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Abstract

The connection between human health and the microbiome, including the potential
risk of diseases at a metabolic level, is well established. However, comprehending
the precise mechanism that underlies this relationship remains unclear due to the
analysis challenge caused by the vast amount of data involved and the intricate inter-
actions among them. We propose the multivariate correlation pursuit (MuLTICOP)
algorithm, which effectively integrates microbiome and metabolome data to uncover
microbe-metabolite interactions and find relevant microbes/metabolites by applying
correlation pursuit and random projection. The use of correlation search and random
projection in the MuLTICOP algorithm enables it to surpass the constraints of other
methods. Unlike its counterparts, MuLTICOP does not rely on assumptions about the
relationship, such as linearity, between the two datasets. Additionally, it efficiently
handles multivariate data. We conducted extensive simulations to assess the perfor-
mance of MuLTICOP. Additionally, we employed the proposed method to explore
microbe-metabolite interactions in patients with inflammatory bowel disease and
those with chronic ischemic heart disease, separately. The source code is available
at: https://github.com/Luyang8991/MultiCOP.
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1 Introduction

Recent studies have revealed that the microbiome and metabolome are closely inter-
connected in human [1-3]. Specifically, the microbiome can produce a wide range
of metabolites, including short-chain fatty acids, neurotransmitters, and vitamins,
which can impact numerous physiological processes [4]. In addition, the composi-
tion of the microbiome can influence the types and levels of metabolites produced
by host cells, which can further affect overall health [5, 6]. On the contrary, host-
produced metabolites, such as bile acids and glucose, can affect the composition and
function of the microbiome [1, 7]. The interactions between the microbiome and the
metabolome have been linked to numerous diseases, including obesity [8, 9], diabe-
tes [8], inflammatory bowel disease [3], and cancers [10]. This understanding has
led to the development of numerous diseases’ preventive and treatment approaches
such as probiotics, prebiotics, and dietary modifications aimed at altering the micro-
biome and metabolite profiles [11-14]. Additionally, interventions targeting specific
microbial metabolites or involving fecal microbiome transplantation have shown
promise under certain conditions [13]. These strategies have the potential to offer
more targeted and effective treatments for a variety of diseases in the future.

An association study of microbiome and metabolome samples is essential to
comprehensively understand the interactions between their underlying systems.
Popular biotechnologies for processing microbiome samples are high-throughput
sequencing technologies. Using these technologies, researchers collect microbiome
samples using specialized kits, followed by DNA extraction from the samples. Next-
generation sequencing techniques such as 16 S rRNA gene sequencing or shotgun
metagenomics are used to analyze microbial DNA. Bioinformatics tools are then uti-
lized to process and analyze the sequencing data, including identifying microbial
taxa, assessing diversity, and exploring functional profiles. For metabolome sam-
ples, such as blood, urine, or tissues, they are collected and prepared by removing
cellular debris. Metabolites are then extracted from the prepared samples using
techniques such as liquid-liquid extraction or solid-phase extraction. Metabolomics
analysis techniques, such as mass spectrometry (MS) [15] or nuclear magnetic reso-
nance (NMR) [16] spectroscopy, are employed to identify and quantify the metabo-
lites. The resulting data undergoes analysis using bioinformatics tools and statistical
methods to identify significant changes or associations in the metabolome.

Various statistical methods have been utilized to study the association of microbi-
ome and metabolome data to comprehensively understand the interactions between
these two systems. The simplest ones are correlation-based approaches, such as
Spearman correlation [17], canonical correlation analysis (CCA) [18], partial least
square (PLS) [19], and their extensions [20, 21]. For instance, Theriot et al. [22]
conducted a Spearman correlation analysis to explore potential associations between
the mouse gut microbiome and metabolome, specifically focusing on relationships
between pairs of metabolites and operational taxonomic units (OTUs). Kostic et al.
[18] used a sparse CCA to integrate the gut microbiome and the gut metabolome
of infants predisposed to type 1 diabetes (T1D). However, these approaches can
only identify the optimal linear combination of the two datasets by maximizing the
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correlation between components (in CCA) or the covariance between features (in
PLS) and are therefore not capable of revealing non-linear relationships. MelonnPan
[23] employs Elastic Net linear regression to model the relative abundance of each
metabolite using microbial features but has the same limitation as correlation-based
methods. To overcome this limitation, Morton et al. [24] proposed a neural network
framework to model non-linear relationships by estimating the conditional probabil-
ity that each molecule is present, given the presence of a specific microorganism.
However, this approach is limited to exploring interactions between an individual
metabolite and microbes.

To address the aforementioned challenges, we present a novel computational
framework, called MultiCOP, which utilizes microbiome and metabolome data to
discover microbiome-metabolome association in a data-driven manner. To overcome
the limitation of only revealing linear relationships, we utilize the correlation pur-
suit (COP) algorithm [25], which performs dimension reduction and variable selec-
tion without assuming a specific relationship between the two data sets. To handle
the multivariate metabolome data, we propose a two-stage estimation procedure. In
the first stage, we use the random projection approach to break down the problem
of estimating microbe-metabolite interactions into a series of sub-problems, with
each subproblem finding the microbes related to the univariate projected metabo-
lome data using the COP algorithm. The final estimate of the relevant microbes is
achieved using the majority vote based on the results of all sub-problems. In the
second stage, we perform similar procedures to select the metabolites related to the
selected microbes from the first stage. One additional challenge in the association
analysis of microbiome and metabolome is the high computational cost caused by
the vast number of microbes and metabolites. Our MultiCOP algorithm can effi-
ciently reduce the computational cost. For each subproblem, the COP algorithm
addresses the high computational cost due to the vast number of predictors by using
a stepwise algorithm for selecting variables. Moreover, empirical results show that
it is sufficient to take O(n) iterations of random projection to obtain excellent perfor-
mance, where n represents the sample size.

