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On the limits of distinguishing seabed types via ambient
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ABSTRACT:
This article presents a theoretical analysis of optimally distinguishing among environmental parameters from ocean
ambient sound. Recent approaches to this problem either focus on parameter estimation or attempt to classify the
environment into one of many known types through machine learning. This classification problem is framed as one
of hypothesis testing on the received ambient sound snapshots. The resulting test depends on the Kullback-Leibler
divergence (KLD) between the distributions corresponding to different environments or sediment types. Analysis of
the KLD shows the dependence on the signal-to-noise ratio, the underlying signal subspace, and the distribution of
eigenvalues of the respective covariance matrices. This analysis provides insights into both when and why successful
hypothesis testing is possible. Experiments demonstrate that our analysis provides insight as to why certain environ-
mental parameters are more difficult to distinguish than others. Experiments on sediment types from the Naval
Oceanographic Office Bottom Sediment type database show that certain types are indistinguishable for a given array
configuration. Further, the KLD can be used to provide a quantitative alternative to examining bottom loss curves to
predict array processing performance. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0022331
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I. INTRODUCTION

Understanding the composition of the ocean floor is a
critical task for the prediction of sonar performance and
operation. The seabed type can be parameterized in terms of
a geoacoustic model1 and can have a significant impact on
estimation and detection performance of active sonar sys-
tems.2,3 In recent years, there has been increased interest in
estimating environmental parameters passively, utilizing the
ambient acoustic sound occurring from surface waves or
ships of opportunity.4–8 While many studies focus on highly
accurate, offline seabed characterization,7–12 the ability to
determine the seabed type in an online manner can improve
the fidelity of sonar performance predictions. Further, refin-
ing estimates of the spatial variability of the seabed may
involve adaptively guiding autonomous underwater
vehicles, which must make decisions based on real-time
information.13,14

Most recently, there has been great interest in applying
machine learning techniques to acoustics,15 with promising
results displayed for both geoacoustic inversion and seabed
classification.16–20 However, training such algorithms
requires the curation of large datasets, as well as a priori
knowledge of which seabed types may be encountered.
Further, when such approaches fail, it is unclear whether
this is due to (1) limits of the machine learning model
selected, (2) the training procedure, or (3) fundamental
properties of the seabed parameters under consideration.

Before investing the resources required to generate
large datasets for training such algorithms, it is essential to
first understand the information-theoretic limits of classifica-
tion using ambient acoustic sound. Toward this end, we con-
sider a more basic problem: beginning with a reference class
whose distribution is perfectly known, our goal is to decide
whether snapshots from a given location belong to the refer-
ence class or a new class. This task is simpler than a general
classification problem and has applications in seabed explo-
ration. In particular, consider the goal of distinguishing
between seabed types in the High Frequency Environmental
Acoustics (HFEVA) dataset from the Naval Oceanographic
Office Bottom Sediment type Database.21 In practical set-
tings, the seabed may consist largely of one type (e.g.,
rock), and the aim is then to discover any locations where
the seabed type deviates from this reference. This problem
may be framed as a hypothesis test, which is solved by eval-
uating the likelihood ratio between the two distributions and
whose success is governed by the Kullback-Leibler diver-
gence (KLD).

This article introduces a decision-theoretic approach to
distinguishing between seabed parameters. Our key contri-
bution is the analysis of the KLD in the case of circularly
symmetric complex Gaussians under an additive covariance
model.8 This analysis facilitates a deeper understanding of
the fundamental limits of seabed classification, placing the
KLD in terms of the signal-to-noise ratio, the underlying
subspace structure in the data, and the distribution of the
eigenvalues of the respective covariance matrices. We then
examine these properties in terms of real seabed parametersa)Email: lipor@pdx.edu
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using data generated by the multidimensional ambient noise
model (MDANM),22 which is an ocean ambient sound
model and sonar simulator based on the Harrison model,23

providing insights into when successful hypothesis testing is
possible. Finally, we apply our approach to distinguishing
between seabed types from the HFEVA database, indicating
which seabed types can be reliably distinguished for the
given array configuration.

The remainder of this article is organized as follows.
Section II describes the decision-theoretic framework for
determining whether sets of ambient acoustic snapshots are
indicative of distinct seabed types, as well as connections of
this framework to the KLD. Section III provides an in-depth
analysis of the KLD for the covariance model considered,8

providing insights into the fundamental limits of hypothesis
testing. In Sec. IV, we evaluate the performance of hypothe-
sis testing, analyzing the sensitivity to various environmen-
tal parameters of interest, as well as the ability to resolve the
various sediment types from the HFEVA database. Finally,
Sec. V provides a discussion of these results and additional
potential applications.

