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Abstract—Emotions provide critical information regarding a
person’s health and well-being. Therefore, the ability to track
emotion and patterns in emotion over time could provide new
opportunities in measuring health longitudinally. This is of
particular importance for individuals with bipolar disorder (BD),
where emotion dysregulation is a hallmark symptom of increasing
mood severity. However, measuring emotions typically requires
self-assessment, a willful action outside of one’s daily routine.
In this paper, we describe a novel approach for collecting
real-world natural speech data from daily life and measuring
emotions from these data. The approach combines a novel
data collection pipeline and validated robust emotion recognition
models. We describe a deployment of this pipeline that included
parallel clinical and self-report measures of mood and self-
reported measures of emotion. Finally, we present approaches
to estimate clinical and self-reported mood measures using a
combination of passive and self-reported emotion measures. The
results demonstrate that both passive and self-reported measures
of emotion contribute to our ability to accurately estimate mood
symptom severity for individuals with BD.

Index Terms—Modeling human emotion, Mood or core affect,
Diagnosis or assessment, Bipolar disorder

I. INTRODUCTION

MOTIONS are core human elements that express inter-

nal states and convey vital information about personal
health and well-being. Emotions, measured using survey-based
methodology (ecological momentary assessment, EMA), can
identify features indicative of illness- or sickness-related states
and behaviors across a spectrum of mental illnesses [1], in-
cluding anxiety [2], bipolar disorder (BD) [3], depression [4],
anorexia [5], and schizophrenia [1]. Yet, EMA requires indi-
viduals to respond to surveys, which is difficult to sustain over
time [6]. Thus, there is increasing enthusiasm for identifying
methods that can measure emotion passively, permitting the
capture of natural behaviors while avoiding survey burden.
However, there are major gaps in our understanding of how to
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create passive emotion recognition pipelines that are suitable
for real-world deployment. As a result, there are few existing
passive speech-centered emotion recognition tools as well
as strategies to validate emotion estimates from passively
collected data. In this paper, we present a pilot deployment of
a real-world emotion-centered data collection for individuals
with bipolar disorder (BD) using automatic speech emotion
recognition tools. The presented work provides a template for
the creation of passive emotion-centered pipelines and meth-
ods to validate the resulting automatic estimates of emotion.

Speech patterns convey critical information about mental
health [7]-[16]. Changes in speech patterns are associated with
clinical changes in mental status (e.g., [8]), particularly for
individuals with BD (e.g., [17]-[24]), including changes due to
emotion variability [25]-[27]. The ability to measure changes
in emotion could lead to new avenues in the measurement
of mental health symptom severity. However, automation
requires the existence of speech-centered automatic emotion
recognition pipelines that are robust to real-world conditions.

Once a robust pipeline is developed, a second problem
emerges: the validation of information derived from that
pipeline. There is a natural inclination to rely on a dual deploy-
ment of EMA and passive measures. Yet, these approaches are
often not aligned. EMA is self-report, while passive measures
are developed using datasets labeled in a perception-of-other
paradigm, in which an outside group of annotators rate their
perception of another individual’s expression of emotion. Pre-
vious work has found that perception-of-other labels perform
poorly in self-report contexts [28]-[34]. Therefore, since EMA
is self-report and passive measures are trained based on
perception-of-other labels, EMA alone provides an inaccurate
and overly pessimistic view of the performance of passive
techniques. This points to a need for new approaches for the
validation of passive emotion estimates, in conjunction with
the development of these new robust measures.

We describe a new pipeline for real-world emotion recog-
nition, known as PRIORI (predicting individual outcomes for
rapid intervention) that enables real-world emotion measure-
ment from speech data without requiring action outside of
day-to-day life. The PRIORI smartphone app collects audio
data unobtrusively from an individual’s ambient environment.
It processes data in the cloud and estimates emotion (va-
lence/activation). It does not retain the recorded audio; the
audio data are deleted immediately following processing. The
deployment also includes EMA self-reported emotion and
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mood data, in addition to validated clinical scales. These
measures of emotion, both passive and EMA, are used to
estimate the level of mood symptom severity. The first step is
extracting emotion features from both passive and EMA mea-
sures. These features are at the day-level and include: mean,
inertia, variability, and the presence of emotional anomalies.
The day-level features are aggregated into weekly features and
are then used to estimate the mood symptom severity using
linear mixed effect models (LMEM).

The paper presents a novel Institutional Review Board
(IRB)-approved pipeline to both record and analyze emotion
data, longitudinally, from daily life. The results are based on
data collected between October 20, 2022 and February 19,
2024 over 20 individuals. The findings suggest that features
derived from passive and EMA emotion measures capture
clinical and self-reported mood severity and that the model
coefficients align with the presentation of depression and ma-
nia symptomatology. Future work will focus on the integration
of real-world self-report classifiers capable of operating in
unstructured domains.

II. RELATED WORK
A. Emotion and Bipolar Disorder

BD is a lifetime psychiatric condition characterized by
pathological mood swings that range from mania to de-
pression. The clinical patterns include changes from healthy
(euthymic) mood states to mania (high energy), depression
(low energy), and mixed states (symptoms of both depression
and mania), often with severe consequences at a personal,
social, vocational, and medical level [35], [36]. The hallmark
of BD is emotional dysregulation that leads to intense biphasic
extremes of energy, activity, and mood. The inherent and
chronic variability of emotion and mood among people with
BD [37], [38] makes this illness ideal for study.

