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Abstract
The connection between human health and the microbiome, including the potential 
risk of diseases at a metabolic level, is well established. However, comprehending 
the precise mechanism that underlies this relationship remains unclear due to the 
analysis challenge caused by the vast amount of data involved and the intricate inter-
actions among them. We propose the multivariate correlation pursuit (MultiCOP) 
algorithm, which effectively integrates microbiome and metabolome data to uncover 
microbe-metabolite interactions and find relevant microbes/metabolites by applying 
correlation pursuit and random projection. The use of correlation search and random 
projection in the MultiCOP algorithm enables it to surpass the constraints of other 
methods. Unlike its counterparts, MultiCOP does not rely on assumptions about the 
relationship, such as linearity, between the two datasets. Additionally, it efficiently 
handles multivariate data. We conducted extensive simulations to assess the perfor-
mance of MultiCOP. Additionally, we employed the proposed method to explore 
microbe-metabolite interactions in patients with inflammatory bowel disease and 
those with chronic ischemic heart disease, separately. The source code is available 
at: https://​github.​com/​Luyan​g8991/​Multi​COP.
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1  Introduction

Recent studies have revealed that the microbiome and metabolome are closely inter-
connected in human [1–3]. Specifically, the microbiome can produce a wide range 
of metabolites, including short-chain fatty acids, neurotransmitters, and vitamins, 
which can impact numerous physiological processes [4]. In addition, the composi-
tion of the microbiome can influence the types and levels of metabolites produced 
by host cells, which can further affect overall health [5, 6]. On the contrary, host-
produced metabolites, such as bile acids and glucose, can affect the composition and 
function of the microbiome [1, 7]. The interactions between the microbiome and the 
metabolome have been linked to numerous diseases, including obesity [8, 9], diabe-
tes [8], inflammatory bowel disease [3], and cancers [10]. This understanding has 
led to the development of numerous diseases’ preventive and treatment approaches 
such as probiotics, prebiotics, and dietary modifications aimed at altering the micro-
biome and metabolite profiles [11–14]. Additionally, interventions targeting specific 
microbial metabolites or involving fecal microbiome transplantation have shown 
promise under certain conditions [13]. These strategies have the potential to offer 
more targeted and effective treatments for a variety of diseases in the future.

An association study of microbiome and metabolome samples is essential to 
comprehensively understand the interactions between their underlying systems. 
Popular biotechnologies for processing microbiome samples are high-throughput 
sequencing technologies. Using these technologies, researchers collect microbiome 
samples using specialized kits, followed by DNA extraction from the samples. Next-
generation sequencing techniques such as 16 S rRNA gene sequencing or shotgun 
metagenomics are used to analyze microbial DNA. Bioinformatics tools are then uti-
lized to process and analyze the sequencing data, including identifying microbial 
taxa, assessing diversity, and exploring functional profiles. For metabolome sam-
ples, such as blood, urine, or tissues, they are collected and prepared by removing 
cellular debris. Metabolites are then extracted from the prepared samples using 
techniques such as liquid-liquid extraction or solid-phase extraction. Metabolomics 
analysis techniques, such as mass spectrometry (MS) [15] or nuclear magnetic reso-
nance (NMR) [16] spectroscopy, are employed to identify and quantify the metabo-
lites. The resulting data undergoes analysis using bioinformatics tools and statistical 
methods to identify significant changes or associations in the metabolome.

Various statistical methods have been utilized to study the association of microbi-
ome and metabolome data to comprehensively understand the interactions between 
these two systems. The simplest ones are correlation-based approaches, such as 
Spearman correlation [17], canonical correlation analysis (CCA) [18], partial least 
square (PLS) [19], and their extensions [20, 21]. For instance, Theriot et  al. [22] 
conducted a Spearman correlation analysis to explore potential associations between 
the mouse gut microbiome and metabolome, specifically focusing on relationships 
between pairs of metabolites and operational taxonomic units (OTUs). Kostic et al. 
[18] used a sparse CCA to integrate the gut microbiome and the gut metabolome 
of infants predisposed to type 1 diabetes (T1D). However, these approaches can 
only identify the optimal linear combination of the two datasets by maximizing the 
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correlation between components (in CCA) or the covariance between features (in 
PLS) and are therefore not capable of revealing non-linear relationships. MelonnPan 
[23] employs Elastic Net linear regression to model the relative abundance of each 
metabolite using microbial features but has the same limitation as correlation-based 
methods. To overcome this limitation, Morton et al. [24] proposed a neural network 
framework to model non-linear relationships by estimating the conditional probabil-
ity that each molecule is present, given the presence of a specific microorganism. 
However, this approach is limited to exploring interactions between an individual 
metabolite and microbes.

To address the aforementioned challenges, we present a novel computational 
framework, called MultiCOP , which utilizes microbiome and metabolome data to 
discover microbiome-metabolome association in a data-driven manner. To overcome 
the limitation of only revealing linear relationships, we utilize the correlation pur-
suit (COP) algorithm [25], which performs dimension reduction and variable selec-
tion without assuming a specific relationship between the two data sets. To handle 
the multivariate metabolome data, we propose a two-stage estimation procedure. In 
the first stage, we use the random projection approach to break down the problem 
of estimating microbe-metabolite interactions into a series of sub-problems, with 
each subproblem finding the microbes related to the univariate projected metabo-
lome data using the COP algorithm. The final estimate of the relevant microbes is 
achieved using the majority vote based on the results of all sub-problems. In the 
second stage, we perform similar procedures to select the metabolites related to the 
selected microbes from the first stage. One additional challenge in the association 
analysis of microbiome and metabolome is the high computational cost caused by 
the vast number of microbes and metabolites. Our MultiCOP algorithm can effi-
ciently reduce the computational cost. For each subproblem, the COP algorithm 
addresses the high computational cost due to the vast number of predictors by using 
a stepwise algorithm for selecting variables. Moreover, empirical results show that 
it is sufficient to take O(n) iterations of random projection to obtain excellent perfor-
mance, where n represents the sample size.

