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Abstract

Learning disentangled causal representations is a
challenging problem that has gained significant at-
tention recently due to its implications for extract-
ing meaningful information for downstream tasks.
In this work, we define a new notion of causal
disentanglement from the perspective of indepen-
dent causal mechanisms. We propose ICM-VAE,
a framework for learning causally disentangled
representations supervised by causally related ob-
served labels. We model causal mechanisms us-
ing nonlinear learnable flow-based diffeomorphic
functions to map noise variables to latent causal
variables. Further, to promote the disentangle-
ment of causal factors, we propose a causal disen-
tanglement prior learned from auxiliary labels and
the latent causal structure. We theoretically show
the identifiability of causal factors and mechanisms
up to permutation and elementwise reparameteriza-
tion. We empirically demonstrate that our frame-
work induces highly disentangled causal factors,
improves interventional robustness, and is compat-
ible with counterfactual generation.

1 Introduction

Disentangled representation learning aims to learn meaning-
ful and compact representations that capture semantic as-
pects of data by structurally disentangling the factors of vari-
ation [Bengio et al., 2013]. Such representations have been
shown to offer useful properties such as better interpretability,
robustness to distribution shifts, efficient out-of-distribution
sampling, and fairness [Locatello et al., 2019]. However, dis-
entangled representation learning typically assumes that the
underlying factors are independent, which is unrealistic in
practice. The factors generating the data can contain corre-
lations or even causal relationships that are disregarded when
factors are assumed to be independent. Further, a genera-
tive model learning from an independent prior assumes that
all combinations of the latent factors are equally likely to
appear in the training data. Thus, disentangling the factors
would yield a sub-optimal likelihood since the assumed sup-
port could be well outside the support of the training data.
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Figure 1: We learn causal models representing images as latent
causal variables z. The bottom shows the effect of intervening on
the latent code corresponding to the pendulum’s angle, propagating
effects, and generating a counterfactual image.

Recently, there has been a growing interest in bridging
causality [Pearl, 2009] and representation learning [Bengio et
al., 2013]. The goal of causal representation learning (CRL)
is to map unstructured low-level data to high-level abstract
causal variables of interest [Scholkopf et al., 2021]. The key
assumption is that high-dimensional observations are gener-
ated from a set of underlying low-dimensional causally re-
lated factors of variation. Causal representations have been
shown to be useful for tasks involving reasoning and plan-
ning. Causal representations also adhere to the principle
of independent causal mechanisms (ICM) [Parascandolo et
al., 2018], which states that the mechanisms that generate
each causal variable are independent such that a change in
one mechanism does not affect another [Schölkopf and von
Kügelgen, 2022; Peters et al., 2017]. Learning a generative
model that captures the causal structure among latent factors
can be crucial for reasoning about the world under manipu-
lation. For example, a pendulum, light source, and shadow,
as seen in Figure 1, may be causally related but are separate
entities in the world that can be independently manipulated.
Particularly, manipulating the pendulum’s angle will affect
the shadow’s position and length. These hypothetical scenar-
ios could be counterfactually generated from a causal model.
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Ensuring that causal representations are disentangled is
useful for the causal controllable generation to generate coun-
terfactual instances unseen during training. Such instances
could be utilized as augmented data for robust learning in
downstream tasks. The notion of disentanglement may be
trivial when the factors are independent but becomes difficult
to achieve when there are correlations or causal relationships
among factors in the observed data. For highly correlated
factors, it can be difficult to separate the factors of variation
from their latent codes [Träuble et al., 2021]. Recently, it was
shown that it is impossible to learn a disentangled represen-
tation in an unsupervised manner without some form of in-
ductive bias [Locatello et al., 2019]. Recent work proved that
models with an independent prior are unidentifiable [Shen et
al., 2022]. Further, most existing disentanglement methods
fail to disentangle factors when correlations exist in the data
[Träuble et al., 2021]. However, results from large-scale em-
pirical studies [Locatello et al., 2020] have indicated that su-
pervision in the form of auxiliary labels or contrastive data
can effectively disentangle correlated or causal factors.

