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Abstract

Training emotion recognition models has relied heavily on hu-
man annotated data, which present diversity, quality, and cost
challenges. In this paper, we explore the potential of Large
Language Models (LLMs), specifically GPT-4, in automating or
assisting emotion annotation. We compare GPT-4 with super-
vised models and/or humans in three aspects: agreement with
human annotations, alignment with human perception, and im-
pact on model training. We find that common metrics that use
aggregated human annotations as ground truth can underesti-
mate GPT-4’s performance, and our human evaluation experi-
ment reveals a consistent preference for GPT-4 annotations over
humans across multiple datasets and evaluators. Further, we in-
vestigate the impact of using GPT-4 as an annotation filtering
process to improve model training. Together, our findings high-
light the great potential of LLMs in emotion annotation tasks
and underscore the need for refined evaluation methodologies.

Index Terms: Emotion Recognition, Large Language Models

1. Introduction

Understanding human emotions from written or spoken lan-
guage is crucial is a key part of studying how computers can in-
teract with us more like humans do. The field has attracted sig-
nificant research efforts, ranging from word-level analysis [1,2]
to building sophisticated neural networks [3, 4]. Currently,
many models demonstrate impressive capabilities in recogniz-
ing various human emotions.

The training of emotion models has relied heavily on
datasets with human annotations. However, obtaining emotion
annotations is challenging due to the rich, ambiguous and sub-
jective nature of emotions [5—7]. The first challenge is to iden-
tify the emotion theory that will motivate a particular labeling
schema. Common theories include basic emotion theory [8],
assigning one or more predefined emotion classes to each sam-
ple (categorical labels), and the emotion circumplex theory [9],
rating each sample on continuous scales, such as valence and
arousal to reflect the emotion’s positivity and intensity (dimen-
sional labels). The process of collecting human annotations in-
volves multiple annotators per sample to accommodate subjec-
tive interpretations and possible quality issues, with the final la-
bel often determined through aggregation methods like majority
voting [10] or averaging [11]. Given the large scale of modern
datasets, such annotation processes can be both costly and time-
consuming. Moreover, the complexity of the label space and the
difficulty of quality control further add to the challenges.

Recently, the progress in LLMs brings new alternatives.
With remarkable proficiency in language modeling across a
wide range of scenarios, LLMs show emerging common sense
reasoning capability [12]: they can answer a wide range of nat-

ural language reasoning questions through zero- or few- shot
prompting, matching or even outperforming supervised mod-
els [13-15]. What’s more, LLMs display an understanding of
human emotion and can respond differently to emotional con-
tent [16, 17]. This has inspired research into leveraging LLMs
as emotion models to aid emotion annotation processes.

In this work, we comprehensively assess GPT-4’s potential
to perform emotion annotations in a zero-shot manner. We first
measure its emotion recognition performance and find that it
performs comparably to established supervised models as base-
lines, using human annotations as the ground truth. We then
reflect on the differences between GPT-perception and human-
perception and evaluate how those differences are perceived
by a separate set of human evaluators. Surprisingly, we find
that human evaluators consistently prefer the GPT-4 annotations
over human annotations. These findings raise important open
questions about the suitability of conventional “ground truth”
concepts and evaluation practices, especially as models begin
to approach human-level performance. Further, we analyze how
label formats (categorical vs. dimensional) affect GPT-4’s per-
formance, and we explore the feasibility of applying GPT-4 as
a quality checker for existing annotations. We demonstrate that
GPT-4 can identify potentially low-quality annotations and help
with curating a cleaner and more efficient training set.

In summary, our research reveals the great potential of uti-
lizing LLMs for emotion annotation tasks, offers new insights
into their capabilities across label formats, and highlights the
challenges involved in their evaluation. We also release the
GPT-4 annotations on the entire GoEmotions dataset, along
with our code and promptsl.