2 � Methods

To investigate the association between the microbiome (denoted as X ) and 
metabolome (denoted as Y ) data, we propose the multivariate correlation pursuit 
( MultiCOP ) algorithm for variable selection in the sufficient dimension reduction 
(SDR) framework. MultiCOP comprises two stages. In the first stage, we focus on 
dimension reduction and variable selection for the microbiome data. To achieve this, 
we use random projection to break down the problem into a series of sub-problems, 
each of which identifies the microbes related to the projected metabolome data v′Y 
along direction v using the correlation pursuit (COP) algorithm proposed in Zhong 
et al. [25]. We repeat the above procedure along multiple randomly chosen projec-
tion directions and aggregate the selected microbes along each direction by majority 
vote to obtain the final set of selected microbes. In the second stage, we perform 



	 Statistics in Biosciences

similar procedures to the first stage but on the metabolome data to select the metab-
olites related to the selected microbes from the first stage.

2.1 � Problem Setup

Let X = (X1,… ,Xp)
� ∈ ℝp represent the p dimensional microbiome data with p 

microbes and Y = (Y1,… , Yp)
� ∈ ℝq represent the q-dimensional metabolome data 

with q metabolites. In practice, the number of microbes p and metabolites q are usu-
ally large, which makes it necessary to reduce the dimension of X and Y in order to 
improve the effectiveness of modeling the relationship between metabolite data Y 
and microbiome data X.

To reduce the dimension of microbiome data X , we apply the SDR technique, 
which aims to reduce the dimension of predictors X while preserving its regression 
relation with Y . Mathematically, SDR seeks B ∈ ℝp×K with the smallest possible 
column space such that

The column space of B , or span{B} , is known as the central space and is denoted 
as SY∣X . Denote B = (�1,⋯ , �K) with � i = (�1i,⋯ , �pi)

� . A regression form of (1) 
for continuous response Y is

where � is r-dimensional random error independent of X (with r ≥ 1 ), and 
f ∶ ℝK+r

↦ ℝq is an unknown link function. Multivariate response SDR focuses on 
estimating �1,… , �K without necessarily estimating the link function f  . We refer 
to �1, �2,… , �K as the SDR directions. A predictor variable Xj(1 ≤ j ≤ p) is con-
sidered relevant if there is at least one i (1 ≤ i ≤ K) such that �ji ≠ 0 . Let �A

∗ be the 
set of relevant predictor variables and L be the number of relevant predictor vari-
ables. In the case of metabolome data, where p can be quite large, it is reasonable 
to assume sparsity, implying that only a small subset of the predictors influences Y . 
Under the SDR model, this assumption is equivalent to the fact that both K and L are 
much smaller than p.

To reduce the dimension of metabolome data Y , we again apply the SDR tech-
nique that seeks a set of linear combinations of Y , say H′Y , such that �A

∗ depends 
on Y only through H′Y , i.e., �A

∗ ⟂ Y ∣ H�Y , where H = (�1,⋯ , �K� ) with 
�i = (�1i,⋯ , �qi)

� . Let �B
∗ be the set of relevant predictor variables and L′ be the 

number of relevant predictor variables, we can safely assume that both K′ and L′ are 
much smaller than q.

2.2 � Random Projection

Since both p and q are large, we need a large number of observations, which is 
impractical to obtain, to effectively solve the problem in (1). Notice that (1) is 

(1)Y ⟂ X ∣ B�X.

(2)Y = f
(
��
1
X,… , ��

K
X, �

)
,
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equivalent to v�Y ⟂ X ∣ B�X for ∀v ∈ ℝq . Thus, it is natural to transfer the multivar-
iate SDR problem into a bunch of univariate SDR sub-problems with responses v′

j
Y , 

j = 1,⋯m , and then ensemble the results of all the sub-problems. Given independ-
ent observations 

{(
xi, yi

)}
i=1,…,n

 of (X,Y) , where xi =
(
xi1,… , xip

)� and 
yi =

(
yi1,… , yiq

)� . We project Y along randomly sampled directions, say 
v1,… , vm ∈ ℝq , to obtain m samples of scalar-valued data

That is, observations of (X, v�
j
Y) , j = 1,⋯m . For each subproblem, we aim to 

solve the univariate SDR problem that seeks B ∈ ℝp×K with the smallest possible 
column space such that

with Z = v�Y , and the corresponding relevant variables.

2.3 � Correlation Pursuit for Variable Selection

The estimation of B = (�1,⋯ , �K) , i.e., the SDR directions, in the univariate SDR 
problem (4) is equivalent to the solutions of the eigenvalue decomposition problem 
[26]

where Σ ≜ var(X) , and M ≜ var{E(X ∣ Z)} is the covariance matrix of the expecta-
tion of X given Z. The SDR directions �1, �2,⋯ �K are the first K eigenvectors of 
Σ−1M and the central space SZ∣X = span

(
�1, �2,… , �K

)
 . Here �1,⋯ , �K are equiva-

lent to the K squared profile correlations defined as P2(�i) =
��
i
var{E(X∣Z)}�i

��
i
Σ�i

≡
��
i
M�i

��
i
Σ�i

.

Given independent observations 
{(

xi, zi
)}

i=1,…,n
 of (X,Z) , where 

xi =
(
xi1,… , xip

)� , sliced inverse regression (SIR), a popular method proposed by Li 
[27], applies the following procedure to estimate M. First, the range of 

{
zi
}n

i=1
 is 

divided into H disjoint intervals, which are denoted as S1,… , SH . For each interval 
Sh , the mean vector is calculated by xh = n−1

h
Σzi∈Sh

xi , where nh is the sample size in 

Sh . Using these mean vectors, M is estimated by M̂ =
∑H

h=1
nh(xh−x)(xh−x)

�

n
. Then, the 

matrix Σ−1M is estimated by Σ̂−1M̂ , where Σ̂ is the sample covariance matrix. In this 
way, the principal directions can be estimated accordingly.

