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This comprehensive data requirement, coupled with vary-

ing methodologies and assumptions, inherently introduces 

uncertainty into LCA results. Several studies have explored 

this uncertainty, examining how variations in input pa-

rameters and the selection of life cycle inventory (LCI) 

databases influence the outcomes of LCA studies (Baral 

et  al.,  2020; Heijungs & Lenzen,  2014; Hsu et  al.,  2010; 

Huijbregts et  al.,  2003; Igos et  al.,  2019; Kalverkamp 

et  al.,  2020; Miranda Xicotencatl et  al.,  2023; Mullins 

et al., 2011; Pauer et al., 2020; Shi & Guest, 2020; Spatari & 

MacLean, 2010; Wang et al., 2020; Zhao et al., 2019).

To address these uncertainties, the International Standard 

for Life Cycle Assessment (International Organization for 

Standardization,  2006) recommends performing uncer-

tainty analysis. The Monte Carlo method, which involves 

random sampling, is widely used for this purpose. This 

method requires a probability distribution for each input 

parameter, with the lognormal distribution being a pop-

ular choice in LCA studies (Ciroth et al., 2016; Imbeault- 

Tétreault et al., 2013; Muller et al., 2016). Performing many 

Monte Carlo simulations, typically around 10,000 runs, is 

essential to obtain a statistically robust estimate of variance 

(Heijungs & Lenzen, 2014; Igos et al., 2019).

Moreover, Monte Carlo simulations have been instru-

mental in quantifying uncertainties in the lifecycle GHG 

emissions of biofuels, underscoring their significance 

within the realm of biofuel policies (Mullins et al., 2011; 

Spatari & MacLean, 2010). Utilizing beta, lognormal, tri-

angle, and uniform distributions, researchers have mod-

eled input parameters, as well as CO2 emissions associated 

with land- use change (both direct and indirect) and soil 

emissions (i.e., CO2, CH4, and N2O), in Monte Carlo sim-

ulations aimed at capturing uncertainties inherent in 

the biofuel system (Baral et al., 2020; Locker et al., 2019; 

Mullins et  al.,  2011; Spatari & MacLean,  2010; Wang 

et al., 2020). However, there are comparatively few studies 

that incorporate distributions for GHG emission factors 

into Monte Carlo simulations, indicating a potential area 

for further research and methodological refinement in 

biofuel impact assessments.

In conjunction with uncertainty analysis, sensitiv-

ity analysis plays a pivotal role in assessing the impact 

of input variations on LCA results to prioritize future 

research efforts aimed at reducing uncertainties. Two 

types of sensitivity analysis are available: local sensitivity 

analysis (LSA) and global sensitivity analysis (GSA) (Igos 

et al., 2019; Wolf et al., 2017; Zhao et al., 2019). Local sensi-

tivity analysis focuses on evaluating how small changes in 

input parameters affect LCA results under specific condi-

tions, with the goal of identifying the parameters that have 

the most significant impact on the model output under 

specific, local conditions. LSA provides insights into the 

immediate effects of changes in individual parameters. 

In contrast, GSA aims to assess how variations in input 

parameters across their entire ranges impact LCA results, 

considering interactions and dependencies among inputs, 

namely identifying the parameters that are most import-

ant in influencing the model output across the entire range 

of parameter values. The objective of GSA is to provide a 

comprehensive understanding of how changes in input 

parameters, both individually and collectively, affect LCA 

results across the entire range of inputs, offering a holistic 

perspective on LCA results under various conditions.

LCA studies conducted by four Bioenergy Research 

Centers (BRC), funded by the US Department of Energy 

[Center for Advanced Bioenergy and Bioproducts 

Innovation (CABBI), Center for Bioenergy Innovation 

(CBI), Great Lakes Bioenergy Research Center (GLBRC), 

and the Joint BioEnergy Institute (JBI)], have employed 

three different LCA databases to assess GHG emissions 

associated with biofuel production systems (see Table 1). 

These databases include the US lifecycle inventory (USLCI) 

database (National Renewable Energy Laboratory, 2012), 

GREET (Argonne National Laboratory,  2023), and 

Ecoinvent (Ecoinvent,  2023). As seen in Table  1, some 

studies relied exclusively on GHG emission factors from 

the GREET model, while others used emission factors 

from all three databases. When employing the unit process 

data from Europe or the rest of the world in the Ecoinvent 

database, the lifecycle emissions associated with products 

using those unit processes are estimated based on US elec-

tricity fuel mixes (Baral et al., 2019; Kim et al., 2019, 2020; 

Kim, Dale, Basso et al., 2023; Kim et al., 2023a; Neupane 

et al., 2017).

