arX1v:2305.20028v2 [cs.LG] 8 May 2024

Published as a conference paper at ICLR 2024

A STUDY OF BAYESIAN NEURAL NETWORK
SURROGATES FOR BAYESIAN OPTIMIZATION

Yucen Lily Li, Tim G. J. Rudner, Andrew Gordon Wilson
New York University

ABSTRACT

Bayesian optimization is a highly efficient approach to optimizing objective func-
tions which are expensive to query. These objectives are typically represented by
Gaussian process (GP) surrogate models which are easy to optimize and support ex-
act inference. While standard GP surrogates have been well-established in Bayesian
optimization, Bayesian neural networks (BNNs) have recently become practical
function approximators, with many benefits over standard GPs such as the ability
to naturally handle non-stationarity and learn representations for high-dimensional
data. In this paper, we study BNNs as alternatives to standard GP surrogates for
optimization. We consider a variety of approximate inference procedures for finite-
width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic
MCMC, and heuristics such as deep ensembles. We also consider infinite-width
BNNS, linearized Laplace approximations, and partially stochastic models such as
deep kernel learning. We evaluate this collection of surrogate models on diverse
problems with varying dimensionality, number of objectives, non-stationarity, and
discrete and continuous inputs. We find: (i) the ranking of methods is highly
problem dependent, suggesting the need for tailored inductive biases; (ii)) HMC is
the most successful approximate inference procedure for fully stochastic BNNs;
(iii) full stochasticity may be unnecessary as deep kernel learning is relatively com-
petitive; (iv) deep ensembles perform relatively poorly; (v) infinite-width BNNs
are particularly promising, especially in high dimensions.

1 INTRODUCTION

Bayesian optimization (O’Hagan, 1978) is a distinctly compelling success story of Bayesian inference.
In Bayesian optimization, we place a prior over the objective we wish to optimize, and use a surrogate
model to infer a posterior predictive distribution over the values of the objective at all feasible points
in space. We then combine this predictive distribution with an acquisition function that trades-off
exploration (moving to regions of high uncertainty) and exploitation (moving to regions with a high
expected value, for maximization). The resulting approach converges quickly to a global optimum,
with strong performance in many expensive black-box settings ranging from experimental design, to
learning parameters for simulators, to hyperparameter tuning (Frazier, 2018; Garnett, 2023).

While many acquisition functions have been proposed for Bayesian optimization (e.g. Frazier et al.,
2008; Wang and Jegelka, 2017), Gaussian processes (GPs) with standard Matérn or RBF kernels are
almost exclusively used as the surrogate model for the objective, without checking whether other
alternatives would be more appropriate, despite the fundamental role that the surrogate model plays
in Bayesian optimization.

Thus, despite promising advances in Bayesian optimization research, there is an elephant in the
room: should we be considering other surrogate models? It has become particularly timely to
evaluate Bayesian neural network (BNN) surrogates as alternatives to Gaussian processes with
standard kernels: In recent years, there has been extraordinary progress in making BNNs practical
(e.g. Daxberger et al., 2021; Khan and Rue, 2021; Rudner et al., 2022; Tran et al., 2022; Wilson
and Izmailov, 2020). Moreover, BNNs can flexibly represent the non-stationary behavior typical
of optimization objectives, discover similarity measures as part of representation learning which
is useful for higher dimensional inputs, and naturally handle multi-output objectives. In parallel,
Monte-Carlo acquisition functions (Balandat et al., 2020) have been developed which only require
posterior samples, significantly lowering the barrier to using non-GP surrogates that do not provide
closed-form predictive distributions.

Published as a conference paper at ICLR 2024

In this paper, we exhaustively evaluate Bayesian neural networks as surrogate models for Bayesian
optimization. We consider conventional fully stochastic multilayer BNNs with a variety of approximate
inference procedures, ranging from high-quality full-batch Hamiltonian Monte Carlo (Izmailov et al.,
2021; Neal, 1996; 2010), to stochastic gradient Markov Chain Monte Carlo (Chen et al., 2014),
to heuristics such as deep ensembles (Lakshminarayanan et al., 2017). We also consider infinite-
width BNNs (Lee et al., 2017; Neal and Neal, 1996), corresponding to GPs with fixed non-stationary
kernels derived from a neural network architecture, as well as partially Bayesian last-layer deep
kernel learning methods (Wilson et al., 2016). This particularly wide range of neural network-based
surrogates allows us to evaluate the role of representation learning, non-stationarity, and stochasticity
in modeling Bayesian optimization objectives. Moreover, given that so much is unknown about the
role of the surrogate model, we believe it is particularly valuable not to have a “horse in the race”,
such as a special BNN model particularly designed for Bayesian optimization, in order to conduct an
unbiased scientific study where any outcome is highly informative.

We also extensively study a variety of synthetic and real-world objectives—with a wide range of
input space dimensionalities, single- and multi-dimensional output spaces, and both discrete and
continuous inputs, and non-stationarities.

Our study provides several key findings: (1) while stochasticity is often prized in Bayesian optimiza-
tion (Garnett, 2023; Snoek et al., 2012), due to the small data sizes in Bayesian optimization, fully
stochastic BNNs do not consistently dominate deep kernel learning, which is not stochastic about
network parameters; (2) of the fully stochastic BNNs, HMC generally works the best for Bayesian
optimization, and deep ensembles work surprisingly poorly, given their success in other settings;
(3) on standard benchmarks, standard GPs are relatively competitive, due to their strong priors and
simple exact inference procedures; (4) there is no single method that dominates across most problems,
demonstrating that there is significant variability across Bayesian optimization objectives, where
tailoring the surrogate to the objective has particular value; (5) infinite-width BNNs are surprisingly
effective at high-dimensional optimization. These results suggest that the non-Euclidean similarity
metrics constructed from neural networks are valuable for high-dimensional Bayesian optimization,
but representation learning (provided by DKL and finite-width BNNs) is not as valuable as a strong
prior derived from a neural network architecture (provided by the infinite-width BNN).

This study also serves as an evaluation framework for considering alternative surrogate models for
Bayesian optimization. Our code is available at https://github.com/yucenli/bnn-bo.

2 RELATED WORK

There is a large body of literature on improving the performance of Bayesian optimization. However,
an overwhelming majority of this research only considers Gaussian process surrogate models, focusing
on developing new acquisition functions (e.g. Frazier et al., 2008; Wang and Jegelka, 2017), additive
covariance functions (Gardner et al., 2017; Kandasamy et al., 2015), using gradient information (Wu
et al., 2017), multi-objectives (Swersky et al., 2013), trust region methods that use input partitioning
for higher dimensional and non-stationary data (Eriksson et al., 2019), and covariance functions for
discrete inputs and strings (Moss et al., 2020). For a comprehensive review, see Garnett (2023).

There has been some prior work focusing on other types of surrogate models for Bayesian optimiza-
tion, such as random forests (Hutter et al., 2011) and tree-structured Parzen estimators (Bergstra et al.,
2013). Snoek et al. (2015) apply a Bayesian linear regression model to the last layer of a deterministic
neural network, which can be helpful for the added number of objective queries associated with
higher dimensional inputs. Deep kernel learning (Wilson et al., 2016), which transforms the inputs
of a Gaussian process kernel with a deterministic neural network, may also be used with Bayesian
optimization, especially in specialized applications like protein engineering (Stanton et al., 2022).
The linearized-Laplace approximation to produce a linear model from a neural network has also
recently been applied to Bayesian optimization (Kristiadi et al., 2023). Neural networks have also
been used for Bayesian optimization in the the contextual bandit setting, using the neural tangent
kernel for exploration (Zhou et al., 2020; Dai et al., 2022; Lisicki et al., 2022).

Despite the recent practical advances in developing Bayesian neural networks for many tasks (e.g.
Wilson and Izmailov, 2020), and recent Monte-Carlo acquisition functions which make it easier to
use surrogates like BNNs that do not provide closed-form predictive distributions (Balandat et al.,
2020), there is a vanishingly small body of work that considers BNNs as surrogates for Bayesian
optimization. This is surprising, since we would indeed expect BNNs to have properties naturally

https://github.com/yucenli/bnn-bo

Published as a conference paper at ICLR 2024

aligned with Bayesian optimization, such as the ability to learn non-stationary functions without
explicit modeling interventions and gracefully handle high-dimensional input and output spaces.

The possible first attempt to use a Bayesian neural network surrogate for Bayesian optimization
(Springenberg et al., 2016) came before most of these advances in BNN research, and used a form of
stochastic gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014) for inference. Like Snoek
et al. (2015), the focus was largely on scalability advantages over Gaussian processes; however, the
reported performance gains were marginal, and puzzling in that they were largest for a small number
of objective function queries (where the neural net would not be able to learn a rich representation).
Kim et al. (2021) used the same method for BNNs with Bayesian optimization, also with SGHMC,
targeted at scientific problems with known structures and high dimensionality. In these applications,
BNNs leverage auxiliary information, domain knowledge, and intermediate data, which would not
typically be available in many Bayesian optimization problems. Foldager et al. (2023) also studied
BNN surrogates through mean-field BNNs and deep ensembles, and Miiller et al. (2023) used neural
network surrogates which approximate the posterior through in-context learning. However, the innate
differences between approximate inference methods for BNNs have not been explored.

Our paper provides several key contributions in the context of this prior work, where standard GP
surrogates are nearly always used with Bayesian optimization. While finite-width BNN surrogates
have been attempted, they are often applied in specialized settings without an effort to understand
their properties. Little is known about whether BNNs could generally be used as an alternative to
GPs for Bayesian optimization, especially in light of more recent general advances in BNN research.
This is the first paper to provide a comprehensive study of BNN surrogates, considering a range of
model types, experimental settings, and types of approximate inference. We test the utility of BNNs
in a variety of contexts, exploring their behavior as we change the dimensionality of the problem
and the number of objectives, investigating their performance on non-stationary functions, and also
incorporating problems with a mix of discrete and continuous input parameters. Moreover, we are the
first to study infinite BNN models in Bayesian optimization, and to consider the role of stochasticity
and representation learning in neural network based Bayesian optimization surrogates. Finally, rather
than champion a specific approach, we provide an objective assessment, also highlighting the benefits
of GP surrogates for general Bayesian optimization problems.

3 SURROGATE MODELS

We consider a wide variety of surrogate models, separately understanding the role of stochasticity,
representation learning, and strong priors in Bayesian optimization surrogates. We provide additional
information about these surrogates and background about Bayesian optimization in Appendix A.

Gaussian Processes. Throughout our experiments, when we refer to Gaussian processes, we always
mean standard Gaussian processes, with the Matérn-5/2 kernel that is typically used in Bayesian
optimization (Snoek et al., 2012). These Gaussian processes have the advantage of simple exact
inference procedures, strong priors, and few hyperparameters, such as length-scale, which controls
rate of variability. On the other hand, these models are stationary, meaning the covariance function is
translation invariant and models the objective as having similar properties (such as rate of variation)
at different points in input space. They also provide a similarity metric for data points based on
simple Euclidean distance of inputs, which is often not suitable for higher dimensional input spaces.

Fully Stochastic Finite-Width Bayesian Neural Networks. These models treat all of the param-
eters of the neural network as random variables, which necessitates approximate inference. We
consider three different mechanisms of approximate inference: (1) Hamiltonian Monte Carlo (HMC),
an MCMC procedure which is the computationally expensive gold standard (Izmailov et al., 2021;
Neal, 1996; 2010); (2) Stochastic Gradient Hamiltonian Monte Carlo (SGHMC), a scalable MCMC
approach that works with mini-batches (Chen et al., 2014); (3) Deep Ensembles, considered a prac-
tically effective heuristic that ensembles a neural network retrained multiple times, and has been
shown to approximate fully Bayesian inference (Izmailov et al., 2021; Lakshminarayanan et al.,
2017). These approaches are fully stochastic, and can do representation learning, meaning that they
can learn appropriate distance metrics for the data as well as particular types of non-stationarity.

Deep Kernel Learning. Deep kernel learning (DKL) (Wilson et al., 2016) is a hybrid Bayesian
deep learning model, which layers a GP on top of a neural network feature extractor. This approach
can do non-Euclidean representation learning, handle non-stationarity, and also uses exact inference.
However, it is only stochastic about the last layer.