However, since only a small number of microbes/metabolites are relevant to the 
microbiome-metabolome interactions, estimating p × p covariance matrices Σ , M, 
and the eigenvalue decomposition of Σ̂−1M̂ directly will be very inaccurate and com-
putationally heavy due to a large number of irrelevant microbes/metabolites, leading 
to inaccurate estimates of SDR directions 𝜂̂1, 𝜂̂2,… , 𝜂̂K [28]. To address this issue, 

(3)
{(

x1, v
�
j
y1

)
,… ,

(
xn, v

�
j
yn

)}
, j = 1,… ,m.

(4)Z ⟂ X ∣ B�X

(5)
Mvi = 𝜆iΣvi, v�

i
Σvi = 1, for i = 1, 2,… ,K

𝜆1 ⩾ 𝜆2 ⩾ … ⩾ 𝜆K > 0.
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we apply a stepwise SIR-based method called correlation pursuit (COP) [25]. COP 
begins with a set of randomly selected predictors and alternates between an addition 
step, which selects and adds a predictor to the set, and a deletion step, which selects 
and removes a predictor from the set. The algorithm stops when no new predictor 
can be added or deleted.

Addition step. Let A be the set of indices of the currently selected predictors and 
XA be the corresponding set of selected variables. First, apply SIR to the data involv-
ing only the predictors in XA , we obtain the estimated squared profile correlations 
𝜆̂A
1
, 𝜆̂A

2
,… , 𝜆̂A

K
 . Let Xt be an arbitrary predictor not in A , and define A + t = A ∪ {t} . 

Next, apply SIR to the data containing the predictors in A + t to obtain the estimated 
squared profile correlations 𝜆̂A+t

1
, 𝜆̂A+t

2
,… , 𝜆̂A+t

K
 . Since A ⊂ A + t , we have 

𝜆̂A
1
⩽ 𝜆̂A+t

1
 . The difference 𝜆̂A+t

i
− 𝜆̂A

i
, i = 1,⋯K indicates the improvement in the 

ith profile correlation due to the inclusion of Xt . We standardize this difference and 
use the resulting test statistic COPA+t

i
=

n(𝜆̂A+t
i

−𝜆̂A
i )

1−𝜆̂A+t
i

, i = 1,⋯K, to assess the sig-
nificance of adding Xt to A in improving the ith profile correlation. To assess the 
overall contribution of adding Xt to the improvement in all K profile correlations, we 
combine the statistics COPA+t

i
 into a single test statistic COPA+t

1∶K
=
∑K

i=1
COPA+t

i
 and 

define COP
A

1∶K
= maxt∈Ac

(
COPA+t

1∶K

)
 . Let Xt̄ be a predictor that attains COP

A

1∶K
 , i.e. 

COP
A

1∶K
= COPA+t̄

1∶K
 , and let ce be a prespecified threshold. Then, if COP

A

1∶K
> ce , we 

add t̄ to A ; otherwise, we do not add any variable.
Deletion step. Assume that Xt is a predictor in A , and define A − t = A − {t} as 

the set obtained by removing Xt from A . Let 𝜆̂A−t
1

, 𝜆̂A−t
2

,… , 𝜆̂A−t
K

 be the estimated 
squared profile correlations based only on the predictors in A − t only. The effect of 
deleting Xt from A on the ith squared profile correlation can be quantified as 
COPA−t

i
=

n(𝜆̂Ai −𝜆̂
A−t
i )

1−𝜆̂A
i

, 1 ⩽ i ⩽ K. To assess the overall effect of removing Xt , we 

define COPA
1∶K

= mint∈A
(
COPA−t

1∶K

)
 . Here, COPA

1∶K
 represents the least effect of 

deleting one predictor from A . Let Xt be the predictor that achieves COPA
1∶K

 , and let 
cd be a pre-defined threshold for deletion. If COPA

1∶K
< cd , we delete Xt from A ; oth-

erwise, no deletion happens.
It has been shown [25] that asymptotically, the COP algorithm continues to select 

variables until all the actual predictors are included. Moreover, once all the true 
predictors are included, the algorithm will remove all redundant variables from the 
selected set.

2.4 � MultiCOP

We are now ready to present our MultiCOP algorithm. The proposed MultiCOP 
algorithm consists of two stages. In the first stage, we focus on achieving dimension 
reduction and variable selection for microbiome data X . We first transfer the multi-
variate SDR problem into a bunch of univariate SDR sub-problems using random 
projection. For each set of projected data (X,Z) with Z ∈ ℝ , we apply the COP algo-
rithm to estimate the relevant microbes. We then ensemble the selected microbes 
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from each subproblem to form the final pool of the selected microbes using the 
majority vote. In the second stage, we repeat the above procedure to select the rel-
evant metabolites in Y based on the selected microbes from the first stage.

First stage. Given independent observations 
{(

xi, yi
)}

i=1,…,n
 of (X,Y) , where 

xi =
(
xi1,… , xip

)� and yi =
(
yi1,… , yiq

)� . We first apply the random projection to 
project Y along m randomly sampled directions v1,… , vm ∈ ℝq to obtain m sam-
ples of scalar-valued data

i.e., observations of (X, v�
j
Y) , j = 1,⋯m . For each vj , we use the COP algorithm to 

solve the univariate SDR problem Zj ⟂ X ∣ B�X with Zj = v�
j
Y . Let Aj be the indices 

of the selected microbes for each vj and XAj
 be the corresponding set of selected 

microbes, j = 1,⋯m.
We then ensemble the selected microbes along each projection direction to obtain 

the final set of the selected microbes by majority vote. Specifically, voting for the 
most k frequent microbes from all of the m estimated sets XAj

 , we can get the final 
subset of X containing the selected microbes, denoted as �A

∗.
Second stage. Given independent observations 

{(
�i,A∗ , �i

)}
i=1,…,n

 of (�A
∗ ,Y) . 