2. Related Work

Affective capabilities of LLMs. Many evaluation studies have
shown that LLMs are equipped with emotional intelligence:
they are able to derive appraisals of given situations [18], iden-
tify the emotions and emotion causes in dialogues [16], and re-
spond with emotional support [16,17,19]. Yet, they are gener-
ally found to be inferior to humans: a few works that developed
benchmarks for assessing emotional intelligence consistently
indicate a notable gap in complex emotion reasoning between
state-of-the-art LLMs and human performance [17, 20, 21].
There have been a few works that evaluate GPT’s zero- or few-
shot capability of emotion recognition from text or speech in-
put [22-25]. However, the diversity of emotion label spaces are
rarely discussed. Besides, existing works adopt evaluation cri-
teria that rely on automatic metrics against human annotations
as the ground truth. In this work, we show that such metrics can

https://github.com/chailab-umich/
GPT-4-Emotion-Annotation



Table 1: Dataset details. label: C-categorical, D-dimensional.
The column “Multi” indicates whether it’s a multilabel classi-
fication task. “Indiv.” indicates whether individual annotations
on each sample are released.

Dataset Domain Label (d) Multi. Indiv.
ISEAR self reports C(@ No No
SemEval tweets Cc(n Yes No
GoEmotions reddits C (28) Yes Yes
Emobank multi-genre D (3) N/A Yes

be biased and may undervalue GPT’s effectiveness.

LLMs as data annotators. Despite their remarkable capa-
bilities in various language understanding tasks [14, 15,26], the
high operational costs and impracticality of deployment on edge
devices have focus efforts towards using LLMs to enhance an-
notation processes for training more compact models. GPT has
been recognized for its potential in sample annotation [27] and
generation [28,29]. In a closer look, LLMs especially excel at
tasks with limited and well-defined label sets [28].

Prompting methods. It is widely acknowledged that
LLMs are sensitive to the format and word choices in the
prompts [30], making prompts the key factor in the successful
application of LLMs. There are two common ways of prompt-
ing [31]: cloze prompts, which involve a fill-in-the-blank ap-
proach (e.g.,“I feel [X]. I finally got that promotion!”), and pre-
fix prompts, where the model extends a given prompt (e.g., “‘I
finally got the promotion!” What is the speaker’s emotion?”).
Given GPT-4’s pretraining on generation tasks, our study em-
ploys prefix prompts. There have been a lot of work exploring
different techniques of prompting that could bring a significant
improvement in the models’ responses [31-33]. The efficiency
of different prompting techniques is not the focus of this pa-
per. We follow the common effective practices without dedi-
cated prompt engineering (details in Section 4.1).

3. Data

‘We use four publicly available emotion recognition datasets for
our analysis, encompassing a variety of label representations
and diverse text domains (Table 1). Considering the substantial
volume of these datasets, we first select a subset of 500 samples
from each for GPT-4 annotation and subsequent analysis.
International Survey on Emotion Antecedents and Re-
actions (ISEAR) [34] is an outcome of a psychological study
aiming to understand the antecedents and reactions to seven ba-
sic emotions (joy, fear, anger, sadness, disgust, shame, guilt).
It consists of 7.6k samples from firsthand emotional reports in
text form. We randomly select 500 samples for our analysis.
SemEval 2017 Task 4 (SemEval) [10] is part of the In-
ternational Workshop on Semantic Evaluation. It consists of
Twitter text samples, each annotated with one or more of 11
emotion classes. Since this dataset is very unbalanced, we con-
duct weighted sampling to select the 500 samples by applying
log inverse frequency weighting to the labels, in order to include
more emotion labels in our analysis. If a sample carries multiple
emotions, the weighting is determined by the rarest label.
GoEmotions [35] is a comprehensive dataset with 58k
samples derived from Reddit comments, designed for fine-
grained emotion detection. It is characterized by its extensive
range of 27 distinct emotion categories, including admiration,
remorse, gratitude, etc. Each sample can be assigned one or
more emotion labels, as well as an extra “neutral” option. We

also apply log inverse frequency weighting in our selection of
500 samples, to address the label imbalance.

Emobank [11] consists of 10k English sentences balanc-
ing multiple genres (newspapers, blogs, etc.). The samples
are annotated with dimensional emotion labels in the Valence-
Arousal-Dominance (VAD) space on a 5-point scale. We focus
on the valence score in this study, as it is most commonly in-
cluded in related literature [25,36]. Notably, EmoBank dis-
tinguishes between the emotional perceptions of writers and
readers [37]; we use the reader’s annotations, to be consistent
with the perspective of GPT-4. We weight the samples by their
log deviation from neutral score, to encourage the inclusion of
stronger emotional content. Le., w; = log|V; — 3|.