2 Methods

To investigate the association between the microbiome (denoted as X) and
metabolome (denoted as Y) data, we propose the multivariate correlation pursuit
(MultiCOP) algorithm for variable selection in the sufficient dimension reduction
(SDR) framework. MultiCOP comprises two stages. In the first stage, we focus on
dimension reduction and variable selection for the microbiome data. To achieve this,
we use random projection to break down the problem into a series of sub-problems,
each of which identifies the microbes related to the projected metabolome data v''Y
along direction v using the correlation pursuit (COP) algorithm proposed in Zhong
et al. [25]. We repeat the above procedure along multiple randomly chosen projec-
tion directions and aggregate the selected microbes along each direction by majority
vote to obtain the final set of selected microbes. In the second stage, we perform
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similar procedures to the first stage but on the metabolome data to select the metab-
olites related to the selected microbes from the first stage.

2.1 Problem Setup

Let X =(X{,...,X,) € R” represent the p dimensional microbiome data with p
microbes and Y = (Y4, ..., Y,) € RY represent the ¢g-dimensional metabolome data
with ¢ metabolites. In practice, the number of microbes p and metabolites g are usu-
ally large, which makes it necessary to reduce the dimension of X and Y in order to
improve the effectiveness of modeling the relationship between metabolite data Y
and microbiome data X.

To reduce the dimension of microbiome data X, we apply the SDR technique,
which aims to reduce the dimension of predictors X while preserving its regression
relation with Y. Mathematically, SDR seeks B € R”*K with the smallest possible
column space such that

Y LX|B'X. ()

The column space of B, or span{B}, is known as the central space and is denoted
as Sy|x- Denote B = (B, -+, B) with B; = (By;, -+, B,;)’. A regression form of (1)
for continuous response Y is

Y=f(gX, ...0Xe€), )

where € is r-dimensional random error independent of X (with r>1 ), and
f : Rf*"  RYis an unknown link function. Multivariate response SDR focuses on
estimating B, ..., Bx without necessarily estimating the link function f. We refer
to By, B, ..., Bx as the SDR directions. A predictor variable X;(1 <j < p) is con-
sidered relevant if there is at least one i (1 < i < K) such that §;; # 0. Let X 4- be the
set of relevant predictor variables and L be the number of relevant predictor vari-
ables. In the case of metabolome data, where p can be quite large, it is reasonable
to assume sparsity, implying that only a small subset of the predictors influences Y.
Under the SDR model, this assumption is equivalent to the fact that both K and L are
much smaller than p.

To reduce the dimension of metabolome data Y, we again apply the SDR tech-
nique that seeks a set of linear combinations of Y, say H'Y, such that X 4. depends
on Y only through H'Y, ie, X, LY |H'Y, where H=(y,,yx) with
¥i= (1> 7,)' Let Yg be the set of relevant predictor variables and L' be the
number of relevant predictor variables, we can safely assume that both K’ and L' are
much smaller than g.

2.2 Random Projection

Since both p and ¢ are large, we need a large number of observations, which is
impractical to obtain, to effectively solve the problem in (1). Notice that (1) is
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equivalent to v'Y L X | B’X for Vv € RY. Thus, it is natural to transfer the multivar-
iate SDR problem into a bunch of univariate SDR sub-problems with responses vj’Y,
j=1,---m, and then ensemble the results of all the sub-problems. Given independ-
ent observations {(x.y;)}._, . of (X,Y), where x;=(x;,... ,x;,)  and
y, = (yi] sy yiq)’. We project Y along randomly sampled directions, say
Vi, ...,V, € RY to obtain m samples of scalar-valued data

{(Xl,vjfyl),...,<Xn,vj’.yn>}, j=1,...,m. 3)

That is, observations of (X, V]’.Y), j=1,--m. For each subproblem, we aim to

.....

solve the univariate SDR problem that seeks B € RP*X with the smallest possible
column space such that

Z1X|BX 4

with Z = v'Y, and the corresponding relevant variables.

2.3 Correlation Pursuit for Variable Selection

The estimation of B = (f,, -+, fix), i.e., the SDR directions, in the univariate SDR
problem (4) is equivalent to the solutions of the eigenvalue decomposition problem
[26]

My, = A.Zv,, v;Evi =1, fori=12,....K

M2A> ... > i >0. ®)

where X 2 var(X), and M £ var{E(X | Z)} is the covariance matrix of the expecta-
tion of X given Z. The SDR directions #,,7,, --- #x are the first K eigenvectors of
~~'M and the central space Szx = span(nl, My, ... ,nK). Here 4, -+, Ag are equiva-
npvar(EQXIZ)}n, _ M,
20, - ’1,-’2'1;'
Given independent observations {(xl zi) }l.: o, of (X,Z), where

lent to the K squared profile correlations defined as P?(1;) =

X; = (X ... ,xip)’, sliced inverse regression (SIR), a popular method proposed by Li
[27], applies the following procedure to estimate M. First, the range of {zi}:;l is
divided into H disjoint intervals, which are denoted as S, ..., Sy. For each interval

S, the mean vector is calculated by X, = n;lZzieshxi, where n,, is the sample size in

H — - . —_\
S, Using these mean vectors, M is estimated by M = w Then, the

matrix ™' M is estimated by £/, where . is the sample covariance matrix. In this
way, the principal directions can be estimated accordingly.

