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Abstract

Multiple-type outcomes are often encountered in many statistical applications, one may want to study the association between
multiple responses and determine the covariates useful for prediction. However, literature on variable selection methods for
multiple-type data is arguably underdeveloped. In this article, we develop a novel global-local shrinkage prior in multiple
response-types settings, where the observed dataset consists of multiple response-types (e.g., continuous, count-valued,
Bernoulli trials, etc.), by combining the perspectives of global-local shrinkage and the conjugate multivaraite distribution.
One benefit of our model is that a transformation or a Gaussian approximation on the data is not needed to perform variable
selection for multiple response-type data, and thus one can avoid computational difficulties and restrictions on the joint
distribution of the responses. Another benefit is that it allows one to parsimoniously model cross-variable dependence.
Specifically, our method uses basis functions with random effects, which can be presented as known covariates or pre-defined
basis functions, to model dependence between responses and dependence can be detected by our proposed global-local
shrinkage model with a sparsity-inducing model. We provide connections to the original horseshoe model and existing basis
function models. An efficient block Gibbs sampler is developed, which is found to be effective in obtaining accurate estimates
and variable selection results. We also provide a motivating analysis of public health and financial costs from natural disasters
in the U.S. using data provided by the National Centers for Environmental Information.

Keywords Bayesian hierarchical model - Gibbs sampler - Markov Chain Monte Carlo - Multiple response-types - Spike and
slab