4. Methods
4.1. GPT-4 Prompting

For each of the three emotion classification datasets, we collect
two sets of GPT-4 annotations. In the first set of annotations, we
ask GPT-4 to conduct classification annotations by making se-
lections from a pre-determined set of emotion classes. Informed
by the common prompting techniques detailed in Section 2, we
follow an instruction-based prompting method, which is con-
sistent with the tasks given to human annotators. We try to give
GPT-4 similar instructions as those given to humans, based on
the descriptions in the GoEmotions paper [35]. Additionally,
we set up a persona in the beginning, which has been found to
be effective in our preliminary experiments. As an example, the
prompt we use for multi-label classification datasets (GoEmo-
tions and SemEval) is shown below.

“You are an emotionally-intelligent and empathetic agent.
You will be given a piece of text, and your task is to identify all
the emotions expressed by the writer of the text. You are only
allowed to make selections from the following emotions, and
don’t use any other words: [Options]. Only select those ones
for which you are reasonably confident that they are expressed
in the text. If no emotion is clearly expressed, select ‘neutral’.
Reply with only the list of emotions, separated by comma.”

We make minimal modifications as needed for other
tasks/datasets and all prompts we use across datasets/tasks can
be found in our released code.

‘We then ask GPT-4 to freely generate descriptors of the ex-
pressed emotion, without a given range of options. We compare
the generated descriptors with the classification results to under-
stand how the granularity of emotion labels affect GPT-4’s per-
formance (Section 5.1). For Emobank, we use a similar prompt
with the expected response being a integer number from 1 to 5,
indicating the perceived valence of the expressed emotion. Us-
ing these prompts, we obtain GPT-4 emotion annotations on the
2000 samples selected from four datasets. We additionally ob-
tain classification annotations on all of the GoEmotions dataset
using GPT-4 for our model training analysis (Section 5.2).

4.2. Automatic Evaluation Metrics

Following common approaches in previous work, we evaluate
GPT-4’s performance on two aspects: 1) agreement with hu-
man annotations [28, 36], and 2) potential to improve model
performance when GPT-4’s annotations are used as training
data [24,25] to train smaller models, in this case implemented
by fine-tuning BERT. For classification, we use Unweighted
Average Recall (UAR) and Macro-averaged F-1 (Macro-F1)
scores as the metrics. UAR measures a model’s ability to cor-
rectly identify instances of each class with equal importance,



while Macro-F1 assesses the balance between precision and re-
call for all classes. For regression, we use Pearson Correlation
Coefficient (PCC) to measure the strength and direction of the
linear correlation, and Mean Absolute Error (MAE) to reflect
the average error magnitude.

4.3. Supervised model: Finetuned BERT

We finetune BERT [38] models on the full training set of each
dataset to serve as a supervised baseline. BERT is one of the
most commonly used models for text classification tasks [39]
and has been used as a benchmark model for the GoEmotions
dataset [35]. Besides, its smaller size means it can be run on a
single GPU, so we also use it as our base model when compar-
ing the training efficiency of different annotation sources.

We use the same finetuning settings across all experiments:
we use the “bert-base-uncased” model implemented in the
transformers library, which has 110M parameters. We add a
linear layer on top of the base model, and finetune the whole
model on a training set with an AdamW optimizer and learning
rate = le-5. We optimize a Binary Cross Entropy loss for multi-
label classification tasks, a Cross Entropy loss for the single-
label classification task, and a Mean Squared Error loss for the
regression task. We train the model for 10 epochs, and use the
model with best performance on a validation set for testing. For
the regression task, we find the model not yet converged after
10 epochs, so we train the model for 30 epochs.

4.4. Human Evaluation

Human annotations often contain inaccuracies [40], thus met-
rics based solely on human annotations can be biased. There-
fore, we conduct a human evaluation study on samples where
GPT-4 and the human evaluators do not agree, aiming to incor-
porate human perspectives into our evaluation.