Emotion states are periods of coordinated changes in neuro-
physiological activation, motor expression, subjective feeling,
and action tendencies in response to internal or external
perturbation [39]. Emotion is considered in the context of
the dimensional circumplex model of core affect [40], which
decomposes emotion states according to quantitative ratings
of valence (pleasant to unpleasant) and activation (calm to
activated, sometimes referred to as arousal), rather than dis-
crete emotion states (e.g., anger, joy, shame). Distinct patterns
of aroused/energized emotion states have been implicated in
the pathophysiology of BD [41], [42]. This is reflected in
the recent change to the Diagnostic and Statistical Manual
for Mental Disorders — 5th Edition (DSM-5) [43], which
includes a requirement that individuals with hypomania and
mania experience increases in energy and activity regardless
of whether they feel euphoric or irritable.

B. Robust and Deployable Speech Emotion Recognition

Speech-centered measures of emotion are challenging due
to the difficulty of working with these data in real-world
scenarios as speech is modulated by unseen (unobserved)
contextual factors in which the methods are developed (e.g.,
background noise sources, different reverberation properties,

the presence of other people, differences in speaking styles).
These factors modulate the acoustics of the data, with im-
plications for emotion recognition systems [44], [45], speech
recognition (e.g., [46]-[51]), and mood severity estimation
tasks [20], [52]. Methods have been proposed to account
for differences in speech due to recording conditions and
microphone quality [20], [52], noise robustness [53]-[56],
and approaches to adapt features and models for cross-corpus
testing [45], [57]-[61].

C. Deployed Sensor Platforms

Major research efforts have focused on modeling the illness-
related behavior of individuals with mental health condi-
tions [62], including BD [18]-[20], [63]-[67], [67]-[70] and
the behavior of individuals with schizophrenia [1], [66], [71]-
[75]. The StudentLife study, a study of Dartmouth students
to assess mental health from passive sensor data, provides an
example for validating and deploying engineering technologies
for real-world measurement [76]—[83].

III. PIPELINE DESCRIPTION

The pipeline includes data recording to capture the ambient
audio data and cloud processing to extract the emotional
information (Figure 1). This pipeline and protocol have been
approved by the IRB at the University of Michigan (U-M,
HUMO00197298) and the platform has been assessed by the
U-M Information Assurance office, who have confirmed that
the platform and current cloud-based emotion recognition
approach are compliant with university security protocols.

A. App Behavior

The platform records audio for 30-seconds every 15 minutes
throughout the day. We calculate the maximum amplitude
of the recorded speech and consider speech likely to be
present if the maximum amplitude exceeds 1000'. The data
are asymmetrically encrypted. Only encrypted audio are stored
on device and cannot be decrypted on device. If the signal’s
maximum amplitude exceeds the threshold, the encrypted data
are securely transmitted to a secure server via either Wi-Fi or
cellular networks. After the encrypted audio data are uploaded
or if the threshold amplitude is not reached, the audio data are
immediately deleted from the smartphone.

B. Cloud Processing

There are six steps in the cloud processing pipeline (Fig-
ure 1). We first outline the steps and then discuss certain
steps in more detail. Step 1: The data are first segmented into
regions of speech and silence using webrtcvad?. Step 2: The
speech segments are transcribed using automatic speech recog-
nition (ASR) from Microsoft Azure?. Step 3: The segments are

!This is the threshold implemented in the Android source code of the app.
A conservative threshold was selected during app development to prioritize
the collection of audio. Silence is later removed in the cloud processing step
using voice activity detection.

Zhttps://pypi.org/project/webrtcvad/, aggressiveness=0

3https://azure.microsoft.com/en-us/products/ai-services/speech-to-text
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Fig. 1: The device records audio for 30-sec every 15-min and sends the audio to the cloud to determine the emotion (valence,
activation). The audio data are asymmetrically encrypted and securely transmitted to a secure server. All data are then
immediately deleted from the smartphone. In the cloud, the unencrypted data are deleted once processing concludes.

designated as belonging to the consented participant (vs. others
in the participant’s surroundings) using the Microsoft Azure
speaker recognition tool*. We intentionally do not, and cannot,
identify other speakers’. Step 4: Emotion recognition is then
performed on the segments to extract measures of valence and
activation (see Section IV). Step 5: The emotion inferences
are associated with the consented participant or others in the
participant’s surroundings using the output of Step 3. Step 6:
Features are extracted from the emotion inferences from the
consented participant and the EMA surveys (Section V-B).
These features are gathered over time (Section VI) and are
then associated with mood (see Section VII).

C. Data Retained

Valence and activation estimates are stored with the prob-
ability that the speaker in the segment is the consented
participant, the length of the segment, and the signal to noise
ratio (SNR) of the segment (dB). The original audio, the
extracted features, and estimated transcript are not saved.

IV. EMOTION RECOGNITION
A. Data

The emotion recognition algorithms are trained using MSP-
Podcast, a dataset curated from publicly available podcast
audio [84]. The dataset includes ratings of both valence and
activation. We use the predefined training split and validation
splits. We created transcripts using the Microsoft Azure ASR
described in Section III-C.

