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Abstract

This study investigates uncertainties in greenhouse gas (GHG) emission factors
related to switchgrass-based biofuel production in Michigan. Using three life
cycle assessment (LCA) databases—US lifecycle inventory (USLCI) database,
GREET, and Ecoinvent—each with multiple versions, we recalculated the global
warming intensity (GWI) and GHG mitigation potential in a static calculation.
Employing Monte Carlo simulations along with local and global sensitivity analy-
ses, we assess uncertainties and pinpoint key parameters influencing GWI. The
convergence of results across our previous study, static calculations, and Monte
Carlo simulations enhances the credibility of estimated GWI values. Static calcu-
lations, validated by Monte Carlo simulations, offer reasonable central tenden-
cies, providing a robust foundation for policy considerations. However, the wider
range observed in Monte Carlo simulations underscores the importance of poten-
tial variations and uncertainties in real-world applications. Sensitivity analyses
identify biofuel yield, GHG emissions of electricity, and soil organic carbon (SOC)
change as pivotal parameters influencing GWI. Decreasing uncertainties in GWI
may be achieved by making greater efforts to acquire more precise data on these
parameters. Our study emphasizes the significance of considering diverse GHG
factors and databases in GWI assessments and stresses the need for accurate elec-
tricity fuel mixes, crucial information for refining GWI assessments and inform-

ing strategies for sustainable biofuel production.

KEYWORDS
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1 | INTRODUCTION biofuels, given their potential role in reducing greenhouse
gas (GHG) emissions. LCA studies require extensive data,
including material and energy inputs, emissions, and life-

cycle data for processes involved in the foreground system.

Understanding and addressing the uncertainties in
life cycle assessment (LCA) is critical, particularly for
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This comprehensive data requirement, coupled with vary-
ing methodologies and assumptions, inherently introduces
uncertainty into LCA results. Several studies have explored
this uncertainty, examining how variations in input pa-
rameters and the selection of life cycle inventory (LCI)
databases influence the outcomes of LCA studies (Baral
et al., 2020; Heijungs & Lenzen, 2014; Hsu et al., 2010;
Huijbregts et al., 2003; Igos et al., 2019; Kalverkamp
et al.,, 2020; Miranda Xicotencatl et al., 2023; Mullins
et al., 2011; Pauer et al., 2020; Shi & Guest, 2020; Spatari &
MacLean, 2010; Wang et al., 2020; Zhao et al., 2019).

Toaddress these uncertainties, the International Standard
for Life Cycle Assessment (International Organization for
Standardization, 2006) recommends performing uncer-
tainty analysis. The Monte Carlo method, which involves
random sampling, is widely used for this purpose. This
method requires a probability distribution for each input
parameter, with the lognormal distribution being a pop-
ular choice in LCA studies (Ciroth et al., 2016; Imbeault-
Tétreault et al., 2013; Muller et al., 2016). Performing many
Monte Carlo simulations, typically around 10,000 runs, is
essential to obtain a statistically robust estimate of variance
(Heijungs & Lenzen, 2014; Igos et al., 2019).

Moreover, Monte Carlo simulations have been instru-
mental in quantifying uncertainties in the lifecycle GHG
emissions of biofuels, underscoring their significance
within the realm of biofuel policies (Mullins et al., 2011;
Spatari & MacLean, 2010). Utilizing beta, lognormal, tri-
angle, and uniform distributions, researchers have mod-
eled input parameters, as well as CO, emissions associated
with land-use change (both direct and indirect) and soil
emissions (i.e., CO,, CH,, and N,0), in Monte Carlo sim-
ulations aimed at capturing uncertainties inherent in
the biofuel system (Baral et al., 2020; Locker et al., 2019;
Mullins et al., 2011; Spatari & MacLean, 2010; Wang
et al., 2020). However, there are comparatively few studies
that incorporate distributions for GHG emission factors
into Monte Carlo simulations, indicating a potential area
for further research and methodological refinement in
biofuel impact assessments.

In conjunction with uncertainty analysis, sensitiv-
ity analysis plays a pivotal role in assessing the impact
of input variations on LCA results to prioritize future
research efforts aimed at reducing uncertainties. Two
types of sensitivity analysis are available: local sensitivity
analysis (LSA) and global sensitivity analysis (GSA) (Igos
etal., 2019; Wolf et al., 2017; Zhao et al., 2019). Local sensi-
tivity analysis focuses on evaluating how small changes in
input parameters affect LCA results under specific condi-
tions, with the goal of identifying the parameters that have
the most significant impact on the model output under
specific, local conditions. LSA provides insights into the
immediate effects of changes in individual parameters.

In contrast, GSA aims to assess how variations in input
parameters across their entire ranges impact LCA results,
considering interactions and dependencies among inputs,
namely identifying the parameters that are most import-
ant in influencing the model output across the entire range
of parameter values. The objective of GSA is to provide a
comprehensive understanding of how changes in input
parameters, both individually and collectively, affect LCA
results across the entire range of inputs, offering a holistic
perspective on LCA results under various conditions.