Published as a conference paper at ICLR 2024

=== True Objective —— Mean 20 = Function Draw
Likelihood Variance = 0.1 Prior Variance = 0.1 Hidden Layers = 2 Width = 64
6
3
0 2 \\ 7’ ~ - “~*\ 7 N = . Y X
-3
-6
0.2 05 0.8 0.2 05 0.8 0.2 05 0.8 0.2 05 0.8
Likelihood Variance = 1.0 Prior Variance = 1.0 Hidden Layers = 3 Width = 128
6
L
0 A Avf,?/g;:,\\ &S
3 RILIEIOAN
-6
0.2 05 0.8 0.2 05 0.8 0.2 05 0.8 0.2 05 0.8
Likelihood Variance = 10.0 Prior Variance = 10.0 Hidden Layers = 4 Width = 256

(a) Likelihood Variance (b) Prior Variance (c) Network Depth (d) Network Width

Figure 1: The design of the BNN has a significant impact on the uncertainty estimates. We
visualize the uncertainty estimates and function draws produced by full-batch HMC on a simple toy
objective function with four function queries (denoted in black). For the visualizations above, we fix
all other design choices with the following base parameters: likelihood variance = 1, prior variance
= 1, number of hidden layers = 3, and width = 128. We see that varying the different aspects of the
model leads to significantly different posterior predictive distributions.

Linearized Laplace Approximation. The linearized-Laplace approximation (LLA) is a determin-
istic approximate inference method that uses the Laplace approximation (MacKay, 1992; Immer
et al., 2021) to produce a linear model from a neural network, and has recently been considered for
Bayesian optimization in concurrent work (Kristiadi et al., 2023).

Infinite-Width Bayesian Neural Networks. Infinite-width neural networks (I-BNNs) refer to the
behavior of neural networks as the number of nodes per hidden layer increases to infinity. Neal (1996)
famously showed with a central limit theorem argument that a BNN with a single infinite-width hidden
layer converges to a GP with a neural network covariance function, and this result has been extended
to deep neural networks by Lee et al. (2017). I-BNNs are fully stochastic and very different from
standard GPs, as they can handle non-stationarity and provide a non-Euclidean notion of distance
inspired by a neural network. However, it cannot do representation learning and instead has a fixed
covariance function that provides a relatively strong prior.

3.1 ROLE OF ARCHITECTURE

We conduct a sensitivity study into the role of key design choices for BNN surrogates. We highlight
results for HMC, as it is the gold standard for approximate inference in BNNs (Izmailov et al., 2021).

Gaussian processes involve relatively few design choices—essentially only the covariance function,
which is often set to the RBF or Matérn kernel, and we are also able to have an intuitive understanding
of what the induced distributions over functions look. In contrast, with BNNs, we must consider the
architecture, the prior over parameters, and the approximate inference procedure. It is also less clear
how different modeling choices in BNNs affect the inferred posterior predictive distributions. To
illustrate these differences for varying network, prior, and variance parameters, we plot the inferred
posterior predictive distributions over functions for different network widths and depths, the activation
functions, and likelihood and variance parameters in Figure 1, and we evaluate the performance under
different model choices for three synthetic data problems in Figure 2. We focus on fully-connected
multi-layer perceptrons for this study: while certain architectures have powerful inductive biases

Published as a conference paper at ICLR 2024

Hartmann (d=6, o=1) Ackley (d=10, o=1) DTLZ1 (d=5, 0=2) Ackley (d=10, o=1) DTLZ1 (d=5, 0=2)
3.00 159250 —17.5 .
: _ 159750
16
2.75 159000 —18.0
17 159500
©2.50 ° © 158750 T -185 2
5] S s] € 159250
§2.25 E 18 ,935158500 5—19.0 5
_19 159000 Q
2.00 158250 -195
20 [? 158750
175 W 158000 ~200
0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 ' 2 4 2 4
Likelihood Variance Likelihood Variance Likelihood Variance Hidden Layers Hidden Layers
(a) Likelihood Variance (b) Network Depth
Hartmann (d=6, o=1) Ackley (d=10, o=1) DTLZ1 (d=5, 0=2) 175 Ackley (d=10, 0=1) DTLZ1 (d=5, 0=2)
2.75 _16 159500 B 180
159500
5230 o -17 5159000 o-185 ©
2 2 g & 2 2
2225 z_18 H $-19.0 3
o < 158500 < @ 159000
2.00 ~19 -19.5 E
% 158000 T
1.75 -20 —20.0 158500
0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 64 128 256 64 128 256
Prior Variance Prior Variance Prior Variance Network Width Network Width
(c) Prior Variance (d) Network Width

Figure 2: There is no single architecture for HMC that performs the best across all problems. We
compare the impact of the design on the Bayesian optimization performance for different benchmark
problems. For each set of experiments, we fix all other aspects of the design and plot the values of
the maximum reward found using HMC after 100 function evaluations over 10 trials.

for vision and language tasks, generic regression tasks such as Bayesian optimization tend to be
well-suited for fully-connected multi-layer perceptrons, which have relatively mild inductive biases
and make loose assumptions about the structure of the function.

Model Hyperparameters. We consider isotropic priors over the neural network parameters with
zero mean and variance parameters 0.1, 1, and 10. Similarly, we consider Gaussian likelihood
functions with variance parameters 0.1, 1, and 10. The corresponding posterior predictive distributions
for full-batch HMC are shown in Figure la. As would be expected, an increase in the likelihood
variance results in a poor fit of the data and virtually no posterior collapse. In contrast, increasing the
prior variance results in a higher predictive variance between data points with a good fit to the data
points, whereas a prior variance that is too small leads to over-regularization and uncertainty collapse.
As shown in Figure 2a and Figure 2c, lower likelihood variance parameters and larger prior variance
parameters tended to perform best across three synthetic data experiments.

Network Width and Depth. To better understand the effects of the network size on inference, we
explore the performance when varying the number of hidden layers and the number of parameters per
layer, each corresponding to an increase in model complexity. In Figure 1c, we see that there is a
significant increase in uncertainty as we increase the number of hidden layers. Figure 1d also shows
an increase in uncertainty as we increase the width of the network, where a smaller width leads to
function draws that are much flatter than function draws from a larger width. However, the best size
to choose seems to be problem-dependent, as shown in Figure 2b and Figure 2d.

Activation Function. The choice of activation function in a neural network determines important
characteristics of the function class, such as smoothness or periodicity. The impact of the activation
function can be seen in Appendix D.1, with function draws from the ReLU BNN appearing more
jagged and function draws from the tanh BNN more closely resembling the draws from a GP with a
Squared Exponential or Matérn 5/2 covariance function.

4 EMPIRICAL EVALUATION

We provide an extensive empirical evaluation of BNN surrogates for Bayesian optimization. We
first assess how BNNs compare to GPs in relatively simple and well-understood settings through
commonly used synthetic objective functions, and we perform an empirical comparison between
GPs and different types of BNNs (HMC, SGHMC, LLA, ENSEMBLE, I-BNN, and DKL). To further
ascertain whether BNNs may be a suitable alternative to GPs in real-world Bayesian optimization
problems, we study six real-world datasets used in prior work on Bayesian optimization with GP

Published as a conference paper at ICLR 2024

Il GP DKL I-BNN Bl HMC BN SGHMC . LA N Ensemble

Branin (d=2, 0=1)

Hartmann (d=6, o=1) Ackley (d=10, o=1)

N 30 60 90 50 110 170 50 110 170
Function Evaluations Function Evaluations Function Evaluations
o BraninCurrin (d=2, 0=2) DTLZ1 (d=5, 0=2) DTLZ5 (d=20, 0=3)
5 e 159000 }

e T 158000
230 g
[0) [0)
e« 157000
10 i
30 60 90 156000 30 60 90 30 60 90
Function Evaluations Function Evaluations Function Evaluations

Figure 3: BNNs are often comparable to GPs on standard synthetic benchmarks. However, the
type of BNN used has a big impact: HMC typically outperforms other BNN approximation methods,
while SGHMC and deep ensembles seem to have less reliable performance and are often unable to
effectively find the maximum. LLA also has poor performance across the single-objective problems.
For each benchmark function, we include d for the number of input dimensions, and o for the number
of objectives. We plot the mean and one standard error of the mean over 10 trials.

surrogates (Dreifuerst et al., 2021; Eriksson et al., 2019; Maddox et al., 2021; Oh et al., 2019; Wang
et al., 2020). We also provide evidence that the performance of BNNs could be further improved with
a careful selection of network hyperparameters. We conclude our evaluation with a case study of
Bayesian optimization tasks where simple Gaussian process models may fail but BNN models would
be expected to prevail. To this end, we design a set of experiments to assess the performance of GPs
and BNNs as a function of the input dimensionality and in settings where the objective function is
non-stationary.

4.1 SYNTHETIC BENCHMARKS

We evaluate BNN and GP surrogates on a variety of synthetic benchmarks, and we choose problems
with a wide span of input dimensions to understand how the performance differs as we increase the
dimensionality of the data. We also select problems that vary in the number of objectives to compare
the performance of the different surrogate models. Detailed problem descriptions can be found in
Appendix B.1, and we include the experiment setup in Appendix C. We use Monte-Carlo based
Expected Improvement (Balandat et al., 2020) as our acquisition function for all problems.

As shown in Figure 3, we find BNN surrogate models to show promising results; however, the
specific performance of different BNNs varies considerably per problem. DKL matches GPs in
Branin and BraninCurrin, but seems to perform poorly on highly non-stationary problems such as
Ackley. I-BNNs also seem to slightly underperform compared to GPs on these synthetic problems,
many of which have a small number of input dimensions. In contrast, we find finite-width BNNs
using full HMC to be comparable to GPs, performing similarly in many of the experiments, slightly
underperforming in Hartmann and DTLZS, and outperforming GPs in the 10-dimensional Ackley
experiment. However, this behavior is not generalizable to all approximate inference methods: the
performance of SGHMC and LLA vary significantly per problem, matching the performance of HMC
and GPs in some experiments while failing to approach the maximum value in others. Deep ensembles
also consistently underperform the other surrogate models, plateauing at noticeably lower objective
values on problems like BraninCurrin and DTLZ1. This result is surprising, since ensembles are often
seen as an effective way to measure uncertainty (Appendix D.3). We provide additional experiments
studying how the performance of surrogates changes as we vary their hyperparameters in Appendix D,
and we find that these hyperparameters generally have minimal effects on the performance.

4.2 REAL-WORLD BENCHMARKS

To provide an evaluation of BNN surrogates in more realistic optimization problems, we consider
a diverse selection of real-world applications which span a variety of domains, such as solving

Published as a conference paper at ICLR 2024

Il GP DKL I-BNN Bl HMC BN SGHMC . LA N Ensemble

PDE Optimization (d=4, o=1) Interferometer (d=4, o=1) Lunar Lander (d=12, o=1)
0.6 200

—-0.05
° ° °
2-0.15 g g
Q [[]
o o o
-0.25 ;
10 20 30 40 70 100 150 300 450
Function Evaluations Function Evaluations Function Evaluations
Pest Control (d=25, o=1) Cell Coverage (d=30, 0=2) Qil Spill Sorbent (d=7, 0=3)
~12 0.045 le6
1.2
kel e
5 0.035 5 1.0
2 =
[[
o Z0.8
0.025 o
- 0.6 %
40 70 100 25 50 75 100 120 150 180

Function Evaluations Function Evaluations Function Evaluations

Figure 4: Real world benchmarks show mixed results. BNNs outperform GPs on some problems
and underperform on others, and there does not seem to be a noticeable preference for any particular
surrogate as we increase the number of input dimensions. Additionally, there does not appear to be a
clear separation between the top row of experiments, which optimize over continuous parameters,
and the bottom row of experiments, which also include some discrete inputs. For each benchmark,
we include d for the number of input dimensions, and o for the number of objectives. We plot the
mean and one standard error of the mean over 10 trials.

differential equations and monitoring cellular network coverage (Dreifuerst et al., 2021; Eriksson
et al., 2019; Maddox et al., 2021; Oh et al., 2019; Wang et al., 2020). Many of these problems,
such as the development of materials to clean oil spills, have consequential applications; however,
these objectives are often multi-modal and are difficult to optimize globally. Additionally, unlike the
synthetic benchmarks, many real-world applications consist of input data with ordinal or categorical
values, which may be difficult for GPs to handle. Several of the problems also require multiple
objectives to be optimized. Detailed problem descriptions are provided in Appendix B.2.