“https://azure.microsoft.com/en-us/products/ai-services/speaker-recognition

SNote that in all experiments discussed in this paper, we use only inferences
extracted from speech identified as being from the consented participant with
probability greater than 0.5, the default setting for speaker recognition from
Microsoft Azure.
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Fig. 2: The model architecture for the robust emotion ap-
proach. All linear layers have LayerNorm applied to their
inputs, and all layers in gray have LeakyReLU and Dropout
applied to their inputs.

B. Model

The emotion recognition model used in this study is based
on our prior work [45]. The segmented speech and text data
are encoded using large, pretrained transformers. We use
Wav2Vec2 [85] acoustic features (they generally are more
effective, compared to Mel-spectrogram features [56]) and
BERT (Bidirectional Encoder Representations from Trans-
formers) language features [86]. The BERT features are taken
from the hidden state corresponding to the CLS (classification)
token. The CLS token has LayerNorm and dropout (p=0.2)
applied and the result is passed through a linear layer. The
Wav2Vec?2 features are calculated by taking the mean over the
last dimension of the last hidden state.

The dual predictions include both valence and activation.
Predicting valence and activation jointly, in a multitask con-
text, provides regularization [87]. In addition to mean pooling
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of Wav2Vec2, we apply leaky ReLU, LayerNorm, and dropout
(p=0.2). We use four linear layers on top of the Wav2Vec2 fea-
tures to allow for additional complexity and ensure the model
can learn more general acoustic representations. Two linear
layers are then used as prediction heads for both activation
and valence. The first three layers after Wav2Vec2 features
and the first layer in each prediction head apply LeakyReLU
and dropout with probability 0.2. All linear layers apply
LayerNorm to their inputs. Additionally, as lexical input does
not improve activation performance when using Wav2Vec2
features, we do not apply the BERT input to the activation
prediction [56]. Instead, lexical content is concatenated to
the acoustic representation before the valence prediction head.
This allows us to learn valence without degrading activation
performance. The model is trained using early stopping with a
patience of 15, batch size of 32, and optimized with stochastic
gradient descent with a learning rate of le-3 using Lin’s
Concordance Correlation Coefficient (CCC) as the model’s
evaluation metric and loss function. The loss function and
evaluation metric are those recommended in [56].

The models are made domain robust using the Gradient
Episodic Memory (GEM) framework designed for continual
learning [88]. The model tracks the most recently seen samples
from a task and stores them in episodic memory. Instead of
replaying the previously seen samples, GEM iterates over the
memory samples calculating the loss and proposed weight
updates during each training step. GEM compares the pro-
posed weight update for each previous task to the current
weight update. Considering these weights as vectors, GEM
will prevent an update if the gradients conflict (the inner
product is less than zero). When an update is presented, GEM
solves a quadratic programming problem to find an update
as close as possible to the original update that does not
conflict with past task gradients. The advantage of GEM is
that it avoids overfitting to memory samples while ensuring
strong memory of the previous tasks. GEM has been used for
automatic speech recognition to avoid retraining on complete
datasets when new data is introduced to improve on total
training time [89]. The system obtains 0.65-0.68 CCC for
activation and 0.57-0.59 CCC for valence on IEMOCAP and
MSP-Improv, two standard emotion recognition corpora, and
exhibits accurate cross-corpus prediction [45].

V. PILOT DEPLOYMENT

We have recruited twenty participants since May 2022, with
16 participants having sufficient data (68.75% BD 1, 18.75%
BD 11, 12.50% Healthy Control (HC), Mean Age = 53.94, SD
Age = 13.14, 62.50% female, 93.75% White). In the results
that follow, we discuss data that have been collected from
October 20, 2022 ° to February 19, 2024.

A. Enrollment
Participants were included based on: 1) either a BD I or
I diagnosis based on the Diagnostic and Statistical Manual

SThis is when the activation classifier was changed to the one described in
Section IV.

IV (DSM-1V) criteria or 2) as healthy controls (HC, n=1),
between the ages of 18 - 70, and use of an Android mobile
phone. Exclusion criteria included: hazardous use of alcohol
or drugs in the last three months, history of medical or
neurological conditions known to chronically affect speech as
determined by review of medical records and the clinical PI.
All participants reviewed the IRB approved consent form with
a study coordinator and provided their signature.

Participants’ audio data are recorded during enrollment
while they read a standardized text passage, the Caterpillar
Passage [90]. These data are used as speaker’s reference data
for speaker recognition.

B. Protocol

Participants complete an EMA protocol one week per month
while enrolled in the study. This involves a measurement burst
approach that captures variability in self-reported emotion
over the observation period while minimizing the overall
burden to the participant.

EMA surveys were deployed via the MyDataHelps app
(Care Evolution, Ann Arbor, MI), a HIPAA compliant and
U-M approved mHealth application. EMA data are pushed
each evening from the CareEvolution cloud-based server to
our local servers through an SFTP protocol. At no point does
any of the data transmitted between MyDataHelps and our
server include identifying information except a coded identi-
fier. During a burst week, emotion surveys are administered
five times per day (9am, 12pm, 3pm, 6pm, 9pm). Consistent
with the affective circumplex theory [91], participants are
asked to self-rate their emotional valence on a Likert scale
from -5 (unpleasant) to 5 (pleasant) and emotional activation
on a Likert scale from -5 (sleepy, calm) to 5 (activated/jittery).