LCA studies conducted by four Bioenergy Research
Centers (BRC), funded by the US Department of Energy
[Center for Advanced Bioenergy and Bioproducts
Innovation (CABBI), Center for Bioenergy Innovation
(CBI), Great Lakes Bioenergy Research Center (GLBRC),
and the Joint BioEnergy Institute (JBI)], have employed
three different LCA databases to assess GHG emissions
associated with biofuel production systems (see Table 1).
These databases include the USlifecycle inventory (USLCI)
database (National Renewable Energy Laboratory, 2012),
GREET (Argonne National Laboratory, 2023), and
Ecoinvent (Ecoinvent, 2023). As seen in Table 1, some
studies relied exclusively on GHG emission factors from
the GREET model, while others used emission factors
from all three databases. When employing the unit process
data from Europe or the rest of the world in the Ecoinvent
database, the lifecycle emissions associated with products
using those unit processes are estimated based on US elec-
tricity fuel mixes (Baral et al., 2019; Kim et al., 2019, 2020;
Kim, Dale, Basso et al., 2023; Kim et al., 2023a; Neupane
et al., 2017).

The USLCI database, developed by the National
Renewable Energy Laboratory (NREL) in 2001, contains
detailed process data for approximately 600 unit processes
within the United States. However, to calculate the lifecy-
cle emissions for materials, energy, and fuels, additional
steps such as matrix inversion are required. In contrast,
the GREET model, developed as a spreadsheet-type model
by the Argonne Laboratory, provides unit process data and
lifecycle emission information for materials and energy
within the United States and select international regions.
The Ecoinvent database, originating in Switzerland, is
the most comprehensive of the three, and includes unit
process data and lifecycle emission/impact data for over
18,000 processes, covering a substantial portion of the
world.

The two recent studies (Chen, Blanc-Betes et al., 2021;
Kim et al., 2023a) indicate that the global warming inten-
sity (GWI, well-to-wheel GHG emissions) of ethanol pro-
duced from switchgrass varies between —9.4 and 1.7 gCO,
MJ~', influenced by factors such as technologies used,
spatial and temporal boundaries, and GHG emission fac-
tors. In those studies, changes in soil organic carbon (SOC)
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TABLE 1 Life cycle assessment (LCA) databases used in literature from the DOE-funded Bioenergy Research Centers (BRCs).

BRCs System Database
CABBI Ethanol derived from sugarcane USLCI, GREET, Ecoinvent, FORWAST
Corn ethanol GREET
Bioenergy derived from miscanthus and GREET
switchgrass
Corn ethanol and cellulosic ethanol GREET
Ethanol and biodiesel from sweet GREET, Ecoinvent
sorghum and sugarcane
CBI Ethanol derived from switchgrass GREET
Reductive catalytic fractionation oil from  DATASMART life cycle inventory database
hybrid poplar (based on a combination of US LCI)
GLBRC Ethanol derived from corn stover USLCI, GREET, Ecoinvent
Ethanol derived from corn stover and USLCI, GREET, Ecoinvent
switchgrass
Chemicals derived from corn stover GREET
Ethanol derived from switchgrass GREET
Ethanol derived from switchgrass USLCI, GREET, Ecoinvent
Ethanol derived from switchgrass USLCI, GREET, Ecoinvent
JBEI Ethanol derived from corn stover USLCI, GREET, Ecoinvent

Jet fuel blendstock derived from biomass
sorghum

Biomass sorghum
Ethanol derived from biomass sorghum

Renewable natural gas derived from
organic municipal solid waste

Jet fuel blendstock derived from biomass

USLCI, GREET, Ecoinvent

USLCI, GREET, Ecoinvent
USLCI, GREET, Ecoinvent
GREET, Ecoinvent

USLCI, GREET, Ecoinvent
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sorghum

and excess electricity emerge as significant contributors to
GHG emissions in switchgrass-based ethanol production
(Chen, Blanc-Betes et al., 2021; Kim et al., 2023a). The dis-
crepancies in SOC changes between the two studies can be
attributed to variations in biogeochemical models, spatial
and temporal boundaries, simulation resolutions, among
others. Similarly, the primary contrast in GHG credits asso-
ciated with excess electricity stems from the use of differ-
ent GHG emission factors: 0.598 kgCO, kWh™" in the study
by Kim et al. (2023a) compared with 0.549 kgCO, kWh™!
in the work of Chen, Blanc-Betes et al. (2021), resulting in
about 28-38% differences in GHG credit of excess electricity.
Therefore, the GHG emission factor is highlighted as a key
source of uncertainty in the biofuel system.