The USLCI database, developed by the National 

Renewable Energy Laboratory (NREL) in 2001, contains 

detailed process data for approximately 600 unit processes 

within the United States. However, to calculate the lifecy-

cle emissions for materials, energy, and fuels, additional 

steps such as matrix inversion are required. In contrast, 

the GREET model, developed as a spreadsheet- type model 

by the Argonne Laboratory, provides unit process data and 

lifecycle emission information for materials and energy 

within the United States and select international regions. 

The Ecoinvent database, originating in Switzerland, is 

the most comprehensive of the three, and includes unit 

process data and lifecycle emission/impact data for over 

18,000 processes, covering a substantial portion of the 

world.

The two recent studies (Chen, Blanc- Betes et al., 2021; 

Kim et al., 2023a) indicate that the global warming inten-

sity (GWI, well- to- wheel GHG emissions) of ethanol pro-

duced from switchgrass varies between −9.4 and 1.7 gCO2 

MJ−1, influenced by factors such as technologies used, 

spatial and temporal boundaries, and GHG emission fac-

tors. In those studies, changes in soil organic carbon (SOC) 
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and excess electricity emerge as significant contributors to 

GHG emissions in switchgrass- based ethanol production 

(Chen, Blanc- Betes et al., 2021; Kim et al., 2023a). The dis-

crepancies in SOC changes between the two studies can be 

attributed to variations in biogeochemical models, spatial 

and temporal boundaries, simulation resolutions, among 

others. Similarly, the primary contrast in GHG credits asso-

ciated with excess electricity stems from the use of differ-

ent GHG emission factors: 0.598 kgCO2 kWh−1 in the study 

by Kim et al.  (2023a) compared with 0.549 kgCO2 kWh−1 

in the work of Chen, Blanc- Betes et al. (2021), resulting in 

about 28–38% differences in GHG credit of excess electricity. 

Therefore, the GHG emission factor is highlighted as a key 

source of uncertainty in the biofuel system.

To investigate the uncertainties associated with GHG 

emission factors in the biofuel system, we revisited our 

previous study estimating the GWI of switchgrass- based 

biofuel (ethanol) in Michigan (Kim et  al.,  2023a). We 

then recalculated the GWI and GHG mitigation poten-

tial over gasoline, referred to as a “static calculation,” 

using a functional unit of 1 MJ of ethanol fuel based on 

lower heating value. This process used GHG emission 

factors from all three LCA databases, with multiple ver-

sions of each database. We also conducted Monte Carlo 

simulations using distribution functions derived from 

different databases to assess the uncertainties associated 

with GHG emission factors. Furthermore, we performed 

both LSA and GSA for GHG emission factors and input 

parameters to identify those parameters most affecting 

the GWI.

2  |  MATERIALS AND METHODS

2.1 | Switchgrass- based biofuel 
production system

In our previous study (Kim et al., 2023a), we used switch-

grass grown in Michigan as cellulosic feedstock for ethanol 

production. The potential yield of switchgrass and SOC 

T A B L E  1  Life cycle assessment (LCA) databases used in literature from the DOE- funded Bioenergy Research Centers (BRCs).

BRCs System Database References

CABBI Ethanol derived from sugarcane USLCI, GREET, Ecoinvent, FORWAST Shi and Guest (2020)

Corn ethanol GREET Khanna et al. (2020)

Bioenergy derived from miscanthus and 

switchgrass

GREET Chen, Blanc- Betes 

et al. (2021)

Corn ethanol and cellulosic ethanol GREET Chen, Debnath 

et al. (2021)

Ethanol and biodiesel from sweet 

sorghum and sugarcane

GREET, Ecoinvent Cortés- Peña et al. (2022)

CBI Ethanol derived from switchgrass GREET Field et al. (2020)

Reductive catalytic fractionation oil from 

hybrid poplar

DATASMART life cycle inventory database 

(based on a combination of US LCI)

Bartling et al. (2021)

GLBRC Ethanol derived from corn stover USLCI, GREET, Ecoinvent Kim et al. (2019)

Ethanol derived from corn stover and 

switchgrass

USLCI, GREET, Ecoinvent Kim et al. (2020)

Chemicals derived from corn stover GREET Huang et al. (2021)

Ethanol derived from switchgrass GREET Martinez- Feria 

et al. (2022)

Ethanol derived from switchgrass USLCI, GREET, Ecoinvent Kim et al. (2023a)

Ethanol derived from switchgrass USLCI, GREET, Ecoinvent Kim (2023c)

JBEI Ethanol derived from corn stover USLCI, GREET, Ecoinvent Neupane et al. (2017)

Jet fuel blendstock derived from biomass 

sorghum

USLCI, GREET, Ecoinvent Baral et al. (2019)