Related Work. Our work builds upon the ideas presented
in iVAE [Khemakhem et al., 2020] and causal variants [Yang
et al., 2021; Komanduri et al., 2022] and extends them to
consider a principled view of causal disentanglement in the
label supervised setting. DIVA [Ilse et al., 2020] and CC-
VAE [Joy et al., 2021] are special case implementations of
the iVAE framework. Yang et al. [2021] proposed Causal-
VAE, which uses a causal masking layer and is limited to
linear SCMs. Komanduri et al. [2022] extended this to a
nonlinear setting and proposed a causal prior. Both works
proposed simplistic models to learn causal mechanisms un-
der the strictly additive noise assumption and do not, from
an empirical or theoretical perspective, focus on disentangle-
ment. Shen et al. [2022] proposed learning causal represen-
tations supervised by a GAN loss. There has also been work
focusing on learning causal representations from paired coun-
terfactual data [Brehmer et al., 2022], temporal data [Lippe
et al., 2023], in self-supervised learning [von Kügelgen et al.,
2021], and when interventional data is available [Ahuja et al.,
2023]. Unlike many previous works in label-supervised VAE-
based CRL, we consider general nonlinear SCMs instead of
restricting to additive noise models, propose a causal prior to
causally factorize the latent space, and achieve disentangle-
ment of causal mechanisms, as summarized in Table 1.

Contributions. (1) We propose ICM-VAE, a framework for
causal representation learning under label supervision, where
causal variables are derived from nonlinear flow-based dif-
feomorphic causal mechanisms. (2) Based on the ICM prin-
ciple, we propose the notion of causal disentanglement for
causal models from the perspective of mechanisms and de-
sign a causal disentanglement prior to causally factorize the
learned distribution over causal variables. (3) Using the struc-
ture from our causal disentanglement prior, we theoretically
show identifiability of the learned causal factors up to per-
mutation and elementwise reparameterization. (4) We exper-
imentally validate our method and show that our model can
almost perfectly disentangle the causal factors, improve inter-
ventional robustness, and generate consistent counterfactuals.

Framework
General SCM
Compatible

Causal
Prior

Causal Mechanism
Disentanglement

iVAE ✗ ✗ ✗

CausalVAE ✗ ✗ ✗

SCM-VAE ✗ ✓ ✗

ICM-VAE (Ours) ✓ ✓ ✓

Table 1: Causal and acausal framework compatibilities in label-
supervised setting

2 Preliminaries

Let X ⊂ R
d denote the support of the observed data x gen-

erated from a set of causally related ground-truth factors.
The observations are assumed to be explained by some latent
causal factors of variation z with domain Z ⊂ R

n, where
n ≪ d. z represents a set of causal factors while zi repre-
sents a single causal factor. We assume x can be decomposed
as x = g(z) + ξ where ξ ∼ N (0, σ2I) are mutually indepen-
dent Gaussian noise terms for reconstruction. Let g : Z → X
be the decoder (or mixing function). Each factor zi contains
semantically meaningful information about the observation.
In the traditional VAE [Kingma and Welling, 2013], we as-
sume the observed data is generated by the latent generative
model with the structure pθ(x, z) = pθ(x|z)pθ(z) where θ
are the true but unknown parameters. We aim to learn the
joint distribution p(x, z) to estimate the marginal density and
a posterior p(z|x) to describe the underlying factors of varia-
tion given a prior p(z) over the latent variables.

2.1 Identifiability

The goal of learning a useful representation that recovers
the true underlying data-generating factors is closely tied
to the problem of blind source separation (BSS) and inde-
pendent component analysis (ICA) [Hyvarinen et al., 2018;
Comon, 1994; Hyvärinen and Pajunen, 1999]. Provably
showing that a learning algorithm achieves this goal up to
tolerable ambiguities under certain conditions is formalized
as the identifiability of a model. In this section, we use the
notion of ∼-equivalence [Khemakhem et al., 2020] to formu-
late the notion of identifiability.