To investigate the uncertainties associated with GHG
emission factors in the biofuel system, we revisited our
previous study estimating the GWI of switchgrass-based
biofuel (ethanol) in Michigan (Kim et al., 2023a). We
then recalculated the GWI and GHG mitigation poten-
tial over gasoline, referred to as a “static calculation,”

using a functional unit of 1 MJ of ethanol fuel based on
lower heating value. This process used GHG emission
factors from all three LCA databases, with multiple ver-
sions of each database. We also conducted Monte Carlo
simulations using distribution functions derived from
different databases to assess the uncertainties associated
with GHG emission factors. Furthermore, we performed
both LSA and GSA for GHG emission factors and input
parameters to identify those parameters most affecting
the GWL.

2 | MATERIALS AND METHODS

2.1 | Switchgrass-based biofuel
production system

In our previous study (Kim et al., 2023a), we used switch-
grass grown in Michigan as cellulosic feedstock for ethanol
production. The potential yield of switchgrass and SOC
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changes during switchgrass production were estimated
using the System Approach to Land Use Sustainability
(SALUS) model (Basso & Ritchie, 2015). Agronomic in-
puts and fuel use were determined based on field ex-
periment data from the GLBRC in Michigan. Only the
fertilized biomass production scenario is considered in
this analysis. Comprehensive details are available on
Dryad (Kim et al., 2023b).

Switchgrass is converted into ethanol in a centralized
biorefinery. In the analysis, two different hydrolysis tech-
nologies are considered: chemical hydrolysis and enzy-
matic hydrolysis. The chemical hydrolysis technology
(referred to as GVL) involves the utilization of a mixture
of y-valerolactone (GVL), water, and toluene, with the
addition of dilute sulfuric acid as a catalyst. This mix-
ture is employed to facilitate the hydrolysis of cellulose
and hemicellulose, ultimately converting them into fer-
mentable sugars (Won et al., 2017). In contrast, the enzy-
matic hydrolysis technology (referred to as ACID) begins
with a dilute acid pretreatment stage and proceeds to the
enzymatic conversion of cellulose and hemicellulose into
fermentable sugars (Tao et al., 2014). The analyses (in-
cluding static calculations, Monte Carlo simulation, and
sensitivity analysis) are carried out for ethanol produc-
tion using each of these hydrolysis technologies. A com-
prehensive summary of materials, transportation modes,
and fuels used in the switchgrass-based ethanol produc-
tion system is presented in Table 2. Materials displayed in
italics in Table 2 were excluded from the GHG emission
calculations due to their small quantities or unavailable
GHG emission factors.

BIOPRODUCTS FOR A SUSTAINABLE BIOECONOMY

Lifecycle phase

Switchgrass production

Materials, transportation modes, and fuels

Nitrogen fertilizer [ammonia, urea, urea

2.2 | Scenarios in static calculations

We calculated the GWI and GHG mitigation potential of
switchgrass-based ethanol by scrutinizing a total of 29 dis-
tinct scenarios (as detailed in Table 3). These scenarios
include four variations of GHG emission factors based
on the unit processes in the USLCI database, the GREET
model, and the Ecoinvent database (GLBRC scenario).
Additionally, there are seven versions of the GREET
model ranging from 2016 to 2022 (GREET scenario), and
six versions of the Ecoinvent database (Ecoinvent sce-
nario). The Ecoinvent scenarios not only include different
versions (ranging from 3.2 to 3.7) but also cover three dis-
tinct geographical regions: the United States, Europe, and
the rest of the world.

It is noteworthy that none of the three LCA databases
provided a comprehensive set of GHG emission factors
for the switchgrass-based biofuel system, including mate-
rials, transportation modes, and fuels. To address this gap,
we supplemented the missing emission factors by either
incorporating average values from different databases or
average values from other regions within the same version
of the respective database.

In the GLBRC scenarios, unit process data for energy
production, encompassing petroleum, nuclear, natural
gas, coal production, and power plants, are sourced from
the USLCI database. For materials and transportation
modes, the most relevant unit process data from three da-
tabases are selected based on their relevance in terms of
temporal or geographical boundaries. The fuel mixes for
US electricity are derived from the US Energy Information

TABLE 2 Materials, transportation
modes, and fuels in the switchgrass-based
biofuel production system.

ammonium nitrate (UAN), ammonium nitrate,
ammonium sulfate, diammonium phosphate (DAP),
monoammonium phosphate (MAP)], phosphorus
fertilizer, potassium fertilizer, diesel, herbicides, grid

electricity

Transportation and storage
diesel

Biorefinery

Truck transport, high-density polyethylene (HDPE),

GVL Toluene, calcium hydroxide, yeast, sulfuric acid, grid
electricity, RuSn4/C catalyst, wastewater treatment

nutrients

ACID Sulfuric acid, calcium hydroxide, sulfur dioxide,
ammonia, corn steep liquor, glucose, diammonium
phosphate, sodium hydroxide, grid electricity,
sorbitol, host nutrients, polymer, boiler water
chemicals, cooling tower chemicals, antifoam agent

Others
air transport

Truck transport, railroad transport, barge transport,
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TABLE 3 Scenarios in static calculation.