We share the results of our experiments in Figure 4, and details about the experiment setup can be
found in Appendix C. The results are mixed: BNNs are able to significantly outperform GPs in the
Pest Control dataset, while GPs find the maximum reward in the Cell Coverage and Lunar Lander
experiments. The Pest Control, Cell Coverage, and Oil Spill Sorbent experiments all include discrete
input parameters, and there seems to be a slight trend of GP and I-BNNs performing well, and SGHMC
and LLA performing more poorly. Similar to the findings from the synthetic benchmarks, we see
that the different approximate inference methods for finite-width BNNs lead to significantly different
Bayesian optimization performance, with HMC generally finding higher rewards compared to SGHMC,
LLA, and deep ensembles. Additionally, it appears that GPs perform well in the two multi-objective
problems, although that may not be generalizable to additional multi-objective problems and may be
more related to the curvature of the specific problem space.

4.3 LIMITATIONS OF GP SURROGATE MODELS

Although popular, GPs suffer from well-known limitations that directly impact their usefulness as
surrogate models. To contrast BNN and GP surrogates, we explore two failure modes of GPs and
demonstrate that BNN surrogate models can overcome these issues.

Non-Stationary Objective Functions. To use GPs, we must specify a kernel function class that
governs the covariance structure over data points. We typically constrain models to have kernels of
the form k(x, x’) = k(||x — x'||) because it is easier to describe the functional form and learn the
hyperparameters of the kernel. However, because the covariance between two values only depends on
their distance and not on the values themselves, this setup assumes the function is stationary and has
similar mean and smoothness throughout the input space. Unfortunately, this assumption does not
hold true in many real-world settings. For example, in the common Bayesian optimization application
of choosing hyperparameters of a neural network, the true loss function landscape may have vastly
different behavior in one part of the input space compared to another. BNN surrogates, in contrast to
GP surrogates, are able to model non-stationary functions without similar constraints.

Published as a conference paper at ICLR 2024

Il GP DKL I-BNN Bl HMC BN SGHMC . LA N Ensemble

Polynomial (d=200) NN Draw (d=400) Distillation (d=6320)

Reward

100 200 300 200 400 600 100 200 300
Function Evaluations Function Evaluations Function Evaluations

Figure 5: 1-BNNs outperform other surrogates in many high-dimensional settings. We show the
results of maximizing a polynomial function (left), maximizing a fixed function draw from a neural
network (center), and optimizing the parameters of a neural network in the context of knowledge
distillation (right). All of these objectives are high-dimensional and non-stationary, and we find
that BNNs consistently find higher rewards than GPs across all problems. We plot the mean and one
standard error of the mean over 10 trials, and d corresponds to the number of input dimensions.

In Appendix D.9, we show the performance of BNN and GP surrogate models for a non-stationary
objective function. Because the GP assumes that the behavior of the function is the same throughout
the input domain, it cannot accurately model the input-dependent variation and underfits around the
true optimum. In contrast, BNN surrogates can learn the non-stationarity of the function.

High-Dimensional Input Spaces. Due to the curse of dimensionality, GPs do not scale well to high-
dimensional input spaces without careful human intervention. Common covariance functions may
fail to faithfully represent high-dimensional input data, making the design of custom-tailored kernel
functions necessary. In contrast, neural networks are well-suited for modeling high-dimensional input
data (Krizhevsky et al., 2012).

To measure the effect of dimensionality on the performance of GPs and BNNs, we use synthetic
test functions provided by high-dimensional polynomial functions and function draws from neural
networks. We also construct a realistic high-dimensional problem by using Bayesian optimization to
set the parameters of a neural network in the context of knowledge distillation. Knowledge distillation
refers to the act of “distilling” information from a larger teacher model to a smaller student model
by matching model outputs (Hinton et al., 2015), and it is known to be a difficult optimization
problem (Stanton et al., 2021). For full descriptions, see Appendix B.

We share the results of our findings in Figure 5 and Appendix D.4. We see I-BNNs clearly stand out
in these high-dimensional settings. The I-BNN has several appealing features in this setting: (1) it
provides a non-Euclidean and non-stationary similarity metric, which can be particularly valuable
in high-dimensions; (2) it does not have any hyperparameters for learning, and thus is not “data
hungry”—which is especially important in high dimensional problems with small data sizes, since
these settings provide relatively little information for representation learning. Additionally, we
find that other BNN surrogate models also outperform GPs across the high-dimensional problems,
providing a compelling motivation for BNNs as surrogate models for Bayesian optimization.

4.4 MODEL RANKINGS All Problems High Dimensional

To further interpret our findings, we visualize %1'00 I ’ F i L0g

the model performance in Figure 6. We deter- E£°7° 075

mine the relative performance of each model by EO-SO 0.50

;. For each trial, let ;, denote the highest max- ¢

. 2025 0.25

imum reward found by any model and ; denote = i g ﬁ

the lowest. The score of model with maximum = 0.00 N $ © o 0.00 S o o O o9

reward is (r; — rp,) /(1 — 7). & o8 6@ & \y R V&@“’;@\‘“ N
<& <

We plot the distribution of scores in Figure 6.
Across all experiments, I-BNNs and GPs have
competitive performance, while SGHMC and
DKL perform more poorly. However, in high-
dimensional settings, I-BNNs outperform all
other surrogate models. GPs, in contrast, per-
form poorly in this setting, consistently finding
lower rewards than BNN surrogates.

Figure 6: We rank models by their relative per-
formance. Across all problems, GPs and I-BNNs
have strong relative performance. However, in
high-dimensional problems, I-BNNs consistently
outperform other surrogate models while GPs tend
to find much lower rewards.

Published as a conference paper at ICLR 2024

4.5 ADDITIONAL PRACTICAL CONSIDERATIONS

Network Architecture. To further understand the impact of network architecture on the performance
of BNNs, we conduct an extensive neural architecture search over a selection of the benchmark
problems. While a thorough search is often impractical for Bayesian optimization problems, we use
this experiment to investigate the flexibility of BNNs. We find that the performance of BNNs can
significantly increase for problems such as Pest Control, demonstrating the usefulness of BNN for
Bayesian optimization when the architecture is well-suited for a given problem. We provide additional
details and showcase the performance of BNNs with different architectures in Appendix D.1.

Quality of Mean and Uncertainty Estimates. To better understand the quality of the mean and
uncertainty estimates of different surrogate models, we conducted ablation studies for which we
created hybrid models that combine the mean estimate of one surrogate with the uncertainty estimate
of another. By comparing the performance of a given surrogate model to hybrid models that have
the same mean as the non-hybrid model but the uncertainty estimates of a different surrogate model
(or the other way around), we find that HMC and I-BNN surrogates often have better mean estimates
compared to GPs while GPs have better uncertainty estimates, which we detail in Appendix D.2.

Large Number of Function Queries. We investigate the effect of performing a larger number of
function queries on performance when using BNN and GP surrogate models. We find in this setting
that (1) I-BNNs remain competitive; (2) BNNs perform well, leveraging the data for representation
learning; (3) the performance of deep ensembles is greatly improved, consistent with the explanation
that their poor performance on many tasks is due to limited data. We share details in Appendix D.10.

Runtime. In real-world Bayesian optimization problems, querying the objective function is typically
significantly more time-consuming than (re-)training a surrogate model after new data has been
obtained, making the quality of the surrogate model paramount and the time needed for (re-)training
the surrogate model of secondary interest. Nevertheless, given the varying training requirements
of BNNs and GPs, we provide wall-clock times of all surrogate models across our experiments
in Appendix D.11. Notably, I-BNNs are particularly competitive both in performance and runtime.

4.6 REVISITING STANDARD ASSUMPTIONS

While Gaussian processes are typically used as the default surrogate model, there are many design
choices, such the choice of kernel and the method of hyperparameter selection, which play a
crucial role. It is commonly prescribed to use the Matérn kernel and perform hyperparameter
marginalization rather than optimization (e.g. Eriksson et al., 2019; Snoek et al., 2012). In Figure A.13
and Figure A.12, we compare the performance of different specifications of GPs across our diverse
benchmarks. In contrast to conventional wisdom, we do not find that using the Matérn kernel and
hyperparameter marginalization significantly improves the performance of GPs in general; in fact,
there are many problems where the RBF kernel or hyperparameter optimization are preferable.

5 DISCUSSION

While Bayesian optimization research has made significant progress over the last few decades
(Garnett, 2023), the surrogate model remains a crucial yet underexplored design choice, with standard
GPs being viewed as default surrogates. Given recent advances in BNNs and related approaches, it is,
therefore, particularly timely to consider neural network surrogates for Bayesian optimization.

Although we found that BNNs are competitive with standard GPs for Bayesian optimization, our
findings that DKL is competitive with BNNs, and that infinite-width BNNs show promising performance
in general—but especially for higher dimensional settings—raise the question of whether a fully
stochastic treatment of finite BNN surrogates is typically necessary for Bayesian optimization. Since
infinite-width BNNs do not involve learning many hyperparameters and do not require approximate
inference, they are well-positioned to become a de facto standard surrogate for Bayesian optimization.

Finally, we found no single surrogate model consistently outperforms all other surrogate models
across all Bayesian optimization problems considered in our evaluation. This finding supports the
use of simple models with strong but generic assumptions—such as standard GP models. On the
other hand, the standard benchmarking problems were designed with only GP surrogates in mind, and
we found that standard GPs can underperform BNNs and other neural network-based surrogates on
challenging high-dimensional problems.

Published as a conference paper at ICLR 2024

Acknowledgements. We thank Greg Benton for helpful guidance in the beginning stages of this
research, and Sanyam Kapoor for discussions. This work is supported by NSF CAREER 115-2145492,
NSF I-DISRE 193471, NIH RO1DA048764-01A1, NSF 1IS-1910266, NSF 1922658 NRT-HDR,
Meta Core Data Science, Google Al Research, BigHat Biosciences, Capital One, and an Amazon
Research Award.

6 REPRODUCIBILITY

We provide the code needed to reproduce all experiments in the supplementary material attached, and
we also provide experiment details for all of our results in Appendix C. We also release our code on
GitHub: https://github.com/yucenli/bnn-bo.

REFERENCES

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524-21538, 2020.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on
machine learning, pages 115-123. PMLR, 2013.

Tianqi Chen, Emily B Fox, Carlos Guestrin, and Michael I Jordan. Stochastic gradient hamiltonian
monte carlo. In International Conference on Machine Learning, pages 1683-1691, 2014.

Zhongxiang Dai, Yao Shu, Bryan Kian Hsiang Low, and Patrick Jaillet. Sample-then-optimize batch
neural thompson sampling, 2022.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 2021.

Ryan M Dreifuerst, Samuel Daulton, Yuchen Qian, Paul Varkey, Maximilian Balandat, Sanjay
Kasturia, Anoop Tomar, Ali Yazdan, Vish Ponnampalam, and Robert W Heath. Optimizing
coverage and capacity in cellular networks using machine learning. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8138-8142.
IEEE, 2021.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

Jonathan Foldager, Mikkel Jordahn, Lars Kai Hansen, and Michael Riis Andersen. On the role of
model uncertainties in bayesian optimization, 2023.

Peter I Frazier. A tutorial on bayesian optimization. Foundations and Trends® in Machine Learning,
11(1):1-96, 2018.

Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy for sequential
information collection. SIAM Journal on Control and Optimization, 2008.

Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger Grosse. Discovering and
exploiting additive structure for bayesian optimization. In Artificial Intelligence and Statistics,
2017.

Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(1):1303—-1347, May 2013. ISSN 1532-4435.