Biomass sorghum USLCI, GREET, Ecoinvent Baral et al. (2020)

Ethanol derived from biomass sorghum USLCI, GREET, Ecoinvent Yang et al. (2020)

Renewable natural gas derived from 

organic municipal solid waste

GREET, Ecoinvent Nordahl et al. (2020)

Jet fuel blendstock derived from biomass 

sorghum

USLCI, GREET, Ecoinvent Baral et al. (2021)
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changes during switchgrass production were estimated 

using the System Approach to Land Use Sustainability 

(SALUS) model (Basso & Ritchie,  2015). Agronomic in-

puts and fuel use were determined based on field ex-

periment data from the GLBRC in Michigan. Only the 

fertilized biomass production scenario is considered in 

this analysis. Comprehensive details are available on 

Dryad (Kim et al., 2023b).

Switchgrass is converted into ethanol in a centralized 

biorefinery. In the analysis, two different hydrolysis tech-

nologies are considered: chemical hydrolysis and enzy-

matic hydrolysis. The chemical hydrolysis technology 

(referred to as GVL) involves the utilization of a mixture 

of γ- valerolactone (GVL), water, and toluene, with the 

addition of dilute sulfuric acid as a catalyst. This mix-

ture is employed to facilitate the hydrolysis of cellulose 

and hemicellulose, ultimately converting them into fer-

mentable sugars (Won et al., 2017). In contrast, the enzy-

matic hydrolysis technology (referred to as ACID) begins 

with a dilute acid pretreatment stage and proceeds to the 

enzymatic conversion of cellulose and hemicellulose into 

fermentable sugars (Tao et  al.,  2014). The analyses (in-

cluding static calculations, Monte Carlo simulation, and 

sensitivity analysis) are carried out for ethanol produc-

tion using each of these hydrolysis technologies. A com-

prehensive summary of materials, transportation modes, 

and fuels used in the switchgrass- based ethanol produc-

tion system is presented in Table 2. Materials displayed in 

italics in Table 2 were excluded from the GHG emission 

calculations due to their small quantities or unavailable 

GHG emission factors.

2.2 | Scenarios in static calculations

We calculated the GWI and GHG mitigation potential of 

switchgrass- based ethanol by scrutinizing a total of 29 dis-

tinct scenarios (as detailed in Table  3). These scenarios 

include four variations of GHG emission factors based 

on the unit processes in the USLCI database, the GREET 

model, and the Ecoinvent database (GLBRC scenario). 

Additionally, there are seven versions of the GREET 

model ranging from 2016 to 2022 (GREET scenario), and 

six versions of the Ecoinvent database (Ecoinvent sce-

nario). The Ecoinvent scenarios not only include different 

versions (ranging from 3.2 to 3.7) but also cover three dis-

tinct geographical regions: the United States, Europe, and 

the rest of the world.

It is noteworthy that none of the three LCA databases 

provided a comprehensive set of GHG emission factors 

for the switchgrass- based biofuel system, including mate-

rials, transportation modes, and fuels. To address this gap, 

we supplemented the missing emission factors by either 

incorporating average values from different databases or 

average values from other regions within the same version 

of the respective database.

In the GLBRC scenarios, unit process data for energy 

production, encompassing petroleum, nuclear, natural 

gas, coal production, and power plants, are sourced from 

the USLCI database. For materials and transportation 

modes, the most relevant unit process data from three da-

tabases are selected based on their relevance in terms of 

temporal or geographical boundaries. The fuel mixes for 

US electricity are derived from the US Energy Information 

Lifecycle phase Materials, transportation modes, and fuels

Switchgrass production Nitrogen fertilizer [ammonia, urea, urea 

ammonium nitrate (UAN), ammonium nitrate, 

ammonium sulfate, diammonium phosphate (DAP), 

monoammonium phosphate (MAP)], phosphorus 

fertilizer, potassium fertilizer, diesel, herbicides, grid 

electricity

Transportation and storage Truck transport, high- density polyethylene (HDPE), 

diesel

Biorefinery

GVL Toluene, calcium hydroxide, yeast, sulfuric acid, grid 

electricity, RuSn4/C catalyst, wastewater treatment 

nutrients

ACID Sulfuric acid, calcium hydroxide, sulfur dioxide, 

ammonia, corn steep liquor, glucose, diammonium 

phosphate, sodium hydroxide, grid electricity, 

sorbitol, host nutrients, polymer, boiler water 

chemicals, cooling tower chemicals, antifoam agent

Others Truck transport, railroad transport, barge transport, 

air transport

T A B L E  2  Materials, transportation 

modes, and fuels in the switchgrass- based 

biofuel production system.
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Administration  (2022). GHG emission factors for en-

ergy, materials, and transportation modes are then cal-

culated via matrix inversion (Kim et  al.,  2023a). Each 

GLBRC scenario is characterized by specific US electricity 

fuel mixes, allowing us to estimate electricity fuel mix- 

specific GHG emissions for the materials and fuels used 

T A B L E  3  Scenarios in static calculation.