However, since only a small number of microbes/metabolites are relevant to the
microbiome-metabolome interactions, estimating p X p covariance matrices X, M,
and the eigenvalue decomposition of ' M directly will be very inaccurate and com-
putationally heavy due to a large number of irrelevant microbes/metabolites, leading
to inaccurate estimates of SDR directions j;,#,, ... , fjx [28]. To address this issue,
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we apply a stepwise SIR-based method called correlation pursuit (COP) [25]. COP
begins with a set of randomly selected predictors and alternates between an addition
step, which selects and adds a predictor to the set, and a deletion step, which selects
and removes a predictor from the set. The algorithm stops when no new predictor
can be added or deleted.

Addition step. Let A be the set of indices of the currently selected predictors and
X 4 be the corresponding set of selected variables. First, apply SIR to the data involv-
ing only the predictors in X 4, we obtain the estimated squared profile correlations
AA QA L 2A Let X, be an arbitrary predictor not in A, and define A + 1 = AU {r}.
Next, apply SIR to the data containing the predictors in A + ¢ to obtain the estimated
squared profile correlations if‘” , 25‘” Y iﬁ” . Since Ac A+1t, we have
if‘ < i’l‘”’ . The difference ilf““ - 2;4, i =1, K indicates the improvement in the
ith profile correlation due to the inclusion of X,. We standardize this difference and

. .. JAH_jA . .
use the resulting test statistic COP;“” = H(I’_AT;), i=1,-K, to assess the sig-

nificance of adding X, to A in improving the ith profile correlation. To assess the
overall contribution of adding X, to the improvement in all K profile correlations, we
combine the statistics COP/* into a single test statistic COP:'*' = 3% COP/*' and

fopt A+t o5 i
define COP, ., = max,¢ 4 (COP{*). Let X; be a predictor that attains COP1 o

Wft = COP{HI}’, and let ¢, be a prespecified threshold. Then, if COP K > Ces WE
add 7 to A; otherwise, we do not add any variable.

Deletion step. Assume that X, is a predictor in A, and define A —t = A — {t} as
the set obtained by removing X, from A. Let if‘" , ig‘" e ;l“,?" be the estimated
squared profile correlations based only on the predictors in A — ¢ only. The effect of
deleting X, from A on the ith squared profile correlation can be quantified as
cop~ = G

-4 7
define COPA = min,c 4 (COPA ’) Here, COPA represents the least effect of
deletlng one pred1ct0r from A. Let X, be the predlctor that achieves COP1 .- and let
¢q be a pre-defined threshold for deletion. If @1 .k < €g» we delete X, from A; oth-
erwise, no deletion happens. i

It has been shown [25] that asymptotically, the COP algorithm continues to select
variables until all the actual predictors are included. Moreover, once all the true
predictors are included, the algorithm will remove all redundant variables from the
selected set.

1 < i< K. To assess the overall effect of removing X,, we

2.4 MulticOP

We are now ready to present our MultiCOP algorithm. The proposed MultiCOP
algorithm consists of two stages. In the first stage, we focus on achieving dimension
reduction and variable selection for microbiome data X. We first transfer the multi-
variate SDR problem into a bunch of univariate SDR sub-problems using random
projection. For each set of projected data (X, Z) with Z € R, we apply the COP algo-
rithm to estimate the relevant microbes. We then ensemble the selected microbes
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from each subproblem to form the final pool of the selected microbes using the
majority vote. In the second stage, we repeat the above procedure to select the rel-
evant metabolites in 'Y based on the selected microbes from the first stage.

First stage. Given independent observations {(Xl-,y,-)}i=1 . of (X,Y), where

X; = (X155 %;,) and y; = (V... ¥;,) - We first apply the random projection to
project Y along m randomly sampled directions vy, ...,v,, € R to obtain m sam-
ples of scalar-valued data

{(XI,VJ’.y1>,...,(xn,vjfyn>}, ji=1...,m, (6)

i.e., observations of (X, Y;Y), j=1,---m. For each V;, We use the COP algorithm to
solve the univariate SDR problem Z; L X | B'X with Z = V]’.Y. Let A; be the indices
of the selected microbes for each v; and X A, be the corresponding set of selected
microbes, j =1, - m.

We then ensemble the selected microbes along each projection direction to obtain
the final set of the selected microbes by majority vote. Specifically, voting for the
most k frequent microbes from all of the m estimated sets X A, We can get the final

subset of X containing the selected microbes, denoted as X 4.

Second stage. Given independent observations {(xi’ A*,y[)}izl ., of Xy, Y).
We apply the random projection to project X 4« along m randomly sampled direc-
tions hy, ..., h, € R*to obtain m samples of scalar-valued data

) O (e | R T

i.e., observations of (h;XA*, Y), j =1, --- m. For each hj, we use the COP algorithm
to solve the univariate SDR problem W; L Y | B'Y with W, = h]'.X 4 Let B; be the
indices of the selected predictors for each h; and YBj be the corresponding set of

selected metabolites, j = 1, --- m. We then ensemble the results to form the final sub-
set Y 5- containing the selected metabolites using the majority vote.
The MultiCOP algorithm is summarized in Algorithm 1.
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Algorithm 1 MultiCOP algorithm

1: Input: Microbiome data X = (Xi,---,X,), metabolome data Y = (Y7,---,Y),
number of profile correlation directions K, thresholds ¢, and cq, number of
directions m.

2. procedure FIRST STAGE (Selection of microbes)

3: Step 1: Generate projected samples (X, v;Y), where v;, j=1,---m are i.i.d

randomly selected projection directions.