Self-ratings of mood are administered using the digital
survey for mood in BD (digiBP), a brief 6-item survey that
is validated in digital form to separately measure manic and
depressive symptom severity [92]. The six items were selected
from the Young Mania Rating Scale (YMRS) and the Hamil-
ton Depression Rating Scale (HDRS) to be consistent with
gold-standard clinician-rated measures. Three items measure
depressive symptoms (depressed mood, fatigue, fidgeting), two
measure manic symptoms (increased energy, rapid speech),
and one item measures a symptom of both mania and de-
pression (irritability). Each item is rated on an ordinal scale:
O=absent/normal, 1=mild, 2=moderate, 3=severe. Two scores,
D and M, are computed to measure severity of depressive
and manic symptoms, respectively. A factor analysis model
confirmed that the survey items load onto two factors: “manic”
(M) and “depressive” (D). Weekly averages of M and D scores
were also able to explain significant variation in weekly scores
from the YMRS (R? = 0.47) and HDRS (R? = 0.58). The
digiBP survey has also been validated as a within-person
measure for predicting a person’s future M and D scores [92].

During the burst week, participants complete a self-report
of mood twice daily (digiAM and digiPM), using the di-
giBP [92]-[94]. We take the average of these two self-reports
to form a daily rating (digiDay). Outside of the burst week
participants complete a weekly digiBP (digiWeek). We refer to
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Fig. 3: Graphical depictions of mean, inertia (“iner”, mean of the normalized auto-correlation over shift of size 1), and variability
(“var”, standard deviation) across four different signals. The left-most signal is constant, the inertia is 1. Next, we generate
a random number, rn, for each value of x y = rn(x). The inertia drops. Next, we multiply the random number by five:
y = 5% rn(z). The inertia is unchanged by a scaling factor. Next, we add structure in the form of a sum of sine waves:
y = sin(z) + sin(2z) + sin(3z) + 2 * rn(x). The inertia increases due to the underlying structure. We show anomalous
measurements that transition from a low value to a high value in red (large difference between subsequent measurements) and
from a high value to a low value in black (small difference between subsequent measurements) circles.

Measure Total Mean Standard Deviation

Total Days 2403 120.15 80.28

Unique Recordings | 50364  2518.20 2281.35

Speech Segments 91787  4589.35 4319.08
EMA Ratings 5035 251.75 102.86
Daily digiBP 2227 111.35 42.67
Weekly digiBP 692 34.60 12.35
HDRS 125 6.25 1.92
YMRS 151 7.55 2.84

TABLE I: Total data collected. The mean and standard devi-
ation are at the participant-level.

Survey Within-Person ~ Between-Person
digiWeek_D 0.675 0.943
digiAM_D 0.643 0.897
digiPM_D 0.523 0.908
digiWeek_M 0.546 0.900
digiAM_M 0.514 0.894
digiPM_M 0.519 0.832

TABLE II: Omega reliability statistics for the digiBP metrics.

the mania subscale of the weekly digiBP as digiWeek_M and
the depression subscale as digiWeek_D. The morning, evening,
and daily measures follow the same naming convention (e.g.,
digiDay M).

C. Weekly Mood-State Clinical Assessment

At the end of each EMA burst assessment week (see
Section V-B), participants complete a telephone interview with
a study clinician to assess symptom severity; manic symptoms
via the YMRS and depressive symptoms via the HDRS.

D. Statistics of Recorded Data

We have collected 2,403 days of PRIORI recordings over
the 20 participants. This includes 50,364 unique recordings
and 91,787 speech segments. Please see Table I for additional
statistics.

We first present omega reliability metrics (omega total)
for the digiBP surveys, given the newness of this metric.
These metrics were calculated using the reliabiliPy Python

Survey Passive EMA  Passive + EMA
YMRS 88 124 77
HDRS 76 104 68
digiWeek_M 396 311 185
digiWeek_D 396 311 185
digiDay_M 607 988 605
digiDay_D 607 988 605

TABLE III: Dataset size for each target label considering
availability of passive, EMA, or passive+EMA.

package [95]. The within- and between-person total omega for
the weekly digiBP can be seen in Table II. This confirms that
under the conditions of this study, the digiBP is considered
highly reliable and a consistent method to assess mood states.

E. Creation of an Emotion-Mood Dataset

For each participant, data are included if they are recorded
within seven days of any of the target mood measures (YMRS,
HDRS, digiWeek_M, digiWeek_D, digiDay_M, digiDay_D).
Days are processed only if both EMA and passive measures
were collected, and there must be at least one such day within
the seven days. This restriction permits direct comparability
between EMA and passive measures, but does result in a
smaller dataset compared to one requiring only EMA or only
passive. In future work we will lift this restriction.

