sums of P1st and P2nd [lines 5
to 7]. Table II shows the predicted output where all prediction
counts Pcis are added after each instance.Mci represents the
magnitude for the sum of P1st and P2nd, and Nmi represents
the normalized Mci. Sequentially, we identify the differences
between the prediction counts with the magnitude Mci, and
normalize it with the average magnitude of all computation
instances Avg(

∑
Msi) [lines 8 and 9]. Following this, when

the Z-score is greater than the pre-specified threshold, in order
to check the correctness of the output PST of that instance is
estimated [lines 10, 11]. If PST is evaluated to be greater than
0.55, i.e. output is correct with sufficient margin, we extract the
RMSE, Nmi, and Confidence (estimated from the Z-score of
that instance) [line 12]. If PST is lesser than 0.55, we continue
the execution until we obtain a suitable PST [lines 13 and
14]. If PST is satisfactory, we evaluate the RMSE to ensure
the output confidence does not lie towards the lower end of
the normal distribution, which signifies noisy and erroneous
output, i.e. if RMSE is lesser than 0 [line 15]. In case RMSE
is greater than 0, we terminate the execution, thus incurring
lower overhead, and taking advantage of the early preempt of
QuCEST. If RMSE is lesser than 0, we repeat the process,
until all the aforementioned conditions of Z-score, PST, and
RMSE are satisfied [lines 16 and 17].

Thus, we are able to estimate the output of the quantum
computer with the minimum computation instances required.
To account for noise distribution in different systems, different
quantum computers will be tested to optimize the desired
number of computation instances. In Section IV, we will eval-
uate QuEST the effects of various T H, and the performance
improvement for different benchmarks.

IV. EVALUATION

A. Experimental Setup

To assess the efficiency of our proposed QuEST frame-
work, we conducted evaluations using quantum circuits from
TABLE II: Sums of Prediction counts for a 3-bit output QC.

Sum of Prediction Outputs Counts Magnitude of Sum

Ins 000 001 010 011 100 101 110 111 Mci Nmi

1 8 55 17 80 55 693 22 70 8.66 1
2 19 145 30 107 113 1398 67 121 9.64 1.16
3 27 210 49 186 167 2086 84 191 9.93 1.18
4 43 277 58 291 211 2723 105 292 9.32 1.19

the QASMBench Suite. The experiments were executed
on the IBM Quantum platform, specifically employing the
ibm jakarta backend comprising seven qubits. To accommo-
date the limitations imposed by the physical constraints of
the backend, we focused exclusively on evaluating the small
benchmark circuits from the QASMBench Suite that consisted
of fewer than seven qubits [13]. This approach ensured that
our evaluations aligned with the capabilities and constraints of
the chosen physical quantum computing infrastructure.

To obtain accurate estimates of output fidelity over time,
each circuit was executed 90 times with 1000 shots per
execution, for training. This approach allowed us to capture
the necessary statistical information and generate a normal
distribution representing the aggregate output from the circuits
used for training. An extensive number of circuits have been
used in the pre-trained model to avoid model over-fitting.

B. Experimental Results

In this section, we begin by showcasing the normal dis-
tribution acquired from a set of diverse benchmark circuits
sourced from the QASMBench Suite [13]. These circuits
encompass varying depths and widths, ensuring a compre-
hensive evaluation while preserving generality. The resulting
distribution is presented in Figure 5. We subsequently obtain
the mean(µ), and standard deviation(σ) from this distribution,
which we utilize to evaluate the Z-score (from which we
obtain confidence) and RMSE (from which we determine
noisiness) for each circuit we analyze.

We conducted a comprehensive evaluation of our approach
on a set of nine benchmark circuits, elucidating the operational
principles of our methodology within the context of each
circuit’s distinct characteristics.