We recruited four students from the University of Michigan
as our evaluators, aged between 19 to 28 and including two fe-
males. They were presented with annotations from two sources
(i.e., human vs. GPT-4 classification or GPT-4 classification vs.
generation) without identification, and were asked to choose the
one which they thought “better and more accurately describes
the emotion expressed in the text”. Each sample was evaluated
by two evaluators, who were given an option to indicate un-
certainty on each sample. For the classification tasks (ISEAR,
SemEval and GoEmotions), we first found all samples that were
annotated with disjoint sets of labels by the two sources. Note
that we did not adjudicate annotations if they contained over-
lapping emotion labels as the differences can be subtle (e.g.,
“anger” vs. “anger, annoyance”). The annotations were ran-
domized and mixed from three different datasets to reduce the
likelihood that evaluators could recognizing patterns associated
with a specific source. For the regression task (Emobank), it
is harder for evaluators to decide whether a given number is a
more or less accurate valence rating for a given sample, espe-
cially when the ratings are close. Thus, we adopted a relative
evaluation schema [41]. We found pairs in disagreement where
one annotation source assigns sample A a significantly (> 1
standard deviation) higher rating than sample B, while the other
indicates reversed significance. We asked evaluators to indicate
which of the two samples in each pair should have the higher
valence. The order of the samples was randomized.

5. Results
5.1. GPT-4 Zero-shot Performance

We first compare GPT-4 and human classification annotations,
with a focus on their disagreements. We visualize the disagree-

Table 2: GPT-4 zero-shot vs. BERT finetuned performance
across four dataset. Better performances are in bold.

Macro-F1 1 UAR 1
GPT-4 BERT GPT-4 BERT
ISEAR 0.739 0.726 0.747 0.727
SemEval 0.511 0.548 0.476 0.495
GoEmotions  0.375 0.521 0.485 0.469
PCC 1 MAE |

GPT-4 BERT GPT-4  BERT
Emobank 0.764 0.321 0.645 0.442

ments on the ISEAR dataset as a confusion matrix in Figure 1
(we select ISEAR because it has the fewest number of classes
and is the clearest to show). GPT-4 aligns well with human
annotations on most samples, as indicated by the numbers on
the diagonal. It’s worth noting that confusions mostly happen
among similar emotions, and the confusion between a positive
emotion and a negative one is rare. Further, it shows that the
confusion between classes is not symmetric, indicating some
systematic differences between human and GPT-4 annotations.
For example, GPT-4 tends to perceive more shame than guilt
(18), but seldom marks human-perceived shame as guilt (3).

We then quantitatively evaluate the zero-shot efficacy of
GPT-4, and compare its performance to a BERT model fine-
tuned to predict the human evaluations. Our findings are in
line with prior work in this space [28] that the two approaches
perform comparably, and GPT-4 performs slightly better than
BERT on the easier 7-class classification dataset ISEAR, but
was more challenged on the multi-label classification datasets
SemEval and GoEmotions (Table 2).

However, the subsequent human evaluation reveals a dif-
ferent trend and suggests that the automatic metrics may have
underestimated GPT-4 performances. As shown in Figure 2 (a)
with the colored bars representing the ratio of human prefer-
ence obtained on each annotation source (Human vs. GPT-4
classification), human evaluators prefer labels from GPT-4 on
more samples than those from human annotators, consistently
across datasets: ISEAR 62.3%, SemEval 68.2%, GoEmotions
71.1%. This trend holds for each individual annotator, ranging
from 64.1% to 71.2%.

Further, Figure 2 (b) shows that GPT-4 generated emotion
descriptions are preferred to GPT-4 classification annotations
by human evaluators, indicating that without the pre-defined
classes as a restriction, GPT-4 generates emotion descriptions
that were more often preferred by human evaluators. This trend
is more significant when the label set is small, like ISEAR (7-
classes 65.4%) and SemEval (11 classes, 73.8%), compared to
GoEmotions (28 classes, 55.2%). This comparison indicates
that it’s beneficial to have a larger label space, which is more
likely to encompass the precise emotion labels needed for ac-
curate annotation. The results in Figure 2 (a) highlight the pro-
ficiency of GPT-4 in navigating a wide range of labels, further
demonstrating its utility in complex emotion recognition tasks.

On the valence regression task, GPT-4 significantly outper-
forms fine-tuned BERT when measured by PCC, but it has a
larger MAE (Table 2). The large MAE can be explained by the
highly centralized distribution of human annotations (standard
deviation for human evaluations was 0.54, vs. 1.16 for GPT-4)
and the fact that GPT-4 predicts integer-valued numbers while
the human evaluations are continuous (e.g., averages of multiple
evaluators). However, the large PCC value (0.764) indicates that
GPT-4 can identify relative emotional valence. Human evalua-
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Figure 1: Disagreements between human
and GPT annotations on ISEAR.

tion also finds an overall 56% agreement with GPT-4 rather than
the original human annotations.