We apply the random projection to project �A
∗ along m randomly sampled direc-

tions h1,… , hm ∈ ℝk to obtain m samples of scalar-valued data

i.e., observations of (h�
j
XA

∗ ,Y) , j = 1,⋯m . For each hj , we use the COP algorithm 
to solve the univariate SDR problem Wj ⟂ Y ∣ B�Y with Wj = h�

j
XA

∗ . Let Bj be the 
indices of the selected predictors for each hj and YBj

 be the corresponding set of 
selected metabolites, j = 1,⋯m . We then ensemble the results to form the final sub-
set YB

∗ containing the selected metabolites using the majority vote.
The MultiCOP algorithm is summarized in Algorithm 1. 

(6)
{(

x1, v
�
j
y1

)
,… ,

(
xn, v

�
j
yn

)}
, j = 1,… ,m,

(7)
{(

��
j
�1,A∗ , �1

)
,… ,

(
��
j
�n,A∗ , �n

)}
, j = 1,… ,m,



	 Statistics in Biosciences

Algorithm 1   MultiCOP algorithm

2.5 � Implementation Issues

During the implementation of the MultiCOP algorithm, several tuning parameters 
need to be defined. In Algorithm 1 Step 2, where we apply the COP algorithm to 
each projected sample, we follow the guidelines set by Zhong et al. [25] to determine 
the number of profile correlation directions (K) and the thresholds ( ce and cd ) for the 
addition and deletion steps. Specifically, to determine the threshold ce , and cd , we rely 
on the findings of Zhong et al. [25], who demonstrated that, under mild conditions, 
the test statistics COP

A

1∶K
 converges to a �2 distribution in probability. We select a 

pair of thresholds ce = �2
�,K

 and cd = �2
�−0.05,K

 . Furthermore, for the selection of K in 
each COP procedure applied to the projected samples, we employ the G information 
criterion proposed by Zhu et  al. [28]. Following the approach outlined by Zhong 
et al. [25], we initially define a range for K, typically from 1 to J. Subsequently, we 
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select K = argmin1⩽k⩽J G(k) , where G(k) = − log L(k) +
log(n)

2
k
(
2pk − k + 1

)
 . Once 

the number of profile correlations K is determined for each COP procedure, denoted 
as K1,… ,Km , we choose k = mode{K1,… ,Km} as the number of variables in the 
final selected subset in Step 3.

Since the procedure in Algorithm 1 is asymmetric between the two datasets, we 
need to specify the priority of one dataset over the other. In this study, we select 
variables from the microbiome data first, followed by the metabolome data, based 
on the biological understanding of the causal relationship between the microbiome 
and metabolome. The microbiome, which consists of the microbial community in a 
particular environment (e.g., gut, skin), is known to influence the metabolome [2, 
29, 30]. Microbes engage in various metabolic processes and produce metabolites 
that shape the metabolomic profile. Consequently, as the microbiome can be consid-
ered a driver or cause of the metabolome, we prioritize the selection of features from 
the microbiome data.

3 � Results

3.1 � Simulation Study

We perform comprehensive simulation studies to compare MultiCOP with other 
four established variable selection methods through four distinct simulation scenar-
ios. These scenarios indicate four different ways in which the microbiome ( X ) and 
metabolome data (Y) are associated with each other, including a linear association, a 
non-linear association, a non-linear association with a large number of microbes (p) 
and metabolites (q), and a heteroscedastic association.

For each scenario, we set X =
(
X1,X2,… ,Xp

)� follows a p-variate normal dis-
tribution with mean 0 and covariance cov

(
Xi,Xj

)
= �|i−j| for 1 ⩽ i, j ⩽ p , and 

� = (�1, �2,⋯ , �q)
� is independent of X. Each �i independently follows N(0, �2).

Scenario 1. Consider the linear model Y = BX + � , with p = 5 and q = 6 . We 
set,

Scenario 2. Consider the non-linear model with p = 5 and q = 6,

Scenario 3. Consider the non-linear model

(8)
{

Yi = 3X1 + 1.5X2 + 2X3 + �i i = 1, 2

Yi = �i, i = 3, 4, 5, 6

(9)

{
Yi =

(X1+X2)

0.5+(1.5+X1)
2 + �i, i = 1, 2

Yi = �i, i = 3, 4,⋯ , q

(10)

{
Yi =

(Xi+1+…+Xi+3)

0.5+(1.5+0.5(X1+…+X6))
2 + �i, i = 1, 2, 3

Yi = �i, i = 4,… , q
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Scenario 4. Consider the heteroscedastic model with p = 10 and q = 10,

where �(1) = (�(1)1 , �(1)2 , �(1)3 , �(1)4 )T = (1, 1, 1, 0)T  , �(2) = (�
(2)

1
, �

(2)

2
, �

(2)

3
, �

(2)

4
)T = (1,−1, 1, 0)T , 

and �(3) = (�
(3)

1
, �

(3)

2
, �

(3)

3
, �

(3)

4
)T = (1, 0, 2, 1)T.

For each scenario, we further create three different situations by specifying dif-
ferent values of � , n, p, and q to test the stability of the algorithm. In scenario 3, 
we test the performance of MultiCOP when p and q are large.

Under each situation, we generate 30 replicate data sets and compare the per-
formance between MultiCOP and four other variable selection methods: canoni-
cal correlation analysis (CCA) [31], partial least square (PLS) [1], multivariate 
LASSO [32], and reduced rank regression (RRR) [33] on each synthetic data set. 
We measure the performance of each method in variable selection using two met-
rics: the false positive rate (FPR) and the false negative rate (FNR) for both X and 
Y.