Scenario LCA database(s)a

GHG emission factor of 

electricityb Geographical boundaryc

GLBRC_16 Combination of USLCI, GREET, 

Ecoinvent based on 2016 US electrical fuel 

mix

US electricity in 2016 United States

GLBRC_22 Combination of USLCI, GREET, 

Ecoinvent based on 2022 US electrical fuel 

mix

US electricity in 2022 United States

GLBRC_eco3.71 Combination of USLCI, GREET, 

Ecoinvent based on US electrical fuel mix 

in Ecoinvent 3.71

US electricity in Ecoinvent 

3.71

United States

GLBRC_GREET22 Combination of USLCI, GREET, 

Ecoinvent on US electrical fuel mix in 

GREET 2022

US electricity in GREET 2022 United States

GREET_22 GREET 2022 US electricity in GREET 2022 United States

GREET_21 GREET 2021 US electricity in GREET 2021 United States

GREET_20 GREET 2020 US electricity in GREET 2020 United States

GREET_19 GREET 2019 US electricity in GREET 2019 United States

GREET_18 GREET 2018 US electricity in GREET 2018 United States

GREET_17 GREET 2017 US electricity in GREET 2017 United States

GREET_16 GREET 2016 US electricity in GREET 2016 United States

Ecoinvent_3.71_US Ecoinvent 3.71 US electricity in Ecoinvent 

3.71

United States

Ecoinvent_3.71_EU Ecoinvent 3.71 US electricity in Ecoinvent 

3.71

Europe

Ecoinvent_3.71_ROW Ecoinvent 3.71 US electricity in Ecoinvent 

3.71

The rest of the world

Ecoinvent_3.6_US Ecoinvent 36 US electricity in Ecoinvent 3.6 United States

Ecoinvent_3.6_EU Ecoinvent 3.6 US electricity in Ecoinvent 3.6 Europe

Ecoinvent_3.6_ROW Ecoinvent 3.6 US electricity in Ecoinvent 3.6 The rest of the world

ECOINVENT_3.5_US Ecoinvent 3.5 US electricity in Ecoinvent 3.5 United States

ECOINVENT_3.5_EU Ecoinvent 3.5 US electricity in Ecoinvent 3.5 Europe

ECOINVENT_3.5_ROW Ecoinvent 3.5 US electricity in Ecoinvent 3.5 The rest of the world

ECOINVENT_3.4_US Ecoinvent 3.4 US electricity in Ecoinvent 3.4 United States

ECOINVENT_3.4_EU Ecoinvent 3.4 US electricity in Ecoinvent 3.4 Europe

ECOINVENT_3.4_ROW Ecoinvent 3.4 US electricity in Ecoinvent 3.4 The rest of the world

ECOINVENT_3.3_US Ecoinvent 3.3 US electricity in Ecoinvent 3.3 United States

ECOINVENT_3.3_EU Ecoinvent 3.3 US electricity in Ecoinvent 3.3 Europe

ECOINVENT_3.3_ROW Ecoinvent 3.3 US electricity in Ecoinvent 3.3 The rest of the world

ECOINVENT_3.2_US Ecoinvent 3.2 US electricity in Ecoinvent 3.2 United States

ECOINVENT_3.2_EU Ecoinvent 3.2 US electricity in Ecoinvent 3.2 Europe

ECOINVENT_3.2_ROW Ecoinvent 3.2 US electricity in Ecoinvent 3.2 The rest of the world

aLife cycle assessment (LCA) databases used in each scenario.
bGHG emissions of electricity.
cGeographical boundaries for major processes.
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in the biofuel production system under investigation (see 

Table S1). For example, the GHG emission factors in the 

GLBRC_16 scenario, which were used in our prior study, 

are derived from the 2016 US electricity fuel mixes. In con-

trast, the GLBRC_22 scenario uses the 2022 US electricity 

fuel mixes as its basis. In the GREET scenarios, indirect 

GHG emissions from carbon monoxide and volatile or-

ganic compounds are not considered as GHG emissions 

for consistency. On the contrary, in the Ecoinvent scenar-

ios, we considered GHG emission factors from the two re-

gions outside of the United States, but the GHG emission 

factor of US electricity production from the same version 

is employed in those scenarios.

The GHG emission factors in each scenario are pre-

sented in Figure 1 (also see Table S2). The GHG emission 

factors in Figure 1 include GHG emissions from cradle to 

the user's gate, including the transportation of the final 

product. Additionally, the GHG emissions associated with 

electricity consider transmission and distribution losses. 