1 Introduction

Statistical models often assume the response variable is a
single type (e.g., see Bradley 2022, for a discussion). By
“type”, we mean continuous, count-valued, or binary, among
others. However, in many statistical applications, there are
observed datasets consisting of multiple response-types. As
an example, we consider data made available by NOAA’s
NCEL In particular, one might be interested in finding useful
covariates in predicting the responses: the number of nat-
ural disasters in the U.S., the financial costs (in billions of
U.S. dollars) of natural disasters, and the mortality associated
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with natural disasters. Solving this variable selection prob-
lem is particularly important considering the rising cases of
natural disasters due to climate change (e.g., Thuiller 2007,
among others). However, this problem is particularly difficult
considering that these variables likely exhibit multivariate
dependence, and are mixed continuous and discrete-valued.
Joint modeling of multi-type responses can provide a way to
produce more precise estimates and predictions by leveraging
dependence and including more (types of) data. Statistical
approaches that are suitable for jointly modeling multi-
ple response-type data include generalized linear mixed
effects models (Christensen and Amemiya 2002; Schliep and
Hoeting 2012), Markov models (Yang et al. 2014), copulas-
based models (Liu et al. 2009; Dobra and Lenkoski 2011;
Xue and Zou 2012), multi-task learning models (Argyriou
et al. 2007; Kim and Xing 2009; Yang et al. 2009), ran-
dom forests (Fellinghauer et al. 2013), and transformations
(Bradley 2022). However, some of these approaches require
one to make substantial modifications based on the types of
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responses, model transformations instead of the data directly,
and create computational difficulties (e.g., see Schliep and
Hoeting (2012), for a Metropolis-Hasting Gibbs sampler).
Multiple response-type modeling is a relatively new area,
and hence, it is of growing and important interest to develop
new frameworks and tools for statistical analysis in this area.
In particular, in this article, we focus on variable selection
for multiple response-type data in a Bayesian framework.
To perform variable selection in a Bayesian context we
make use of shrinkage global-local priors to enforce spar-
sity, which is widely used for estimating high-dimensional
sparse parameters (Carvalho et al. 2010; Griffin and Brown
2010; Polson and Scott 2011). Specifically, in continuous
shrinkage global-local priors, a “global” prior should enforce
substantial shrinkage towards zero while a “local” prior with
heavy tails should prevent over-shrinkage and capture local
variation or “signals”. One of the most well-known methods
is the horseshoe prior (Carvalho et al. 2010), which can be
defined as a Gaussian scale mixture of a global shrinkage
parameter and a local shrinkage parameter for a regression
coefficient. The horseshoe prior has been shown to have high
performance in variable selection, estimation, and prediction.
The concept of the global-local shrinkage has given rise to
many different variants of horseshoe-like priors in a great
amount of recent literature (e.g., see Bhadra et al. (2019),
among others). However, the original horseshoe prior and
most of the existing variants of the global-local shrinkage
method are designed for the Gaussian settings. Analysis can
be difficult when the data is non-Gaussian as the marginal
likelihood of the mixed effects is not analytically avail-
able for non-Gaussian likelihoods. Thus, the extension to
the non-Gaussian case is a growing topic in Bayesian vari-
able selection. For instance, Datta and Dunson (2016) have
extended the use of global-local priors to generalized linear
models for count data, Kundu and Dunson (2014) consider
semiparametric linear models where the errors are modeled
non-parametrically, and a Gaussian approximation approach
is developed by Piironen and Vehtari (2017) to approximate
the posterior of the mixed effect coefficients. However, in the
literature on Bayesian variable selection, most existing meth-
ods assume all responses are of the same type, either Gaussian
or non-Gaussian, and the literature on variable selection for
multiple response-type data is still relatively underdeveloped.
The multivariate logit-beta distribution (MLB), a spe-
cial case of the conjugate multivariate distribution (CM),
has been developed to facilitate Bayesian inference of non-
Gaussian data from the natural exponential family (Bradley
et al. 2019; Xu et al. 2023; Gao and Bradley 2019; Bradley
et al. 2020; Bradley 2022). In this article, we are motivated
to combine the horseshoe prior with this recent develop-
ment in the non-Gaussian literature and propose a Bayesian
variable selection for the multiple response-type data. The
implementation of our approach is straightforward given
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the fact that the multivariate logit-beta prior is the conju-
gate prior for several members from the natural exponential
family of distributions, which leads to the binomial/beta and
negative binomial/beta hierarchical models. Specifically, we
assume continuous data follows the MLB distribution, cat-
egorical data follows the binomial distribution, and count
data follows the negative binomial distribution. What is
unique with this strategy is that we do not need to model
the data given a transformation or a Gaussian approxima-
tion, and thus avoid restrictions on the joint distribution of
the responses. Furthermore, in our model, the dependence
across response-types can be explicitly modeled. To do so,
we assume dependence between responses can be modeled
parsimoniously through basis functions (Wikle 2010) and
our proposed global-local shrinkage model can be used to
detect cross-variable dependence where the coefficients of
the basis functions are interpreted as random effects. The use
of soft-thresholding based Bayesian methods to select basis
functions for dependent data has been used in the past in
spatio-temporal models (Wikle and Holan 2011) and in the
horseshoe method literature (Carvalho et al. 2010), among
others. We also show that our novel use of the MLB prior has
an explicit connection to the horseshoe prior under a Pélya-
Gamma augmentation scheme (Polson et al. 2013), which
provides evidence that the MLB distribution is reasonable
for both Gaussian and non-Gaussian data. Additionally, we
obtain an easy-to-implement block Gibbs sampler for our
proposed model, which is similar to that of Hu and Bradley
(2018), Bradley et al. (2019), and Bradley et al. (2020).

The remaining sections of this article are organized as fol-
lows. In Sect. 2, we introduce our proposed statistical model,
develop connections to the existing horseshoe model, and
describe the implementation. In Sect.3, we present sim-
ulation studies that contains numerical comparisons with
competing methods. Section4 provides a data analysis of
multiple response-type data for natural disasters in the U.S.
using our proposed method. Section 5 contains a discussion.