When implementing MultiCOP , the pool of possible ce is set as {
�2
0.90,K

,�2
0.95,K

,�2
0.99,K

}
 , and the associated pool of cd is 

{
�2
0.85,K

,�2
0.90,K

,�2
0.95,K

}
 . 

The possible values of K are from 1 to min{20,max{p, q}} . The number of ran-
dom projection directions m is set to be 10n. For sparse CCA, we run the R func-
tion PMA::CCA [31], which performs sparse canonical correlation analysis using 
the penalized matrix decomposition. For PLS, we employ the R function 
plsVarSel::VIP [1], which filters variables by variable importance on projections. 
For multivariate LASSO, we use the famous R package glmnet [32], which is 
widely used for LASSO regression. We fit the multivariate LASSO model treat-
ing Y as the response to filter out the X ’s with a coefficient equal to 0, and treat X 
as the response to filter Y’s. For RRR, we implement the command rrpack::rrr 
[33] to calculate the coefficients for each variable. Since RRR cannot be used to 
select variables, we pick out the top variables with the highest absolute value. 
The number of variables to pick is the same as the number of selected variables in 
MultiCOP . During the comparison, all the parameters in the compared method 
are set as the default value.

We report the results for each scenario in Tables  1, 2, 3, 4 separately. The 
results demonstrate that the performance of MultiCOP is competitive compared 
to the other methods, as indicated by the relatively low values of FNR and FPR. 
Notably, the other methods have a slightly better performance than MultiCOP in 
some settings in the first three scenarios, due to their inherent frameworks being 
designed to detect the linear associations. In contrast, MultiCOP does not hinge on 
any pre-defined association type. As such, it is comprehensible for our methods 
to slightly underperform in comparison in some settings. However, when dealing 
with non-linear associations between multivariate datasets, MultiCOP exhibits 
significantly improved performance in terms of FNR and FPR. Results in simula-
tion show that MultiCOP can efficiently explore the association between multi-
variate and multivariate data, which is consistent with our theoretical analysis.

(11)

�
Yi =

�i

0.2+0.5
∑4

j=1
�
(i)

j
Xj

i = 1, 2, 3

Yi = �i, i = 4,⋯ , 10,
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3.2 � Real Data 1: Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease (IBD) is a chronic condition that affects the digestive 
tract, causing inflammation and damage to intestinal tissue. Research has shown 
that patients with IBD often exhibit a dysbiotic gut microbiome, characterized by 
an imbalance in the composition of bacterial species and reduced diversity [34]. 
This dysbiosis can potentially stimulate an abnormal immune response, leading 
to chronic inflammation and subsequent intestinal tissue damage [34, 35]. In par-
ticular, in addition to changes in microbial composition, alterations in metabolites 
produced by the gut microbiome have also been observed in patients with IBD 
[36].

A recent study called IBDMDB [37], as part of the Integrative Human Micro-
biome Project (HMP2 or iHMP), was conducted to generate integrated molecular 
profiles of both host and microbial activity during disease (IBD) using numerous 
individual specimens. This study resulted in the establishment of a publicly accessi-
ble database that encompassed multiple types of measurements, including metagen-
omes, metatranscriptomes, proteomes, metabolites, and other related data, available 
at https://​ibdmdb.​org/. Specifically, metagenome sequences and metabolite profiles 
were primarily derived from stool specimens. We utilized the MultiCOP algorithm 
to analyze the metagenome sequence data and the corresponding metabolite data of 

Table 1   Results for Scenario 1. We consider three different settings and compare the proposed MultiCOP 
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPR in y FNR in y

Results for  �=0.5, �=0.5, 
n=100 (rep=30)

CCA​ 0.00 (0.000) 0.67 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.00 (0.000) 0.08 (0.143) 0.00 (0.000) 0.00 (0.000)
LASSO 0.75 (0.315) 0.23 (0.202) 0.46 (0.348) 0.11 (0.253)
RRR​ 0.00 (0.000) 0.16 (0.169) 0.01 (0.046) 0.00 (0.000)
MultiCOP (ours) 0.00 (0.000) 0.16 (0.169) 0.01 (0.046) 0.00 (0.000)
Results for  �=0.5, �=0.5, n=1000 (rep=30)
CCA​ 0.00 (0.000) 0.67 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
LASSO 0.80 (0.311) 0.27 (0.192) 0.41 (0.290) 0.04 (0.169)
RRR​ 0.02 (0.091) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
MultiCOP (ours) 0.02 (0.091) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
Results for �=0.5, �=2, n=100 (rep=30)
CCA​ 0.00 (0.000) 0.67 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.00 (0.000) 0.08 (0.143) 0.00 (0.000) 0.00 (0.000)
LASSO 0.75 (0.341) 0.24 (0.199) 0.53 (0.339) 0.13 (0.271)
RRR​ 0.00 (0.000) 0.00 (0.000) 0.01 (0.046) 0.00 (0.000)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.01 (0.046) 0.00 (0.000)

https://ibdmdb.org/
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IBD patients to explore the interactions between the microbiome and metabolites 
during the progression of IBD.

For the microbiome dataset, we initiated with a differential abundance analysis 
to pinpoint microbial features exhibiting distinct distributions between the datasets. 
We specifically compared our dataset with the control group detailed in Lloyd-Price 
et al. [37], where data for the control group are provided. We utilized the DESeq2 
[38] package to analyze the count data. The differences in taxa were evaluated using 
the Wald test based on the negative binomial model, which is consistent with the 
approach proposed in Love et al. [39]. In the subsequent phase, we employed a fil-
tering process, retaining only those taxa that appeared in a minimum of 10% of the 
samples, as the procedure described in Morton et al. [24]. Then, we implemented a 
pseudo-count of one to all data points.