4: Step 2: Apply COP to each of the m projected samples and get m sets of indices

of the selected microbes A; and the corresponding microbes X 4, j =1,---m.

5: a. With regard to X = (X1,---,X}), randomly select the initial subset of
K predictors, and denote A as the indices of this subset.

6: b. Addition step: iterate until no more addition of predictors can be
performed.

7 (i) find 7 such that COPAL! = COP, .

8: (ii) If WﬁK > co, add £ to A, ie. let A=A+1.

9: c. Deletion step: iterate until no more deletion of predictors can be
performed.

10: (i) find ¢ such that COP“ﬁ;{L = COP{y.

11 (i) If COPY'y < cq, add t to A, ie. let A=A —t.

12: Step 3: Majority vote. Combine all the m sets of selected microbes together
and vote for the most k frequent microbes. Denote the selected subset of X as
X 4.

13: end procedure

14: procedure SECOND STAGE (Selection of metabolites)

15: Perform the same steps (from Step 1 to Step 3 in the first stage) on Y =
(Y1,---,Y,) to get Y.

16: end procedure

17: Output: selected subsets of microbes X 4« and metabolites Y z«.

2.5 Implementation Issues

During the implementation of the MultiCOP algorithm, several tuning parameters
need to be defined. In Algorithm 1 Step 2, where we apply the COP algorithm to
each projected sample, we follow the guidelines set by Zhong et al. [25] to determine
the number of profile correlation directions (K) and the thresholds (c, and c¢,4) for the
addition and deletion steps. Specifically, to determine the threshold c,, and ¢4, we rely
on the findings of Zhong et al. [25], who demonstrated that, under mild conditions,

the test statistics COP, ., converges to a x? distribution in probability. We select a
pair of thresholds ¢, = )(i candcy = )(3_0'05, - Furthermore, for the selection of K in
each COP procedure applied to the projected samples, we employ the G information
criterion proposed by Zhu et al. [28]. Following the approach outlined by Zhong
et al. [25], we initially define a range for K, typically from 1 to J. Subsequently, we
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select K = arg min, ., G(k), where G(k) = —log L(k) + log%k@pk —k+1). Once
the number of profile correlations K is determined for each COP procedure, denoted
as K, ..., K,,, we choose k = mode{K,...,K,,} as the number of variables in the
final selected subset in Step 3.

Since the procedure in Algorithm 1 is asymmetric between the two datasets, we
need to specify the priority of one dataset over the other. In this study, we select
variables from the microbiome data first, followed by the metabolome data, based
on the biological understanding of the causal relationship between the microbiome
and metabolome. The microbiome, which consists of the microbial community in a
particular environment (e.g., gut, skin), is known to influence the metabolome [2,
29, 30]. Microbes engage in various metabolic processes and produce metabolites
that shape the metabolomic profile. Consequently, as the microbiome can be consid-
ered a driver or cause of the metabolome, we prioritize the selection of features from
the microbiome data.

3 Results
3.1 Simulation Study

We perform comprehensive simulation studies to compare MultiCOP with other
four established variable selection methods through four distinct simulation scenar-
ios. These scenarios indicate four different ways in which the microbiome (X) and
metabolome data (Y) are associated with each other, including a linear association, a
non-linear association, a non-linear association with a large number of microbes (p)
and metabolites (g), and a heteroscedastic association.

For each scenario, we set X = (Xl,Xz, X )’ follows a p-variate normal dis-
tribution with mean O and covariance cov (Xi,Xj) = pli=l for 1<, j<p, and
€=1(€,€, ,eq)’ is independent of X. Each ¢; independently follows N(0, o?).

Scenario 1. Consider the linear model Y = BX + €, with p =5 and g = 6. We
set,

Y, =3X,+ 15X, +2X;+¢; i=1,2
Y,=¢, i=23,4,56 ®)

Scenario 2. Consider the non-linear model with p = 5and g = 6,

y,= &%) e =12
0.5+(1.5+X,) 9)
Y,=¢€, i=3,4-.q
Scenario 3. Consider the non-linear model
Y, = (intotXis) €, i=1273
0.5+(1.540.5(X, +...+X,)) (10)
Y=¢, i=4,...,q
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Scenario 4. Consider the heteroscedastic model with p = 10 and g = 10,

- & -
Yi= o LN b3 (11)
Yi=¢, i=4,-,10,

where o= 0, g0 g0 g0 = cnors AP =878 BT = (1,1, 1,07,
and ﬂ(3) (ﬂ(3) (3) (3) ﬂ(3))T 1,0,2, l)T

For each scenar10 We further create three different situations by specifying dif-
ferent values of o, n, p, and q to test the stability of the algorithm. In scenario 3,
we test the performance of MultiCOP when p and g are large.

Under each situation, we generate 30 replicate data sets and compare the per-
formance between MultiCOP and four other variable selection methods: canoni-
cal correlation analysis (CCA) [31], partial least square (PLS) [1], multivariate
LASSO [32], and reduced rank regression (RRR) [33] on each synthetic data set.
We measure the performance of each method in variable selection using two met-
rics: the false positive rate (FPR) and the false negative rate (FNR) for both X and
Y.