5.2. Impact on Model Training

We then investigate whether the labels resulting from GPT-4
classification annotations can be used to train emotion recogni-
tion models. We focus on the GoEmotions dataset for this study,
using its original train/val/test split.

We compare the performance of a BERT model when it is
fine-tuned on the whole training set (N¢rqin = 42,278) with hu-
man annotations to one trained using the GPT-4 annotations.
Additionally, we downsample the training data, retaining only
data where the original human evaluations agree with the GPT-
4 annotations. We refer to this set as the filtered human set
(Human-F, Niyqin = 19,130). Note that this set potentially con-
tains easier samples, compared to both the original human eval-
uations and GPT-4 annotation labels, because ambiguous sam-
ples are more likely to receive different annotations from human
and GPT-4, and would thus be filtered out. We test the model on
the original human evaluation data (NV¢est = 5,283), the GPT-4
annotations (N¢est = 5,283), and the Human-F test set (Niest =
2,409). We add an extra test set that we refer to as the “adjudi-
cated” test set (N¢es: = 405), which is a subset of the 500 sam-
ples used in the human preference evaluation experiment. The
set is first populated with samples that have overlapping labels
from the original human evaluations and GPT-4 (N = 217),
and either the human or the GPT-4 label is selected by random.
The remaining samples exhibit disagreement between the two
sources. We select the subset of samples where humans exhib-
ited a clear preference for either the original human evaluation
or GPT-4 label? as the final label (N = 188). The performance
on the adjudicated test set is our main metric, because the an-
notations have been adjudicated and are considered to be more
reliable than the raw human or GPT-4 annotations.

In Table 3, the models perform most accurately when
trained and tested on the same type of annotation. When mod-
els are trained on human annotations and tested with GPT-4
annotations (and vice versa) there are notable performance de-
creases. This indicates that the models learn a systematic dif-
ference between human and GPT-4 annotations, which echos
our findings in Section 5.1. On the adjudicated test set, we find
that the model trained on GPT-4 annotations outperformed the
model trained on human annotations by a large margin (0.524
vs. 0.392, respectively), again pointing to the systematic differ-

2Samples where the human evaluators did not agree on the preferred
annotation were not included in this sample, 19% of the samples.

(a) Human vs. GPT-4 classification.

(b) GPT-4 classification vs. generation.

Figure 2: Human preference ratio comparing human annotations, GPT-4 classifica-
tion annotations and GPT-4 generation annotations on emotion classification tasks.

Table 3: Performance (Macro-F1) of models trained and tested
on different combinations of annotations. We show the best per-
Sformance on each test set (per column) in bold.

w ‘Human GPT-4 Human-F Adjudicated
Train

Human (42k) ‘ 0486 0304 0.568 0.392
GPT-4 (42k) ‘ 0.343 0.517 0.533 0.524
Human-F (19k) ‘ 0478 0.367  0.617 0.430

ences between the two annotation sources. We find that models
trained on the filtered subset of the original human evaluations
estimate the labels of the adjudicated data more accurately than
models trained on the full set of the original human evaluations
(0.430 vs. 0.392, respectively). This result is notable given that
the Human-F set is only 45% of the size of the original Human
set (N = 19,130 vs. N = 42,278, respectively).

6. Discussion, Limitations and Conclusion

In this work, we evaluate GPT-4’s emotion recognition capa-
bility and find that its zero-shot performance is comparable to
supervised models. Our human evaluation study reveals that
GPT-4 annotations are preferred to human annotations by our
human evaluators, and GPT-4 is good at handling a wide range
of options in emotion classification tasks. We also show that
models trained on GPT-4 annotations are subsequently better
at predicting the labels amongst the adjudicated subset of data.
These results highlight the potential of LLMs to be applied in
emotion recognition applications.

Several factors may contribute to the observed preference
for GPT-4 annotations. First, humans make mistakes, and the
increased cognitive load on more complex label spaces could
have increased the vulnerability [42]. Additionally, given the
inherent subjectivity and ambiguity of emotion annotations [7],
different preferences could indicate variations in annotation per-
spectives or reflect a lack of diversity in the annotation process.
Further exploration is needed to identify the underlying reason.
Our findings emphasize the need to reconsider conventional no-
tions of “ground truth” and explore novel evaluation metrics as
LLMs approach and surpass human-level performance.