Scenario

GLBRC_16

GLBRC_22

GLBRC_eco3.71

GLBRC_GREET22

GREET_22
GREET_21
GREET_20
GREET_19
GREET_18
GREET _17
GREET_16
Ecoinvent_3.71_US

Ecoinvent_3.71_EU

Ecoinvent_3.71_ROW

Ecoinvent_3.6_US
Ecoinvent_3.6_EU
Ecoinvent_3.6_ROW
ECOINVENT_3.5_US
ECOINVENT_3.5_EU

ECOINVENT_3.5_ROW

ECOINVENT_3.4_US
ECOINVENT_3.4_EU

ECOINVENT_3.4_ROW

ECOINVENT_3.3_US
ECOINVENT_3.3_EU

ECOINVENT_3.3_ROW

ECOINVENT_3.2_US
ECOINVENT_3.2_EU

LCA database(s)®

Combination of USLCI, GREET,
Ecoinvent based on 2016 US electrical fuel
mix

Combination of USLCI, GREET,
Ecoinvent based on 2022 US electrical fuel
mix

Combination of USLCI, GREET,
Ecoinvent based on US electrical fuel mix
in Ecoinvent 3.71

Combination of USLCI, GREET,
Ecoinvent on US electrical fuel mix in
GREET 2022

GREET 2022
GREET 2021
GREET 2020
GREET 2019
GREET 2018
GREET 2017
GREET 2016

Ecoinvent 3.71

Ecoinvent 3.71

Ecoinvent 3.71

Ecoinvent 36
Ecoinvent 3.6
Ecoinvent 3.6
Ecoinvent 3.5
Ecoinvent 3.5
Ecoinvent 3.5
Ecoinvent 3.4
Ecoinvent 3.4
Ecoinvent 3.4
Ecoinvent 3.3
Ecoinvent 3.3
Ecoinvent 3.3
Ecoinvent 3.2

Ecoinvent 3.2

ECOINVENT_3.2_ROW Ecoinvent 3.2

Life cycle assessment (LCA) databases used in each scenario.
"GHG emissions of electricity.
“Geographical boundaries for major processes.

Administration (2022). GHG emission factors for en-
ergy, materials, and transportation modes are then cal-
culated via matrix inversion (Kim et al., 2023a). Each

GHG emission factor of
electricity®

US electricity in 2016

US electricity in 2022

US electricity in Ecoinvent
3.71

US electricity in GREET 2022

US electricity in GREET 2022
US electricity in GREET 2021
US electricity in GREET 2020
US electricity in GREET 2019
US electricity in GREET 2018
US electricity in GREET 2017
US electricity in GREET 2016

US electricity in Ecoinvent
3.71

US electricity in Ecoinvent
3.71

US electricity in Ecoinvent
3.71

US electricity in Ecoinvent 3.6
US electricity in Ecoinvent 3.6
US electricity in Ecoinvent 3.6
US electricity in Ecoinvent 3.5
US electricity in Ecoinvent 3.5
US electricity in Ecoinvent 3.5
US electricity in Ecoinvent 3.4
US electricity in Ecoinvent 3.4
US electricity in Ecoinvent 3.4
US electricity in Ecoinvent 3.3
US electricity in Ecoinvent 3.3
US electricity in Ecoinvent 3.3
US electricity in Ecoinvent 3.2
US electricity in Ecoinvent 3.2

US electricity in Ecoinvent 3.2
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Geographical boundary®

United States

United States

United States

United States

United States
United States
United States
United States
United States
United States
United States
United States

Europe
The rest of the world

United States
Europe

The rest of the world
United States
Europe

The rest of the world
United States
Europe

The rest of the world
United States
Europe

The rest of the world
United States
Europe

The rest of the world

GLBRC scenario is characterized by specific US electricity
fuel mixes, allowing us to estimate electricity fuel mix-
specific GHG emissions for the materials and fuels used

QSUAIIT suowwo)) aanear) a[qeoridde ay) Aq pautaa0s aIe sa[oNIR YO fasn Jo sa[ni 10 A1eIql] AuIuQ AS[IA| UO (SUONIPUOD-PUER-SWLI)/ WO K[IM’ ATRIqI[aul[uo//:sdny) suonipuo) pue swia, ay) 3§ “[$207/80/LT] U0 A1eiqr autjuQ K[ip ‘ANsiaAtun ae1g ueSyoIN £q 6£1€1°9993/1111°01/10p/wod Ka[im K1eiqrpaurfuo,/:sdyy woly papeojumod ‘8 ‘4707 ‘LOLILSLI



Global Change Biology Bioenergy

KIM ET AL.