When implementing MultiCOP, the pool of possible ¢, is set as

{)( 090.k° X095.6° X090.% } and the associated pool of ¢, is {10285,1(’ Xoo0.x0 X095.6 }
The possible values of K are from 1 to min{20, max{p, ¢g}}. The number of ran-
dom projection directions m is set to be 10n. For sparse CCA, we run the R func-
tion PMA::CCA [31], which performs sparse canonical correlation analysis using
the penalized matrix decomposition. For PLS, we employ the R function
plsVarSel::VIP [1], which filters variables by variable importance on projections.
For multivariate LASSO, we use the famous R package glmnet [32], which is
widely used for LASSO regression. We fit the multivariate LASSO model treat-
ing Y as the response to filter out the X’s with a coefficient equal to 0, and treat X
as the response to filter Y’s. For RRR, we implement the command rrpack::rrr
[33] to calculate the coefficients for each variable. Since RRR cannot be used to
select variables, we pick out the top variables with the highest absolute value.
The number of variables to pick is the same as the number of selected variables in
MultiCOP. During the comparison, all the parameters in the compared method
are set as the default value.

We report the results for each scenario in Tables 1, 2, 3, 4 separately. The
results demonstrate that the performance of MultiCOP is competitive compared
to the other methods, as indicated by the relatively low values of FNR and FPR.
Notably, the other methods have a slightly better performance than MultiCOP in
some settings in the first three scenarios, due to their inherent frameworks being
designed to detect the linear associations. In contrast, MultiCOP does not hinge on
any pre-defined association type. As such, it is comprehensible for our methods
to slightly underperform in comparison in some settings. However, when dealing
with non-linear associations between multivariate datasets, MultiCOP exhibits
significantly improved performance in terms of FNR and FPR. Results in simula-
tion show that MultiCOP can efficiently explore the association between multi-
variate and multivariate data, which is consistent with our theoretical analysis.
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Table 1 Results for Scenario 1. We consider three different settings and compare the proposed MultiCOP
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPRiny FNRiny

Results for p=0.5, 6=0.5,

n=100 (rep=30)
CCA 0.00 (0.000) 0.67 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.00 (0.000) 0.08 (0.143) 0.00 (0.000) 0.00 (0.000)
LASSO 0.75 (0.315) 0.23 (0.202) 0.46 (0.348) 0.11(0.253)
RRR 0.00 (0.000) 0.16 (0.169) 0.01 (0.046) 0.00 (0.000)
MultiCOP (ours) 0.00 (0.000) 0.16 (0.169) 0.01 (0.046) 0.00 (0.000)
Results for p=0.5, 6=0.5, n=1000 (rep=30)
CCA 0.00 (0.000) 0.67 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
LASSO 0.80 (0.311) 0.27 (0.192) 0.41 (0.290) 0.04 (0.169)
RRR 0.02 (0.091) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
MultiCOP (ours) 0.02 (0.091) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)
Results for p=0.5, 0=2, n=100 (rep=30)
CCA 0.00 (0.000) 0.67 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.00 (0.000) 0.08 (0.143) 0.00 (0.000) 0.00 (0.000)
LASSO 0.75(0.341) 0.24 (0.199) 0.53(0.339) 0.13 (0.271)
RRR 0.00 (0.000) 0.00 (0.000) 0.01 (0.046) 0.00 (0.000)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.01 (0.046) 0.00 (0.000)

3.2 Real Data 1: Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease (IBD) is a chronic condition that affects the digestive
tract, causing inflammation and damage to intestinal tissue. Research has shown
that patients with IBD often exhibit a dysbiotic gut microbiome, characterized by
an imbalance in the composition of bacterial species and reduced diversity [34].
This dysbiosis can potentially stimulate an abnormal immune response, leading
to chronic inflammation and subsequent intestinal tissue damage [34, 35]. In par-
ticular, in addition to changes in microbial composition, alterations in metabolites
produced by the gut microbiome have also been observed in patients with IBD
[36].

A recent study called IBDMDB [37], as part of the Integrative Human Micro-
biome Project (HMP2 or iHMP), was conducted to generate integrated molecular
profiles of both host and microbial activity during disease (IBD) using numerous
individual specimens. This study resulted in the establishment of a publicly accessi-
ble database that encompassed multiple types of measurements, including metagen-
omes, metatranscriptomes, proteomes, metabolites, and other related data, available
at https://ibdmdb.org/. Specifically, metagenome sequences and metabolite profiles
were primarily derived from stool specimens. We utilized the MultiCOP algorithm
to analyze the metagenome sequence data and the corresponding metabolite data of
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Table2 Results for Scenario 2. We consider three different settings and compare the proposed MultiCOP
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPRiny FNR iny

Results for p=0.5, 6=0.5, n=100 (rep=30)

CCA 0.00 (0.000) 0.50 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.02 (0.085) 0.02 (0.091) 0.00 (0.00) 0.00 (0.000)
LASSO 0.53 (0.407) 0.18 (0.280) 0.34 (0.311) 0.08 (0.218)
RRR 0.03 (0.102) 0.05 (0.153) 0.23 (0.101) 0.42 (0.190)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.04 (0.115) 0.05 (0.153)
Results for p=0.5, 0=3, n=100 (rep=30)

CCA 0.01 (0.061) 0.52 (0.091) 0.00 (0.000) 0.50 (0.000)
PLS 0.10 (0.178) 0.08 (0.190) 0.05 (0.102) 0.07 (0.173)
LASSO 0.36 (0.371) 0.17 (0.260) 0.43 (0.371) 0.17 (0.284)
RRR 0.13 (0.166) 0.20 (0.249) 0.07 (0.117) 0.15 (0.233)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.05 (0.102) 0.10 (0.203)
Results for p=0.5, 0=3, n=200 (rep=30)

CCA 0.00 (0.000) 0.50 (0.000) 0.00 (0.000) 0.50 (0.000)
PLS 0.04 (0.115) 0.05 (0.153) 0.02 (0.063) 0.00 (0.000)
LASSO 0.49 (0.324) 0.13 (0.247) 0.57 (0.380) 0.26 (0.347)
RRR 0.07 (0.136) 0.10 (0.203) 0.03 (0.086) 0.07 (0.173)
MultiCOP (ours) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)

IBD patients to explore the interactions between the microbiome and metabolites
during the progression of IBD.