Definition 1 (∼-identifiability). Let ∼ be an equivalence re-
lation on θ. The generative model is ∼-identifiable if

pθ(x) = p
θ̂
(x) =⇒ θ ∼ θ̂ (1)

If two different choices of model parameter θ and θ̂ lead
to the same marginal density pθ(x), then they must be equal
and this implies that pθ(x, z) = p

θ̂
(x, z), pθ(z) = p

θ̂
(z), and

pθ(z|x) = p
θ̂
(z|x). However, recent work showed that it is

impossible to achieve marginal density equivalence pθ(x) =
p
θ̂
(x) with an unconditional prior pθ(z) [Khemakhem et al.,

2020]. Since the VAE is unidentifiable without some form
of additional restriction on the function class of the mix-
ing function or auxiliary information, the identifiable VAE
(iVAE) was proposed to utilize auxiliary information in the
form of a conditionally factorial prior for identifiability guar-
antees [Khemakhem et al., 2020]. In iVAE, each factor zi is
assumed to have a univariate exponential family distribution
(due to their universal approximation capabilities) given the
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conditioning variable u, where a function λ determines the
natural parameters of the distribution. The general PDF of
the conditional distribution is defined as follows:

pT,λ(z|u) =
∏

i

hi(zi) exp

[

k
∑

j=1

Ti,j(zi)λi,j(u)− ψi(u)

]

(2)

where hi(zi) is the base measure, Ti : Z → R
k and

Ti = (Ti,1, . . . , Ti,k) are the sufficient statistics, λi(u) =
(λi,1(u), . . . , λi,k(u)) are the corresponding natural param-
eters, k is the dimension of each sufficient statistic, and the
remaining term ψi(u) acts as a normalizing constant. A prior
conditioned on auxiliary information u can guarantee that the
joint densities pθ(x, z) = p

θ̂
(x, z) are equivalent up to some

equivalence class. The following two definitions describe the
conditions necessary to achieve the identifiability of a learned
model up to linear transformation and block permutation in-
determinacies, respectively.

Definition 2 ([Khemakhem et al., 2020]). Let ∼ be an equiv-

alence relation on θ, X = g(Z), and X̂ = ĝ(Z). We say that

θ and θ̂ are linearly-equivalent if and only if there exists an
invertible matrix A ∈ R

nk×nk and vectors b, c ∈ R
nk such

that ∀x ∈ X :

1. T(g−1(x)) = AT̂(ĝ−1(x)) + b, ∀x ∈ X

2. AT
λ(u) + c = λ̂(u)

We denote this equivalence as θ ∼A θ̂.

Definition 3 ([Khemakhem et al., 2020]). We say θ and θ̂

are permutation-equivalent, denoted θ ∼P θ̂, if and only if
P is permutation matrix that has block-permutation structure
respecting T. That is, there exist n invertible k × k matrices
A1, . . . , An and an n-permutation π such that for all z ∈
R

nk, P ẑ = [zπ(1)A
T
1 , zπ(2)A

T
2 , . . . , zπ(n)A

T
n ]

T .

Linear equivalence indicates the true representation is a
linear transformation of the learned representation and only
guarantees the learned representation captures the true rep-
resentation. In general, linear-equivalent identifiability does
not guarantee that the factors of variation are disentangled
since the linear transformation can mix up the variables (i.e.
one component of g−1 corresponds to multiple components
of ĝ−1). Permutation equivalence implies that the i-th fac-
tor zi of one representation corresponds to a unique factor
in another representation, given the permutation π. To truly
disentangle factors of variation, we must ensure that each co-
ordinate of the learned representation is equal to the scaled
and shifted coordinate of the ground truth up to some permu-
tation. To this end, we define the notion of disentanglement as
permutation equivalence [Lachapelle et al., 2022] as follows.

Definition 4 (Permutation Disentanglement). Given some

ground-truth model, a learned model θ̂ is said to be disen-

tangled if θ and θ̂ are permutation-equivalent.

2.2 Structural Causal Model

Henceforth, we assume z is described by a structural causal
model (SCM) [Pearl, 2009], which is formally defined by
a tuple M = ïZ, E , F ð, where Z is the domain of the

set of n endogenous causal variables z = {z1, . . . , zn},
E is the domain of the set of n exogenous noise variables
ϵ = {ϵ1, . . . , ϵn}, which is learned as an intermediate latent
variable, and F = {f1, . . . , fn} is a collection of n indepen-
dent causal mechanisms of the form

zi = fi(ϵi, zpai
) (3)

where ∀i, fi : Ei ×
∏

j∈pai
Zj → Zi are causal mechanisms

that determine each causal variable as a function of the par-
ents and noise, zpai

are the parents of causal variable zi; and
a probability measure pE(ϵ) = pE1(ϵ1)pE2(ϵ2) . . . pEn

(ϵn),
which admits a product distribution. For the purposes of this
work, we assume a causally sufficient setting (no hidden con-
founding), no SCM misspecification, and faithfulness is satis-
fied. We depict the causal structure of z by a directed acyclic
graph (DAG) Gz with adjacency matrix Gz ∈ {0, 1}n×n.