While certain emission factors across the databases are 

similar, others exhibit notable differences. These varia-

tions in emission factors can be attributed to factors such 

as temporal and geographical boundaries, technologies 

employed, or allocation methods. For instance, the life 

cycle energy consumption for herbicide production in the 

Ecoinvent database is approximately 60–70% of that in 

the GREET model. Differences in GHG emission factors 

for diammonium phosphate (DAP) as a nitrogen source 

among scenarios primarily result from allocation factors, 

particularly nutrient ratios. While the GHG emission fac-

tors for 1 kg of DAP are comparable across scenarios, the 

quantities of DAP required for 1 kg of nitrogen nutrient 

differ significantly between scenarios. In most scenarios, 

except for the Ecoinvent_3.71 scenarios, 1 kg of nitrogen 

nutrient requires approximately 1.7–3.0 kg of DAP. In con-

trast, in the Ecoinvent_3.71 scenarios, these quantities in-

crease to 5.6 kg for DAP.

2.3 | Uncertainty and sensitivity analyses

In this study, we used Oracle Crystal Ball and MATLAB 

as the primary computational platforms for conducting 

Monte Carlo simulations and sensitivity analyses. The 

Monte Carlo simulations involved 10,000 iterations and 

were executed in two distinct phases, designed to com-

prehensively address both the uncertainty associated with 

GHG emission factors and the sensitivity of the model 

to variations in GHG emission factors and input param-

eters (summarized in Table S3). In the first Monte Carlo 

simulation, GHG emission factors are treated as random 

variables, thereby quantifying the associated uncertainty, 

while the input parameters are held constant. The sec-

ond simulation extends this approach by including both 

GHG emission factors and input parameters as random 

variables, thereby capturing the sensitivity of the results 

to each variable.

The distribution functions for GHG emission fac-

tors were assumed to follow a lognormal distribution. 

These distributions were derived from average values 

and standard deviations obtained from a dataset consist-

ing of 29 different scenarios. To address input parameter 

F I G U R E  1  Greenhouse gas (GHG) emission factors in different scenarios (note that the physical properties of fuels (e.g., lower heating 

value, and density) used in the calculations are based on the GREET model.).

 1
7

5
7

1
7

0
7

, 2
0

2
4

, 8
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/g

cb
b

.1
3

1
7

9
 b

y
 M

ich
ig

an
 S

tate U
n

iv
ersity

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
7

/0
8

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



   | 7 of 14KIM et al.

uncertainty, we assumed a 10% standard deviation, con-

sidering the limited availability of specific data. This 10% 

standard deviation was used in estimating the lognormal 

distribution, influencing the shape and spread of the dis-

tribution curve.

The major components of switchgrass, including cel-

lulose, hemicellulose and lignin, exhibited differences 

between the lower/upper values and the median values 

ranging from 5% to 13% of the median values (Boundy 

et al., 2011). Additionally, SALUS simulation results indi-

cated that the standard deviations of average switchgrass 

yields across planting cycles are less than 11% of the aver-

age yield. This approach not only incorporates variability 

and uncertainty in the input parameters but also ensures 

consistency in scale with the provided values. However, 

some specific input parameters (e.g., biofuel yield, biomass 

yield, and SOC change) were modeled using a triangular 

distribution to prevent unrealistically extreme values that 

do not align with real- world conditions. Additionally, a 

uniform distribution was applied to the equivalency fac-

tor, which serves as a conversion factor from nitrogen- 

equivalent mass to kilograms of DAP, due to value choice. 

The results of random sampling from the Monte Carlo 

simulations for each GHG emission factor and input pa-

rameter are presented in the Figures S1 and S2.

The sensitivity analysis in this study includes both local 

and global sensitivity analyses. Local sensitivity analysis 

relies on partial derivatives to assess the impact of small 

perturbations around default input values on the model's 

results. In this context, local sensitivity indices are de-

fined as normalized partial derivatives, providing insights 

into the parameters that have the most direct influence 

on the model output (Wolf et al., 2017). On the contrary, 

GSA is based on variance decomposition and employs 

two types of Sobol sensitivity indices (Groen et al., 2017; 

Wei et al., 2015): first- order Sobol indices, which evaluate 

the direct impact of each input parameter on the model 

output, and total Sobol indices, which provide a broader 

perspective by measuring the overall effect of each input 

parameter, including both direct and indirect impacts. 

Equations for the sensitivity indices are provided in the 

Supplementary Material.