10

https://github.com/yucenli/bnn-bo

Published as a conference paper at ICLR 2024

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and intelligent
optimization, pages 507-523. Springer, 2011.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian neural
nets via local linearization, 2021.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are
bayesian neural network posteriors really like? In International conference on machine learning,
pages 4629-4640. PMLR, 2021.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabds P6czos. High dimensional bayesian op-
timisation and bandits via additive models. In International conference on machine learning,
2015.

Mohammad Emtiyaz Khan and Havard Rue. The bayesian learning rule. arXiv preprint
arXiv:2107.04562, 2021.

Samuel Kim, Peter Y Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin Soljacic. Deep learn-
ing for bayesian optimization of scientific problems with high-dimensional structure. Transactions
of Machine Learning Research, 2021.

Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, and Vincent Fortuin. Promises and
pitfalls of the linearized laplace in bayesian optimization, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems 25:, pages
1106-1114, 2012.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1-9,
2022. URL http://jmlr.org/papers/v23/21-0888.html.

Michal Lisicki, Arash Afkanpour, and Graham W. Taylor. Empirical analysis of representation
learning and exploration in neural kernel bandits, 2022.

Sanae Lotfi, Pavel Izmailov, Gregory Benton, Micah Goldblum, and Andrew Gordon Wilson.
Bayesian model selection, the marginal likelihood, and generalization, 2023.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computa-
tion, 4(3):448-472, 1992.

Wesley] Maddox, Maximilian Balandat, Andrew G Wilson, and Eytan Bakshy. Bayesian optimization
with high-dimensional outputs. Advances in Neural Information Processing Systems, 34:19274—
19287, 2021.

Henry Moss, David Leslie, Daniel Beck, Javier Gonzalez, and Paul Rayson. Boss: Bayesian
optimization over string spaces. Advances in Neural Information Processing Systems, 2020.

Samuel Miiller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning for
bayesian optimization, 2023.

Radford M Neal. Bayesian Learning for Neural Networks. 1996.

Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
54:113-162, 2010.

11

http://jmlr.org/papers/v23/21-0888.html

Published as a conference paper at ICLR 2024

Radford M Neal and Radford M Neal. Priors for infinite networks. Bayesian learning for neural
networks, pages 29-53, 1996.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial bayesian
optimization using the graph cartesian product. Advances in Neural Information Processing
Systems, 32, 2019.

A O’Hagan. On curve fitting and optimal design for regression. J. Royal Stat. Soc. B, 40:1-32, 1978.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? Evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems
32.2019.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning,
volume 2. MIT Press Cambridge, MA, 2006.

Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal. Continual
Learning via Sequential Function-Space Variational Inference. In Proceedings of the 38th Inter-
national Conference on Machine Learning, Proceedings of Machine Learning Research. PMLR,
2022.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural
networks. In International conference on machine learning, pages 2171-2180. PMLR, 2015.

Dmitry Sorokin, Alexander Ulanov, Ekaterina Sazhina, and Alexander Lvovsky. Interferobot: aligning
an optical interferometer by a reinforcement learning agent. Advances in Neural Information
Processing Systems, 33:13238-13248, 2020.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with
robust bayesian neural networks. Advances in neural information processing systems, 29, 2016.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew G Wilson.
Does knowledge distillation really work? Advances in Neural Information Processing Systems, 34:
6906-6919, 2021.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside,
and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence design
with denoising autoencoders. In International Conference on Machine Learning, 2022.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Advances in
neural information processing systems, 26, 2013.

Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han,
Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado,
Joost van Amersfoort andAndreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly
Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, and Balaji
Lakshminarayanan. Plex: Towards Reliability Using Pretrained Large Model Extensions. 2022.

Bogian Wang, Jiacheng Cai, Chuangui Liu, Jian Yang, and Xianting Ding. Harnessing a novel
machine-learning-assisted evolutionary algorithm to co-optimize three characteristics of an electro-
spun oil sorbent. ACS Applied Materials & Interfaces, 12(38):42842-42849, 2020.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization. In
International Conference on Machine Learning, pages 3627-3635. PMLR, 2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681-688,
2011.

12

Published as a conference paper at ICLR 2024

Christopher Williams. Computing with infinite networks. Advances in neural information processing
systems, 9, 1996.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697-4708, 2020.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, 2016.

Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
gradients. Advances in neural information processing systems, 30, 2017.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning, pages 11492—-11502. PMLR, 2020.

13

Published as a conference paper at ICLR 2024

Appendix

A Study of Bayesian Neural Network Surrogates
for Bayesian Optimization

TABLE OF CONTENTS

A

Background 15
A.l1 Bayesian Optimization 15
A2 Gaussian Processes L 15
A.3 Bayesian Neural Networks 15
Problem Descriptions 18
B.1 Synthetic Datasets e e 18
B.2 Real-World Datasets 18
B.3 High-Dimensional Problems 18
Experiment Details 20
C.l1 General Setup 20
C.2 Synthetic Benchmarks 20
C.3 Real-World Benchmarks, 20
C.4 High-Dimensional Experiments 21
C.5 Neural Architecture Search L o oL 21
Further Empirical Results 22
D.1 BNN Architecture e 22
D.2 Ablation Studies e 24
D3 DeepEnsembles. 26
D.4 Infinite-Width BNNs 29
D.5 HamiltonianMonte Carlo L . 32
D.6 Gaussian Processes 33
D.7 DeepKernel Learning 34
D.8 Acquisition Batch Size o oL 35
D.9 Limitations of Gaussian Process Surrogate Models 36
D.10 Large Number of Function Queries 38
DT Runtime e e e e 39

14

Published as a conference paper at ICLR 2024

APPENDIX A BACKGROUND

A.1 BAYESIAN OPTIMIZATION

Bayesian optimization is a global optimization method commonly used for black-box functions
which are costly to evaluate. Specifically, we formulate the optimization as a maximization problem
where we want to solve x* = argmax, f(x), where x represents all possible inputs to objective
function f, using a limited number of function queries. In Bayesian optimization, we iteratively
select new function evaluations using the following procedure: (1) use a surrogate model to find
p(f|D), where D = {x;,y;};_, and y; is a noisy observation of f(x;); (2) select the next x;,; to
query by maximizing an acquisition function, which is an inexpensive computation that typically uses
the mean and variance of the posterior p(f|D) to compute how useful a function evaluation would
be; and (3) query the function at value x;11 to observe y;+1 ~ N (f(X¢+1),03,) and add the result
to the dataset D := D U {X¢41, Yt+1}-

Historically, Bayesian optimization has seen wide success in a range of fields including drug design,
engineering challenges, and hyperparameter optimization. A more recent and growing area of interest
is in higher dimensional settings, where the objective, f(x) is multi-dimensional consisting of several
tasks we wish to optimize jointly. In multi-objective Bayesian optimization, we want to find the
input x* that maximizes k related objective functions F = {f1(x), - - , fx(x)}. There is typically no
single solution that maximizes all K objectives simultaneously. Therefore, performance is typically
compared using Pareto dominance, where one solution Pareto-dominates another if it performs
equally well or better on all objectives. Pareto dominance can be measured using hypervolume, which
indicates how much of a bounded region is dominated by a solution.

Core to the Bayesian optimization procedure is the use of an acquisition function to select the next
candidate points given a set of observations x;, f (azi)fvzl, and a surrogate model trained to fit these
observations. Acquisition functions are functions of the predictive distribution of the surrogate model,
and seek candidate points according to criteria such as the probability of improvement or the expected
improvement over the currently found minimizer of the objective.

The chosen surrogate model will also have a signficant impact on the performance of Bayesian
optimization . Since the true function f may take a variety of forms, the surrogate model should be
flexible enough to accurately represent it. Additionally, the uncertainty estimates that the surrogate
model provides should be well-calibrated to ensure that the input that maximizes f can be found in a
limited number of iterations.

A.2 GAUSSIAN PROCESSES

Gaussian processes (GPs) (Rasmussen and Williams, 2006) are distributions over functions entirely
specified by a mean function ;(x) and a covariance function k(x, x’). For regression tasks with GPs,
we assume y(x) = f(x) + € with f(x) ~ GP(u(x), k(x,x’)) and € ~ N(0,0?), where o2 is the
likelihood variance. The functions (x) and k(x, x’) are the mean and kernel functions of the GP that
govern the functional properties and generalization performance of the model. In practice, we tune
the hyperparameters of 11(x) and k(x,x’) on the training data to optimize the marginal likelihood of
the GP, which maximizes the probability that the GP model will have generated the data.

By the definition of a GP, for any finite collection of inputs X = [Xain, Xtest)» f(X), and thus y(x) are
jointly normal. Therefore, we can apply the rules of conditioning partitioned multivariate normals to
form a posterior distribution p (f(Xest) | ¥(Xirain)), Which will also be Gaussian.

In the context of Bayesian optimization, this simple conditioning procedure means that given some
set of points at which we have already queried the objective function, we can quickly generate a
posterior over potential candidate points and, with the help of an acquisition function, select the next
points to query the objective.

A.3 BAYESIAN NEURAL NETWORKS

Bayesian neural networks (BNNs) are neural networks with stochastic parameters for which a posterior
distribution is inferred using Bayesian inference.

More specifically, for regression tasks, we can specify a Gaussian observation model, p(y(x) | x,0) =
N (h(x | 0),0?), where y(x) represents a noisy observed value and h(x | @) represents the output of
a neural network with parameter realization 6 for input x. For BNNs, a prior distribution is placed
over the stochastic parameters 8 of the neural network, and the corresponding posterior distribution is
given by p(@ | D) = p(D|0)p(0)/p(D). This posterior distribution can then be used in combination

15

Published as a conference paper at ICLR 2024

with the acquisition function for Bayesian optimization to select the next set of candidate points to
query.

There are many different choices to consider when using Bayesian neural networks, such the inference
method used to compute the posterior distribution, the architecture of the neural network, and the
selection of which parameters are stochastic. In this work, we study the performance of five different
types of BNNs with varying inference methods and stochasticity.

A.3.1 FULLY-STOCHASTIC FINITE-WIDTH NEURAL NETWORKS

For fully-stochastic Bayesian neural networks, every parameter of the neural network is stochastic and
has a prior placed over it. Exact inference over these stochastic network parameters for fully-stochastic
finite-width BNNs is analytically intractable, since neural networks are non-linear in their parameters.
To enable Bayesian inference in this setting, approximate inference methods can be used to find
approximations to the exact posterior p(@ | D). In this work, we focus on four types of approximate
inference: Hamiltonian Monte Carlo (HMC; Neal (2010)), stochastic-gradient HMC (Chen et al.,
2014), linearized Laplace approximations (Immer et al., 2021), and deep ensembles of deterministic
neural networks (Lakshminarayanan et al., 2017).

Hamiltonian Monte Carlo. Hamiltonian Monte Carlo is a Markov Chain Monte Carlo method that
produces asymptotically exact samples from the posterior distribution (Neal, 2010) and is commonly
referred to as the “gold standard” for inference in BNNs. At test time, HMC approximates the
integral p(y(xest) | D) ~ 1 Zﬁl P(Y(Xeest) | 0;) using samples 6; drawn from the posterior over
parameters.

Full-batch HMC provides the most accurate approximation of the posterior distribution but is com-
putationally expensive and in practice limited to models with only a few hundred thousand parame-
ters (Izmailov et al., 2021). Full-batch HMC allows us to study the performance of BNNs in Bayesian
optimization without many of the confounding factors of inaccurate approximations of the predictive
distribution.

Stochastic Gradient Hamiltonian Monte Carlo. Stochastic gradient methods (Welling and Teh,
2011; Hoffman et al., 2013) are commonly used as an inexpensive approach to sampling from
the posterior distribution. Unlike full-batch HMC, which computes the gradients over the full
dataset, stochastic gradient HMC instead samples a mini-batch to compute a noisy estimate of the
gradient (Chen et al., 2014). While these methods may seem appealing when working with large
models or datasets, they can result in inaccurate approximations and posterior predictive distribution
with unfaithful uncertainty representations.