60f 14
—LWI LEY—

in the biofuel production system under investigation (see
Table S1). For example, the GHG emission factors in the
GLBRC_16 scenario, which were used in our prior study,
are derived from the 2016 US electricity fuel mixes. In con-
trast, the GLBRC_22 scenario uses the 2022 US electricity
fuel mixes as its basis. In the GREET scenarios, indirect
GHG emissions from carbon monoxide and volatile or-
ganic compounds are not considered as GHG emissions
for consistency. On the contrary, in the Ecoinvent scenar-
ios, we considered GHG emission factors from the two re-
gions outside of the United States, but the GHG emission
factor of US electricity production from the same version
is employed in those scenarios.

The GHG emission factors in each scenario are pre-
sented in Figure 1 (also see Table S2). The GHG emission
factors in Figure 1 include GHG emissions from cradle to
the user's gate, including the transportation of the final
product. Additionally, the GHG emissions associated with
electricity consider transmission and distribution losses.
While certain emission factors across the databases are
similar, others exhibit notable differences. These varia-
tions in emission factors can be attributed to factors such
as temporal and geographical boundaries, technologies
employed, or allocation methods. For instance, the life
cycle energy consumption for herbicide production in the
Ecoinvent database is approximately 60-70% of that in
the GREET model. Differences in GHG emission factors
for diammonium phosphate (DAP) as a nitrogen source
among scenarios primarily result from allocation factors,
particularly nutrient ratios. While the GHG emission fac-
tors for 1 kg of DAP are comparable across scenarios, the

BIOPRODUCTS FOR A SUSTAINABLE BIOECONOMY

quantities of DAP required for 1 kg of nitrogen nutrient
differ significantly between scenarios. In most scenarios,
except for the Ecoinvent 3.71 scenarios, 1 kg of nitrogen
nutrient requires approximately 1.7-3.0kg of DAP. In con-
trast, in the Ecoinvent_3.71 scenarios, these quantities in-
crease to 5.6 kg for DAP.

2.3 | Uncertainty and sensitivity analyses
In this study, we used Oracle Crystal Ball and MATLAB
as the primary computational platforms for conducting
Monte Carlo simulations and sensitivity analyses. The
Monte Carlo simulations involved 10,000 iterations and
were executed in two distinct phases, designed to com-
prehensively address both the uncertainty associated with
GHG emission factors and the sensitivity of the model
to variations in GHG emission factors and input param-
eters (summarized in Table S3). In the first Monte Carlo
simulation, GHG emission factors are treated as random
variables, thereby quantifying the associated uncertainty,
while the input parameters are held constant. The sec-
ond simulation extends this approach by including both
GHG emission factors and input parameters as random
variables, thereby capturing the sensitivity of the results
to each variable.

The distribution functions for GHG emission fac-
tors were assumed to follow a lognormal distribution.
These distributions were derived from average values
and standard deviations obtained from a dataset consist-
ing of 29 different scenarios. To address input parameter

> Ecoinvent_3.2_ROW + Ecoinvent_3.2_EU @ Ecoinvent_3.2_US & Ecoinvent_3.3_ROW * Ecoinvent_3.3_EU
® Ecoinvent_3.3_US » Ecoinvent_3.4_ROW <« Ecoinvent_3.4_EU & Ecoinvent_3.4_US v Ecoinvent_3.5_ROW
A Ecoinvent_3.5_EU ® Ecoinvent_3.5_US = Ecoinvent_3.6_ROW | Ecoinvent_3.6_EU — Ecoinvent_3.6_US
* Ecoinvent_3.71_ROW x Ecoinvent_3.71_EU + Ecoinvent_3.71_US @ GREET_16 ® GREET_17
* GREET_18 ® GREET_19 » GREET_20 < GREET_21 ¢ GREET_22
v GLBRC_GREET22 4 GLBRC_eco3.71 ® GLBRC_22 = GLBRC_16
T T T T T T T T T T
Corn Steep Liquor @ = Herbicides A o0
HDPE oy ©
NH4NOjz as N X SR
NaOH -0 47s -
P fertilizer as P,05 wow UAN as N i
Toluene -y N fertilizer as N W+ X
Ca(OH), Ld Diesel -
. Glugo_se o Yeast .
Grid electricity ©
Aircraft transport i Ureaas N WX X
SO, e MAP as N iy o X3
K fertilizer as K,O L NH3 as N X
Truck transport - (NH4),S04 as N s XX
HS02| - @ DAP o
Railroad transport =
Barge transport - DAP as N v oo ) X+ K
0 5 10 15 20 0 5 10 15 20

GHG emission factor
(kgCO,/kg, liter, tkm or kWh)

GHG emission factor
(kgCO,/kg, liter, tkm or kWh)

FIGURE 1 Greenhouse gas (GHG) emission factors in different scenarios (note that the physical properties of fuels (e.g., lower heating
value, and density) used in the calculations are based on the GREET model.).
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uncertainty, we assumed a 10% standard deviation, con-
sidering the limited availability of specific data. This 10%
standard deviation was used in estimating the lognormal
distribution, influencing the shape and spread of the dis-
tribution curve.