It is important to note that the sensitivity analyses do 

not incorporate excess electricity exported from the biore-

finery as an input parameter due to the inverse relation-

ship between excess electricity generation and biofuel 

yield (see Figure S3). Higher yields reduce the availability 

of carbon for use as fuel in the cogeneration facility, result-

ing in decreased energy generation. Furthermore, high 

biofuel yields result in more energy required for biofuel 

purification than do low yields.

Other possible correlations are seen in switchgrass 

production: biomass yield versus nitrogen fertilizer rate 

and biomass yield (or nitrogen fertilizer rate) versus SOC 

changes. Experimental data from Michigan (Martinez- 

Feria & Basso, 2020) show a modest increase in biomass 

yield with higher nitrogen fertilizer application, at a rate 

of approximately 12 kg of additional dry biomass per hect-

are for each extra kg of nitrogen applied (see Figure S4). 

Even though the biomass yield increase attributable to 

nitrogen fertilizer is relatively small considering the nitro-

gen fertilizer rate used in this analysis (50 kgN ha−1), this 

correlation is accounted for in the sensitivity analyses.

In contrast, correlations related to SOC changes are not 

considered in the sensitivity analyses due to the multitude 

of factors influencing SOC changes, including initial car-

bon stock, soil characteristics, the percentage of biomass 

removal, climatic conditions, nitrogen fertilizer rate, and 

others. Consequently, SOC changes are treated as inde-

pendent parameters in the sensitivity analyses.

3  |  RESULTS

The mean GWIs of switchgrass- based ethanol across the 

scenarios in the static calculations are −9.8 (±2.7) gCO2 

MJ−1 for the GVL technology and −6.1 (±2.1) gCO2 MJ−1 

for the ACID technology, aligning closely with those re-

ported in our previous study (Kim et al., 2023a). Within 

the scenarios, GWIs for the GVL technology range from 

−14.2 to −4.8 gCO2 MJ−1, while for the ACID technology, 

they vary from −8.2 to −0.6 gCO2 MJ−1. The GHG mitiga-

tion potentials across the scenarios vary from 1.18 to 1.30 

TgCO2 year−1 for the GVL technology and from 1.17 to 

1.27 TgCO2 year−1 for the ACID technology at an average 

of 1.24 TgCO2 year−1 for both technologies (see Table S5).

In both the GLBRC and GREET scenarios, the GWI 

and GHG mitigation potentials associated with the GVL 

technology exhibit a linear correlation with the GHG 

emission factor of electricity, as depicted in Figures  2 

and 3. This linear relationship results from the role of 

electricity as the primary contributor to GHG emissions 

in biofuel production. Moreover, the GHG emission fac-

tors of major contributors (see Figure S5) in the GLBRC 

scenarios also demonstrate a linear correlation with 

the GHG emission factor of electricity (see Table  S7). 

However, discrepancies in the ACID technology in the 

GREET scenarios arise from variations in process data 

for specific major contributors across different model 

versions, possibly reflecting technological advance-

ments or improvements and leading to observed devia-

tions from linearity.

While electricity remains the dominant source of GHG 

emissions in the Ecoinvent scenarios, the GHG emission 

factors of major contributors do not align with the GHG 

emission factor of electricity. This discrepancy arises from 

 1
7

5
7

1
7

0
7

, 2
0

2
4

, 8
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/g

cb
b

.1
3

1
7

9
 b

y
 M

ich
ig

an
 S

tate U
n

iv
ersity

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
7

/0
8

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



8 of 14 |   KIM et al.

the use of US electricity's GHG factors in two regions 

(Europe and the rest of the world) and the application of 

average emission factors for some materials and fuels. The 

electricity mixes for other regions in the Ecoinvent sce-

nario comprise a combination of fuel mixes from different 

countries, resulting in different GHG emission factors for 

electricity compared with those from the United States.

The first Monte Carlo simulations yield a mean GWI 

of −8.8 (±3.4) gCO2 MJ−1 for the GVL technology and of 

−6.3 (±3.7) gCO2 MJ−1 for the ACID technology, as pre-

sented in Figure 4 (also see Table S8). The GWI data for 

the GVL technology exhibit a negatively skewed distribu-

tion, with a tail toward lower values, indicating a higher 

likelihood of values lower than the mean. Conversely, the 

GWI data for the ACID technology are nearly symmetri-

cal, suggesting a balanced distribution without significant 

skewness in either direction. The data distributions ex-

hibit a slight kurtosis, indicating a higher concentration 

F I G U R E  2  Correlation between global warming intensity (GWI) and greenhouse gas (GHG) emissions of electricity ((a) GVL 

technology; (b) ACID technology).

F I G U R E  3  Correlation between greenhouse gas (GHG) mitigation potential and GHG emissions of electricity ((a) GVL technology;  

(b) ACID technology).
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of values around the mean compared with the tails of a 

normal distribution.