7. References

[1] S. Mohammad, “Obtaining reliable human ratings of valence,
arousal, and dominance for 20,000 english words,” in Proceed-



[2]

[3]

[4]

[5]

[6

=

[7

—

[8]

[9

—

(10]

(11]

(12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

ings of the 56th annual meeting of the association for computa-
tional linguistics (volume 1: Long papers), 2018, pp. 174-184.

L. P. Hung and S. Alias, “Beyond sentiment analysis: A review of
recent trends in text based sentiment analysis and emotion detec-
tion,” Journal of Advanced Computational Intelligence and Intel-
ligent Informatics, vol. 27, no. 1, pp. 84-95, 2023.

N. Alswaidan and M. E. B. Menai, “A survey of state-of-the-art
approaches for emotion recognition in text,” Knowledge and In-
formation Systems, vol. 62, no. 8, pp. 2937-2987, 2020.

J. Deng and F. Ren, “A survey of textual emotion recognition
and its challenges,” IEEE Transactions on Affective Computing,
vol. 14, no. 1, pp. 49-67, 2021.

W. Wu, C. Zhang, and P. C. Woodland, “Estimating the un-
certainty in emotion attributes using deep evidential regression,”
arXiv preprint arXiv:2306.06760, 2023.

H. Tran, I. Falih, X. Goblet, and E. M. Nguifo, “Do multimodal
emotion recognition models tackle ambiguity?” in Proceedings of
the 2nd Workshop on People in Vision, Language, and the Mind,
2022, pp. 6-11.

L. Devillers, L. Vidrascu, and L. Lamel, “Challenges in real-life
emotion annotation and machine learning based detection,” Neu-
ral Networks, vol. 18, no. 4, pp. 407-422, 2005.

P. Ekman et al., “Basic emotions,” Handbook of cognition and
emotion, vol. 98, no. 45-60, p. 16, 1999.

J. A. Russell, “A circumplex model of affect.” Journal of person-
ality and social psychology, vol. 39, no. 6, p. 1161, 1980.

S. Rosenthal, N. Farra, and P. Nakov, “Semeval-2017 task 4: Sen-
timent analysis in twitter,” arXiv:1912.00741, 2019.

S. Buechel and U. Hahn, “EmoBank: Studying the impact of
annotation perspective and representation format on dimensional
emotion analysis,” in Proceedings of the 15th Conference of
EACL, Valencia, Spain, Apr. 2017, pp. 578-585.

J. Huang and K. C.-C. Chang, “Towards reasoning in large lan-
guage models: A survey,” arXiv:2212.10403, 2022.

M. T. R. Laskar, M. S. Bari, M. Rahman, M. A. H. Bhuiyan,
S. Joty, and J. Huang, “A systematic study and comprehensive
evaluation of ChatGPT on benchmark datasets,” in Findings of the
Association for Computational Linguistics: ACL 2023, A. Rogers,
J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada: Asso-
ciation for Computational Linguistics, Jul. 2023, pp. 431-469.

T. Brown et al., “Language models are Few-Shot learners,” May
2020.

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, “Finetuned language models are Zero-
Shot learners,” Sep. 2021.

W. Zhao, Y. Zhao, X. Lu, S. Wang, Y. Tong, and B. Qin, “Is Chat-
GPT equipped with emotional dialogue capabilities?”” Apr. 2023.

J.-T. Huang, M. H. Lam, E. J. Li, S. Ren, W. Wang, W. Jiao, Z. Tu,
and M. R. Lyu, “Emotionally numb or empathetic? evaluating
how LLMs feel using EmotionBench,” Aug. 2023.

A. N. Tak and J. Gratch, “Is GPT a computational model of emo-
tion?” in 2023 11th International Conference on Affective Com-
puting and Intelligent Interaction (ACII). 1EEE, 2023, pp. 1-8.

C. Li, J. Wang, K. Zhu, Y. Zhang, W. Hou, J. Lian, and
X. Xie, “Emotionprompt: Leveraging psychology for large lan-
guage models enhancement via emotional stimulus,” arXiv e-
prints, pp. arXiv-2307, 2023.

X. Wang, X. Li, Z. Yin, Y. Wu, and J. Liu, “Emotional intelligence
of large language models,” Journal of Pacific Rim Psychology,
vol. 17, p. 18344909231213958, Jan. 2023.

S. Sabour, S. Liu, Z. Zhang, J. M. Liu, J. Zhou, A. S. Sunaryo,
J. Li, T. M. C. Lee, R. Mihalcea, and M. Huang, “EmoBench:
Evaluating the emotional intelligence of large language models,”
2024.