3 Causal Mechanism Equivalence

Although the existing notions of disentanglement may be
suitable for independent factors of variation [Khemakhem et
al., 2020], they fail to capture important information in a
causal model where the factors are causally related. As for-
mulated in Def. 2 and Def. 3, linear equivalence or permuta-
tion equivalence cannot capture the causal mechanisms accu-
rately or distinguish the mechanisms afflicted to factors. For
a counterexample to the definitions, refer to the appendix in
[Komanduri et al., 2024]. The framework of iVAE captures
identifiability in the sense that the joint distributions of the
latent variables of two different models are equivalent. How-
ever, for a causally factorized model, we have that pθ(z) =
p
θ̂
(z) does not imply pθ(zi|zpai

) = p
θ̂
(zi|zpai

). That is,
the ground-truth causal factors and the learned causal factors
should entail the same causal conditional mechanisms, where
the minimal conditioning set is the set of causal parents.

Based on the intuition that causal models are described by
mechanisms, we define a new notion of disentanglement that
takes into account conditional distributions of causal vari-
ables under the Markov factorization. The new causal condi-
tional equivalence preserves information about the indepen-
dent causal mechanisms (ICM), which is a unique formula-
tion for a causal model and important for performing correct
interventions. The following two definitions describe the con-
ditions necessary to satisfy causal mechanism equivalence.

Definition 5 (Causal Mechanism Permutation Equivalence).

Let ∼ be an equivalence relation between θ̂ and θ, X = g(Z),

and X̂ = ĝ(Z). If the factors z are causally related, we say

that θ is causal mechanism permutation equivalent to θ̂ iff:

1. There exists a permutation matrix P such that I = P ·J
where I and J are indices of z and ẑ, respectively.

2. Given an equivalence pair (i, j), i.e., Pij ̸= 0,
from this permutation matrix, one has Ti(zi|zpai

) =

DijT̂j(zj |zpaj
), ∀zi ∈ Zi, ∀ẑj ∈ Zj , where Dij is a

scaling coefficient.

3. For all i, j ∈ {1, . . . , n}, we have the mechanism equiv-

alence λi(zpai
, u) = Dijλ̂j(zpaj

, u), whereD is a diag-

onal scaling matrix.
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Definition 6 (Causal Disentanglement). Given some ground-

truth model θ, a learned model θ̂ is said to be causally dis-

entangled if θ and θ̂ are causal mechanism permutation-
equivalent.

4 Proposed Framework

We design a framework to achieve causal disentanglement.
We propose ICM-VAE, a VAE-based framework based on
the independent causal mechanisms (ICM) principle that
achieves disentanglement of causal mechanisms. Figure 2
shows the overall architecture of our proposed framework.

4.1 Structural Causal Flow

Rather than assuming the limiting linear causal graphical
model (CGM), as done in CausalVAE [Yang et al., 2021], we
consider causal mechanisms to be complex nonlinear func-
tions. Diverging from the strictly additive noise model as-
sumption, we propose to parameterize causal mechanisms
with a more general diffeomorphic1 function. Flow-based
models [Papamakarios et al., 2021] are often quite expressive
in low-dimensional settings, which makes them desirable for
learning complex distributions due to efficient and exact eval-
uation of densities. We parameterize the causal mechanisms
with a conditional flow, which we refer to as the latent struc-
tural causal flow (SCF), that learns to map the independent
noise distribution to a distribution over causal variables. This
module is inspired by the causal autoregressive flow [Khe-
makhem et al., 2021]. This type of model is more realistic
and general to better capture the complex distribution over the
latent causal variables compared to simple linear mappings
and leads to counterfactual identifiability [Nasr-Esfahany et
al., 2023]. The SCF, denoted as fRF, is the reduced form (RF)
of a nonlinear SCM function that conceptually maps noise
variables ϵ to causal variables z as follows

z = fRF(ϵ) (4)

where fRF : E → Z is derived from the recursive sub-
stitution of causal mechanisms fi in topological order of the
causal graph as follows

zi = fi(ϵi; zpai
), ∀i ∈ {1, . . . , n} (5)

realized as a function of the noise term and parent variables.
The noise encoding ϵi is exactly the SCM noise variable cor-
responding to the causal variable zi.