II. THEORY

This section provides the theoretical limits on distin-
guishing between geoacoustic properties at two distinct
locations using the ambient sound field. Define the N-dimen-
sional vector of geoacoustic parameters of interest to be h,
which is an element of the set of all possible parameters
H ! RN . Consider an array of M receivers that capture
ambient acoustic sound. Each sensor captures a finite-
duration time series that is then Fourier transformed, result-
ing in a snapshot x 2 CM. For a given set of environmental
parameters, we assume that the snapshots are drawn from a
circularly symmetric complex Gaussian distribution with
covariance8

Kh ¼ E xxH½ $ ¼ r2
s Ch þ r2

nI; (1)

where r2
s is the power in the ambient sound generated by

surface waves, r2
n is the non-acoustic sensor noise variance,

and Ch is the signal covariance matrix, which is obtained
from a model of the ambient sound.23,24 Without loss of
generality, we assume trðChÞ ¼ M to match the power in the
signal and noise covariances. For such snapshots, the proba-
bility density function (PDF) is given as

f ðx; hÞ ¼ det pKhð Þ(1 exp (xHK(1
h x

! "
; (2)

where det denotes the determinant and the semicolon indi-
cates that h consists of a vector of non-random model
parameters (see the Appendix A, Ref. 38). The above PDF
should be viewed as a function of x for a fixed set of envi-
ronmental parameters h. This lies in contrast to the setting
of maximum likelihood estimation, which is discussed in
Sec. II A. We use the notation C0 and C1 to refer to the sig-
nal covariances corresponding to parameters h0 and h1,

respectively. We likewise define K0 ¼ r2
s C0 þ r2

nI and
K1 ¼ r2

s C1 þ r2
nI.

Consider snapshots obtained from two separate physical
regions of the seabed. Our goal is to determine whether
these snapshots are drawn from the same distribution, which
indicates whether they share the same environmental param-
eters. Classical decision theory indicates this problem can
be solved via the generalized likelihood ratio test,25 detailed
in Sec. II A. The goal of this work is to establish fundamen-
tal limits on when hypothesis testing can reliably distinguish
between two sets of environmental parameters.

A. Hypothesis testing

The statistical approach to distinguishing between two
sets of model parameters is known as hypothesis testing.25

The test of whether the seabed parameters are the same at
two locations then becomes one of testing the equivalence
between the distributions of snapshots at these locations. To
establish fundamental limits on distinguishing such parame-
ters, we assume the environment is well studied at a refer-
ence location with parameters h0, so that the error in
estimating the resulting covariance K0 is negligible. At each
new location, we obtain a set of L snapshots x1;…; xL and
wish to test

x1;…; xL ) f x; h0ð Þ vs x1;…; xL ) f x; h1ð Þ;

where h1 6¼ h0 is an unknown set of environmental parame-
ters. To formalize this test, we partition the set of possible
parameter vectors H ! RN into two subsets H0 and H1

such that H0 [H1 ¼ H and H0 \H1 ¼ ;. In our setting,
H0 ¼ h0 and H1 ¼ Hn h0f g. The task is to decide between
the null hypothesis

H0: h ¼ h0 (3)

and the alternative hypothesis

H1: h 6¼ h0: (4)

Let S ! CM be a set of snapshots. To decide between H0

and H1, we define a test statistic KðSÞ and critical value or
threshold s such that we decide H1 when KðSÞ > s and H0

otherwise. The threshold s is a user-defined value that is
usually selected to allow a fixed probability of false posi-
tives. Formally, define the rejection region as the possible
sets of snapshots for which we reject the null hypothesis

R ¼ S ! CM : KðSÞ > s
# $

: (5)

In the case where H0 ¼ h0, the test is said to have size or
level a if PH0

ðS 2 RÞ * a. In words, the test level is
the probability that snapshots drawn under the null hypothe-
sis lie in the rejection region, i.e., the false alarm rate. To
obtain a test of level a, the threshold is chosen so that
PH0
ðKðSÞ > sÞ ¼ a.
For the two-sided test above, where the parameters

under the alternative hypothesis are unknown, a common
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choice of test statistic is the generalized likelihood ratio test
(GLRT). Let LðhÞ be the likelihood of the data under param-
eters h,

LðhÞ ¼
YL

i¼1

f xi; hð Þ: (6)

The GLRT statistic is then defined as

Kðx1;…; xLÞ ¼ 2 log
suph2H1

LðhÞ
suph2H0

LðhÞ
: (7)

The likelihood function is a measure of how well the param-
eters h fit the fixed set of observations x1;…; xL. In this light,
the hypothesis test then becomes one of measuring the most
likely parameters under the null hypothesis against those
under the alternative hypothesis. In our setting, H0 ¼ h0 is
known, and the numerator of Eq. (7) corresponds to the
maximum likelihood estimate. This test is asymptotically
the uniformly most powerful (UMP), i.e., among all tests
with level a, it has (asymptotically) the greatest chance of
correctly rejecting samples from the alternative hypothesis.
Further, for finite samples, if a UMP test exists, then it cor-
responds to the GLRT.26

Under the snapshot model defined by Eqs. (1) and (2),
the GLRT becomes

Kðx1;…; xLÞ ¼ 2L log
det K0ð Þ
det K̂ð Þ

(M þ tr K(1
0 K̂

% &' (
;

(8)

where K0 is the covariance corresponding to the parameters
h0, and K̂ ¼ ð1=LÞ+L

i¼1xixH
i is the sample covariance matrix,

which is the maximum likelihood estimate of the unknown
covariance matrix. Equation (8) is derived in Appendix A.