Deep Ensembles. Deep ensembles are ensembles of several deterministic neural networks, each
trained using maximum a posteriori estimation using a different random seed and initialization (and
sometimes using different subsets of the training data). The ensemble components can be viewed as
forming an efficient approximation to the posterior predictive distribution, by choosing parameters
that represent typical points in the posterior and have high functional variability (Wilson and Izmailov,
2020). Deep ensembles are easy to implement in practice and have been shown to provide highly
accurate predictions and a good predictive uncertainty estimate (Lakshminarayanan et al., 2017;
Ovadia et al., 2019).

A.3.2 FULLY-STOCHASTIC INFINITE-WIDTH NEURAL NETWORKS

Infinitely-wide neural networks (Neal and Neal, 1996) refer to the behavior of neural networks when
the number of nodes in each internal layer increases to infinity. Each one of these nodes continues is
stochastic and has a specific prior placed over its parameters.

Infinite-width Neural Network. It is possible to specify a GP that has an exact equivalence to an
infinitely-wide fully-connected Bayesian neural network (I-BNN) (Lee et al., 2017). For a single-layer
network, the Central Limit Theorem can be used to show that in the limit of infinite width, each
output of the network will be Gaussian distributed, and the exact distribution can be computed (Neal
and Neal, 1996; Williams, 1996). This process can then be applied recursively for additional hidden
layers (Lee et al., 2017). I-BNNs can be used in the same way as GPs to calculate the posterior
distribution for infinitely-wide neural networks.

16

Published as a conference paper at ICLR 2024

A.3.3 LINEARIZED FINITE-WIDTH NEURAL NETWORKS

Linearized Laplace Approximation. The linearized Laplace approximation (Immer et al., 2021)
(LLA) is a deterministic approximate inference method which uses the Laplace approximation
(MacKay, 1992; Immer et al., 2021) to produce a linear model from a neural network. LLAs can be
represented as Gaussian processes with mean functions provided by the MAP predictive function,
and covariance functions provided by the finite, empirical neural tangent kernel at the MAP estimate.

A.3.4 PARTIALLY-STOCHASTIC FINITE-WIDTH NEURAL NETWORKS

For partially-stochastic neural networks, we learn point estimates for a subset of the parameters, and
we learn the full posterior distribution for the remaining parameters in the neural network.

Deep Kernel Learning. Deep Kernel Learning (DKL) is a hybrid method that combines the
flexibility of GPs with the expressivity of neural networks (Wilson et al., 2016). In DKL, a neural
network g (-) parameterized by weights w is used to transform inputs into intermediate values,
where additional GP kernels can then be applied. Specifically, given inputs x and a base kernel
kpase (X, X'), kpkL(X,X') = kpasg(gw (X), gw(X')). Unlike Gps with standard kernels which depend
only on the distance between inputs and therefore assume that the mean and smoothness of the
function are consistent throughout, DKL does not assume stationarity and is able to represent how the
properties of the function change due to its neural network feature extractor.

17

Published as a conference paper at ICLR 2024

APPENDIX B PROBLEM DESCRIPTIONS

B.1 SYNTHETIC DATASETS

In the single-objective case, Branin is a function with two-dimensional inputs with three global
minima, Hartmann is a six-dimensional function with six local minima, and Ackley is a multi-
dimensional function with many local minima which is commonly used to test optimization algorithms.
We convert all problems to maximization problems, and the goal of Bayesian optimization in single-
objective settings is to find the maximum value of the objective function.

For multi-objective Bayesian optimization benchmarks, BraninCurrin is a two-dimensional input
and two-objective problem composed of the Branin and Currin functions, and DTLZ1 and DTLZS
are multi-dimensional and multi-objective test functions which are used to measure an optimization
algorithm’s ability to converge to the Pareto-frontier. Here, the goal is to find an input corresponding
to the multi-dimensional objective value with the maximum hypervolume from a problem-specific
reference point.

B.2 REAL-WORLD DATASETS

Interferometer In this problem, the goal is to tune an optical interferometer through the alignment
of two mirrors. We use the simulator in Sorokin et al. (2020) to replicate the Bayesian optimization
problem in Maddox et al. (2021). Each mirror has a continuous x and y coordinate, which should be
optimized so that the two mirrors reflect light with minimal amounts of interference.

Lunar Lander Following Eriksson et al. (2019), we aim to learn the parameters of a controller for a
lunar lander as implemented in OpenAl gym. The controller has 12 continuous input dimensions,
corresponding to events such as “change the angle of the rover if it is tilted more than = degrees."
The objective is to maximize the average final reward over 50 randomly generated environments.

Cellular Coverage We want to optimize the cellular network coverage and capacity from 15 cell
towers (Dreifuerst et al., 2021). Each tower has a continuous parameter corresponding to transmit
power parameter and an ordinal parameter with 6 values corresponding to tilt, for a total of 15
continuous and 15 ordinal input parameters. There are two different objectives: maximize the cellular
coverage, and minimize the total interference between cell towers.

Qil Spill Sorbent In this problem, we optimize the properties of a material to maximize its per-
formance as a sorbent for marine oil spills (Wang et al., 2020). We tune 5 ordinal parameters and
2 continuous parameters which control the manufacturing process of electrospun materials, and
optimize over three objectives: water contact angle, oil absorption capacity, and mechanical strength.

Pest Control Minimizing the spread of pests while minimizing the prevention costs of treatment
is an important problem with many parallels (Oh et al., 2019). In this experiment, we define the
setting as a categorical optimization problem with 25 categorical variables corresponding to stages of
intervention, with 5 different values at each stage. We optimize over two objectives: minimizing the
spread of pests and minimizing the cost of prevention.

PDE Optimization Here, following Maddox et al. (2021), we optimize 4 continuous parameters
corresponding to the diffusivity and reaction rates of a Brusselator with spatial coupling. The objective
of the problem is to minimize the variance of the PDE output.

B.3 HIGH-DIMENSIONAL PROBLEMS

Polynomial In this optimization problem, the goal is to find the maximum value of a polynomial

function. For input x € R?, the objective value is calculated using Z:Z Ai H?:l (Xi4j — Ciyj), Where

c; ~ Normal(0, 1). We set the boundaries of the input space to be [0, 1]¢, and this problem setup can
be used for any number of dimensions d.

Neural Network Draw We want to find the maximum value of a function specified by a draw from a
neural network. For the neural network, we use an MLP with d inputs connected to 2 hidden layers of
256 nodes each with tanh activation, connected to a final layer of size 1 (unless otherwise specified).
We set each parameter w in the network to a value drawn from A/(0, 1). The final objective function
is equivalent to the output of the neural network with the specified weights. With this setup, we can
vary d to alter the input dimensionality of the problem.

Knowledge Distillation The goal of knowledge distillation is to use a larger teacher model to train a
smaller student model, typically done by matching the teacher and student predictive distributions. In
this problem, we use Bayesian optimization to determine the optimal parameters of the student neural

18

Published as a conference paper at ICLR 2024

network by setting our objective function as the KL divergence between the teacher and student
predictive distributions. Knowledge distillation is known to be a difficult optimization problem, and
this is problem also has many more dimensions than typical Bayesian optimization benchmarks. For
our experiment, we use the MNIST dataset, and we train a LeNet-5 for our teacher model. For our
student model, we use a small CNN with the following architecture:

1. convolutional layer with 16 convolution kernels of 3x3 (ReLU activation)
. max pool layer 2x2
. convolutional layer with 12 convolution kernels of 3x3 (ReLU activation)

. max pool layer 2x2

[B NS)

. fully connected layer with 10 outputs

19

Published as a conference paper at ICLR 2024

APPENDIX C EXPERIMENT DETAILS

C.1 GENERAL SETUP

For all datasets, we normalize input values to be between [0, 1] and standardize output values to have
mean 0 and variance 1. We also use Monte-Carlo based Expected Improvement as our acquisition
function.

GP: For single-objective problems, we use GPs with a Matérn 5/2 kernel, adaptive scale, a length-
scale prior of Gamma(3, 6), and an output-scale prior of Gamma(2.0,0.15), which combine with
the marginal likelihood to form a posterior which we optimize for hyperparameter learning. For
multi-objective problems, we use the same GP to independently model each objective.

I-BNN: We use I-BNNs with 3 hidden layers and the ReL U activation function. We set the variance
of the weights to 10.0, and the variance of the bias to 1.6. For multi-objective problems, we
independently model each objective.

For each of the following surrogate models which include neural networks, we use MLPs with
3 hidden layers and 128 nodes each. During each iteration of Bayesian optimization, we use a
grid search over prior variance (0.1, 1.0, 10.0) and likelihood variance (0.1, 0.32, 1.0) to find the
combination which maximizes £, where L represents the likelihood of the surrogate model on a
random 20% of the existing function evaluations when the model is trained on the other 80%.

DKL: We set up the base kernel using the same Matérn 5/2 kernel that we use for Gps. For the
feature extractor, we use the model parameters as explained above. For multi-objective problems, we
independently model each objective.

HMC: We use HMC with an adaptive step size, and we choose the architecture as explained above.
We model multi-objective problems by setting the number of nodes in the final layer equal to the
number of objectives.

SGHMC: We use SGHMC with minibatch size of 5 and neural network architecture as indicated above.
We follow the implementation in Springenberg et al. (2016) and use scale-adaptive SGHMC with a
heteroskedastic likelihood variance as determined by the output of the neural network. We model
multi-objective problems by setting the number of nodes in the final layer equal to the number of
objectives.

LLA: We use the model architecture as explained. We model multi-objective problems by setting the
number of nodes in the final layer equal to the number of objectives.

ENSEMBLE: We use an ensemble of 5 models, each with the architecture explained above. Each
model is trained on a random 80% of the function evaluations. We model multi-objective problems
by setting the number of nodes in the final layer equal to the number of objectives.

We run multiple trials for all experiments, where each trial starts with a different set of initial function
evaluations drawn using a Sobol sampler.

C.2 SYNTHETIC BENCHMARKS

Branin We ran 10 trials using batch size 5 with 10 initial points.

Hartmann We ran 10 trials using batch size 10 with 10 initial points.

Ackley We ran 10 trials using batch size 10 with 10 initial points.

BraninCurrin We ran 10 trials using batch size 10 with 10 initial points.

DTLZ1 We ran 10 trials using batch size 5 with 10 initial points.

DTLZS We ran 10 trials using batch size 1 with 10 initial points.

C.3 REAL-WORLD BENCHMARKS

PDE Optimization We ran 10 trials using batch size 1 with 5 initial points.
Interferometer We ran 10 trials using batch size 10 with 10 initial points.
Lunar Lander We ran 10 trials using batch size 50 with 50 initial points.
Pest Control We ran 10 trials using batch size 4 with 20 initial points.

Cell Coverage We ran 10 trials using batch size 5 with 10 initial points.

Qil Spill Sorbent We ran 10 trials using batch size 10 with 10 initial points.

20

Published as a conference paper at ICLR 2024

C.4 HIGH-DIMENSIONAL EXPERIMENTS

Polynomial We ran 10 trials using batch size 10 with 100 initial points.

Neural Network Draw We ran 10 trials using batch size 10 with 100 initial points.
Knowledge Distillation We ran 10 trials using batch size 10 with 100 initial points.

C.5 NEURAL ARCHITECTURE SEARCH

We used SMAC (Lindauer et al., 2022) to find the optimal hyperparameters of HMC for Cell
Coverage, Pest Control, and DTLZ5 benchmark problems using Bayesian optimization. For each
benchmark, our new objective function was the average maximum value found for three runs of
Bayesian optimization using the same problem setup as detailed above. We used the hyperparameter
optimization facade in SMAC, and for each problem, we used Bayesian optimization to select 200
different HMC architectures to find the optimal combination from the following set of possible values:

¢ Network width: [32, 512] (continuous)

* Network depth: {1, 2, 3,4, 5, 6} (discrete)

¢ Network activation: {"ReLU", "tanh"} (discrete)

* log,, of likelihood variance: [-3.0, 2.0] (continuous)
* log; of prior variance: [-3.0, 2.0] (continuous)

We then use the optimal architecture and run the benchmark for 10 trials with the same setup as
described in Appendix C.2 and Appendix C.3 to compare the results of HMC with and without neural
architecture search.