Similar to several prior works [Shen et al., 2022; Liang et
al., 2023], we assume that the latent causal graph is known
in the form of a binary adjacency matrix to focus on formu-
lating the problem of causal disentanglement. To implement
a diffeomorphic function fRF, we use flow-based models to
parameterize the causal mechanisms. Specifically, this flow
is implemented as an affine-form autoregressive flow, where
we derive each causal variable one at a time in topological
order such that each variable is dependent only on a subset of
previously derived variables (i.e. parents). Thus, the change

1A diffeomorphism is a differentiable bijection with a differen-
tiable inverse.

of variables can be computed quite easily for exact and effi-
cient likelihood estimation. In general, one can parameterize
causal mechanisms using any nonlinear diffeomorphic func-
tion, as long as it takes into account the topological ordering.
Let’s take the pendulum example in Figure 1 to illustrate. The
causal structure is z1 → z3, z4 and z2 → z3, z4. Then, the
SCF would be fRF : (ϵ1, ϵ2, ϵ3, ϵ4) 7→ (z1 = f1(ϵ1), z2 =
f2(ϵ2), z3 = f3(ϵ3, z1, z2), z4 = f4(ϵ4, z1, z2)), where zi =
fRF
i (ϵi; ϵpai

) = fi(ϵi; zpai
) and each fi is a diffeomorphic

transformation of the form

zi = fi(ϵi; zpai
) = exp(ai) · ϵi + bi (6)

where ai = r1(zpai
) and bi = r2(zpai

) are the slope and
offset parameters of the affine transformation, respectively,
learned via neural networks r1 and r2 that capture informa-
tion about the causal parents. Since the Jacobian of the func-
tion will be triangular by construction and the slope parame-
ter is learned for each variable, the slope is equivalent to the
diagonal elements of the Jacobian matrix as follows

log
∏

i

∣

∣

∣

∣

∂ϵi

∂zi

∣

∣

∣

∣

=
∑

i

log

∣

∣

∣

∣

∂fRF
i (ϵi; ϵpai

)

∂ϵi

∣

∣

∣

∣

−1

=
∑

i

ai (7)

where ϵpai
denotes the noise terms associated with the par-

ents of causal variable zi. The structural causal flow can
easily be generalized to multivariate scenarios by masking
groups of latent codes corresponding to each causal variable.

4.2 Generative Model

To achieve an identifiable model, we leverage auxiliary in-
formation as a weak supervision signal [Khemakhem et al.,
2020]. Let u ∈ R

n be the auxiliary observed labels cor-
responding to the causally related ground-truth factors with
support U ⊂ R

n. We assume that the decoder g is diffeo-
morphic onto its image. Several prior works [Locatello et al.,
2020; Khemakhem et al., 2020; Lachapelle et al., 2022] as-
sume that the nonlinear mixing function mapping Z to X is
a diffeomorphism. Consider the pendulum system from Fig-
ure 1 consisting of a light source, a pendulum, and a shadow.
Given only the image, it is completely certain that we can
identify where each object appears in the image. So, we find
it reasonable to assume a diffeomorphic mixing function g for
our exploration. Let θ = (g,T,λ, Gz) be the parameters of
the conditional generative model defined as follows

pθ(x, ϵ, z|u) = pθ(x|ϵ, z)pθ(ϵ, z|u) (8)

where
pθ(x|ϵ, z) = pθ(x|z) = pξ(x− g(z)) (9)

If we assume that the distribution over the noise ξ is Gaussian
with infinitesimal variance, we can model non-noisy observa-
tions as a special case of Eq. (9). The prior distribution in the
generative model is given by

pθ(ϵ, z|u) = p(ϵ)pθ(z|u) (10)

where we choose p(ϵ) as a standard Gaussian base distribu-
tion and p(z|u) is assumed to be conditionally factorial. How-
ever, the conditional prior in Eq. (2) cannot properly capture
causal mechanisms for causally related factors. We next de-
fine a causally factorized prior suitable to achieve causal dis-
entanglement.
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Figure 2: Architecture of ICM-VAE Framework, which contains two main components: (i) Structural Causal Flow (SCF), and (ii) Causal
Disentanglement Prior. The blue color represents prior components and the orange represents the learning process.