Figure 1 displays the resulting test statistic and thresh-
old for the “rock” and “gravelly muddy sand” sediment
types from the HFEVA dataset. We set the SNR to unity
and treat “rock” as the null hypothesis. To select the thresh-
old s, we utilize the well-known result that the GLRT con-
verges to a v2

! distribution with degrees of freedom
! ¼ MðM ( 1Þ, which is the number of free variables in the
covariance matrix. We choose the threshold to correspond
to test level a ¼ 10(4. For each region, we generate 50 inde-
pendent samples of 300 snapshots. Within the “transition”
region, we draw a fraction of snapshots from each of the
two sediment types, with the proportion from rock decreas-
ing linearly as the plot moves to the right. The figure shows
that the test statistic increases rapidly as more snapshots are
obtained from the gravelly muddy sand region, and the alter-
native hypothesis (not rock) is selected for any values of K
greater than s.

B. Kullback-Leibler divergence

The KLD27 is a common means of measuring the dis-
crepancy between two distributions and has been utilized in

acoustic signal classification,28,29 environmental parameter
estimation,8 and direction of arrival estimation.30 For two
distributions with corresponding parameters h0 and h1, the
general form of the KLD of the distribution f ðx; h1Þ from
f ðx; h0Þ is

D h0jjh1ð Þ ¼
ð

f ðx; h0Þ log
f ðx; h0Þ
f ðx; h1Þ

dx: (9)

The KLD appears frequently in the analysis of various
hypothesis tests,31 and recent results indicate that high-
dimensional hypothesis tests can be shown to approximate
the KLD or other divergences.32 From an information-
theoretic perspective, the KLD measures the inefficiency in
using parameter h1 when the true distribution corresponds
to h0.33

In the case of circularly symmetric complex Gaussians,
the KLD is shown to be8

Dðh0jjh1Þ ¼ trðK(1
1 K0Þ (M þ log

detðK1Þ
detðK0Þ

: (10)

Comparing Eq. (10) to Eq. (8), we see that the GLRT can be
placed in terms of the KLD, so that

Kðx1;…; xLÞ ¼ 2LD ĥjjh0

% &
; (11)

where ĥ refers to the parameters under the maximum likeli-
hood estimate. In light of Eq. (11), we see that the GLRT
can be viewed as measuring whether the distribution of
snapshots under the null hypothesis is sufficiently far from
the distribution under the maximum likelihood estimate.

Interpreting the GLRT in light of the KLD provides a
lower bound on which seabed parameters can be distin-
guished from a set of L snapshots. Consider two sets of
parameters h0 and h with true KLD Dðhjjh0Þ. When

FIG. 1. (Color online) Example hypothesis testing between “Rock” and
“Gravelly Muddy Sand” sediment types from HFEVA dataset. In the transi-
tion region, the proportion of snapshots from each sediment types varies lin-
early. The test statistic K remains below the threshold s until the transition
region.
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estimating this divergence from a set of L snapshots, exist-
ing results from parametric estimation of KLD34 indicate
that the absolute error converges at a rate of O 1=

ffiffiffi
L
p! "

, i.e.,

jDðhjjh0Þ ( Dðĥjjh0Þj *
cffiffiffi
L
p ; (12)

for some c> 0. Equation (12) provides the following lower
bound on the estimated KLD:

D ĥjjh0

% &
+ Dðhjjh0Þ (

cffiffiffi
L
p :

Therefore, a sufficient condition to guarantee the estimated
KLD is positive is

Dðhjjh0Þ >
cffiffiffi
L
p : (13)

In other words, the estimated KLD may be as small as zero
unless the condition (13) is met. Hence, we conclude that no
threshold s can reliably distinguish between the null and
alternative hypotheses unless there is a discrepancy of c=

ffiffiffi
L
p

between the two distributions. Conversely, if the KLD
between the estimated and null distributions is greater than
c=

ffiffiffi
L
p

, one may reliably select the alternative hypothesis.
We will show in Sec. IV that the threshold chosen to obtain
a level of a ¼ 1, 10(4 corresponds to this bound on the
KLD.

III. THEORETICAL CHARACTERIZATION OF KLD

In Sec. II, we showed that the hypothesis testing prob-
lem is intrinsically linked to the KLD between the underly-
ing distributions. In this section, we provide a deeper
analysis of the KLD between two sets of environmental
parameters under the model (1). This allows us to place the
KLD in terms of familiar quantities such as the signal-to-
noise ratio (SNR) and to disentangle the isotropic sensor
noise from the underlying signal covariance matrices. While
Sec. II B provides a bound on when hypothesis testing can
successfully distinguish between seabed parameters, the
analysis provided here provides a deeper look as to why.