The major components of switchgrass, including cel-
lulose, hemicellulose and lignin, exhibited differences
between the lower/upper values and the median values
ranging from 5% to 13% of the median values (Boundy
et al., 2011). Additionally, SALUS simulation results indi-
cated that the standard deviations of average switchgrass
yields across planting cycles are less than 11% of the aver-
age yield. This approach not only incorporates variability
and uncertainty in the input parameters but also ensures
consistency in scale with the provided values. However,
some specific input parameters (e.g., biofuel yield, biomass
yield, and SOC change) were modeled using a triangular
distribution to prevent unrealistically extreme values that
do not align with real-world conditions. Additionally, a
uniform distribution was applied to the equivalency fac-
tor, which serves as a conversion factor from nitrogen-
equivalent mass to kilograms of DAP, due to value choice.
The results of random sampling from the Monte Carlo
simulations for each GHG emission factor and input pa-
rameter are presented in the Figures S1 and S2.

The sensitivity analysis in this study includes both local
and global sensitivity analyses. Local sensitivity analysis
relies on partial derivatives to assess the impact of small
perturbations around default input values on the model's
results. In this context, local sensitivity indices are de-
fined as normalized partial derivatives, providing insights
into the parameters that have the most direct influence
on the model output (Wolf et al., 2017). On the contrary,
GSA is based on variance decomposition and employs
two types of Sobol sensitivity indices (Groen et al., 2017;
Wei et al., 2015): first-order Sobol indices, which evaluate
the direct impact of each input parameter on the model
output, and total Sobol indices, which provide a broader
perspective by measuring the overall effect of each input
parameter, including both direct and indirect impacts.
Equations for the sensitivity indices are provided in the
Supplementary Material.

It is important to note that the sensitivity analyses do
not incorporate excess electricity exported from the biore-
finery as an input parameter due to the inverse relation-
ship between excess electricity generation and biofuel
yield (see Figure S3). Higher yields reduce the availability
of carbon for use as fuel in the cogeneration facility, result-
ing in decreased energy generation. Furthermore, high
biofuel yields result in more energy required for biofuel
purification than do low yields.

Other possible correlations are seen in switchgrass
production: biomass yield versus nitrogen fertilizer rate
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and biomass yield (or nitrogen fertilizer rate) versus SOC
changes. Experimental data from Michigan (Martinez-
Feria & Basso, 2020) show a modest increase in biomass
yield with higher nitrogen fertilizer application, at a rate
of approximately 12kg of additional dry biomass per hect-
are for each extra kg of nitrogen applied (see Figure S4).
Even though the biomass yield increase attributable to
nitrogen fertilizer is relatively small considering the nitro-
gen fertilizer rate used in this analysis (50 kgN ha™"), this
correlation is accounted for in the sensitivity analyses.

In contrast, correlations related to SOC changes are not
considered in the sensitivity analyses due to the multitude
of factors influencing SOC changes, including initial car-
bon stock, soil characteristics, the percentage of biomass
removal, climatic conditions, nitrogen fertilizer rate, and
others. Consequently, SOC changes are treated as inde-
pendent parameters in the sensitivity analyses.

3 | RESULTS

The mean GWIs of switchgrass-based ethanol across the
scenarios in the static calculations are —9.8 (+2.7) gCO,
MJ~* for the GVL technology and —6.1 (x2.1) gCO, MJ™*
for the ACID technology, aligning closely with those re-
ported in our previous study (Kim et al., 2023a). Within
the scenarios, GWIs for the GVL technology range from
—14.2 to —4.8 gCO, MJ ™", while for the ACID technology,
they vary from —8.2 to —0.6 gCO, MJ ™. The GHG mitiga-
tion potentials across the scenarios vary from 1.18 to 1.30
TgCO, year™* for the GVL technology and from 1.17 to
1.27 TgCO, year™ for the ACID technology at an average
of 1.24 TgCO, year™" for both technologies (see Table S5).

In both the GLBRC and GREET scenarios, the GWI
and GHG mitigation potentials associated with the GVL
technology exhibit a linear correlation with the GHG
emission factor of electricity, as depicted in Figures 2
and 3. This linear relationship results from the role of
electricity as the primary contributor to GHG emissions
in biofuel production. Moreover, the GHG emission fac-
tors of major contributors (see Figure S5) in the GLBRC
scenarios also demonstrate a linear correlation with
the GHG emission factor of electricity (see Table S7).
However, discrepancies in the ACID technology in the
GREET scenarios arise from variations in process data
for specific major contributors across different model
versions, possibly reflecting technological advance-
ments or improvements and leading to observed devia-
tions from linearity.