For the microbiome dataset, we initiated with a differential abundance analysis
to pinpoint microbial features exhibiting distinct distributions between the datasets.
We specifically compared our dataset with the control group detailed in Lloyd-Price
et al. [37], where data for the control group are provided. We utilized the DESeq2
[38] package to analyze the count data. The differences in taxa were evaluated using
the Wald test based on the negative binomial model, which is consistent with the
approach proposed in Love et al. [39]. In the subsequent phase, we employed a fil-
tering process, retaining only those taxa that appeared in a minimum of 10% of the
samples, as the procedure described in Morton et al. [24]. Then, we implemented a
pseudo-count of one to all data points.

We followed the procedures detailed in Morton et al. [24] for processing the
metagenomics data. Specifically, microbes present in fewer than 10 samples were
excluded because they lacked enough data to confidently infer their interactions with
metabolites. The metabolite data was profiled using a combination of four LC-MS
methods including HILIC-pos, HILIC-neg, C18-neg, and C8-pos [18]. The raw
LC-MS data was preprocessed, and peak identification was conducted by matching
peaks based on attributes such as retention time, m/z ratio, and intensity. This pro-
cess enabled the annotation of detected peaks, leading to the identification of 589
distinct metabolites. We restricted our analysis to only the annotated metabolites.
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Table 3 Results for Scenario 3. We consider three different settings and compare the proposed MultiCOP
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPRiny FNR iny

Results for p=0.5, 0=0.1, n=200, p=q=10 (rep=30)

CCA 1.00 (0.000) 0.17 (0.000) 1.00 (0.000) 0.33 (0.000)
PLS 0.01 (0.456) 0.27 (0.102) 0.00 (0.000) 0.00 (0.000)
LASSO 0.54 (0.329) 0.12 (0.157) 0.92 (0.134) 0.47 (0.336)
RRR 0.08 (0.137) 0.30 (0.111) 0.37 (0.072) 0.98 (0.08)
MultiCOP (ours) 0.00 (0.000) 0.24 (0.085) 0.00 (0.026) 0.13 (0.166)
Results for p=0.5, 0=0.1, n=300, p=q=10 (rep=30)

CCA 1.00 (0.000) 0.17 (0.000) 1.00 (0.000) 0.33 (0.000)
PLS 0.00 (0.000) 0.25 (0.105) 0.00 (0.000) 0.00 (0.000)
LASSO 0.61 (0.276) 0.10 (0.162) 0.97 (0.132) 0.65 (0.178)
RRR 0.04 (0.095) 0.20 (0.102) 0.35 (0.082) 0.92 (0.143)
MultiCOP (ours) 0.00 (0.000) 0.17 (0.120) 0.00 (0.000) 0.10 (0.155)
Results for p=0.5, 0=0.1, n=500, p=q=50 (rep=30)

CCA 0.05 (0.032) 0.12 (0.075) 0.38 (0.059) 0.00 (0.000)
PLS 0.02 (0.009) 0.01 (0.030) 0.05 (0.027) 0.00 (0.000)
LASSO 0.20 (0.106) 0.04 (0.072) 0.33 (0.161) 0.01 (0.061)
RRR 0.02 (0.013) 0.13 (0.092) 0.10 (0.008) 1.00 (0.000)
MultiCOP (ours) 0.00 (0.000) 0.01 (0.042) 0.04 (0.007) 0.01 (0.061)

This was to mitigate the potential for significant variations in the metabolite profiles
between consecutive samples from the same subjects, which might have been intro-
duced by unidentified compounds [37].

We subsequently applied the MultiCOP algorithm to the dataset, which, after fil-
tering, comprised n = 387 samples with p = 562 microbes and g = 589 metabolites.
The thresholds were established as ¢, = )(3.95, g and ¢; = )(5_90‘ k- We selected the
value for K based on the G information criterion, in alignment with the consistency
theorems presented in Zhong et al. [25]. Furthermore, we set the number of random
projection directions m to be 10n.

The relevant microbes and metabolites identified in the microbiome-metab-
olome association are presented in Fig. la. The solid lines represent microbi-
ome-metabolome associations that align with findings from previous literature,
whereas the dashed lines indicate highly potential associations that biologists
can explore in the future. Our findings are consistent with previous studies,
underscoring certain microbial and metabolic features pivotal to the association
between the microbiome and metabolome in IBD patients. Key microbial entities
include members of the Roseburia genus, namely Roseburia hominis and Rose-
buria intestinalis, and the Klebsiella genus, such as Klebsiella oxytoca and Kleb-
siella pneumoniae. On the metabolic front, crucial features encompass carniti-
nes (NH4), bile acids (ketodeoxycholate and alpha-muricholate), and Short-chain
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Table 4 Results for Scenario 4. We consider three different settings and compare the proposed MultiCOP
algorithm with CCA, PLS, multivariate LASSO, and RRR. We report the mean value and standard devi-
ation (in parentheses) of 30 repetitions

FPR in x FNR in x FPRiny FNR iny

Results for p=0, 6=0.5, n=100 (rep=30)