The following theorem quantifies the KLD in terms of
the SNR r2

s=r
2
n and the eigenvalues and eigenvectors of C1

and C2.
Theorem 1. Consider two zero-mean, circularly sym-

metric Gaussian distributions characterized by the covari-
ance matrices K1 and K0. Assume these covariances follow
the model (1) with parameter vectors h1 and h0, respectively.
Finally, let C1 ¼ UKUH and C0 ¼ VPVH. Then

Dðh0jjh1Þ ¼ SNR M (
XM

i¼1

XM

j¼1

pikjSNR

1þ kjSNR
juH

j vij2
0

@

1

A

(
XM

i¼1

kiSNR

1þ kiSNR
þ
XM

i¼1

log
kiSNRþ 1

piSNRþ 1

' (
:

(14)

The proof can be found in Appendix B. Theorem 1
allows us to characterize how distinct the two distributions
are in terms of the SNR as well as the structure of the signal
subspaces defined by C0 and C1. In what follows, we exam-
ine (14) in both the low-rank case and the general case, in
order to gain insight into the impact of each term.

A. Low-rank setting

To further understand the divergence as derived in Eq.
(14), we consider the case where the signal covariance
matrices have rank r and all eigenvalues are equal, having
the form C0 ¼ ðM=rÞVVH and C1 ¼ ðM=rÞUUH, where
U;V 2 CM,r have orthonormal columns spanning the sub-
space corresponding to each set of parameters. The assump-
tion that there is a signal component lying in a low-rank
subspace is ubiquitous throughout the signal estimation and
detection literature and illuminates the important quantities
impacting the KLD. From a physical perspective, a low-
rank covariance indicates a significant degree of correlation
among sensor readings, arising, e.g., when inter-element
spacing is small.

Corollary 1. Assume the signal covariances C0 and C1

are low rank, such that C0 ¼ ðM=rÞVVH and
C1 ¼ ðM=rÞUUH, where U;V 2 CM,r have orthonormal
columns spanning the subspace corresponding to each set of
parameters. Then

Dðh0jjh1Þ ¼ MSNR 1( 1

r
kUHVk2

F

SNR

SNRþ r=M

' (

( r
SNR

SNRþ r=M
(15)

¼ MSNR
SNR

SNRþ r=M
1( 1

r
kUHVk2

F

' ( !

:

(16)

In this simplified setting, we see that the KLD is con-
trolled by three terms: (1) the SNR, (2) the relative subspace
dimension r/M, and (3) the squared subspace affinity
ð1=rÞkUHVk2

F.
To examine the dependence on SNR, we first consider

the setting where SNR + r=M and the principal angles
between subspaces are fixed. In this case, the term SNR=
ðSNRþ r=MÞ is a constant less than 1, resulting in linear
dependence on the SNR. In contrast, when SNR- r=M, the
term SNRþ r=M . r=M, making SNR=ðSNRþ r=MÞ
. MSNR=r. In this case, the KLD grows quadratically with
SNR. Intuitively, this implies that in the low SNR regime,
increasing the SNR results in a quadratic increase in KLD.
However, once the SNR is sufficiently high (as determined
by the rank of the signal covariance matrix), further increas-
ing the SNR only provides a linear increase in KLD.

Next, we evaluate the dependence on the subspace
dimension r. First note that the term kUHVk2

F is the sum of r
terms, and hence the 1=r is a normalizing constant that does
not indicate the dependence of the KLD on the subspace
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dimension. Hence, the impact of the subspace rank is pri-
marily through the SNR=ðSNRþ r=MÞ term. In the case
where SNR/ r=M, the term SNR=ðSNRþ r=MÞ . 1; tak-
ing the view of Eq. (15), we see that the KLD decays line-
arly with r. However, when SNR is O(r) or smaller, the
KLD decays as 1=r. In both settings, we see that the KLD
decreases as r increases, i.e., low-dimensional signals are
easier to distinguish than high-dimensional signals.

Finally, the term ð1=rÞkUHVk2
F is the square of the sub-

space affinity35 and is equivalent to ð1=rÞ+r
k¼1 cos2ðgkÞ,

where gk is the kth principal angle between the subspaces
spanned by U and V.36 The subspace affinity ranges from 0
to 1, with a value of 0 when the subspaces are orthogonal
and a value of 1 when they are exactly the same. In this
light, the term 1( ð1=rÞkUHVk2

F is a function of the dis-
tance between subspaces, as measured by their principal
angles. Equation (16) indicates that the KLD is monotone
decreasing with the subspace affinity, having larger values
for subspaces that are farther apart. Hence, we see that the
difficulty in distinguishing between environmental parame-
ters is impacted by both the rank of the underlying signal
subspaces and how close the corresponding subspaces are to
one another.

B. General setting

We now build on the above intuition to examine the
general setting of Eq. (14). The key takeaway from this sub-
section is that nonuniformity in the eigenvalues helps distin-
guish between distributions, since the signal subspaces must
be well aligned in terms of both directions (eigenvectors)
and magnitude of energy in each direction (eigenvalues).