1) Half Adder: In this experiment, we performed the exe-
cution of the half adder circuit, which possesses a gate depth
of 4 and utilizes 3 qubits, on the IBM Jakarta backend. A
maximum of 90 instances were employed to execute the
circuit, where each instance represented the circuit’s execution
with 1000 shots, yielding output counts. Subsequently, a
time series analysis was conducted on the obtained outputs,

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Mean(µ)= 1                                Std. Deviation( )= 0.22467

Fig. 5: Distribution obtained from QASMBench benchmark
circuits.
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Fig. 6: Efficiency of QuEST framework evaluated over different QASMBench benchmark circuits.

following each instance, to analyze their temporal behavior in
noisy settings.

To assess the (Nmi) of the circuit, a minimum of two
instances were executed to obtain a mean value. The resulting
mean (1) and standard deviation (0.2246) derived from the
normal distribution curve were utilized to compute the Z-score,
serving as a measure of confidence for the circuit’s output.

Considering a user-defined confidence threshold of 60%, as
depicted in Figure 6a, we conducted a sequential comparison
of the confidence achieved after each pair of instances with
the threshold until the desired confidence value was attained.
For the specific half adder circuit, a confidence level of 70.11
was achieved following the execution of the first two instances,
surpassing the defined threshold. Subsequently, a Probability
of Successful Trial (PST) analysis was performed on the output
counts obtained from the two instances, yielding a PST value
of 68.1, thereby confirming the correctness of the circuit’s
output. Consequently, the execution was terminated, and the
computation concluded, within a time consumption of 0.4
seconds. The values of Nmi, Z-score, and RMSE (Root Mean
Square Error) during the termination of the computation were

recorded as 2.04, 70.11, and 1.77, respectively. As a result, the
QuEST framework exhibited a remarkable speedup of 14.5×
compared to the baseline execution.

2) Adder 00: In this experiment, we executed the adder
circuit under the same execution platform and identical setup
conditions. The adder circuit was characterized by a gate depth
of 12 and employed 4 qubits. Considering the same user-
defined confidence threshold of 60%, as depicted in Figure
6g, we compared the confidence attained after each pair
of instances with the threshold until the desired confidence
value was achieved. For the particular half adder circuit, a
confidence level of 70.33 was attained following the first two
instances, exceeding the defined threshold. Subsequently, a
Probability of Successful Trial (PST) was performed on the
outputs of the two instances, resulting in a PST value of
66.76, confirming the correctness of the output. Consequently,
the execution was terminated, and the computation concluded
within a time consumption of 0.56 seconds. As a result, the
QuEST framework demonstrated a notable speedup of 54.46×
compared to the baseline execution.
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3) Adder 01: In this experimental study, we executed the
adder circuit under the same execution platform and identical
setup conditions, but with a different input. Using the user-
defined confidence threshold of 60% (as shown in Figure 6f),
we sequentially compared the achieved confidence after each
pair of instances with the threshold. For this specific adder
circuit with changed inputs, we reached a confidence level of
69.93, after executing the first two instances, surpassing the
predefined threshold. Subsequently, the (PST) analysis on the
two instances resulted in a PST value of 63.26. As a result,
we terminated the execution and completed the computation
within a time consumption of 0.53 seconds. In this scenario,
the QuEST framework demonstrated a significant speedup of
58.3 × compared to the baseline execution. The termination
values for Nmi, Z-score, and RMSE for this circuit were
recorded as 2.035, 69.93, and 1.772, respectively. This result
also demonstrates that our evaluation framework does not
depend on the inputs of the circuit.

4) Hidden Shift: We proceed to execute the hs 4 (Hidden
Shift) circuit, characterized by a gate depth of 10, and a
qubit count of 4, under identical execution conditions, with
the same user defined threshold. For this circuit, we obtain a
confidence of 60.47 following the execution of the first two
instances, shown in Figure 6i with a PST of 66.51, denoting
its correctness. Subsequently, the execution was terminated,
within a time consumption of 0.581 seconds. In this scenario,
the QuEST framework demonstrated a significant speedup of
32.44 × compared to the baseline execution. The termination
values for Nmi, Z-score, and RMSE for this circuit were
recorded as 1.85, 60.47, and 1.556, respectively.