CCA 0.11 (0.082) 0.91 (0.123) 0.12 (0.054) 0.94 (0.126)
PLS 0.38 (0.163) 0.72 (0.165) 0.48 (0.143) 0.60 (0.296)
LASSO 0.32 (0.155) 0.95 (0.121) 0.24 (0.153) 0.89 (0.237)
RRR 0.39 (0.126) 0.72 (0.205) 0.50 (0.082) 0.99 (0.061)
MultiCOP (ours) 0.02 (0.051) 0.16 (0.154) 0.09 (0.079) 0.03 (0.102)
Results for p=0.5, 6=0.5, n=100 (rep=30)

CCA 0.09 (0.084) 0.89 (0.126) 0.11 (0.058) 0.93 (0.136)
PLS 0.47 (0.177) 0.68 (0.219) 0.49 (0.122) 0.60 (0.238)
LASSO 0.33(0.133) 0.98 (0.076) 0.30 (0.170) 0.88 (0.223)
RRR 0.32(0.141) 0.65 (0.233) 0.49 (0.080) 1.00 (0.000)
MultiCOP (ours) 0.01 (0.042) 0.19 (0.157) 0.06 (0.089) 0.01 (0.061)
Results for p=0, c=1, n=100 (rep=30)

CCA 0.13 (0.068) 0.95 (0.102) 0.11 (0.061) 0.92 (0.143)
PLS 0.36 (0.150) 0.66 (0.250) 0.51(0.134) 0.62 (0.300)
LASSO 0.32(0.123) 0.99 (0.046) 0.30 (0.200) 0.90 (0.217)
RRR 0.34 (0.123) 0.71 (0.208) 0.47 (0.076) 0.98 (0.085)
MultiCOP (ours) 0.02 (0.058) 0.22 (0.101) 0.06 (0.072) 0.02 (0.085)

fatty acids (SCFA) like butyrate. These observations are in harmony with the
original research by Lloyd-Price et al. [37]. Furthermore, our findings reinforce
the documented presence of the Propionibacterium genus as outlined in Morton
et al. [24]. Notably, certain species within this genus produce 1,4-dihydroxy-
2-naphthoic acid (DHNA), promoting growth in bacteria like Bifidobacterium,
which is known for its potential role in alleviating IBD symptoms.

Utilizing the MultiCOP algorithm, we’ve validated not only known associa-
tions and discovered novel but also previously unrecognized connections. Pri-
marily, our selected metabolic subset revealed additional SCFAs: caproate,
valeratelisovalerate, and caprate. These SCFAs hold significant potential rel-
evance to IBD patients and may contribute to treatment avenues. A study indi-
cated that caproate promotes colonic wound repair and modulates the expression
of PCNA and cyclin D in the colonic mucosa of rats with TNBS colitis [40].
Moreover, such SCFAs have been reported to have beneficial effects in reduc-
ing intestinal inflammation and preventing disruptions in the intestinal microflora
[41]. A meta-analysis also observed reduced valerate levels in the fecal matter of
IBD patients [42]. Yet, the exact role of valerate in IBD warrants deeper investi-
gation [43]. Our findings seem to resonate with insights from previous research,
reinforcing their validity. Secondly, our microbial subset of interest identifies
species from the Eubacterium genus, specifically Eubacterium dolichum and
Eubacterium biforme. This insight refines the prevailing understanding among
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Fig. 1 In a, the outcomes derived from the proposed MultiCOP method are displayed, while b show-
cases the results of the sparse CCA. Solid lines in both a and b depict microbiome-metabolome relation-
ships affirmed by prior research. In contrast, dashed lines suggest potential connections that merit further
investigation by biologists. ¢ and d present the enrichment network based on TSEA analysis, correspond-
ing to the findings in (a and b), respectively. Each node in ¢ and d symbolizes a taxon set: its color signi-
fies the p-value, and its size indicates the count of correspondences with the identified microbes. Nodes
interconnect when the shared taxa constitute more than 20% of their combined total

gut microbiologists: particular strains of butyrate-producing microbes, especially
from the Eubacterium, Roseburia, and Faecalibacterium genera, are considered
advantageous for human health [44].

We then applied Taxon Set Enrichment Analysis (TSEA) [45] to directly inves-
tigate whether a specified list of microbes of interest showcases enrichments within
taxon sets functionally related to the microbiome-metabolite interaction. The TSEA
employs the hypergeometric test as part of the Over Representation Analysis (ORA)
to determine if a specific Taxon set is overrepresented compared to what would be
expected by chance within a given list of microbes of interest. The enrichment net-
work is depicted in Fig. lc, where taxon sets manifest as nodes. The node color
signifies its p-value, while its size correlates with the count of selected microbial
matches to that specific taxon set (node). Nodes are linked if the number of shared
taxa exceeds 20% of the total combined taxa between them. The results reveal that
most of the selected microbes are included in the 306 manually curated taxon sets,
which is consistent with our findings.
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For comparison purposes, we also employed sparse CCA analysis, described in
[46], and selected the number of components same with the number of microbial
and metabolite features with MultiCOP. Figure 1b displays the chosen features and
Fig. 1d illustrates the corresponding enrichment graph generated through TSEA.
Comparing two enrichment graphs, the graph generated based on MultiCOP appears
to be more densely packed and compact compared to the one based on sCCA. This
more complicated network indicates that more information about the microbiome-
metabolome association is revealed by the proposed MultiCOP method. Addition-
ally, two of the three nodes, Butyric and N-Acetyglutamic, selected by sCCA as pre-
sented in Fig. lc, are also featured in Fig. la. It has been shown that Butyric Acid
(Butyric) serves multifaceted roles, functioning as an anti-inflammatory agent, an
energy source for colonocytes, and an immunomodulatory. While Butyric Acid is
recognized for its direct involvement in IBD processes, the specific implications of
N-Acetyglutamic Acid and NI-Acetylspermidine in the context of IBD may be more
indirect.