We followed the procedures detailed in Morton et  al. [24] for processing the 
metagenomics data. Specifically, microbes present in fewer than 10 samples were 
excluded because they lacked enough data to confidently infer their interactions with 
metabolites. The metabolite data was profiled using a combination of four LC-MS 
methods including HILIC-pos, HILIC-neg, C18-neg, and C8-pos [18]. The raw 
LC-MS data was preprocessed, and peak identification was conducted by matching 
peaks based on attributes such as retention time, m/z ratio, and intensity. This pro-
cess enabled the annotation of detected peaks, leading to the identification of 589 
distinct metabolites. We restricted our analysis to only the annotated metabolites. 

Table 2   Results for Scenario 2. We consider three different settings and compare the proposed MultiCOP 
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPR in y FNR in y

Results for �=0.5, �=0.5, n=100 (rep=30)
CCA​ 0.00 (0.000) 0.50 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.02 (0.085) 0.02 (0.091) 0.00 (0.00) 0.00 (0.000)
LASSO 0.53 (0.407) 0.18 (0.280) 0.34 (0.311) 0.08 (0.218)
RRR​ 0.03 (0.102) 0.05 (0.153) 0.23 (0.101) 0.42 (0.190)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.04 (0.115) 0.05 (0.153)
Results for �=0.5, �=3, n=100 (rep=30)
CCA​ 0.01 (0.061) 0.52 (0.091) 0.00 (0.000) 0.50 (0.000)
PLS 0.10 (0.178) 0.08 (0.190) 0.05 (0.102) 0.07 (0.173)
LASSO 0.36 (0.371) 0.17 (0.260) 0.43 (0.371) 0.17 (0.284)
RRR​ 0.13 (0.166) 0.20 (0.249) 0.07 (0.117) 0.15 (0.233)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.05 (0.102) 0.10 (0.203)
Results for �=0.5, �=3, n=200 (rep=30)
CCA​ 0.00 (0.000) 0.50 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.04 (0.115) 0.05 (0.153) 0.02 (0.063) 0.00 (0.000)
LASSO 0.49 (0.324) 0.13 (0.247) 0.57 (0.380) 0.26 (0.347)
RRR​ 0.07 (0.136) 0.10 (0.203) 0.03 (0.086) 0.07 (0.173)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)



Statistics in Biosciences	

This was to mitigate the potential for significant variations in the metabolite profiles 
between consecutive samples from the same subjects, which might have been intro-
duced by unidentified compounds [37].

We subsequently applied the MultiCOP algorithm to the dataset, which, after fil-
tering, comprised n = 387 samples with p = 562 microbes and q = 589 metabolites. 
The thresholds were established as ce = �2

0.95,K
 and cd = �2

0.90,K
 . We selected the 

value for K based on the G information criterion, in alignment with the consistency 
theorems presented in Zhong et al. [25]. Furthermore, we set the number of random 
projection directions m to be 10n.

The relevant microbes and metabolites identified in the microbiome-metab-
olome association are presented in Fig.  1a. The solid lines represent microbi-
ome-metabolome associations that align with findings from previous literature, 
whereas the dashed lines indicate highly potential associations that biologists 
can explore in the future. Our findings are consistent with previous studies, 
underscoring certain microbial and metabolic features pivotal to the association 
between the microbiome and metabolome in IBD patients. Key microbial entities 
include members of the Roseburia genus, namely Roseburia hominis and Rose-
buria intestinalis, and the Klebsiella genus, such as Klebsiella oxytoca and Kleb-
siella pneumoniae. On the metabolic front, crucial features encompass carniti-
nes (NH4), bile acids (ketodeoxycholate and alpha-muricholate), and Short-chain 

Table 3   Results for Scenario 3. We consider three different settings and compare the proposed MultiCOP 
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPR in y FNR in y

Results for �=0.5, �=0.1, n=200, p=q=10 (rep=30)
CCA​ 1.00 (0.000) 0.17 (0.000) 1.00 (0.000) 0.33 (0.000)
PLS 0.01 (0.456) 0.27 (0.102) 0.00 (0.000) 0.00 (0.000)
LASSO 0.54 (0.329) 0.12 (0.157) 0.92 (0.134) 0.47 (0.336)
RRR​ 0.08 (0.137) 0.30 (0.111) 0.37 (0.072) 0.98 (0.08)
MultiCOP (ours) 0.00 (0.000) 0.24 (0.085) 0.00 (0.026) 0.13 (0.166)
Results for �=0.5, �=0.1, n=300, p=q=10 (rep=30)
CCA​ 1.00 (0.000) 0.17 (0.000) 1.00 (0.000) 0.33 (0.000)
PLS 0.00 (0.000) 0.25 (0.105) 0.00 (0.000) 0.00 (0.000)
LASSO 0.61 (0.276) 0.10 (0.162) 0.97 (0.132) 0.65 (0.178)
RRR​ 0.04 (0.095) 0.20 (0.102) 0.35 (0.082) 0.92 (0.143)
MultiCOP (ours) 0.00 (0.000) 0.17 (0.120) 0.00 (0.000) 0.10 (0.155)
Results for �=0.5, �=0.1, n=500, p=q=50 (rep=30)
CCA​ 0.05 (0.032) 0.12 (0.075) 0.38 (0.059) 0.00 (0.000)
PLS 0.02 (0.009) 0.01 (0.030) 0.05 (0.027) 0.00 (0.000)
LASSO 0.20 (0.106) 0.04 (0.072) 0.33 (0.161) 0.01 (0.061)
RRR​ 0.02 (0.013) 0.13 (0.092) 0.10 (0.008) 1.00 (0.000)
MultiCOP (ours) 0.00 (0.000) 0.01 (0.042) 0.04 (0.007) 0.01 (0.061)
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fatty acids (SCFA) like butyrate. These observations are in harmony with the 
original research by Lloyd-Price et al. [37]. Furthermore, our findings reinforce 
the documented presence of the Propionibacterium genus as outlined in Morton 
et  al. [24]. Notably, certain species within this genus produce 1,4-dihydroxy-
2-naphthoic acid (DHNA), promoting growth in bacteria like Bifidobacterium, 
which is known for its potential role in alleviating IBD symptoms.