VI. EMOTION FEATURES

While a number of indices can be extracted from emo-
tion time-series, it is the dynamic measures that have been
shown to robustly predict BD symptoms [96]-[98]. These
measures include: intensity of high activation negative and
positive emotion (mean), standard deviation in reported emo-
tion (variability), autocorrelation (inertia), and large acute
shifts in valence and activation compared to one’s own average
(anomalies). Anomalies in high activation emotions, either
negative or positive, predict the development of BD in those at
risk [99], highlighting these dynamic indices as critical to the
study of BD over-and-above mean levels. Inertia captures the
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predictability of future measures, based on current measures,
and variability captures the deviation from one’s mean [97].
See Figure 3 for a visual depiction of the emotion features.

In all cases, the emotion features are calculated by aggre-
gating all emotion measures (passive estimates, EMA) over
a single day. Mean is calculated as the average valence
or activation rating over the day, anomalies are identified
by calculating the difference between successive measures,
normalized by the median distance in time. We differentiate
between upper anomalies (a positive difference, moving from
a lower to a higher value) and lower anomalies (a negative
difference, moving from a higher to a lower value). We
consider measurements to be anomalous if they are above the
95th percentile (upper) or below the 5th percentile (lower),
for that participant, based on practices in the field [97] (see
Figure 3 for a depiction of lower, black, vs. upper, red,
anomalies). Inertia is calculated by computing the mean of the
normalized autocorrelation of the signal shifted by one. Intu-
itively, signals that are less random (more predictable based on
past measurements), will have higher inertia (see Figure 3 for
an illustrative example). Variability is calculated as the within-
person standard deviation of the emotion measurements.

We refer to passive features as those extracted from the
automatic estimates and EMA features as those extracted
from the self-report EMA surveys. Each measure is calculated
separately for passive and EMA estimates. The final feature
vector for each of the survey targets (Table III) is the average
over the seven-day window. There are 10 passive features and
10 EMA features (in each case, five for valence and five for
activation).

VII. ANALYSES OF EMOTION AND CLINICAL MOOD
MEASURES

The relationship between the emotion measures (EMA and
passive) and clinical mood measures (YMRS, HDRS) is first
studied by fitting a linear mixed effect model (LMEM), im-
plemented in statsmodels [100], to the entire population. This
model is not predictive, rather it demonstrates the ability of
the features (daily mean, inertia, variability, anomaly) derived
from the EMA and passive measurements to explain the
variance observed in the mood measures. The emotion features
are z-normalized prior to fitting each model and a random
effect for gender is included’. There are relatively few clinical
measures recorded for each participant. The requirement of
collection of both EMA and passive measures on a given
day and within seven days of a YMRS results in 77 weekly
aggregates across all participants, and 68 for HDRS (vs. the
relatively larger number of self-reported mood measures in the
next section, 605).

In the first set of analyses, the model fit is quantified in terms
of both marginal and conditional R? and Pearson’s Correlation
Coefficient (PCC). Marginal, an, is with respect to the fixed
factors (e.g., passive mean valence) and conditional, Rf,
is with respect to both the fixed and random factors (i.e.,

"We use gender, rather than subject identity, to allow for a leave-one-
subject-out analysis.

identity). For readability, we present only PCC results in the
text. We refer the reader to Table IV for the full results.

LMEM models were fit first on the YMRS data. The first
model uses only passive measures (PCC' = 0.37). The second
model uses only EMA data (PCC = 0.49). The model fit
improves when modeling both types of data together (PCC =
0.56).

In the analysis with HDRS data, the first model again uses
only passive measures (PCC = 0.41). The model is repeated
using the EMA data (PCC' = 0.62). The results again improve
when modeling both types of data together (PCC = 0.74).
For full results, including results by feature type (e.g., mean),
see Table IV.

A. EMA, Passive, and Self-Report Mood Measures

The relationship between the emotion measures (EMA and
passive) and self-reported daily mood measures (digiDay_M,
digiDay_D) are first fitted using LMEM applied to the entire
population, as discussed in the previous section. The emotion
features are again z-normalized prior to fitting each model and
a random effect for gender is included. See Table V for the
standardized coefficients.

LMEM models were first fit for the digiDay_D data. The
first LMEM is fit on only the passive features (PC'C = 0.29).
We find that both the combination of all passive features
outperforms that of a single feature alone and that the EMA
features have higher PCC, compared to the passive features
(PCC = 0.67). The results show that the combination of
passive and EMA features outperforms either approach alone
across all metrics (PCC = 0.70). See Table IV for full results
and Figure 4 for a visualization of the model fit on the passive
and EMA data.

LMEM models were then fit for the digiDay_M data, first
using passive, then EMA, then a combination of passive and
EMA features. The LMEM fit with passive features has a
PCC = 0.34. The combination of all passive features outper-
forms that of a single feature alone. The LMEM fit with EMA
features has higher PCC, compared to the passive features
(PCC = 0.52). Again, the combination of passive and EMA
features outperforms either approach alone (PC'C' = 0.59).
See Table IV for full results and Figure 5 for a visualization
of the model fit on the passive and EMA data.

B. Participant-Specific Results

Thus far, the results presented have considered a dataset
composed of all participants together. In the next analysis, the
participant data are disaggregated into participant-specific sets.
The LMEM is first evaluated in a data fitting capacity and then
in a prediction capacity.