4.3 Causal Disentanglement Prior

We aim to use a structured prior and perform conditioning in
the latent space, similar to previous work on nonlinear ICA
[Khemakhem et al., 2020], to enforce z to be a disentangled
causal representation. However, for a model incorporating
causal structure, the form of the conditional prior in Eq. (2)
needs to be modified and generalized to causally factorized
distributions. To enforce the disentanglement of z, we pa-
rameterize the prior distribution to learn a mapping from u
to z. That is, since the goal of causal disentanglement is
to map each latent/mechanism to exactly one corresponding
ground-truth factor/mechanism, we can explicitly incorporate
this into the prior. Using u as our observational labels, we
parameterize the factorized causal conditionals with a condi-
tional flow between u and z to establish a bijective relation-
ship. The goal is for the distribution over the causal variables
to tend towards the learned prior. The prior over z is defined
as follows

pθ(z|u) =
n
∏

i=1

pθ(zi|zpai
, ui) =

n
∏

i=1

p(ui)

∣

∣

∣

∣

∂λi(ui; zpai
)

∂ui

∣

∣

∣

∣

−1

(11)

pθ(zi|zpai
, ui) = hi(zi) exp(Ti(zi|zpai

)λi(G
z
i ⊙ z, ui)

−ψi(z, u)) (12)

where λi(G
z
i ⊙ z, ui) is the estimated parameter vector of

the prior obtained via mechanism λi, G
z
i is the ith column

of the adjacency matrix of the causal graph of z, hi(z) is the
base measure, and Ti(z) = (z, z2) is the sufficient statis-
tic. The prior induces a causal factorization of z with causal
conditionals pθ(zi|zpai

, ui), where ui is introduced as a weak
supervision signal for identifiability. Eq. (11) is reminiscent
of temporal priors that define a distribution over a latent vari-
able conditioned on the variable at a previous time step [Lippe
et al., 2023]. In our case, we view the causal factors as de-
rived autoregressively. With a slight abuse of notation, we
define λ(z, u) to be the concatenation of all λi(G

z
i ⊙ z, ui).

The function λ(z, u) outputs the natural parameter vector

for the causally factorized distribution. We further require
λ : Z × U → Z to be a bijective map between u and learned
representation z to encourage disentanglement of the causal
mechanisms. In practice, we choose p(u) from a location-
scale family such as Gaussian. The learned mechanism λi is
defined as the following diffeomorphic map:

λi(ui; zpai
) = exp(ci) · ui + di (13)

where ci = s1(zpai
) and di = s2(zpai

) are the slope and
offset parameters of the flow, respectively, learned via neural
networks. To obtain a causally factorized conditional prior
over z, we map the base distribution p(u), which is known
beforehand, to a distribution over z.

4.4 Learning Objective

Putting all the components together, ICM-VAE consists of a
stochastic encoder qϕ(ϵ, z|x, u), a decoder pθ(x|ϵ, z), and dif-
feomorphic causal transformations fi(·; ϵ). All components
are learnable and implemented as neural networks. Formally,
we aim to optimize the following variational lower bound:

log pθ(x, u) ≥ Eϵ,z∼qφ(ϵ,z|x,u)

[

log pθ(x|ϵ) + log pθ(x|z)

−β{log qϕ(ϵ|x, u) + log qϕ(z|x, u)

− log p(ϵ)− log pθ(z|u)}
]

(14)

where β is the latent bottleneck parameter. We train the
model by minimizing the negative of the ELBO loss and learn
to map low-level pixel data to noise variables and map the
noise variable distribution to a distribution over the causal
variables. For a detailed derivation of the ELBO, refer to
the appendix in [Komanduri et al., 2024]. Causal structure
learning could be heuristically incorporated jointly with the
learning objective by enforcing acyclicity and sparsity of the
causal graph. However, most causal discovery methods, such
as GraN-DAG [Lachapelle et al., 2020], require restricting
parametric assumptions on the causal model (i.e., additive
noise), to be practically applied. For an extended discussion
on incorporating causal discovery and challenges, refer to the
appendix in [Komanduri et al., 2024].
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Figure 3: Pendulum (left) and Flow (right) counterfactual images after intervening on causal factors, individually, and propagating effects.