Note that the first term of Eq. (14) can be rewritten as

SNR M (
XM

i¼1

XM

j¼1

pikjSNR

1þ kjSNR
juH

j vij2
0

@

1

A

¼ SNR M ( kðUWÞHðVPÞk2
F

% &
; (17)

where W is the diagonal matrix whose ith entry is
wii ¼ kiSNR=ð1þ kiSNRÞ. Under the general setting, we
see that this term is large when the directions defined by uj

and vi are well aligned and both covariances have large
eigenvalues, corresponding to a large proportion of energy
in these directions. In other words, although the signal sub-
spaces may overlap significantly, the KLD may still be large
if the energy in each distribution is concentrated in different
directions.

Next consider the second term in Eq. (14)

XM

i¼1

kiSNR

1þ kiSNR
; (18)

where we recall that +r
i¼1ki ¼ M. In the most extreme set-

ting of non-equal eigenvalues, one direction dominates and
Eq. (18) tends toward SNR=ð1=M þ SNRÞ. This setting

corresponds to a signal covariance that is nearly unit rank,
and hence nonuniformity has the impact of making the sig-
nal appear lower rank, which results in a larger KLD. In
contrast, this term becomes rSNR=ðr=M þ SNRÞ in the
low-rank, equal eigenvalue setting, which would result in a
smaller KL divergence.

Finally, the third term in Eq. (14) is

XM

i¼1

log
kir2

s þ r2
n

pir2
s þ r2

n

 !

: (19)

For a fixed i, this term is zero if ki ¼ pi, positive if ki > pi,
and negative if pi < ki. This term characterizes the differ-
ence in the distribution of eigenvalues for each set of param-
eters. For example, when two covariance matrices have the
same eigenvectors (i.e., the same signal subspaces), this
term captures the degree to which the energy is aligned in
the same directions. In general, since the eigenvalues of
both covariances sum to M, the summation consists of both
positive and negative terms, and Eq. (19) is likely to have
small impact relative to the first two terms.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of hypothe-
sis testing using the GLRT and relate these results to the
KLD between the underlying distributions. We generate
snapshots using MDANM,22 which can compute a covari-
ance matrix from a set of environmental and ambient sound
source parameters, as (1). MDANM is used here to compute
Kh matrices for a family of contrived scenarios in which
only the properties of the seabed are varied. For surface-
generated sound, MDANM employs a ray-theoretic model
of the sound field to compute the directionality of the sound
field.23 This directionality is integrated against a directional
sonar response model to produce a covariance matrix.

All simulations are for a shallow-water environment
with a 32-element vertical line array having 0.15 m element
spacing computed at 4.5 kHz. The only source is surface-
generated sound and all environmental parameters for the
surface, water, and bottom are homogeneous over range.
The water depth is 100 m, and the water sound speed is
approximately linearly downward refracting according to
the top 100 m of a Munk profile.37 The top of the receiver
array is at 50 m. We note that the tools for hypothesis testing
provided here depend only on the resulting covariance
matrices, and hence one could directly apply the same
approach to more complex, range-dependent environments,
as well as a multi-layered seabed. Additionally, one could

TABLE I. Parameters and ranges used for evaluating hypothesis testing

performance.

Parameter Minimum Maximum Median

Sound speed (m / s) 1550 1650 1600.51

Bottom density (kg=m3) 1030 2000 1519.90

Bottom attenuation (dB=k) 0.01 0.2 0.11
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use this technique with a horizontal line array. However, a
vertical aperture provides greater sensitivity to the vertical
directivity of the ambient noise, and as such it contains a
great deal of information about bottom reflectivity. Hence,
we would expect that distinguishing between seabed types
with a horizontal array would require a much higher SNR
than doing so with a vertical array.

A. Limits of hypothesis testing

We first investigate the performance of the GLRT as we
vary a single environmental parameter, considering a range
of values for sound speed, bottom density, and bottom atten-
uation. The range of values for each parameter is given in
Table I. We sweep each parameter over 100 values between
the stated range, with the null hypothesis corresponding to
the median value. We hold the other two parameters fixed at
their median values. For each configuration, we draw L
snapshots and perform hypothesis testing using the GLRT
(8) with a level a ¼ 0:01. The results below display the
mean over 100 Monte Carlo trials.

The relative frequency of selecting the alternate hypothe-
sis as a function of seabed parameters and SNR is shown in
Fig. 2, where L¼ 300 snapshots are used for hypothesis
testing. For each setting, we also calculate the KLD
between the true distributions, displaying the 2=

ffiffiffi
L
p

contour
(red solid line), which corresponds to the absolute error in

parametric estimation of KLD. The figure shows a phase tran-
sition occurring at this contour, indicating that the KLD
between seabed types must exceed this threshold in order to
be distinguished, confirming our theoretical prediction in Sec.
II B. Further, we see that the ability to distinguish between
two values of a given parameter increases rapidly in the low-
SNR regime, corresponding to the prediction that for low
SNR, the KLD increases quadratically. In contrast, for suffi-
ciently high SNR [e.g., SNR + 3 in Fig. 2(c)], the ability to
resolve a given parameter only improves linearly with SNR.