First, LMEM models were fit using all participants’ given
their passive and EMA measures. The LMEM is not retrained
and is therefore not subject-independent at this point. The PCC
between the LMEM output and the true digiDay_D is 0.60 +
0.45 (mean =+ standard deviation) and for digiDay_M is 0.63
+ 0.40 (Figures 6 and 8).

Next, LMEM models were run in a prediction capacity using
a leave-one-participant-out approach. There are two sets of
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Scale Mean Variability Inertia Upper Anomaly Lower Anomaly All
R2, R?2 PCC| R’ R? PCC|R2 R?! PCC|R?2 R? PCC|R: R’ PCC| R2 R?2 PCC
° ymrs 0.07 025 0.18 | 0.06 0.11 026 | 0.10 0.17 033 | 0.04 0.07 022 | 002 0.07 0.16 | 0.16 035 0.37
= hdrs 002 002 0.14 | 004 004 0.19 | 002 002 0.6 | 0.03 0.03 0.18 | 0.03 0.03 0.17 | 0.09 054 041
g | db_D | 000 029 0.06 | 003 0.04 0.17 | 001 029 0.12 | 000 003 0.00 | 0.00 0.03 0.04 | 005 035 029
- dD_M | 0.00 0.06 0.08 | 001 0.05 0.15 | 001 007 0.11 | 000 007 0.07 | 0.06 0.12 024 | 0.07 034 034
ymrs 001 0.09 0.11 | 0.09 022 028 | 0.00 006 0.01 [ 0.04 0.11 0.19 | 0.10 0.15 034 | 021 032 0.49
< hdrs 0.19 0.19 043 | 0.00 0.00 006 | 001 o001 0.0 | 0.13 0.13 036 | 002 0.02 0.15 | 036 038 0.62
E db_D | 025 049 058 | 0.01 0.04 0.09 | 001 004 009 | 002 004 0.16 | 0.00 029 0.06 | 035 056 0.67
dD_M | 022 029 047 | 000 0.07 005 | 001 007 0.13 | 001 007 0.10 | 0.01 0.07 0.13 | 025 029 0.52
3 ymrs 0.09 030 020 | 0.12 022 035|010 0.17 033 [ 0.07 0.11 029 | 0.10 0.15 034 | 028 045 0.56
._g hdrs 021 026 045 | 004 004 021 | 0.04 004 020 | 0.14 0.14 039 | 007 0.07 027 | 047 054 0.74
g | db_D | 025 049 058 | 0.03 0.05 020 | 002 005 0.14 | 002 004 0.16 | 0.00 029 0.08 | 040 058 0.70
S| dbM | 022 028 048 | 001 006 0.6 | 002 008 0.7 | 001 007 013 | 006 012 026 | 026 048 0.59
TABLE IV: Marginal and conditional R? for LMEMs. Marginal R2, is with respect to the fixed factors, while the conditional
R? is with respect to both the fixed and random factors. The scale dD refers to digiDay (e.g., digiDay_D).
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Fig. 4: The LMEM data fitting for digiDay_D. The x-axis

represents the true value, the y-axis is the predicted value. The

purple points are data from individuals with a BP I diagnosis,

while the orange points are from individuals with a BP II

diagnosis. The straight lines represent the trends for each
group.

data: 1) the training data, containing n — 1 participants and
2) the testing data, containing the final remaining participant.
Each participant serves as a test participant. The LMEM is
created using the training data and evaluated on the testing
data. Therefore, there are n distinct LMEMSs that are trained.
The result is a participant-independent analysis (participants
are not in both the training and the testing data). The PCC for
digiDay_D is 0.56 + 0.48 and for digiDay_M is 0.61 + 0.42
(Figures 7 and 9).

C. Analysis of Linear Mixed Effect Models

Given the small sample size of this pilot study, analysis of
the combined LMEM using all emotion features concentrated
on 95% confidence intervals (CI) rather than p-values, 95%
CT’s that include O were considered non-significant. The range
of the lower and upper bound of the 95% describes the
confidence limits of the estimate. See Table V for full results.

1) Self-reported Mania: Greater variability in passive va-
lence was associated with higher digiDay_M such that a 1-unit

w
L
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Fig. 5: The LMEM data fitting for digiDay_M. The x-axis
represents the true value, the y-axis is the predicted value. The
purple points are data from individuals with a BP I diagnosis,
while the orange points are from individuals with a BP II
diagnosis. The straight lines represent the trends for each
group.

increase in variability was associated with a 0.22 standard de-
viation (SD) increase in digiDay_M score. Greater variability
in passive activation was associated with a decrease in digi-
Day_M such that a 1-unit increase in variability of activation
was associated with a 0.28 SD decrease in digiDay_M. A
greater number of anomalies (lower: from high to low values)
in passive activation were associated with higher mania scores.
In terms of EMA, mean valence was negatively associated with
mania scores such that a 1-unit increase in EMA valence was
associated with a 0.64 SD decrease in mania. The opposite
was true of EMA activation, a 1-unit increase in activation
was associated with a 0.59 SD increase in mania scores.