Utilizing the MultiCOP algorithm, we’ve validated not only known associa-
tions and discovered novel but also previously unrecognized connections. Pri-
marily, our selected metabolic subset revealed additional SCFAs: caproate, 
valerate/isovalerate, and caprate. These SCFAs hold significant potential rel-
evance to IBD patients and may contribute to treatment avenues. A study indi-
cated that caproate promotes colonic wound repair and modulates the expression 
of PCNA and cyclin D in the colonic mucosa of rats with TNBS colitis [40]. 
Moreover, such SCFAs have been reported to have beneficial effects in reduc-
ing intestinal inflammation and preventing disruptions in the intestinal microflora 
[41]. A meta-analysis also observed reduced valerate levels in the fecal matter of 
IBD patients [42]. Yet, the exact role of valerate in IBD warrants deeper investi-
gation [43]. Our findings seem to resonate with insights from previous research, 
reinforcing their validity. Secondly, our microbial subset of interest identifies 
species from the Eubacterium genus, specifically Eubacterium dolichum and 
Eubacterium biforme. This insight refines the prevailing understanding among 

Table 4   Results for Scenario 4. We consider three different settings and compare the proposed MultiCOP 
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPR in y FNR in y

Results for �=0, �=0.5, n=100 (rep=30)
CCA​ 0.11 (0.082) 0.91 (0.123) 0.12 (0.054) 0.94 (0.126)
PLS 0.38 (0.163) 0.72 (0.165) 0.48 (0.143) 0.60 (0.296)
LASSO 0.32 (0.155) 0.95 (0.121) 0.24 (0.153) 0.89 (0.237)
RRR​ 0.39 (0.126) 0.72 (0.205) 0.50 (0.082) 0.99 (0.061)
MultiCOP (ours) 0.02 (0.051) 0.16 (0.154) 0.09 (0.079) 0.03 (0.102)
Results for �=0.5, �=0.5, n=100 (rep=30)
CCA​ 0.09 (0.084) 0.89 (0.126) 0.11 (0.058) 0.93 (0.136)
PLS 0.47 (0.177) 0.68 (0.219) 0.49 (0.122) 0.60 (0.238)
LASSO 0.33 (0.133) 0.98 (0.076) 0.30 (0.170) 0.88 (0.223)
RRR​ 0.32 (0.141) 0.65 (0.233) 0.49 (0.080) 1.00 (0.000)
MultiCOP (ours) 0.01 (0.042) 0.19 (0.157) 0.06 (0.089) 0.01 (0.061)
Results for �=0, �=1, n=100 (rep=30)
CCA​ 0.13 (0.068) 0.95 (0.102) 0.11 (0.061) 0.92 (0.143)
PLS 0.36 (0.150) 0.66 (0.250) 0.51 (0.134) 0.62 (0.300)
LASSO 0.32 (0.123) 0.99 (0.046) 0.30 (0.200) 0.90 (0.217)
RRR​ 0.34 (0.123) 0.71 (0.208) 0.47 (0.076) 0.98 (0.085)
MultiCOP (ours) 0.02 (0.058) 0.22 (0.101) 0.06 (0.072) 0.02 (0.085)
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gut microbiologists: particular strains of butyrate-producing microbes, especially 
from the Eubacterium, Roseburia, and Faecalibacterium genera, are considered 
advantageous for human health [44].

We then applied Taxon Set Enrichment Analysis (TSEA) [45] to directly inves-
tigate whether a specified list of microbes of interest showcases enrichments within 
taxon sets functionally related to the microbiome-metabolite interaction. The TSEA 
employs the hypergeometric test as part of the Over Representation Analysis (ORA) 
to determine if a specific Taxon set is overrepresented compared to what would be 
expected by chance within a given list of microbes of interest. The enrichment net-
work is depicted in Fig.  1c, where taxon sets manifest as nodes. The node color 
signifies its p-value, while its size correlates with the count of selected microbial 
matches to that specific taxon set (node). Nodes are linked if the number of shared 
taxa exceeds 20% of the total combined taxa between them. The results reveal that 
most of the selected microbes are included in the 306 manually curated taxon sets, 
which is consistent with our findings.

Fig. 1   In a, the outcomes derived from the proposed MultiCOP method are displayed, while b show-
cases the results of the sparse CCA. Solid lines in both a and b depict microbiome-metabolome relation-
ships affirmed by prior research. In contrast, dashed lines suggest potential connections that merit further 
investigation by biologists. c and d present the enrichment network based on TSEA analysis, correspond-
ing to the findings in (a and b), respectively. Each node in c and d symbolizes a taxon set: its color signi-
fies the p-value, and its size indicates the count of correspondences with the identified microbes. Nodes 
interconnect when the shared taxa constitute more than 20% of their combined total
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For comparison purposes, we also employed sparse CCA analysis, described in 
[46], and selected the number of components same with the number of microbial 
and metabolite features with MultiCOP . Figure 1b displays the chosen features and 
Fig.  1d illustrates the corresponding enrichment graph generated through TSEA. 
Comparing two enrichment graphs, the graph generated based on MultiCOP appears 
to be more densely packed and compact compared to the one based on sCCA. This 
more complicated network indicates that more information about the microbiome-
metabolome association is revealed by the proposed MultiCOP method. Addition-
ally, two of the three nodes, Butyric and N-Acetyglutamic, selected by sCCA as pre-
sented in Fig. 1c, are also featured in Fig. 1a. It has been shown that Butyric Acid 
(Butyric) serves multifaceted roles, functioning as an anti-inflammatory agent, an 
energy source for colonocytes, and an immunomodulatory. While Butyric Acid is 
recognized for its direct involvement in IBD processes, the specific implications of 
N-Acetyglutamic Acid and N1-Acetylspermidine in the context of IBD may be more 
indirect.