For cell coverage, the final HMC model was an MLP with 5 hidden layers, 184 parameters per layer,
tanh activation, likelihood variance of 26.3, and prior variance of 0.54.

For pest control, the final HMC model was an MLP with 1 hidden layer of size 321, tanh activation,
likelihood variance of 0.26, and prior variance of 0.31.

For DTLZS, the final HMC model was an MLP with 3 hidden layers, 297 parameters per layer, relu
activation, likelihood variance of 0.01, and prior variance of 0.30.

21

Published as a conference paper at ICLR 2024

APPENDIX D FURTHER EMPIRICAL RESULTS

D.1 BNN ARCHITECTURE

D.1.1 NEURAL ARCHITECTURE SEARCH

To further investigate the impact of architecture on the performance of BNNs, we conduct an extensive
neural architecture search over a selection of the benchmark problems, varying the width, depth, prior
variance, likelihood variance, and activation function. For our experiments, we use SMAC3 (Lindauer
et al., 2022), a framework which uses Bayesian optimization to select the best hyperparameters, and
we detail the experiment setup in Appendix C. While a thorough search over architectures is often
impractical for realistic settings of Bayesian optimization since it requires a very large number of
function evaluations, we use this experiment to demonstrate the flexibility of BNNs and to showcase
its potential when the design is well-suited for the problem.

We show the effect of neural architecture search on HMC surrogate models in Figure A.1. On the Cell
Coverage problem, the architecture search did not drastically change the performance of HMC. In
contrast, extensively optimizing the hyperparameters made a significant difference on the Pest Control
problem, leading to HMC finding higher rewards than GPs while using fewer function evaluations;
however, on this problem, I-BNN, which does not require specifying an architecture, still performs
best. Neural architecture search was also able to improve the results on DTLZS, leading HMC to be
competitive with other surrogate models such as 1-BNNs and DKL. The difference in the benefits
of the search may be attributed to some problems having less inherent structure than others, where
extensive hyperparameter optimization may not be as necessary. Additionally, our original HMC
surrogate model choice may already have been a suitable choice for some problems, so an extensive
search over architectures may not significantly improve the performance.

I GP DKL I-BNN I HMC I SGHMC N LLA HEl Ensemble
Cell Coverage (d=30, 0=2) DTLZ5 (d=20, 0=3) 12 Pest Control (d=25, 0=1)
975
el
5950
2
& 925
0.02 900
: 25 50 75 100 25 50 75 100 25 50 75 100 125
Function Evaluations Function Evaluations Function Evaluations

Figure A.1: The impact of neural architecture search on HMC is problem-dependent. The
dashed green line indicates the performance of HMC after an extensive neural architecture search,
compared to the solid green line representing the HMC model selected from a much smaller pool of
hyperparameters. We see that it has minimal impact on Cell Coverage (left), moderate impact on
DTLZS (center), and extensive impact on Pest Control (right), even outperforming GPs. For each
benchmark, we include d for the number of input dimensions, and o for the number of objectives. We
plot the mean and one standard error of the mean over 10 trials.

22

Published as a conference paper at ICLR 2024

D.1.2 SMALLER ARCHITECTURE

Here, we benchmark the performance of BNNs using the relatively small architecture specified by
Kristiadi et al. (2023): an MLP with 2 hidden layers of size 50 with ReLU activation. In the main text,
our experiments used MLPs with 3 hidden layers of size 128 with tanh activation. Our experiments
show that the larger BNN from our main text typically leads to better performance across datasets.
However, even with the smaller architecture, we find that the relative performance of the surrogate
models mostly remains consistent. We still find that HMC often outperforms other approximate
inference methods such as deep ensembles, and we see that SGHMC often finds suboptimal rewards.

We find that LLA seems to have slightly improved performance using this smaller architecture,
especially over many of the real datasets.

s GP mmm DKL I-BNN s HMC @ SGHMC mmm LLA WM Ensemble

Branin (d=2, o=1) Ackley (d=10, o=1)

30 60 90 50 110 170 50 110 170
Function Evaluations Function Evaluations Function Evaluations
50 BraninCurrin (d=2, 0=2) DTLZ1 (d=5, 0=2) DTLZ5 (d=20, 0=3)
159000
158000
157000
30 60 90 156000 30 60 90 30 60 90
Function Evaluations Function Evaluations Function Evaluations

(a) Synthetic Benchmarks

PDE Optimization (d=4, o=1) Interferometer (d=4, o=1) Lunar Lander (d=12, o=1)
e — 0.6 200

kel e
504 5
E) é 100
0.2
10 20 30 40 70 100 150 300 450
Function Evaluations Function Evaluations Function Evaluations
Pest Control (d=25, o=1) Cell Coverage (d=30, 0=2) Oil Spill Sorbent (d=7, 0=3)
» 0.045 1.21
7 -21e6
- —14 kel ke)
@ 50.035 £1.0
2 = =
[[[
x _16 « “0.8
0.025 :
40 70 100 25 50 75 100 120 150 180
Function Evaluations Function Evaluations Function Evaluations

(b) Real-World Benchmarks

Figure A.2: BNN results with a different architecture. We show the performance of BNN surrogate
models with the relatively small architecture specified by Kristiadi et al. (2023): an MLP with 2
hidden layers of size 50 with ReLU activation. For each benchmark, we include d for the number of

input dimensions, and o for the number of objectives. We plot the mean and one standard error of the
mean over 10 trials.

23

Published as a conference paper at ICLR 2024

D.2 ABLATION STUDIES

To better understand the quality of the mean estimates and uncertainty estimates of different surrogate
models, we conducted ablation studies by creating hybrid models which combine the mean estimate
of one surrogate with the uncertainty estimate of another. When we compare this hybrid model
with each individual model, we are able to get insight into the relative performance of the mean and
uncertainty estimates. We provide the results for GP vs HMC, the gold standard inference for BNNs,
and GP vs I-BNN, the model with the most success in high-dimensions.

mm GP s HMC I GP Mean, HMC Uncertainty HMC Mean, GP Uncertainty

Ackley (d=10, 0=1)

Branin (d=2, 0o=1) Hartmann (d=6, o=1)

25 50 75 100 100 200

100 200
Function Evaluations Function Evaluations

Function Evaluations

BraninCurrin (d=2, 0=2) DTLZ1 (d=5, 0=2) DTLZ5 (d=20, 0=3)
(;u g 150000
&20 &
0 140000

50 100 25 50 75 100 50 100
Function Evaluations Function Evaluations Function Evaluations

PDE Optimization (d=4, o=1)

Interferometer (d=4, o=1) Lunar Lander (d=12, o=1)
6 200
D04 ©150
© ©
3 3
€02 7777 2100
50
0.0
10 20 30 50 100 200 400
Function Evaluations Function Evaluations Function Evaluations
Pest Control (d=25, 0=1) Cell Coverage (d=30, 0=2) Qil Spill Sorbent (d=7, 0=3)
4 0.035 121e6
el kel
£0.030 £1.0
2 =
& ’ &
0.025 0.8
—
50 100 50 100 100 150 200
Function Evaluations Function Evaluations Function Evaluations
Polynomial (d=200) NN Draw (d=400) Distillation (d=6320)
50
60
< k<
$40 S50
Q (‘U
o o /
PP a0
100 200 300 30 200 400 600 100 200 300

Function Evaluations Function Evaluations

Function Evaluations

Figure A.3: When we compare GP vs HMC in lower dimensions, we see that mean and uncertainty
estimates of the GP need to work together to achieve optimal results, and HMC does not significantly
improve when we instead use the GP mean or uncertainty estimates. In contrast, in higher dimensions,
the best performing model is the HMC-Mean GP-Uncertainty hybrid, suggesting HMC has better
mean estimates while GPs have better uncertainty estimates in this setting. We plot the mean and one

standard error of the mean over 10 trials, d refers to the number of input dimensions, and o refers to
the number of output dimensions.

24

Published as a conference paper at ICLR 2024

I GP I-BNN Il GP Mean, I-BNN Uncertainty I |-BNN Mean, GP Uncertainty
0 Branin (d=2, o=1) Hartmann (d=6, o=1) Ackley (d=10, o=1)
- s
g -5 22
[[
< 4
J g _ad
-10 1 .
25 50 75 100 100 200 100 200
Function Evaluations

Function Evaluations

Function Evaluations

BraninCurrin (d=2, 0=2)

DTLZ1 (d=5, 0=2)

160000 DTLZ5 (d=20, 0=3)
°
g 150000
U
<
140000
50 100 25 50 75 100 50 100
Function Evaluations Function Evaluations Function Evaluations
PDE Optimization (d=4, o=1) Interferometer (d=4, 0=1) Lunar Lander (d=12, o=1)
150
° °
g 2
9] v 100
-4 4
- 50 g= o
10 20 30 ’ 50 100 200 400
Function Evaluations

Function Evaluations Function Evaluations

Cell Coverage (d=30, 0=2)

_12 Pest Control (d=20=1

Oil Spill Sorbent (d=7, 0=3)
1.21e6

Reward
Reward
=
o

o
©

50 100 50 100 0-6109 150 200
Function Evaluations

Function Evaluations Function Evaluations

Polynomial (d=200)

NN Draw (d=400)

Distillation (d=6320)

60
B

gs0
[}
-4

40

100 200 300 200 400 600 100 200 300
Function Evaluations

Function Evaluations Function Evaluations

Figure A.4: The [-BNN-Mean GP-Uncertainty hybrid model outperforms GPs across a diverse set of
problems, suggesting I-BNNs often provide better mean estimates. In the highest-dimensional prob-
lem of Knowledge Distillation (6,320 dimensions), [-BNNs outperform GPs in both the uncertainty
and the mean estimates, suggesting that their non-Euclidean and non-stationary similarity metric is
advantageous. We plot the mean and one standard error of the mean over 10 trials, d refers to the
number of input dimensions, and o refers to the number of output dimensions.

25

Published as a conference paper at ICLR 2024

D.3 DEEP ENSEMBLES

While deep ensembles often provide good accuracy and well-calibrated uncertainty estimates in
other settings (Lakshminarayanan et al., 2017), we show they can perform relatively poorly for
Bayesian optimization. For instance, when compared to other BNNs on benchmark problems such as
BraninCurrin and DTLZ1, the maximum reward found by deep ensembles plateaus at a lower value
than other surrogate models. These findings are also supported by results shown in Dai et al. (2022),
where deep ensembles do not perform well in Bayesian optimization because they are unable to to
explore the space effectively.

—== True Objective = —— Mean 20 = Function Draw

Depth: 3

0.50 0.75 1.00

Train Points: 4 Train Points: 8 Train Points: 12

-2 !
0.0 0.25 0.50 0.75

Figure A.5: We visualize the uncertainty of deep ensembles in various scenarios. For each set of
experiments, we fix all other design choices with the following base parameters: depth = 3, width =
128, models = 5, train points = 9.

26

Published as a conference paper at ICLR 2024

lel0 100 Data Points

lell 1000 Data Points

1 01«312 10,000 Data Points

\ 1.5 1\ /
1.5 \ / \] 08 \
\ / \

w10\ / 210\ / 9 0.6
S \ / S \ A / S [

05\ // 05 \ [\ // . o\

\/\,/ A\ 02 [\
00_, 1 2 00, 1 2 -1 1 2

0 0 0
Weights Weights Weights

(a) Loss landscape

100 Data Points 1000 Data Points 10000 Data Points

0.04 0.04

(e
0o

I0.04

0.02 0.02

0.00
||
| .:. —0.02
—
4 6 8

0.02

o
[=)]

0.00 0.00

—0.02

I—0.04

0 2 4 6 8 0 2 4 6 8
Independent Model Independent Model

—0.02

I—0.04

Independent Model
Ns

Independent Model
S

Independent Model
sy
N

—0.04

(=]
[=]
(=]

0o 2
Independent Model

(b) Cosine similarity between models

Figure A.6: With minimal training data, the loss landscape is relatively smooth, and separately-
trained models are less diverse. In the fop figure, we train two models, corresponding to x = 0
and x = 1. We then linearly interpolate the weights between the two models to measure how the
loss changes. As we increase the number of datapoints, the loss landscape becomes less smooth and
models are able to find diverse basins of attraction. For the bottom figure, we train 10 models and
plot the cosine similarity between weights. With less training data, the weights of the models are
more related and the models are less diverse. We plot the results for DTLZ1 with 5 input dimensions
and 2 output dimensions.