5 Identifiability Analysis

We design our framework to satisfy the conditions neces-
sary to achieve causal mechanism equivalence and causally
disentangle the factors of variation. The causally factorized
prior in Eq. (11) induces disentanglement of causal mech-
anisms. Theorem 1 extends the identifiability theorem from
iVAE [Khemakhem et al., 2020] to show causal mechanism
equivalence identifiability when we have a causal model. We
note that causal mechanism disentanglement implies the dis-
entanglement of causal factors.

Theorem 1 (Identifiability of ICM-VAE). Suppose that we
observe data sampled from a generative model defined ac-
cording to (8)-(12) with two sets of model parameters θ =

(g,T,λ, Gz) and θ̂ = (ĝ, T̂, λ̂, Ĝz). Suppose the following
assumptions hold

1. The set {x ∈ X |ϕξ(x) = 0} has measure zero, where ϕξ
is the characteristic function of the density pξ defined in
Eq. (9).

2. The decoder g is diffeomorphic onto its image.

3. The sufficient statistics Ti are diffeomorphic.

4. [Sufficient Variability] There exists nk+1 distinct points
u0, . . . , unk such that the matrix

L = (λ(zpa(1)
, u(1))− λ(z(0), u(0)), . . . ,

λ(zpa(nk)
, u(nk))− λ(z(0), u(0)))

(15)

of size nk × nk is invertible, the ground-truth function
λ is affected sufficiently strongly by each individual la-
bel ui and previously derived variables zpai

, and ∀i,
λi(zpai

, ui) ̸= 0.

Then θ and θ̂ are causal mechanism permutation-equivalent,

and the model θ̂ is causally disentangled.

For the proof of Theorem 1, refer to the appendix in [Ko-
manduri et al., 2024].

6 Experimental Evaluation

In this section, we empirically evaluate the effectiveness
of ICM-VAE. We consider a setting where the causal vari-
ables can be multi-dimensional and fix the dimension of

each causal variable, which has also been explored in pre-
vious work [Yang et al., 2021; Lippe et al., 2023]. This as-
sumption enables the representation to learn more informa-
tive and specific latent codes to describe the factors of vari-
ation (i.e. x-position, y-position, etc.). We run experiments
on datasets with continuous factors, but discrete flows [Tran
et al., 2019] can be used for discrete factors. Our results sug-
gest a component-wise correspondence between the learned
and true causal factors.

Datasets. We show the performance of our framework on
three datasets, each consisting of four real-valued causal
variables. The Pendulum dataset [Yang et al., 2021] con-
sists of causal variables with causal graph (pendulum angle
→ shadow length, shadow position) and (light position →
shadow length, shadow position). The Flow dataset [Yang et
al., 2021] consists of variables with causal graph (ball size
→ water height), (hole position → water flow), and (water
height → water flow). We also show experiments on a more
complex 3D dataset of a robot arm interacting with colored
buttons called CausalCircuit [Brehmer et al., 2022], which
consists of variables with causal graph (robot arm → blue
light intensity, green light intensity, and red light intensity),
(blue light intensity → red light intensity), and (green light
intensity → red light intensity).

Evaluation Metrics. The DCI metric [Eastwood and
Williams, 2018] quantifies the degree to which ground-truth
factors and learned latents are in one-to-one correspondence.
We compute the DCI disentanglement (D) and completeness
(C) scores, which are based on a feature importance matrix
quantifying the degree to which each latent code is important
for predicting each ground truth causal factor. The informa-
tiveness (I) score is the prediction error in the latent factors
predicting the ground-truth generative factors and is constant
(I = 0) throughout all datasets and models, so we omit it for
brevity. We train models with 3 random seeds and select the
median DCI score to report. We note that DCI is highly corre-
lated with other disentanglement metrics, such as MCC, with
strong connections to identifiability [Eastwood et al., 2023].
To evaluate how changes in the generative factors affect the
latent factors, we compute the interventional robustness score
(IRS) [Suter et al., 2019], which is similar to an R2 value.
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Figure 4: CausalCircuit counterfactual images by intervening on robot arm to turn on a colored light, which can causally affect other lights.