To further verify the dependence on the number of
snapshots, we fix the SNR to 5 and evaluate performance as
the number of snapshots ranges from 100–1000. The relative
frequency of selecting the alternate hypothesis as a function
of seabed parameters and the number of snapshots is dis-
played in Fig. 3. As in the previous case, we see a phase
transition at the predicted bound, indicating that Eq. (13)
can be used to quantify when hypothesis testing can success-
fully distinguish between environmental parameters.

We next to turn to Theorem 1 as a means of explaining
why hypothesis testing fails for a given setting. From Fig. 2,
we see that sound speed is significantly easier to distinguish
than bottom attenuation and that distinguishing bottom
attenuation to the right of the median is more difficult than
to the left. To understand why this behavior appears, we first
evaluate the intrinsic rank of the signal subspace as a func-
tion of each seabed parameter, recalling that the KL

FIG. 2. (Color online) Relative frequency of selecting alternate hypothesis (seabed parameters are different) on data from MDANM as a function of SNR
and (a) sound speed, (b) bottom density, and (c) bottom attenuation. The red lines indicate the theoretical limit as predicted by the KLD. For L snapshots,
parameters resulting in a KLD less than O 1=

ffiffiffi
L
p! "

cannot be distinguished.

FIG. 3. (Color online) Relative frequency of selecting alternate hypothesis (seabed parameters are different) on data from MDANM as a function of number
of snapshots L and (a) sound speed, (b) bottom density, and (c) bottom attenuation. The red lines indicate the theoretical limit as predicted by the KLD.
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divergence becomes smaller as the rank increases. Define
the fraction of energy in the first r eigenvalues as

Xr

i¼1

ki

XM

i¼1

ki

: (20)

This fraction is shown in Fig. 4 as each parameter varies
across its range. For each parameter, we compute Eq. (20) for
all 100 values and display the median along with the maxi-
mum and minimum. For a matrix that is nearly low rank, this
fraction is expected to increase rapidly until the intrinsic
dimension is reached, often accounting for 90% or more of
the energy in a small number of singular values. The figure
shows that the median value of Eq. (20) surpasses 0.9 for a
rank of r¼ 15 across all seabed parameters, indicating that the
increased difficulty of distinguishing between different values
of bottom attenuation is not due to a difference in rank.

Having established that all signal subspaces have approxi-
mately the same rank, we next examine the relationship
between the subspaces themselves, as well as the distribution
of eigenvalues, as a function of each parameter. To do this, we
break the KLD into the subspace terms, corresponding to the

first two terms in Eq. (14), and the eigenvalue term, which cor-
responds to the third term in the equation. The subspace and
eigenvalue terms are displayed separately in Fig. 5, where we
vary each parameter over the corresponding range of values.
To better evaluate the impact of the underlying signal covari-
ance matrices, we set the SNR to 100 000 removing its impact
on KLD. The figure illuminates the differences in difficulty as
each parameter varies. Namely, we see that the signal subspa-
ces for varying sound speed have large variation, while the dis-
tribution of eigenvalues is similar across all values, keeping the
eigenvalue term relatively small. In contrast, varying bottom
attenuation has little impact on the signal subspace. Further,
the signal subspaces are nearly equal as bottom attenuation
takes values greater than the midpoint, accounting for the
asymmetry in hypothesis testing shown in Fig. 2(c). For bottom
density, we observe strong subspace variation for values below
the midpoint. As the parameter proceeds beyond the midpoint,
the signal subspace shows little variation, but the difference
in the distribution of eigenvalues is sufficient to provide differ-
entiation between the corresponding distributions. Exploiting
this difference in eigenvalue distributions may provide a means
of obtaining finer resolution for both bottom density and bot-
tom attenuation and is a topic for our future research.

B. Bottom sediment type database

Finally, we evaluate the KLD between the sediment
types defined in the HFEVA dataset, in order to gain an
understanding of which types can be distinguished using
ambient sound. The HFEVA dataset details 23 sediment cat-
egories including various types and combinations of rock,
sand, silt, and clay. In general, the seabed reflectivity
decreases with HFEVA’s sediment type index, with highly
reflective types corresponding to lower indices. To keep the
number of parameters to a minimum, all boundary interac-
tions handled as Rayleigh reflection coefficients, which
depend only on density, sound speed, and attenuation.
HFEVA also contains parameters that affect scattering, but
these are ignored since scattering is not enabled in the simu-
lation. We utilize MDANM to generate covariance matrices
and bottom loss curves for categories 2–23, since categories
1 and 2 (rough rock and rock) are the same in all parameters
except scattering. The seabed types and corresponding
parameters are given in Table II, Appendix C, where the

FIG. 4. (Color online) Fraction of energy in first r eigenvalues as measured
by Eq. (20). The figure indicates that the covariance is approximately low
rank, regardless of parameter considered.