2) Self-reported Depression: A 1-unit decrease in mean
levels of passive valence was associated with a 0.37 SD in-
crease in depression scores. A 1-unit increase in the variability
of passive valence was associated with a 0.46 SD increase
in depression scores. A 1-unit increase in the variability of
passive activation was associated with a 0.58 SD decrease
in depression scores. In addition, inertia of passive valence
was associated with a 0.38 SD increase in depression scores.
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feature [ coef.  std. error  p-value 95% CI
digiDay_M
passive val mean -0.10 0.06 0.064 -0.21 - 0.01
passive act mean 0.07 0.06 0.252 -0.05 - 0.18
passive val vari 0.22 0.08 0.003 0.08 - 0.37
passive act vari -0.28 0.07 < 0.001 -042--0.13
passive val iner 0.18 0.05 < 0.001 0.08 - 0.29
passive act iner -0.04 0.06 0.475 -0.16 - 0.07
passive val anom upper | -0.13 0.06 0.022 -0.24 - -0.02
passive act anom upper -0.01 0.06 0.820 -0.13 - 0.10
passive val anom lower 0.10 0.06 0.102 -0.02 - 0.21
passive act anom lower | 0.19 0.06 < 0.001 0.08 - 0.31
ema val mean -0.64 0.06 < 0.001 -0.75 - -0.53
ema act mean 0.59 0.06 < 0.001 0.48 - 0.71
ema val vari 0.06 0.08 0.440 -0.09 - 0.21
ema act vari 0.12 0.07 0.084 -0.02 - 0.25
ema val iner -0.15 0.06 0.013 -0.26 - -0.03
ema act iner 0.10 0.05 0.062 -0.01 - 0.21
ema val anom upper -0.16 0.05 0.002 -0.26 - -0.06
ema act anom upper 0.04 0.05 0.459 -0.06 - 0.14
ema val anom lower -0.11 0.06 0.050 -0.22 - -0.00
ema act anom lower 0.04 0.05 0.444 -0.06 - 0.14
digiDay_D
passive val mean -0.37 0.11 0.001 -0.58 - -0.15
passive act mean 0.05 0.12 0.673 -0.18 - 0.28
passive val vari 0.46 0.15 0.002 0.17 - 0.75
passive act vari -0.58 0.15 < 0.001 -0.87 - -0.29
passive val iner 0.38 0.11 < 0.001 0.18 - 0.59
passive act iner 0.15 0.12 0.212 -0.08 - 0.38
passive val anom upper -0.04 0.11 0.744 -0.26 - 0.18
passive act anom upper 0.18 0.12 0.133 -0.05 - 0.41
passive val anom lower | -0.32 0.12 0.006 -0.56 - -0.09
passive act anom lower | 0.29 0.11 0.010 0.07 - 0.52
ema val mean -2.25 0.11 < 0.001 -2.47 - -2.03
ema act mean 0.40 0.12 < 0.001 0.17 - 0.64
ema val vari -0.03 0.15 0.835 -0.32 - 0.26
ema act vari 0.55 0.13 < 0.001 0.29 - 0.82
ema val iner 0.76 0.12 < 0.001 0.53 - 0.99
ema act iner 0.18 0.11 0.101 -0.03 - 0.39
ema val anom upper -0.26 0.10 0.011 -0.47 - -0.06
ema act anom upper 0.11 0.10 0.262 -0.08 - 0.31
ema val anom lower 0.29 0.11 0.010 0.07 - 0.51
ema act anom lower 0.02 0.10 0.860 -0.18 - 0.21

TABLE V: LMEM descriptions for self-reported mood. Bold:
coefficients with p-value < 0.05, italics: coefficients with p-
value < 0.1. CI: confidence interval.

A greater number of anomalies (from high to low scores) in
valence was associated with a 0.32 SD decrease in depression
whereas a greater number of anomalies in passive activation
were associated with a 0.29 SD increase in depression. In
terms of EMA, a 1-unit decrease in valence mean was asso-
ciated with a 2.25 SD increase in depression scores. Higher
EMA activation was associated with a 0.40 SD increase in
depression. Similar to passive measures, greater inertia in
valence was associated with 0.76 SD increase in depression.
The opposite was observed for EMA anomalies: a greater
number of high to low valence anomalies was associated with
an increase in digiDay_D.

VIII. RELATIONSHIP BETWEEN EMA AND PASSIVE
MEASURES

The relationship between EMA and passive estimates rein-
force findings from the emotion recognition literature, speak-
ing to the differences between self-report (EMA is self-report)
and passive estimates [30], [31]. We observe a similar trend.
The mean measures extracted from the passive and EMA data
are not correlated across either valence (-0.00) or activation

(-0.10). For the valence dimension, the variability feature is
the most well-correlated across EMA/passive measures (0.13),
compared to inertia (0.05), upper anomalies (-0.03), and lower
anomalies (-0.13). There is a similar trend for the activation
dimension (variability: 0.20, inertia: -0.00, upper anomalies:
0.15, lower anomalies: 0.07). If used as the sole validation,
the results suggest that passive measures are not accurate.
However, it is important to consider alternative validation
approaches given the differences that exist between EMA (self-
report) and passive measures (perception-of-other) and that
insight into one’s emotions can be affected differently based
on current mood state [101].

IX. DISCUSSION

The results suggest that EMA and passive measurements
both contribute, but contribute differently, to the explanation
of variance in mood symptom severity. We find that, measures
derived from the passive features generally contributed more
information to the modeling of clinical measures (YMRS,
HDRS) compared to self-report measures (digiDay_M, digi-
Day_D).