While electricity remains the dominant source of GHG
emissions in the Ecoinvent scenarios, the GHG emission
factors of major contributors do not align with the GHG
emission factor of electricity. This discrepancy arises from
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the use of US electricity's GHG factors in two regions
(Europe and the rest of the world) and the application of
average emission factors for some materials and fuels. The
electricity mixes for other regions in the Ecoinvent sce-
nario comprise a combination of fuel mixes from different
countries, resulting in different GHG emission factors for
electricity compared with those from the United States.
The first Monte Carlo simulations yield a mean GWI
of —8.8 (+3.4) gCO, MJ " for the GVL technology and of

—6.3 (+£3.7) gCO, MI™" for the ACID technology, as pre-
sented in Figure 4 (also see Table S8). The GWI data for
the GVL technology exhibit a negatively skewed distribu-
tion, with a tail toward lower values, indicating a higher
likelihood of values lower than the mean. Conversely, the
GWI data for the ACID technology are nearly symmetri-
cal, suggesting a balanced distribution without significant
skewness in either direction. The data distributions ex-
hibit a slight kurtosis, indicating a higher concentration
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FIGURE 4 Distributions for global warming intensity (GWI) in the first simulation ((a) GVL technology; (b) ACID technology;

sd: standard deviation).

of values around the mean compared with the tails of a
normal distribution.

Monte Carlo simulations for GHG mitigation poten-
tials reveal a mean of 1.23 (+0.04) TgCO, year ' with a
slightly positively skewed distribution for the GVL tech-
nology and 1.24 (+0.05) TgCO, year™ " with a slightly neg-
atively skewed distribution for the ACID technology, as
illustrated in Figure 5. The coefficient of variations for
both technologies is less than 0.04, indicating moderate
variability relative to the mean.

Consistently, Monte Carlo simulations demonstrate
means close to those obtained from static calculations,
suggesting that static calculations provide reasonable ap-
proximations of the central tendency of the data. However,
Monte Carlo simulations offer additional insights into the
data distribution, including skewness and kurtosis, which
are not readily available from static calculations.

In the second simulation, in which input parameters
are introduced as random variables, the GWI distribution
for both GVL and ACID technologies broadens signifi-
cantly compared with the first simulation (see Figure S6).
This expanded range results from the combined influence
of GHG emission factor uncertainties and variations in
input parameters. Importantly, despite the broader dis-
tributions, the mean GWIs for both technologies exhibit
minimal changes compared with the first simulation
(see Table S9). This consistency suggests that the central
tendency of the GWI data remains similar even with the
added complexity of input parameter variations. However,
notable increases in standard deviations and variances for
both technologies highlight a wider range of potential
GWI values, underscoring the profound influence of input
parameters on overall GWI uncertainty. These findings

emphasize the importance of not only accounting for
uncertainties in GHG emission factors but also recogniz-
ing the influence of input parameters when assessing the
GWI of different ethanol technologies.

The LSA indicates that the most important parameter
influencing the GWI of biofuel in both GVL and ACID
technologies is biofuel yield, followed by SOC change
and GHG emissions of electricity (see Figure 6). Small
perturbations in biofuel yield directly affect both the
excess electricity produced and the amount of biomass
feedstock consumed during biofuel production, conse-
quently impacting the GHG contribution from the feed-
stock. On the contrary, the GSA results demonstrate that
the GWI of biofuel in both technologies is most sensi-
tive to GHG emissions of electricity, followed by bio-
fuel yield, SOC change, and nitrogen fertilizer rate (see
Figure 6).

There are no significant differences in the relative im-
portance of parameters between the first-order Sobol and
the total Sobol indices (see Figure 6). This suggests that
interactions between input parameters are weak or not
potent enough to significantly influence overall sensitivity
analysis outcomes. The effects of the parameters on the
output results appear independent, indicating that the
value of any one parameter does not substantially affect
the impact of any other parameter. Although each addi-
tional kilogram of nitrogen applied can increase yield by
approximately 12kg of dry biomass per hectare, the inter-
action of nitrogen fertilizer application rate to biomass
yield does not alter the relative importance of parameters
in both technologies.

Parameters associated with Ca(OH), in the GVL tech-
nology and parameters associated with corn steep liquor
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correlation).

and glucose in the ACID technology are important in both
sensitivity analyses. In the GVL technology, GHG emis-
sions associated with Ca(OH), are significant, exceeding
9.7 gCO, MJI™". Despite the relatively narrow distribution
for GHG emissions of Ca(OH), production (see Figure S1),
its large contribution to GWI renders these parameters
important.