FIG. 5. (Color online) KLD separated
into terms describing the signal sub-
spaces (subspace terms) and the distri-
bution of eigenvalues (eigenvalue
term) as a function of seabed parame-
ters. (a) Subspace terms refer to the
first two terms of Eq. (14). (b)
Eigenvalue term is the final term of
Eq. (14).
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parameter values are taken from the High-Frequency Ocean
Environmental Acoustic Models Handbook.[?]

The KLD between sediment types for varying SNR is dis-
played in Fig. 6, with the theoretical limit based on obtaining
L¼ 300 snapshots. The heatmap is scaled so that shades of red
are distinguishable from L snapshots, shades of blue are indis-
tinguishable, and gray indicates the KLD is near the theoretical
limit. As expected, sequential categories are the most difficult
to distinguish, since these share the most similar sound speed
and densities. Although obscured by the color scaling, a
greater difference in seabed type generally corresponds to a
greater KLD, though for some types this relationship does not
hold. Next, we see that for an SNR of 0.1, no categories are
above the theoretical limit by a substantial amount, while at an
SNR of 1, many categories can be distinguished. Finally, we
see that even in the unrealistic setting of SNR¼ 100 000 many
sequential categories are still indistinguishable. In particular,
distinguishing categories 17–23, which correspond to various
combinations of fine silt and clay, is essentially impossible
from an information-theoretic perspective.

We display the KLD for a fixed SNR¼ 10 in Fig. 7,
varying the theoretical limit to correspond to L¼ 100, 1000,
and 100 000 snapshots. As expected, increasing the number
of snapshots results in additional resolution among sediment
types. However, even in the limit of L¼ 100 000, categories
17–23 remain indistinguishable for the particular array con-
figuration considered here.

To confirm the above findings, we examine the bottom loss
as a function of grazing angle for a few sediment types of inter-
est. The bottom loss curves for sediment types (a) 2–5, (b)
15–19, and (c) 19–23 are displayed in Fig. 8. In all cases, the
visual similarities between bottom loss curves follow those indi-
cated by KLD. For example, Fig. 6 indicates that types 2 and 3
(rock and cobble) are easily distinguishable, whereas types 4
and 5 (sandy gravel and very coarse sand) have a KLD that is
always below or very close to the theoretical limit, indicating
they are essentially indistinguishable. Similarly, sediment type
15 (coarse silt) is easily distinguishable from types 17–19, corre-
sponding to its red KLD in Figs. 6 and 7. However, types 17–23
show minimal variation in bottom loss, with 19–23 showing
almost no difference. This is confirmed in Fig. 7, which shows
that for a very large number of snapshots, 17 and 18 may be dis-
tinguishable from 19–23, whereas 19–23 remain indistinguish-
able. Although not pictured, similar conclusions can be drawn
by comparing the KLD and bottom loss curves for types 6–14.
Hence, we see that the KLD provides an alternative, quantitative
perspective on when seabed types can be distinguished that con-
forms to the traditional approach of examining bottom loss.
Finally, we note that one could classify sediment type by choos-
ing the type of smallest KLD. However, such a classifier relies
on the assumption that the number of layers and parameters in
the seabed model are correct and therefore requires additional
knowledge of the environment. Alternatively, once the snap-
shots are sorted via hypothesis testing, any form of geoacoustic

FIG. 6. (Color online) KLD of alternate sediment type (horizontal axis) from null sediment type (vertical axis) for 22 sediment types defined in the HFEVA
database. The theoretical limit is set to 2=

ffiffiffiffiffiffiffi
ðLÞ

p
with L¼ 300 snapshots. Blue values indicate the pairs of sediment types cannot be reliably distinguished. (a)

SNR¼ 0.1. (b) SNR¼ 1. (c) SNR¼ 100 000.

FIG. 7. (Color online) KLD of alternate sediment type (horizontal axis) from null sediment type (vertical axis) for 22 sediment types defined in the HFEVA
database for varying number of snapshots L. The theoretical limit is set to 2=

ffiffiffiffiffiffiffi
ðLÞ

p
and SNR¼ 10. Blue values indicate the pairs of sediment types cannot be

reliably distinguished. (a) L¼ 100. (b) L¼ 1000. (c) L¼ 100 000.
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inversion could be used to more accurately estimate the true sea-
bed model and parameters.

V. CONCLUSION

This article presents an approach to distinguishing

between seabed parameters or sediment types using wind-

driven ambient sound as a source for a passive sonar array.

The framework of hypothesis testing provides an optimal

means of testing whether collections of snapshots from two dis-

tinct locations share environmental parameters, and the test for

the case of circularly symmetric Gaussian snapshots is a func-
tion of the KLD between the underlying distributions. Hence, a

deeper analysis of the KLD for this setting provides theoretical

insights into when seabed parameters can be distinguished and

why. In particular, our analysis frames these questions in terms

of the underlying signal subspaces corresponding to differing

environmental models, as well as the SNR.
Empirical observations on acoustic snapshots simulated

by MDANM demonstrate that the success of hypothesis test-
ing matches the theoretical limit predicted by the KLD. It is
impossible for the given array to distinguish between environ-
mental parameters whose corresponding KLD is below the
estimation error incurred by performing hypothesis testing
from a finite number of snapshots. When considering sediment
types defined by the HFEVA dataset, we see that numerous
types are indistinguishable, even for a very large SNR or num-
ber of snapshots. This observation could be used to drive array
design, allowing the user to guarantee that sediment types of
interest would be distinguishable at a reasonable SNR.