3.3 � Real Data 2: Chronic Ischemic Heart Disease (CIHD)

Chronic ischemic heart disease (CIHD) is characterized by reduced blood flow 
to the heart muscle due to narrowed or blocked coronary arteries. This condition 
can lead to various symptoms, such as chest pain (angina) and shortness of breath. 
Increasing evidence points to a pivotal role of the human microbiome in CIHD’s 
onset and progression [47]. The microbiome, consisting of microorganisms inhabit-
ing the human body, appears intricately linked to the metabolome—the ensemble of 
the body’s small molecule metabolites. Studies have shown that the gut microbiome 
can influence the development of atherosclerosis, the underlying condition of CIHD, 
by producing metabolites that impact inflammation, lipid metabolism, and other cru-
cial processes. A case in point is certain gut bacteria’s ability to produce trimeth-
ylamine-N-oxide (TMAO), a metabolite associated with an amplified heart disease 
risk [48]. Exploring the association between the microbiome and the metabolome in 
CIHD has the potential to uncover novel biomarkers and therapeutic targets for the 
disease. By investigating this association, we may uncover indicators that can aid 
in the diagnosis, prognosis, and treatment of CIHD. Furthermore, targeting inter-
ventions to modulate the gut microbiome to mitigate the production of detrimental 
metabolites shows promise as an effective strategy to prevent or treat CIHD.

To explore the association between the microbiome and the metabolome in 
CIHD, we applied our MultiCOP method to a publicly available dataset [49] that 
includes 158 patients of CIHD with 45 annotated urine metabolites, 1212 annotated 
serum metabolites, and 729 metagenomics species. In our implementation, we set 
ce equal to �2

0.90,K
 , cd equal to �2

0.85,K
 , and determined the optimal number of profile 

correlation directions (K) using the G information criterion. Through our analysis, 
we unveiled valuable insights into the intricate relationship between the microbi-
ome and metabolome in the context of CIHD. The analysis procedure resulted in the 
identification of two selected subsets consisting of 10 metabolites and 21 microbes, 
as depicted in Fig. 2a. Within Fig. 2a, solid lines represent microbiome-metabolome 
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relationships that have been established and validated in the previous literature. On 
the contrary, dashed lines indicate potential relationships that warrant further inves-
tigation and exploration by biologists. In our study, we observed specific bacterial 
species within our selected subset, Clostridium sp., Roseburia sp., and Firmicutes 
bacterium, that exhibited notable changes in individuals with CIHD, as supported 
by a previous study [44]. Literature suggests that various species of Clostridium 
possess the ability to ferment mannitol [50, 51]. While mannitol has potential appli-
cations in certain medical contexts, such as fluid balance management or reduc-
tion of edema, its precise role or impact in chronic ischemic heart disease remains 
unclear. However, further exploration of its potential significance in this condition 
holds promise. However, further exploration of its potential role in this condition is 
worthwhile. Furthermore, we observed the presence of certain metabolites in our 
selected subset that are associated with CIHD, including ergothioneine and alpha-
tocopherol, both of which are antioxidants [52, 53]. Öhrvall et al. [53] suggested a 
possible protective role of alpha-tocopherol in reducing the risk of cardiovascular 
diseases. These findings highlight the relevance of investigating the involvement of 
these metabolites in the context of CIHD and their potential implications for disease 
management.

By comparison, we applied sCCA analysis to select an equal number of micro-
bial features. Figure 2b showcases the selected features, while Fig. 2d visualizes the 

Fig. 2   In a, the outcomes derived from the proposed MultiCOP method are displayed, while b show-
cases the results of the sparse CCA. Solid lines in both a and b depict microbiome-metabolome relation-
ships affirmed by prior research. In contrast, dashed lines suggest potential connections that merit further 
investigation by biologists. c and d present the enrichment network based on TSEA analysis, correspond-
ing to the findings in (a and b), respectively. Each node in c and d symbolizes a taxon set: its color signi-
fies the p-value, and its size indicates the count of correspondences with the identified microbes. Nodes 
interconnect when the shared taxa constitute more than 20% of their combined total
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enrichment graph generated using TSEA. A noticeable distinction arises when com-
paring our enrichment graph to the alternative counterparts; ours exhibits a denser 
and more compact structure. This denser structure implies a more intricate network 
that captures a richer set of interrelationships between microbes and metabolites.

4 � Discussion

In this paper, we propose the MultiCOP algorithm, which effectively detects the 
association between the microbiome and metabolome data to identify microbe-
metabolite interactions. The MultiCOP algorithm addresses the multivariate SDR 
problem by decomposing it into a set of univariate SDR problems through ran-
dom projection. We then employ the COP algorithm to solve each univariate SDR 
problem and identify the relevant variables (microbes/metabolites). The outcomes 
of each subproblem are subsequently ensembled through the majority vote, giv-
ing the final set of associated microbes and metabolites that elucidate the microbi-
ome-metabolome interaction. To evaluate the efficacy of MultiCOP , we conducted 
extensive experiments using simulated data, as well as real data from patients with 
inflammatory bowel disease and chronic ischemic heart disease. We compared the 
performance of our algorithm against other established methods, and the results 
demonstrated the superior performance of MultiCOP in terms of FPR and FNR. 
These findings strongly suggest that the proposed MultiCOP algorithm holds great 
promise as a tool for exploring microbiome-metabolome associations and identify-
ing relevant microbes and metabolites. While we empirically showed that taking 
O(n) iterations of random projection yields excellent performance, we aim to theo-
retically prove this in our future study. Another future direction is to explore more 
efficient methods for selecting projection directions, moving beyond the use of ran-
dom projection.
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