Implementation. For the Pendulum (6K training and 1K
testing) and Flow (6K training and 2K testing) datasets, we
linearly increase the β parameter throughout training from
0 to 1. We train for 9 · 103 steps using a batch size of 64.
We use a Gaussian encoder and decoder with mean and vari-
ance computed by fully connected neural networks. For the
CausalCircuit dataset (35K training and 10K testing), we lin-
early increase β from 0 to 0.05. We train for 3.5 · 104 steps
using a batch size of 100. We use a convolutional neural net-
work architecture with 6 layers and ReLU activation followed
by a fully connected layer to estimate the mean and variance.
The noise level for the variance of the Gaussian distribution of
the conditional prior is controlled by σ2 ∈ {0.01, 0.00001}.
The structural causal flow and λ are implemented as affine
form autoregressive flows with the slope and offset computed
by fully connected 3-layer neural networks with 100 unit hid-
den layers and ReLU activation. We set the learning rate
to 0.001 for all experiments. We set the dimension of each
causal variable to 4 for all datasets. Our code is available at
https://github.com/Akomand/ICM-VAE.

Baselines. We compare the performance of our approach,
in terms of disentanglement and interventional robustness,
with four baseline models: β-VAE [Higgins et al., 2017]

(unsupervised and acausal), iVAE [Khemakhem et al., 2020]

(acausal), CausalVAE [Yang et al., 2021] (causal), and SCM-
VAE [Komanduri et al., 2022] (causal). The causal baselines
propose relatively simplistic models that do not necessarily
guarantee the disentanglement of causal factors.

Causal Disentanglement. Our experiments show that
learning diffeomorphic causal mechanisms, rather than lin-
ear SCM, and incorporating the causal structure to learn a
bijective λ to estimate the parameters of the causally factor-
ized distribution significantly improves the disentanglement
and interventional robustness of learned causal factors com-
pared with baselines, as shown in Table 2. Consistent with
our intuition, iVAE fails to disentangle the causal factors. The
results indicate that ICM-VAE disentangles the causal factors
and mechanisms almost perfectly. A high DCI disentangle-
ment score indicates a permutation matrix mapping the latent
factors to ground-truth generative factors in an ideal one-to-
one mapping [Eastwood et al., 2023]. Further, our model
improves the interventional robustness of the representation,
where interventions on ground-truth factors map to interven-
tions on the corresponding learned factors.

Counterfactual Generation. We show counterfactual gen-
erated results of intervening on learned latent factors. Figure
4 shows the CausalCircuit system and the result of interven-

Dataset Model D C IRS

Pendulum β-VAE 0.182 0.285 0.449
iVAE 0.483 0.385 0.670

CausalVAE 0.885 0.539 0.817
SCM-VAE 0.764 0.475 0.829

ICM-VAE (Ours) 0.997 0.882 0.869

Flow β-VAE 0.308 0.332 0.452
iVAE 0.730 0.481 0.674

CausalVAE 0.819 0.522 0.707
SCM-VAE 0.854 0.483 0.811

ICM-VAE (Ours) 0.988 0.598 0.893

CausalCircuit β-VAE 0.692 0.442 0.982
iVAE 0.745 0.541 0.992

CausalVAE 0.886 0.625 0.994
SCM-VAE 0.867 0.652 0.993

ICM-VAE (Ours) 0.982 0.689 0.999

Table 2: Causal Disentanglement of ICM-VAE and baselines

ing on the robot arm factor and propagating causal effects.
We observe that the red light also turns on as the robot arm
interacts with the blue or green lights. On the other hand,
when the arm interacts with the red light, only the red light
turns on and the other lights remain off. We observe a sim-
ilar phenomenon in the Pendulum and Water Flow systems
in Figure 3, which shows the result of intervening on causal
factors and propagating effects. Intervening on the pendulum
angle or light position has causal effects on the shadow. How-
ever, interventions on the shadow factors do not change the
parent factors. For the counterfactual generation procedure,
results from intervening on other causal factors, and iVAE la-
tent traversals, refer to appendix in [Komanduri et al., 2024].

7 Conclusion

We propose ICM-VAE, a framework for causal representation
learning under label supervision. We model causal mech-
anisms as flow-based transformations from noise to causal
variables. We extend the idea of disentanglement to causal
models and propose the notion of causal mechanism disen-
tanglement. To this end, we design a causal disentanglement
prior to causally factorize the distribution over causal vari-
ables. We theoretically show permutation-equivalent identifi-
ability of the learned factors. Experimental results show that
ICM-VAE almost perfectly disentangles the causal factors,
improves interventional robustness, and generates consistent
counterfactuals. Future work will incorporate causal discov-
ery and disentanglement given partially observed labels.
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