Monte Carlo simulations for GHG mitigation poten-

tials reveal a mean of 1.23 (±0.04) TgCO2 year−1 with a 

slightly positively skewed distribution for the GVL tech-

nology and 1.24 (±0.05) TgCO2 year−1 with a slightly neg-

atively skewed distribution for the ACID technology, as 

illustrated in Figure  5. The coefficient of variations for 

both technologies is less than 0.04, indicating moderate 

variability relative to the mean.

Consistently, Monte Carlo simulations demonstrate 

means close to those obtained from static calculations, 

suggesting that static calculations provide reasonable ap-

proximations of the central tendency of the data. However, 

Monte Carlo simulations offer additional insights into the 

data distribution, including skewness and kurtosis, which 

are not readily available from static calculations.

In the second simulation, in which input parameters 

are introduced as random variables, the GWI distribution 

for both GVL and ACID technologies broadens signifi-

cantly compared with the first simulation (see Figure S6). 

This expanded range results from the combined influence 

of GHG emission factor uncertainties and variations in 

input parameters. Importantly, despite the broader dis-

tributions, the mean GWIs for both technologies exhibit 

minimal changes compared with the first simulation 

(see Table S9). This consistency suggests that the central 

tendency of the GWI data remains similar even with the 

added complexity of input parameter variations. However, 

notable increases in standard deviations and variances for 

both technologies highlight a wider range of potential 

GWI values, underscoring the profound influence of input 

parameters on overall GWI uncertainty. These findings 

emphasize the importance of not only accounting for 

uncertainties in GHG emission factors but also recogniz-

ing the influence of input parameters when assessing the 

GWI of different ethanol technologies.

The LSA indicates that the most important parameter 

influencing the GWI of biofuel in both GVL and ACID 

technologies is biofuel yield, followed by SOC change 

and GHG emissions of electricity (see Figure 6). Small 

perturbations in biofuel yield directly affect both the 

excess electricity produced and the amount of biomass 

feedstock consumed during biofuel production, conse-

quently impacting the GHG contribution from the feed-

stock. On the contrary, the GSA results demonstrate that 

the GWI of biofuel in both technologies is most sensi-

tive to GHG emissions of electricity, followed by bio-

fuel yield, SOC change, and nitrogen fertilizer rate (see 

Figure 6).

There are no significant differences in the relative im-

portance of parameters between the first- order Sobol and 

the total Sobol indices (see Figure 6). This suggests that 

interactions between input parameters are weak or not 

potent enough to significantly influence overall sensitivity 

analysis outcomes. The effects of the parameters on the 

output results appear independent, indicating that the 

value of any one parameter does not substantially affect 

the impact of any other parameter. Although each addi-

tional kilogram of nitrogen applied can increase yield by 

approximately 12 kg of dry biomass per hectare, the inter-

action of nitrogen fertilizer application rate to biomass 

yield does not alter the relative importance of parameters 

in both technologies.

Parameters associated with Ca(OH)2 in the GVL tech-

nology and parameters associated with corn steep liquor 

F I G U R E  4  Distributions for global warming intensity (GWI) in the first simulation ((a) GVL technology; (b) ACID technology;  

sd: standard deviation).
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and glucose in the ACID technology are important in both 

sensitivity analyses. In the GVL technology, GHG emis-

sions associated with Ca(OH)2 are significant, exceeding 

9.7 gCO2 MJ−1. Despite the relatively narrow distribution 

for GHG emissions of Ca(OH)2 production (see Figure S1), 

its large contribution to GWI renders these parameters 

important.

GHG emissions associated with corn steep liquor and 

glucose in the ACID technology system are less important. 

However, the GHG emission factors for corn steep liquor 

in the GLBRC scenarios are over 1.8- fold larger than those 

in the GREET scenarios due to GHG emissions from corn 

grain used as a raw material for corn steep liquor produc-

tion. The GLBRC scenarios comprehensively consider 

GHG emissions associated with changes in SOC during 

corn production, a factor not considered in the GREET 

scenarios. This comprehensive consideration results in 

larger GHG emissions for corn- derived materials, such as 

glucose and corn steep liquor, contributing to the observed 

wider ranges.

F I G U R E  5  Distributions for greenhouse gas (GHG) mitigation potential in the first simulation ((a) GVL technology; (b) ACID 

technology; sd: standard deviation).