3.3 Real Data 2: Chronic Ischemic Heart Disease (CIHD)

Chronic ischemic heart disease (CIHD) is characterized by reduced blood flow
to the heart muscle due to narrowed or blocked coronary arteries. This condition
can lead to various symptoms, such as chest pain (angina) and shortness of breath.
Increasing evidence points to a pivotal role of the human microbiome in CIHD’s
onset and progression [47]. The microbiome, consisting of microorganisms inhabit-
ing the human body, appears intricately linked to the metabolome—the ensemble of
the body’s small molecule metabolites. Studies have shown that the gut microbiome
can influence the development of atherosclerosis, the underlying condition of CIHD,
by producing metabolites that impact inflammation, lipid metabolism, and other cru-
cial processes. A case in point is certain gut bacteria’s ability to produce trimeth-
ylamine-N-oxide (TMAQO), a metabolite associated with an amplified heart disease
risk [48]. Exploring the association between the microbiome and the metabolome in
CIHD has the potential to uncover novel biomarkers and therapeutic targets for the
disease. By investigating this association, we may uncover indicators that can aid
in the diagnosis, prognosis, and treatment of CIHD. Furthermore, targeting inter-
ventions to modulate the gut microbiome to mitigate the production of detrimental
metabolites shows promise as an effective strategy to prevent or treat CIHD.

To explore the association between the microbiome and the metabolome in
CIHD, we applied our MultiCOP method to a publicly available dataset [49] that
includes 158 patients of CIHD with 45 annotated urine metabolites, 1212 annotated
serum metabolites, and 729 metagenomics species. In our implementation, we set
¢, equal to ;(3_90, «» Cq equal to x5 ¢s.x» and determined the optimal number of profile
correlation directions (K) using the G information criterion. Through our analysis,
we unveiled valuable insights into the intricate relationship between the microbi-
ome and metabolome in the context of CIHD. The analysis procedure resulted in the
identification of two selected subsets consisting of 10 metabolites and 21 microbes,
as depicted in Fig. 2a. Within Fig. 2a, solid lines represent microbiome-metabolome
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Fig.2 In a, the outcomes derived from the proposed MultiCOP method are displayed, while b show-
cases the results of the sparse CCA. Solid lines in both a and b depict microbiome-metabolome relation-
ships affirmed by prior research. In contrast, dashed lines suggest potential connections that merit further
investigation by biologists. ¢ and d present the enrichment network based on TSEA analysis, correspond-
ing to the findings in (a and b), respectively. Each node in ¢ and d symbolizes a taxon set: its color signi-
fies the p-value, and its size indicates the count of correspondences with the identified microbes. Nodes
interconnect when the shared taxa constitute more than 20% of their combined total

relationships that have been established and validated in the previous literature. On
the contrary, dashed lines indicate potential relationships that warrant further inves-
tigation and exploration by biologists. In our study, we observed specific bacterial
species within our selected subset, Clostridium sp., Roseburia sp., and Firmicutes
bacterium, that exhibited notable changes in individuals with CIHD, as supported
by a previous study [44]. Literature suggests that various species of Clostridium
possess the ability to ferment mannitol [50, 51]. While mannitol has potential appli-
cations in certain medical contexts, such as fluid balance management or reduc-
tion of edema, its precise role or impact in chronic ischemic heart disease remains
unclear. However, further exploration of its potential significance in this condition
holds promise. However, further exploration of its potential role in this condition is
worthwhile. Furthermore, we observed the presence of certain metabolites in our
selected subset that are associated with CIHD, including ergothioneine and alpha-
tocopherol, both of which are antioxidants [52, 53]. Ohrvall et al. [53] suggested a
possible protective role of alpha-tocopherol in reducing the risk of cardiovascular
diseases. These findings highlight the relevance of investigating the involvement of
these metabolites in the context of CIHD and their potential implications for disease
management.

By comparison, we applied sCCA analysis to select an equal number of micro-
bial features. Figure 2b showcases the selected features, while Fig. 2d visualizes the
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enrichment graph generated using TSEA. A noticeable distinction arises when com-
paring our enrichment graph to the alternative counterparts; ours exhibits a denser
and more compact structure. This denser structure implies a more intricate network
that captures a richer set of interrelationships between microbes and metabolites.

4 Discussion

In this paper, we propose the MultiCOP algorithm, which effectively detects the
association between the microbiome and metabolome data to identify microbe-
metabolite interactions. The MultiCOP algorithm addresses the multivariate SDR
problem by decomposing it into a set of univariate SDR problems through ran-
dom projection. We then employ the COP algorithm to solve each univariate SDR
problem and identify the relevant variables (microbes/metabolites). The outcomes
of each subproblem are subsequently ensembled through the majority vote, giv-
ing the final set of associated microbes and metabolites that elucidate the microbi-
ome-metabolome interaction. To evaluate the efficacy of MultiCOP, we conducted
extensive experiments using simulated data, as well as real data from patients with
inflammatory bowel disease and chronic ischemic heart disease. We compared the
performance of our algorithm against other established methods, and the results
demonstrated the superior performance of MultiCOP in terms of FPR and FNR.
These findings strongly suggest that the proposed MultiCOP algorithm holds great
promise as a tool for exploring microbiome-metabolome associations and identify-
ing relevant microbes and metabolites. While we empirically showed that taking
O(n) iterations of random projection yields excellent performance, we aim to theo-
retically prove this in our future study. Another future direction is to explore more
efficient methods for selecting projection directions, moving beyond the use of ran-
dom projection.
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