GHG emissions associated with corn steep liquor and
glucose in the ACID technology system are less important.
However, the GHG emission factors for corn steep liquor

in the GLBRC scenarios are over 1.8-fold larger than those
in the GREET scenarios due to GHG emissions from corn
grain used as a raw material for corn steep liquor produc-
tion. The GLBRC scenarios comprehensively consider
GHG emissions associated with changes in SOC during
corn production, a factor not considered in the GREET
scenarios. This comprehensive consideration results in
larger GHG emissions for corn-derived materials, such as
glucose and corn steep liquor, contributing to the observed
wider ranges.
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4 | DISCUSSION

This study highlights the importance of a comprehensive
approach to assess the GWI of biofuel systems by consid-
ering a diverse range of GHG emission factors and data-
bases. Utilizing multiple LCA databases, including USLCI,
GREET, and Ecoinvent, each with various versions of the
databases, provided a more comprehensive understanding
of the potential variations in GHG emission factors and
their impact on GWI estimations. The results underscore
the sensitivity of GWIs and GHG mitigation potentials to
the choice of LCA database and emission factors, leading
to substantial variations across scenarios. This variability
therefore also highlights the need for cautious interpre-
tation of LCA results and emphasizes the significance of
relying on comprehensive and up-to-date data sources.

The convergence of findings between our previous
study (Kim et al., 2023a), static calculations, and Monte
Carlo simulations adds credibility to the estimated GWI
values. The static calculations and Monte Carlo simula-
tions yielded similar mean GWIs, suggesting that static
calculations can provide reasonable approximations of the
central tendency of the data. This convergence strength-
ens confidence in the estimated GWI values and provides a
basis for further discussions and policy decisions. Despite
the convergence observed, the wider range of GWI values
obtained from the simulations emphasizes the necessity
of incorporating potential variations and uncertainties
into real-world applications, reinforcing the practical im-
plications of our findings. The simulations capture the
inherent variability associated with input parameters and
demonstrate that the actual GWI could deviate from the
central tendency due to these variations.

Sensitivity analysis shows that biofuel yield, GHG
emissions of electricity, and SOC change have the greatest
impact on the GWI of biofuel. Thus, efforts to optimize
these factors can substantially reduce the uncertainty as-
sociated with GWI. Biofuel yield is crucial as it directly in-
fluences the amount of biomass feedstock consumed and
the excess electricity produced during biofuel production.
GHG emissions of electricity are particularly important
due to the substantial contribution of electricity to the
overall GWI. Furthermore, the impact of SOC change on
the carbon balance of the biofuel system highlights its sig-
nificance in shaping the overall environmental footprint.
Prioritizing these factors in research and policymaking
endeavors is crucial for refining GWI assessments and
making well-informed decisions regarding sustainable
biofuel production strategies.

The accuracy of GHG emissions from electricity pro-
duction is crucial for assessing the GWI of biofuels,
given its substantial contribution to overall GHG emis-
sions. Electricity fuel mixes play an important role in

BIOPRODUCTS FOR A SUSTAINABLE BIOECONOMY

these emissions, influencing the assessment's complexity.
Despite the inherently future-oriented nature of cellulosic
ethanol systems, most LCA studies have predominantly
relied on historical or existing electricity fuel mixes. The
uncertainty surrounding future electricity fuel mixes, in-
fluenced by factors such as technological advancements,
policy changes, and resource availability, introduces ad-
ditional complexity to this assessment. Considering that
cellulosic ethanol systems are not yet widely deployed, ac-
curately projecting future electricity fuel mixes becomes
a challenging task, encompassing diverse variables such
as technological evolution, policy dynamics, and resource
constraints.

Despite the challenges in determining future electricity
fuel mixes, it is imperative to acknowledge potential varia-
tions and uncertainties when evaluating the GWI of biofu-
els. Sensitivity analysis emerges as a valuable tool, offering
insights into the impact of these uncertainties on GWI,
thereby facilitating a more comprehensive understanding
of the potential range of GHG emissions linked to biofuel
production. Future research should continue to refine
methodologies for projecting future electricity fuel mixes
and incorporate these projections into LCA studies to en-
hance the accuracy and robustness of GWI assessments in
the context of evolving cellulosic biofuel systems.

This endeavor is not merely academic; it has profound
implications for climate change mitigation globally. By
accurately quantifying the GWI of biofuels, stakehold-
ers (including researchers, policymakers, and industry
leaders) gain crucial insights that can guide sustainable
energy policies, investment decisions, and technologi-
cal innovations. Moreover, contextualizing the impact of
these assessments within broader climate action agendas
underscores the critical role of sustainable biofuel pro-
duction in addressing environmental, economic, and so-
cial challenges. Through this comprehensive approach,
biofuel systems are recognized not only for their potential
to mitigate climate change but also for their contributions
to job creation, rural development, and energy security,
thereby supporting a multifaceted strategy toward a more
sustainable and resilient energy future.
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