N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and
K. Ikeuchi, “Bias in emotion recognition with ChatGPT,” 2023.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

S. Feng, G. Sun, N. Lubis, C. Zhang, and M. Gasi¢, “Affect recog-
nition in conversations using large language models,” Sep. 2023.

S. Latif, M. Usama, M. 1. Malik, and B. W. Schuller, “Can large
language models aid in annotating speech emotional data? uncov-
ering new frontiers,” Jul. 2023.

Z.Zhang, L. Peng, T. Pang, J. Han, H. Zhao, and B. W. Schuller,
“Refashioning emotion recognition modelling: The advent of
generalised large models,” Aug. 2023.

X. Sun, X. Li, J. Li, F. Wu, S. Guo, T. Zhang, and G. Wang,
“Text classification via large language models,” arXiv e-prints, p.
arXiv:2305.08377, May 2023.

F. Gilardi, M. Alizadeh, and M. Kubli, “ChatGPT outperforms
crowd workers for text-annotation tasks,” Proc. Natl. Acad. Sci.
U. S. A., vol. 120, no. 30, p. 2305016120, Jul. 2023.

B. Ding, C. Qin, L. Liu, Y. K. Chia, B. Li, S. Joty, and L. Bing,
“Is GPT-3 a good data annotator?” in Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Jul. 2023, pp. 11 173-11 195.

S. Thapa, U. Naseem, and M. Nasim, “From humans to machines:
Can ChatGPT-like LLMs effectively replace human annotators in
NLP tasks?” https://workshop-proceedings.icwsm.org/pdf/2023_
15.pdf, 2023.

M. Loya, D. A. Sinha, and R. Futrell, “Exploring the sensitivity
of llms’ decision-making capabilities: Insights from prompt vari-
ation and hyperparameters,” arXiv:2312.17476, 2023.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing,” ACM Comput. Surv.,
vol. 55, no. 9, pp. 1-35, Jan. 2023.

M. Binz and E. Schulz, “Using cognitive psychology to under-
stand GPT-3,” Proc. Natl. Acad. Sci. U. S. A., vol. 120, no. 6, p.
€2218523120, Feb. 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning
in large language models,” Advances in neural information pro-
cessing systems, vol. 35, pp. 24 824-24 837, 2022.

H. G. Wallbott and K. R. Scherer, “How universal and specific is
emotional experience? evidence from 27 countries on five conti-
nents,” Social Science Information, vol. 25, no. 4, 1986.

D. Demszky, D. Movshovitz-Attias, J. Ko, A. Cowen, G. Nemade,
and S. Ravi, “Goemotions: A dataset of fine-grained emotions,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 4040-4054.

T. Feng and S. Narayanan, “Foundation model assisted automatic
speech emotion recognition: Transcribing, annotating, and aug-
menting,” Sep. 2023.

S. Buechel and U. Hahn, “Readers vs. writers vs. texts: Coping
with different perspectives of text understanding in emotion an-
notation,” in Proceedings of the 11th linguistic annotation work-
shop, 2017, pp. 1-12.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

S. Gonzdlez-Carvajal and E. C. Garrido-Merchan, “Comparing
bert against traditional machine learning text classification,” arXiv
preprint arXiv:2005.13012, 2020.

H. O. Ikediego, M. Ilkan, A. M. Abubakar, and F. V. Bekun,
“Crowd-sourcing (who, why and what),” International Journal of
Crowd Science, vol. 2, no. 1, pp. 27-41, 2018.

A. Metallinou and S. Narayanan, “Annotation and processing of
continuous emotional attributes: Challenges and opportunities,”
in 2013 10th IEEE international conference and workshops on
automatic face and gesture recognition (FG). 1EEE, 2013.

1. D. Wood, J. P. McCrae, V. Andryushechkin, and P. Buitelaar, “A
comparison of emotion annotation approaches for text,” Informa-
tion, vol. 9, no. 5, p. 117, 2018.



	 Introduction
	 Related Work
	 Data
	 Methods
	 GPT-4 Prompting
	 Automatic Evaluation Metrics
	 Supervised model: Finetuned BERT
	 Human Evaluation

	 Results
	 GPT-4 Zero-shot Performance
	 Impact on Model Training

	 Discussion, Limitations and Conclusion
	 References