F I G U R E  6  Sensitivity indices ((a) GVL technology; (b) ACID technology; (A) greenhouse gas (GHG) of electricity; (B) GHG of Ca(OH)2; 

(C) biofuel yield; (D) biomass yield; (E) application rate of nitrogen fertilizer with no biomass yield- nitrogen fertilizer rate correlation; (F) 

N2O rate from N fertilizer; (G) amount of Ca(OH)2; (H) soil organic carbon (SOC) change; (I) GHG of corn steep liquor; (J) GHG of glucose; 

(K) amount of corn steep liquor; (L) amount of glucose; (M) application rate of nitrogen fertilizer with biomass yield- nitrogen fertilizer rate 

correlation).
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4  |  DISCUSSION

This study highlights the importance of a comprehensive 

approach to assess the GWI of biofuel systems by consid-

ering a diverse range of GHG emission factors and data-

bases. Utilizing multiple LCA databases, including USLCI, 

GREET, and Ecoinvent, each with various versions of the 

databases, provided a more comprehensive understanding 

of the potential variations in GHG emission factors and 

their impact on GWI estimations. The results underscore 

the sensitivity of GWIs and GHG mitigation potentials to 

the choice of LCA database and emission factors, leading 

to substantial variations across scenarios. This variability 

therefore also highlights the need for cautious interpre-

tation of LCA results and emphasizes the significance of 

relying on comprehensive and up- to- date data sources.

The convergence of findings between our previous 

study (Kim et al., 2023a), static calculations, and Monte 

Carlo simulations adds credibility to the estimated GWI 

values. The static calculations and Monte Carlo simula-

tions yielded similar mean GWIs, suggesting that static 

calculations can provide reasonable approximations of the 

central tendency of the data. This convergence strength-

ens confidence in the estimated GWI values and provides a 

basis for further discussions and policy decisions. Despite 

the convergence observed, the wider range of GWI values 

obtained from the simulations emphasizes the necessity 

of incorporating potential variations and uncertainties 

into real- world applications, reinforcing the practical im-

plications of our findings. The simulations capture the 

inherent variability associated with input parameters and 

demonstrate that the actual GWI could deviate from the 

central tendency due to these variations.

Sensitivity analysis shows that biofuel yield, GHG 

emissions of electricity, and SOC change have the greatest 

impact on the GWI of biofuel. Thus, efforts to optimize 

these factors can substantially reduce the uncertainty as-

sociated with GWI. Biofuel yield is crucial as it directly in-

fluences the amount of biomass feedstock consumed and 

the excess electricity produced during biofuel production. 

GHG emissions of electricity are particularly important 

due to the substantial contribution of electricity to the 

overall GWI. Furthermore, the impact of SOC change on 

the carbon balance of the biofuel system highlights its sig-

nificance in shaping the overall environmental footprint. 

Prioritizing these factors in research and policymaking 

endeavors is crucial for refining GWI assessments and 

making well- informed decisions regarding sustainable 

biofuel production strategies.

The accuracy of GHG emissions from electricity pro-

duction is crucial for assessing the GWI of biofuels, 

given its substantial contribution to overall GHG emis-

sions. Electricity fuel mixes play an important role in 

these emissions, influencing the assessment's complexity. 

Despite the inherently future- oriented nature of cellulosic 

ethanol systems, most LCA studies have predominantly 

relied on historical or existing electricity fuel mixes. The 

uncertainty surrounding future electricity fuel mixes, in-

fluenced by factors such as technological advancements, 

policy changes, and resource availability, introduces ad-

ditional complexity to this assessment. Considering that 

cellulosic ethanol systems are not yet widely deployed, ac-

curately projecting future electricity fuel mixes becomes 

a challenging task, encompassing diverse variables such 

as technological evolution, policy dynamics, and resource 

constraints.

Despite the challenges in determining future electricity 

fuel mixes, it is imperative to acknowledge potential varia-

tions and uncertainties when evaluating the GWI of biofu-

els. Sensitivity analysis emerges as a valuable tool, offering 

insights into the impact of these uncertainties on GWI, 

thereby facilitating a more comprehensive understanding 

of the potential range of GHG emissions linked to biofuel 

production. Future research should continue to refine 

methodologies for projecting future electricity fuel mixes 

and incorporate these projections into LCA studies to en-

hance the accuracy and robustness of GWI assessments in 

the context of evolving cellulosic biofuel systems.

This endeavor is not merely academic; it has profound 

implications for climate change mitigation globally. By 

accurately quantifying the GWI of biofuels, stakehold-

ers (including researchers, policymakers, and industry 

leaders) gain crucial insights that can guide sustainable 

energy policies, investment decisions, and technologi-

cal innovations. Moreover, contextualizing the impact of 

these assessments within broader climate action agendas 

underscores the critical role of sustainable biofuel pro-

duction in addressing environmental, economic, and so-

cial challenges. Through this comprehensive approach, 

biofuel systems are recognized not only for their potential 

to mitigate climate change but also for their contributions 

to job creation, rural development, and energy security, 

thereby supporting a multifaceted strategy toward a more 

sustainable and resilient energy future.
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