The analysis technique presented here could be used to
evaluate the impact of less well-behaved sound sources,
such as ship traffic or biologic activity. An additional ave-
nue for future work could be that of evaluating the impact of
parameter misclassification on sonar performance. While
certain sediment types are indistinguishable in our setting, it
may be the case that these types are similar enough to have
little impact on sonar performance.
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APPENDIX A: DERIVATION OF GLRT STATISTIC

Beginning from the definition of the joint PDF of circu-
larly symmetric Gaussian random vectors, we obtain the test
statistic below,
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FIG. 8. (Color online) Bottom loss plots for sediment types (a) 2–5 (“rock”-“very coarse gravel”), (b) 15-19 (“coarse silt”-“fine silt”), and (c) 19-23 (“fine
silt”-“clay”). The similarity of bottom loss curves corresponds to the KLD indicated by Figs. 6 and 7.
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APPENDIX B: PROOF OF THEOREM 1

The proof relies on the matrix inversion lemma and the
matrix determinant lemma. Applying the eigenvalue decom-
position to C1, we write

K1 ¼ r2
nI þ Ur2

s KUH:

Applying the matrix inversion lemma yields

K(1
1 ¼

1

r2
n

I ( 1

r2
n
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I ( UDUHð Þ;

where we define the diagonal matrix D 2 RM,M to have
diagonal elements of the form

dii ¼
kir2

s

kir2
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:

Writing C0 ¼ VPVH yields

K(1
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Since the trace is a linear operation, we examine the trace of
each term individually. The first term yields trðIÞ ¼ M. For the
second term, we apply the cyclic permutation property to see that
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where we use the assumption that the eigenvalues of C0 sum
to M. Similarly, we see that
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:

Finally, note that trðUDUHVPVHÞ ¼ trðVHUDUHVPÞ.
Further inspection of the matrix VHUDUHVP shows that its
diagonal elements are of the form

VHUDUHVP½ $ii ¼ pi
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Taking the trace of this term yields
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Combining all terms under the trace, we see that
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Next, we evaluate the third term in Eq. (10). To evalu-
ate detðK1Þ, we define the 2M , 2M real-valued matrix
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where I2M denotes the identity of size 2M , 2M. Next, note
!C has M unique eigenvalues, each repeated twice, and that
these are exactly the M eigenvalues of C. Finally, note that
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where we recall that ki is the ith eigenvalue of the matrix
C1. The above implies that
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where we may consider only the solution to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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,

since any positive semidefinite matrix must have a non-
negative determinant. Similarly,
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Plugging the above terms into Eq. (10) completes the proof.

APPENDIX C: ENVIRONMENTAL PARAMETERS
FOR HFEVA SEDIMENT TYPES

Note that all parameters are ratios and therefore unit-
less. The density ratio is the ratio of sediment mass density
to water mass density, the sound speed ratio is the ratio of
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sediment sound speed to water sound speed, and the loss
parameter is the ratio of imaginary wavenumber to real
wavenumber for the sediment.38
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1 Rough Rock 2.5 2.5 1:374, 10(2

2 Rock 2.5 2.5 1:374, 10(2

3 Cobble/Gravel/Pebble 2.5 1.8 1:375, 10(2

4 Sandy Gravel 2.492 1.3376 1:705, 10(2

5 Very Coarse Gravel 2.401 1.3067 1:667, 10(2

6 Muddy Sandy Gravel 2.314 1.2778 1:630, 10(2

7 Coarse Sand/Gravelly Sand 2.231 1.2503 1:638, 10(2

8 Gravelly Muddy Sand 2.151 1.2241 1:645, 10(2

9 Medium Sand/Sand 1.845 1.1782 1:624, 10(2

10 Muddy Gravel 1.615 1.1396 1:610, 10(2

11 Fine Sand/Silty Sand 1.451 1.1073 1:602, 10(2

12 Muddy Sand 1.339 1.0806 1:725, 10(2

13 Very Fine Sand 1.268 1.0568 1:875, 10(2

14 Clayey Sand 1.224 1.0364 2:019, 10(2

15 Coarse Silt 1.195 1.0179 2:158, 10(2

16 Gravelly Mud/Sandy Silt 1.169 0.9999 1:261, 10(2
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19 Fine Silt/Clayey Silt 1.148 0.9861 0:306, 10(2

20 Sandy Clay 1.147 0.9849 0:242, 10(2

21 Very Fine Silt 1.147 0.9837 0:194, 10(2

22 Silty Clay 1.146 0.9824 0:163, 10(2

23 Clay 1.145 0.9806 0:148, 10(2
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