5) Bernstein Vazirani: Under identical execution conditions
and utilizing the same user-defined threshold, we proceeded
to execute the bv 4 (Bernstein Vazirani) circuit. This circuit
had a gate depth of 6 and consisted of 4 qubits. Following
the execution of the first eight instances, we achieved a
confidence level of 60.19, surpassing the threshold, as denoted
in Figure 6d with a corresponding PST value of 63.21,
indicating the correctness of the output. Consequently, we
terminated the execution, completing the computation within
a time consumption of 1.8 seconds. Impressively, the QuEST
framework demonstrated a substantial speedup of 18.72 ×
compared to the baseline execution for this scenario. The
recorded termination values for Nmi, Z-score, and RMSE for
this circuit were 1.846, 60.19, and 1.551, respectively.

6) Quantum Fourier Transform: In this experiment, under
the same execution conditions, we proceeded to execute the
qft 4 (Quantum Fourier Transform) circuit, consisting a gate
depth of 12 and 4 qubits.

Following the execution of the first two instances, we
achieved a confidence level of 63.29, surpassing the threshold,
shown in Figure 6h. However, the corresponding PST value
of 51.21 indicated that the output was not correct. Therefore,
we evaluated the subsequent two instances. In this case, we
obtained a confidence of 65.19 and a PST of 60.01. Based
on these results, we terminated the execution, completing the
computation within a time of 1.12 seconds.

Impressively, the QuEST framework demonstrated a sub-
stantial speedup of 28.92× compared to the baseline execution
for this scenario. The recorded termination values for Nmi, Z-
score, and RMSE for this circuit were 1.951, 65.19, and 1.675,
respectively.

7) Variational Quantum Eigensolver: Similar to previous
circuits, we execute the vqe n4 (Variational Quantum Eigen-
solver) circuit, which has a significant circuit depth of 25,
while using 4 qubits.

After performing the initial fourteen iterations, we success-
fully reached a confidence level of 61.57, which exceeded
the required threshold, as demonstrated in Figure 6e The
corresponding PST value of 58.21 ensured the accuracy of
the output. As a result, we terminated the process, completing
the computation within a time of 3.89 seconds. Notably,
the QuEST framework demonstrated an impressive speed
improvement of 6.42 × compared to the standard execution
in this specific scenario. The recorded termination values for
Nmi, Z-score, and RMSE for this circuit were 1.87, 61.57,
and 1.58, respectively.

8) Linear Solver: We execute the Linear solver with identi-
cal operating conditions. The Linear solver uses 3 qubits, and
has a gate depth of 12. In the specific scenario described, the
circuit achieved a confidence level of 63.77 after two instances
of execution, surpassing the user-defined threshold.This can be
observed in Figure 6b This confidence was ensured by a cor-
responding PST value of 64.41. Consequently, the process was
terminated, and the computation was successfully completed in
0.66 seconds. Notably, the utilization of the QuEST framework
resulted in a remarkable speed improvement of 34.84 times
compared to the standard execution method. The termination
values recorded for this circuit were as follows: Nmi = 1.911,
Z-score = 63.77, and RMSE = 1.62.

9) Quantum Error Correction: We finally execute the
QEC n5, which is a 5 qubit utilizing quantum error correction
code, with a gate depth of 18. The observed circuit does not
exhibit any speedup effect. This can be attributed to the fact
that throughout the execution of up to 90 instances, the circuit
consistently fails to surpass the user-defined threshold of 60%,
as observed in Figure 6c. Consequently, the circuit follows a
regular execution path until its completion, at which point it
exits. The circuit terminates, with an Nmi of 1.66, Z-score of
49, and RMSE of 1.32.