In the modeling of symptom severity, measures derived
from both the passive and EMA collections provide substantial
insight into the variability of symptom severity. In the case of
HDRS and digiDay_D, features derived from EMA are gener-
ally more effective for modeling depression symptom severity,
compared to passive features. This is consistent with prior
findings showing that emotional insight in depressive episodes
is not impaired [102]. Yet, the combination of passive and
EMA features leads to the highest performance. These findings
are echoed in the prediction of mania symptom severity. Again,
the EMA features provide a stronger signal, compared to those
derived from the passive measures. However, again, we see
that the combination of both passive and EMA features leads
to the highest performance.

Overall, the preliminary findings support a growing body
of literature that suggests that the temporal dynamics of
emotional valence and activation is related to mood sever-
ity [96], [97] over and above mean levels. We observed that
the variability of passive valence is associated with higher
self-reported depression (digiDay_D) and mania (digiDay_M)
scores. Conceptually, this suggests that higher mood scores
are associated with greater variability in valence (e.g., greater
reactivity or dysregulation) captured in speech. We further
observered that increased variability of passive activation is
associated with lower depression and mania scores. Concep-
tually, this suggests that lower variability in activation is
associated with higher mood scores (e.g., consistently low
activation in depression, consistently high activation in mania).
However, we find that the variability of EMA activation is
associated with higher depression, but not mania, scores. This
may speak to a self-perception of high activation that may
not be reflected in observable behavior. Additional research
is needed to investigate whether this trend will be replicated
across a larger sample. Fundamentally, these findings speak
to the increasing attention paid to the role of activation and
energy as a core feature of mood episodes in bipolar disorder
[98], [103]-[105].
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Fig. 6: The LMEM for digiDay_D, separated by subjects and
ordered in time. The brown line is the self-reported ground
truth. The blue line is the estimated value. These data were
generated through data fitting.
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Fig. 8: The LMEM for digiDay_M, separated by subjects and
ordered in time. The brown line is the self-reported ground
truth. The blue line is the estimated value. These data were
generated through data fitting.

X. LIMITATIONS AND FUTURE WORK

The presented work is the result of a pilot deployment.
Although the dataset itself is quite large, the labels over which
to validate the findings are relatively small. This may impact
the generalizability of the work. However, we observe that
the performance of the model is aligned with our clinical
understanding of expression of mood severity for individuals
with bipolar disorder. We are continuing to collect data using
this pipeline.

The classifiers discussed in this paper are based on
perception-of-other labels, yet EMA is self-report. There is
an inherent mismatch between these two types of labels [28],
[106]). Future work will investigate additional continual learn-
ing approaches to enable the automatic prediction of self-
reported emotion.
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Fig. 7: The LMEM for digiDay_D, separated by subjects and
ordered in time. The brown line is the self-reported ground
truth. The blue line is the estimated value. These data were

generated through subject independent prediction.
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Fig. 9: The LMEM for digiDay_M, separated by subjects and
ordered in time. The brown line is the self-reported ground
truth. The blue line is the estimated value. These data were
generated through subject independent prediction.

XI. CONCLUSIONS

In this paper, we presented a novel emotion-centered data
collection in real-world environments for individuals with
bipolar disorder. We explored the relationship between EMA
(self-report) and passive emotion estimates (perception-of-
other), describing how the two emotion measures differ. This
included assessment of emotion features that could be ex-
tracted from each, focused on the daily mean emotion, inertia
of emotion, variability of emotion, and the presence of anoma-
lies across both passive and EMA. We demonstrated how
features derived from these disparate emotion measures could
be validated in the context of mental health symptom severity.
The resulting LMEM models demonstrate the utility of both
passive and EMA approaches, particularly as a function of
the level of insight that is associated with both manic and
depressive symptom severity.
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XII. ETHICAL CONSIDERATIONS

All work presented in this paper has been approved by
University of Michigan’s IRB. Yet, the use of emotion recog-
nition technology is not without potential harm. In this paper,
emotion recognition is presented in the context of under-
standing variation in mental health symptom severity, which
has significant potential benefits surrounding the recognition
of early warning signs of illness, thus enabling just-in-time
intervention. However, the use of these technologies must be
carefully considered. Recent research has focused on iden-
tifying potential harms and necessary legal protections as it
relates to emotion ethics and privacy [107]-[110]. McStay and
Pavliscak have created guidelines for the ethical use of emo-
tional Al, focusing on personal questions (e.g., benefits to the
user, respecting human dignity, facilitating meaningful choice),
relationship questions, and societal questions [110]. Roem-
mich and Andalibi investigated how data subjects themselves
perceive emotion recognition technologies. They identify po-
tential harms including “the spread of inaccurate health infor-
mation, inappropriate surveillance, and interventions informed
by inaccurate predictions [108]”. Grill and Andalibi point
towards data subjects’ discomfort, concern with agency, and
the lack of transparency within the technology [109]. We take
these guidelines and suggestions into account, consistently
considering the tradeoffs that exist between the benefits of
this technology with respect to individual health and the ability
to provide new insight into the time course of illness, while
mitigating potential negative risks to data subject’s health,
safety, and autonomy.
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