To further investigate the behavior of deep ensembles, we conduct a sensitivity study, varying the
architecture, the amount of training data, and the number of models in the ensemble.

In Figure A.5, we see that smaller training sizes can paradoxically lead to less uncertainty with deep
ensembles. A critical component in the success of deep ensembles is the diversity of its models. After
training, each model falls within a distinct basin of attraction, where solutions across different basins
correspond to diverse functions. Intuitively, however, in the low data regime there are fewer settings
of parameters that give rise to easily discoverable basins of attraction, making it harder to find diverse
solutions simply by re-initializing optimization runs. We consider, for example, the straight path
between the weights of Model 1 and Model 2, and we follow how the loss changes as we linearly
interpolate between the weights. Specifically, given neural network weights w; from Model 1 and wo
from Model 2, and £(w) representing the loss of the neural network with weights w on the training
data, we plot the loss £L(ws + (w; — wy) * x) for varying values of .

We share results in Figure A.6 for DTLZ1, a problem where deep ensembles performed poorly. We
can see that in low-data regimes, although the loss between the two models does increase, the loss is
significantly higher in other regions of the loss landscape. This behavior suggests that the basins are
not particularly distinct, as the loss stays relatively flat between them, and thus less likely to provide
diverse solutions. However, as we increase the amount of training data, the models are able to find
more pronounced basins.

We also verify that the flatter regions correspond to a decrease in model diversity by measuring the
cosine similarity between the model weights, and we see that in the low-data regime, models have
more similar weights and therefore are less diverse.

In general, Bayesian optimization problems contain significantly fewer datapoints than where deep
ensembles are normally applied. Standard Bayesian optimization benchmarks rarely exceed about
600 data points (objective queries), while in contrast deep ensembles are often trained on problems
like CIFAR-10 which have 50,000 training points.

27

Published as a conference paper at ICLR 2024

Il 2 Models N 5 Models HEl 10 Models

3 Hartmann (d=6, o=1)

Branin (d=2, o=1)

190 Ackley (d=10, o=1)

o o -19.5
© 2 ©
g $-20.0
< -4 [/
1 ¥ -20.5
25 50 75 100 100 200 100 200
Function Evaluations Function Evaluations Function Evaluations
BraninCurrin (d=2, 0=2) DTLZ1 (d=5, 0=2) DTLZ5 (d=20, 0=3)
il 960
°
Soaa0
[0}
-4
920
50 100

25 50 75 100 50 100
Function Evaluations Function Evaluations Function Evaluations
PDE Optimization (d=4, o=1)

Interferometer (d=

Lunar Lander (d=12, o=1)

150
e 2100
© © e
= =
& & s0
0
0.0
10 20 30 50 100 200 400
Function Evaluations Function Evaluations

Function Evaluations
Pest Control (d=25, 0=1) Cell Coverage (d=30, 0=2)

Qil Spill Sorbent (d=7, 0=3)

le6
750000
e
‘;" 700000
(9}
4
650000
50 100 50 100 100 150 200
Function Evaluations Function Evaluations Function Evaluations
Polynomial (d=200) NN Draw (d=400) Distillation (d=6320)
' 50 '
° °
© 40 ©
5 540
-4 -4
30 %) 30 ¥
100 200 300 200 400 600
Function Evaluations

100 200 300
Function Evaluations

Figure A.7: We compare the behavior of ensembles with different numbers of models, and we find
that the different ensembles perform similarly across many experiments, showing the robustness of
our results to this hyperparameter. We plot the mean and one standard error of the mean over 10
trials, d refers to the number of input dimensions, and o refers to the number of output dimensions.

Function Evaluations

28

Published as a conference paper at ICLR 2024

D.4 INFINITE-WIDTH BNNS

I-BNNs outperformed GPs in Bayesian optimization on a variety of high-dimensional problems, and
we show results in Figure A.8. The first row of results corresponds to finding the maximum value of a
random polynomial function, and the second and third rows show the results of maximizing a function
draw from a neural network. For the neural network function draw benchmark, we experimented with
many different architectures for the neural network to ensure that we had a diverse set of objective

functions to maximize, as denoted in the title of each plot. In all cases, I-BNNs were able to find
significantly larger values than GPs.

Polynomial (d=100) Polynomial (d=200)

Polynomial (d=400)

3.5
6 8
3.0
° ° 6
© 2.5 I-BNN © ©
H =4 =
[} [} [}
o -4 4
2 2
200 400 600 200 400 600 200 400 600
Function Evaluations Function Evaluations Function Evaluations
NN Draw (d=200), tanh 2x64 NN Draw (d=200), tanh 2x256 NN Draw (d=200), tanh 2x512
25.0 80 120
22.5 70
o s o o 100
: =" s
@175 N [+4
15.0 60
200 400 600 200 400 600 200 400 600
Function Evaluations Function Evaluations Function Evaluations
NN Draw (d=200), relu 2x64 NN Draw (d=200), relu 2x256 NN Draw (d=200), relu 2x512
6000
3000 20000
< 2500 - -
5 5 4000 5
= 2000 H = 15000
O Y O
-4 o [~4
1500 2000
10000
1000 - — =

200 400
Function Evaluations

600 200 400

Function Evaluations

600 200 400

Function Evaluations

600

Figure A.8: I-BNNs outperform GPs in high dimensions. We plot the mean and one standard error
of the mean over 3 trials, and d corresponds to the number of input dimensions. For the neural
network draw benchmark, the architecture of the neural network which the function is drawn from is
also included, where 2 x 64 means the network has 2 hidden layers of 64 nodes each.

29

Published as a conference paper at ICLR 2024

=== True Objective —— Mean 20 = Function Draw

Depth: 2 Depth: 3 Depth: 4

0.00 0.25 0,50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00

Bias Variance: 10

Figure A.9: We visualize how posterior predictive distribution of I-BNNs changes with different
design choices. For each set of experiments, we fix all other design choices with the following base
parameters: depth = 3, weight variance = 10, bias variance = 5, activation = relu.

In Figure A.9, we conduct a sensitivity analysis on the design of I-BNNs, showing how the posterior
changes as we vary certain hyperparameters. Unlike standard GPs with RBF or Matérn kernels
which are based in Euclidean similarity, I-BNNs instead have a non-stationary and non-Euclidean
similarity metric which is more suitable for high-dimensional problems. Additionally, I-BNNs
consist of a relatively strong prior, which is particularly useful in the data-scarce settings common to
high-dimensional-problems.

30

Published as a conference paper at ICLR 2024

Problem Dim GPMLL [I-BNNMLL

Branin 2 -3775.3 -1354.1
Hartmann 6 -13204 -1630.1
Ackley 10 -1463.6 -1824.3
Ackley 20 -1657.3 -2070.2
Ackley 50 -2788.9 -2316.4
Ackley 100 -4131.6 -2456.9
NN Draw 10 -3226.9 -1829.6
NN Draw 50 -15544.3 -2344.7
NN Draw 100 -39197.5 -2453.8
NN Draw 200 -35775.2 -2584.0
NN Draw 400 -48710.9 -2737.2
NN Draw 800 -63123.4 -2868.9
Distillation 6230 -2126658.7 -3059.8

Table A.1: 1-BNNs have larger marginal likelihoods than GPs on high-dimensional problems.
Here, we show the marginal log likelihood (MLL) of GPs and I-BNNs on various benchmark problems,
and we estimate the MLL by sampling 1000 points randomly from the input domain.

To explore the suitability of the neural network kernel, we compare the marginal likelihood of GPs and
I-BNNs on problems with various dimensions, and we report results in Table A.1. We see that I-BNNs
and GPs have similar marginal likelihoods on problems with fewer dimensions, such as Branin and
Hartmann, but as we increase the number of dimensions, the marginal likelihood of GPs becomes
lower than that of I-BNNs. Interestingly, we see that the marginal likelihood of GPs does not decrease
as quickly for Ackley as it does for the neural network draw test problem. This may be due to the
neural network draw objective function having higher non-stationarity, so the standard GP kernel is
less suitable for this problem compared to Ackley. For the knowledge distillation experiment, we
see that the marginal likelihood of GPs plummets, and it was also not able to find high rewards for
the problem as shown in Figure 5. Overall, I-BNNs have a higher marginal likelihood than GPs on
high-dimensional problems, indicating that the I-BNN prior may be more reasonable in these settings.

31

Published as a conference paper at ICLR 2024

D.5 HAMILTONIAN MONTE CARLO

We also explore the effect of the activation function on HMC. In Figure A.10, we see that the function
draws from BNNs with tanh activations appear quite different from the function draws from BNNs
with ReLU activations. The tanh draws are smoother and have more variation, while the ReLU draws
seem to be more jagged. We also include results in Figure A.11 which compare the performance of
ReLU and tanh activations in Bayesian optimization problems. We see that there does not appear to
be an obvious trend, the optimal choice of activation function is problem-specific.

75 tanh 75 relu

Figure A.10: The function draws of BNNs with tanh activations appear to be similar to the function
draws from a GP. In contrast, the function draws from BNNs with ReLLU are often jagged, and the
network seems to deviate less from the mean.

Ackley (d=10, 0o=1) DTLZ1 (d=5, 0=2)
-19.0
192 159200
° 2
g -19.4 € 159000
() ()
*_196 «
158800
-19.8
158600
relu tanh relu tanh
Activation Activation

Figure A.11: In practice, ReLU and tanh activation functions can have comparable performance on
synthetic functions.

32

Published as a conference paper at ICLR 2024

D.6 GAUSSIAN PROCESSES

e Matern Opt === Matern Marg === RBF Opt === RBF Marg

Branin (d=2, o=1)

Hartmann (d=6, o=1)

Ackley (d=10, o=1)

kel e
<4 °5
S -4 g
[(]
o o
_6 1
25 50 75 100 100 200 100 200
Function Evaluations Function Evaluations Function Evaluations
BraninCurrin (d=2, 0=2) DTLZ1 (d=5, 0=2) DTLZ5 (d=20, 0=3)
40 ke
H & 150000
= =
& 20 &
140000
0
50 100 25 50 75 100 5 100
Function Evaluations

Function Evaluations

Function Evaluations

Figure A.12: The point estimate for hyperparameter selection tends to improve performance on
synthetic datasets. The solid lines refer to hyperparameter optimization using a point estimate, while
dashed lines correspond to fully Bayesian marginalization. We see that while the methods perform
similarly on Branin, Hartmann, and DTLZ1, the point estimates perform slightly better for other
datasets. The optimal choice of GP kernel is also problem-dependent. In many instances, Matérn
and RBF perform similarly, although the point estimates for Matern outperform RBF on Ackley.

We plot the mean and one standard error of the mean over 10 trials, d refers to the number of input
dimensions, and o refers to the number of output dimensions.

= Matern Opt === Matern Marg === RBF Opt === RBF Marg

PDE Optimization (d=4, o=1)

Interferometer (d=4, o=1)

Lunar Lander (d=12, o=1)

10 20 30 0025 50 75 100
Function Evaluations Function Evaluations

200 400
Function Evaluations

Pest Control (d=25, o=1) Cell Coverage (d=30, 0=2) Oil Spill Sorbent (d=7, 0=3)
: - v le6 . _

25 50 75 100 125 25 50 75 100
Function Evaluations Function Evaluations

100 125 150 175 200
Function Evaluations

Figure A.13: The method of hyperparameter selection greatly impacts the performance of GPs
on real-world datasets. The solid lines refer to hyperparameter optimization using a point estimate,
while dashed lines correspond to fully Bayesian marginalization. We see real-world datasets often
find marginalization of the hyperparameters to be more effective. The optimal choice of GP kernel is
also problem-dependent. In many instances, Matérn and RBF perform similarly, although the point
estimates for Matérn outperform RBF on discrete problems such as Pest Control and Cell Coverage.
We plot the mean and one standard error of the mean over 10 trials, d refers to the number of input
dimensions, and o refers to the number of output dimensions.