In Table III, we present the evaluation of our proposed
QuEST framework on various benchmark circuits. Column 1
lists the benchmark circuits selected for the evaluation, while
Column 2 indicates the gate depth associated with each circuit,
ensuring some diversity in the range of complexity to assess
the generality of our framework. Columns 3 and 4 display
the execution times for the circuits using existing baseline
method and QuEST, respectively. The speedup achieved by
QuEST compared to the existing methods is shown in Column
5. Column 6 presents the normalized magnitude (Nmi

exit) at
which the circuit reaches the desired threshold, or terminates,
depending on which occurs first. Column 7 represents the
confidence level of the output obtained after circuit execution.
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TABLE III: Efficiency of proposed QuEST framework for expediting quantum circuit execution in NISQ hardware.

Benchmark Gate Depth
Execution time
(Baseline) (s)

Execution time
(QuEST) (s) Speedup Nm

exit
i Confidenceexit (%) RMSEPexit

half adder 4 5.8 0.4 14.5 × 2.04 70.11 1.77
adder 1 12 30.5 0.56 54.46 × 2.05 70.33 1.79
adder 2 12 30.9 0.53 58.3 × 2.035 69.93 1.772
hs4 n4 10 18.85 0.581 32.44 × 1.85 60.47 1.556
bv n4 6 33.7 1.8 18.72 × 1.846 60.19 1.551
qft n4 12 32.4 1.12 28.92 × 1.951 65.19 1.675
vqe n4 28 25 3.89 6.42 × 1.87 61.57 1.58

linear solver n3 12 23 0.66 34.84 × 1.911 63.77 1.628
qec n5 18 23.5 23.5 1 × 1.66 49 1.325

Finally, column 8 displays the Root Mean Square (RMSE)
values corresponding to the obtained outputs.

The findings of our evaluation are summarized in Table III.
The results indicate that the QuEST framework offers signifi-
cant speed improvement compared to the baseline execution,
with a maximum speedup of 58.3× and an average speedup
of 27.73×. Notably, the adder circuits demonstrate the highest
speedup, with QuEST achieving speedups of 54.45 times and
58.3 times. Overall, QuEST delivers enhanced performance
in 8 out of 9 circuits evaluated. However, for the benchmark
qec n5, QuEST performs on par with the baseline. This can
be attributed to the fact that the benchmark never reaches a
confidence value exceeding the user defined threshold of 60%,
presenting a unique case for the execution of our approach.

V. CONCLUSION

In conclusion, this paper presents QuEST, an efficient tech-
nique for estimating the output of a quantum computer (QC)
by analyzing probability distributions of post-measurement
data. The QuEST framework utilizes Gaussian distribution
functions and a pre-trained distribution obtained from a train-
ing circuit dataset to compare the measured distribution of a
circuit. Additionally, by leveraging the properties of sequential
time series, the framework derives a straightforward and
intuitive metric to measure the confidence of the QC output.
The QuEST framework offers several advantages, including
the ability to monitor fidelity evolution over time as the QC
interacts with its external environment. This feature enables
the system to preemptively halt QC execution upon reaching
a specified confidence threshold, enhancing the reliability
and accuracy of quantum computations. Evaluation against
state-of-the-art benchmark quantum circuits demonstrates the
effectiveness of the QuEST framework. It accurately estimates
the output of 100% of the benchmark circuits while achieving
significant speedup up to 58.3× compared to standard QC
execution. These promising results highlight the efficiency and
potential practical applications of the proposed QuEST frame-
work. In summary, QuEST introduces a novel approach for
estimating QC outputs that addresses the challenges associated

with quantum computing. By leveraging probability distribu-
tions and sequential time series, the framework provides an
efficient and reliable means of estimating QC outputs, opening
doors to practical quantum computing applications. Further
research and development in this direction could contribute
significantly to the advancement and adoption of quantum
computing technologies.
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