33

Published as a conference paper at ICLR 2024

D.7 DEEP KERNEL LEARNING

Rather than using the marginal likelihood to optimize parameters for DKL, we can also use the
conditional marginal likelihood (Lotfi et al., 2023). We see in Figure A.14 that there is no clear

preference for using the marginal likelihood (ML), which we use through all other experiments in the
paper, or conditional marginal likelihood (CML) for our problems.

W DKL-ML mmm DKL-CLML

Branin (d=2, o=1)

Hartmann (d=6, o=1)

Ackley (d=10, 0=1)

©20 °
© ©
g g
215 2
1.0
25 50 75 100 100 200 100 200
Function Evaluations Function Evaluations Function Evaluations
BraninCurrin (d=2, 0=2) DTLZ1 (d=5, 0=2)

DTLZ5 (d=20, 0=3)

150000

Reward

140000

50 100 25 50 75 100 50

100
Function Evaluations Function Evaluations

Function Evaluations

PDE Optimization (d=4, o=1) Interferometer (d=4, o=1)

10 20 30 ' 50 100

200 400
Function Evaluations Function Evaluations

Function Evaluations

Pest Control (d=25, o=1) Cell Coverage (d=30, 0=2) Oil Spill Sorbent (d=7, 0=3)

1le6

1.0
e
©
3
x 0.8
50 100 20 40 60 100 150 200
Function Evaluations

Function Evaluations Function Evaluations

Figure A.14: There is no clear preference for using the marginal likelihood (ML) or conditional
marginal likelihood (CML) to optimize the parameters of DKL

34

Published as a conference paper at ICLR 2024

D.8 ACQUISITION BATCH SIZE

I GP mmm DKL I-BNN s HMC B SGHMC W LLA EEE Ensemble
Batch Size 2 Batch Size 10 Batch Size 20
-17 /
©-18
g
K -19 —
-20 ,‘ !F:l Y.
-2l 25 50 75 100 50 100 150 200 0 50 100 150 200
Function Evaluations Function Evaluations Function Evaluations
(a) Ackley (d=10, o=1)
Batch Size 2 Batch Size 5 Batch Size 10
980
960
°
©
q%940 P
-4
920
900
25 50 75 100 25 50 75 100 25 50 75 100
Function Evaluations Function Evaluations Function Evaluations

(b) DTLZ5 (d=20, 0=3)
Batch Size 2 Batch Size 4 Batch Size 10

25 50 75 100 125 25 50 75 100 125 25 50 75 100 125
Function Evaluations Function Evaluations Function Evaluations

(c) Pest Control (d=25, o=1)

Batch Size 2 Batch Size 5 Batch Size 10
0.040 :
0.040
0.035
‘E 20.035
g0.030 & 0.030
0.025 ‘ 0.025
25 50 75 100 ' 25 50 75 100 25 50 75 100
Function Evaluations Function Evaluations Function Evaluations

(d) Cell Coverage (d=30, 0=2)

Figure A.15: The batch size of the acquisition function impacts the performance of the models, but
the general trends remain similar. The relative performance of the models are similar across varying
batch sizes, with a few notable exceptions. The I-BNN seems to plateau on DTLZS, and is unable to
find high rewards. GPs also seem to perform significantly better on Cell Coverage with a batch size
of 5 compared to other sizes. For each benchmark, we include d for the number of input dimensions,

and o for the number of objectives. We plot the mean and one standard error of the mean over 10
trials.

35

Published as a conference paper at ICLR 2024

D.9 LIMITATIONS OF GAUSSIAN PROCESS SURROGATE MODELS

Due to their assumptions of stationarity as noted in Section 4.3, GPs struggle in non-stationary settings.
In Figure A.16, we compare the posterior distribution from a GP with the posterior from different
BNN surrogate models. We show results after 20 iterations of Bayesian optimization, starting with
an initial point of x = 0. The function we wish to maximize is non-stationary: the function has
greater variance between —2 and 2, and there is also a slight downward trend. We see that due to their
stronger assumptions, GPs are not able to find the true global maximum of 0.8, instead getting suck in
local optima. In contrast, HMC and I-BNNs are able to find the global maximum within 20 iterations.

—— True Objective —— Mean 20 == Function Draw

(a) GP (b) HMC (c) I-BNN

Figure A.16: GPs struggle to find the global maximum for non-stationary functions. After 20
function evaluations, the GP does not accurately model the true function around x = —1 because it is
unable to account for the sudden increase in scale due to its assumption of stationarity. BNNs do not
suffer from the same pathologies and are able to find the true maximum.

An additional limitation of GP surrogate models, which we demonstrate in Figure A.17, is its perfor-
mance on multi-objective problems in Bayesian optimization. Although GPs have been successfully
extended to a wide range of multi-objective problems, in the interest of making the approaches
scalable, there are many assumptions placed onto the kernel. In the most naive setting, we can
model each objective independently. While this approach is convenient, it completely ignores the
relationship between objective values and has no notion of shared structure, so it is unable to take
advantage of all of the information in the problem. Multi-objective covariance functions can also be
decomposed as Kronecker product kernels. While this approach can have significant computational
advantages compared to modeling the full covariance function, it requires each objective to itself be
modeled with the same underlying kernel. Thus, this method of modeling multiple objectives will
fail to capture the nuances of each particular objective when the functions have differing properties.

In Figure A.17, we show the result of twenty iterations of Bayesian optimization over a synthetic
multitask example, where we care about optimizing over the fourth function but provide additional
information through the other three datasets. We use the GP with Kronecker product kernels to model
the multiple objectives. In our experiment, although the GP is able to learn the proper length scale and
variance over the three additional functions with similar length scales, it struggles to accurately fit the
fourth objective. Because the GP is unable to account for the differences between the four functions,
it does not find the global optimum. Unlike GPs, BNNs are not restricted to strict covariance structures
and are able to produce well-calibrated uncertainty estimates in multi-objective settings. The BNNs
are able to accurately fit all four functions, including the fourth objective function which has a much
smaller length scale compared to the others.

36

Published as a conference paper at ICLR 2024

Objective 1 Objective 2
0.50 0.20
) o
3 > 0.00
€ 0.00 8
-0.20
-5.0 -25 0.0 2.5 5.0 -5.0 -25 0.0 2.5 5.0
Objective 3 Objective 4
0.50 1.00
[} n
E o2 g 0.00
= 0.00 s
-0.25
-5.0 -25 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0
(a) GP
Objective 1 Objective 2
1.00 1.00
o o
> >
-1.00 -1.00
-5.0 -25 0.0 2.5 5.0 -5.0 -25 0.0 2.5 5.0
Objective 3 Objective 4
1.00
& 0 0.00
= =
-1.00 ~2.00
" =5.0 -2.5 0.0 2.5 5.0 -5.0 -25 0.0 2.5 5.0
(b) HMC

Figure A.17: GPs have a hard time finding the global maximum in multi-objective settings.
Multi-task GPs learn one length scale across all objectives, which may not be suitable for many
datasets. In this example, it does not find the global minimum in the 4th objective because it treats
the shorter length scale as noise. In contrast, BNNs are able to appropriately model the uncertainty for
the 4th objective and find its true minimum.

37

Published as a conference paper at ICLR 2024

D.10 LARGE NUMBER OF FUNCTION QUERIES

To further accentuate the distinctions between BNNs and GPs, we experiment with a larger number of
function queries. Specifically, we look to maximize a function with 200 input dimensions drawn from
a fully connected neural network with 5 layers and 256 nodes per layer. We expect this function to
have a high degree of non-stationarity, making it difficult for standard GPs. We start with 2000 initial
function queries and end the experiment at 3000 function queries. We share results in Figure A.18.

Hm GP I DKL I-BNN m HMC I SGHMC LA Hl Ensemble
Large NN Draw (d=200, o=1)

~
o

Max Reward

BN
[s s s

2000 2200 2400 2600 2800 3000
Function Evaluations

Figure A.18: BNNs outperform GPs when there are a large number of function queries.

This experiment reveals several valuable findings: (1) I-BNNs remain competitive relative to the
alternatives; (2) BNN surrogates start to perform more effectively, able to leverage the additional
data for representation learning; (3) deep ensembles, in particular, are greatly improved with more
data, in line with our explanation that the relative poor performance was due to an inability to find
diverse models corresponding to posterior modes when there is limited data. At the same time,
we note most Bayesian optimization problems do not have many objective queries, since Bayesian
optimization is often found to be most valuable when the objective is expensive to query. In this light,
perhaps (1) is the most valuable of the findings, since it shows consistency of the relatively strong
I-BNN surrogate. In the future, we might expect I-BNNs to become a mainstream surrogate model for
Bayesian optimization.

38

Published as a conference paper at ICLR 2024

D.11 RUNTIME

While inference time is relevant for the comparison of surrogate models, in many real-world Bayesian
optimization scenarios, the most expensive computation often lies in the querying of the objective
function, which may include actions such as synthesizing a new material, training a large neural
network to convergence, etc. For these scenarios, the quality of the surrogate model uncertainties
may be much more important than the cost of inference. For completeness, in rare instances where
inference-time is a relevant consideration, we provide wall-clock times of all surrogate models across
our experiments in Table A.2, and we compare the performance of the surrogate models within a
fixed time budget in Figure A.19

Problem GP DKL I-BNN HMC SGHMC LLA Ensemble
Branin 2.62 124.55 3.97 214.40 142.21 19.29 190.24
Hartmann 8.20 123.00 7.79 663.22 381.57 49.25 413.50
Ackley 4.28 263.78 4.69 141.66 201.48 28.29 22541
BraninCurrin 14.17 198.80 19.76 237.71 365.86 61.09 432.94
DTLZ1 8.25 117.02 10.82 183.74 127.54 21.97 194.68
DTLZ5 21.50 308.12 22.18 194.81 147.07 38.99 231.96
PDE 240.48 512.98 239.23 456.48 628.14 312.40 981.50

Interferometer 16.09 939.49 17.97 690.07 540.59 83.61 944.87
Lunar Lander 45896 314030 621.20 3118.65 684.61 802.13 829.44

Pest Control 3.84 268.06 5.43 66.18 219.08 27.87 253.37
Cell Coverage 9.50 593.09 13.26 101.23 181.11 35.00 243.17
Oil Spill 37.51 300.20 4481 291.53 35030 12471 438.89
Polynomial 16.28 673.40 20.59 21194 486.75 106.77 540.41
NN Draw 232.48 1458.11 39195 896.34 451.34 799.88 1124.63

Distillation 4719.40 3982.80 4937.27 4282.89 299.40 3223.16 3007.93

Table A.2: Wall-clock time in seconds of one trial of each experiment, with experiment details
specified in Appendix C. We record the mean time over 10 trials.

Ackley (d=10)

V) 7 7
.

GP

DKL
I-BNN
HMC
SGHMC
LLA
Ensemble

\

Figure A.19: For objective functions which are very inexpensive to query, like Ackley, we find GPs
and I-BNNs to outperform other surrogate models given a fixed amount of time. However, for the
many Bayesian optimization problems instead which expensive to query, and the total time would be
dominated by the function query instead of inference time. We record the mean and standard error
over 10 trials.

39

	Introduction
	Related Work
	Surrogate Models
	Role of Architecture

	Empirical Evaluation
	Synthetic Benchmarks
	Real-World Benchmarks
	Limitations of GP Surrogate Models
	Model Rankings
	Additional Practical Considerations
	Revisiting Standard Assumptions

	Discussion
	Reproducibility
	Background
	Bayesian Optimization
	Gaussian Processes
	Bayesian Neural Networks

	Problem Descriptions
	Synthetic Datasets
	Real-World Datasets
	High-Dimensional Problems

	Experiment Details
	General Setup
	Synthetic Benchmarks
	Real-World Benchmarks
	High-Dimensional Experiments
	Neural Architecture Search

	Further Empirical Results
	BNN Architecture
	Ablation Studies
	Deep Ensembles
	Infinite-Width BNNs
	Hamiltonian Monte Carlo
	Gaussian Processes
	Deep Kernel Learning
	Acquisition Batch Size
	Limitations of Gaussian Process Surrogate Models
	Large Number of Function Queries
	Runtime