2 Methodology

As discussed in the Introduction, we assume continuous data
(e.g., financial costs of a particular type of natural disasters
in billions of U.S. dollars) follows the MLB distribution,
categorical data (e.g., number of a particular type of nat-
ural disasters) follows the binomial distribution, and count
data (e.g., mortality) follows the negative binomial distri-
bution. The MLB distribution is not a standard choice, and
consequently, we provide a review in Sect.2.1. Then in
Sect.2.2, we introduce the Bayesian hierarchical model for
these aforementioned multiple response-type data and the
model specifications. In Sects.2.3 and 2.4, we establish a
connection between the continuous-only setting of our model
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and the traditional horseshoe model. Specifically, in Sect. 2.3,
we first provide a connection between an MLB distribution
and a multivariate Gaussian distribution using the Pdlya-
Gamma data-augmentation strategy introduced by Polson
etal. (2013), and then in Sect. 2.4 we show that the shrinkage
factor in our model also shares the same shrinkage feature as
well as the one in the traditional horseshoe model. Section 2.5
provides details on model specifications.

2.1 Review of the multivariate logit-beta
distribution

Define the n-dimensional random vector w = (wy, ..., w,)’,
where the n elements of this random vector are mutually
independent logit-beta random variables. From Bradley et al.
(2020), the ith element w; = log (%), where p ~
Beta(w;, ki — «;) and the corresponding shape parameters
oj > 0and k; > o; fori = 1, ..., n. A logit-beta random
variable w; has probability density function (pdf) as follows:

f(wilai, ki) = K (i, ki)explow; — kid (w;)}, (1
where K («;, ;) = % is the normalizing constant
and ¢ (¢) = log(1+exp(g)) for real g is the unit log partition
function (Lehmann 1998).

One can allow for possible dependence by defining an
n-dimensional random vector Y = (Y1, ..., ¥,,)’ such that

Y =p+ Vw, 2)

where Y € R”, p € IR”, and V is a lower-triangle n x n
invertible matrix. We call Y in Eq. (2) the multivariate logit-
beta (MLB) random vector. The MLB random vector Y has
the following pdf (Bradley et al. 2020):

fY|p, V, e, k)
= det(V_l){ ]_[ K (ai, Ki)}exp[oc/V_l(Y -1 3
i=1
— «log{J,,1 +exp(V (Y = w)} ] 1Y € R),

where “det” denotes the determinant function, J, 1 is a n-
dimensional vector of 1’s, I(-) is the indicator function, e =
(a1, .y o) and k = (kq, ..., k). Weuse MLB(u, V, e, k)
as a shorthand for the pdf of a MLB distribution, where u is a
location parameter, the invertible V is a covariance parameter,
and « and k are the shape parameters.

As Bayesian inference requires simulating from a con-
ditional distribution, we review the conditional logit-beta
distribution (CMLB). Consider Y ~ MLB(Vu, V, «, k) and
partition this n-dimensional random vector into (Y/l, Y’Z)/,
where Y| is r-dimensional and Y3 is (n — r) dimensional.

Similarly, partition V~! = [H, B] into an z x » matrix H and
ann X (n — r) matrix B.
The CMLB Y||Y; =d, u*, H, &, k is given by

FOIIY2 =d, ", H, 1)
[rove Vel

[f(Y|Vu, V. a, K)le]Y

2=d

, Y
ocexp[ot (HB) ( dl> ()
—«k'log{J, 1 + exp((H, B) (‘31 > — [L)}]
% exp[a’HY1 —o'p*
— «log(J;.1 + exp(HY — w)}],

where u* = p — Bd, d € R"™". We define CMLB(p*, H,
o, k) as a shorthand for the pdf in Eq. (4).

We do not know how to simulate from (4) directly; how-
ever, we do know how to simulate from the MLB in (3)
through (2). This motivated Bradley et al. (2019), Gao and
Bradley (2019), and Bradley et al. (2020) to introduce a nui-
sance term into the model so that the implied full-conditional
distribution of the mixed effects and nuisance parameter is
MLB as opposed to a CMLB. This allows one to update fixed
and random effects using the MLB. The nuisance param-
eters are marginalized from the posterior distribution and
estimated to be zero. In Sect.2.2, we adopt the same strat-

cgy.

2.2 The Bayesian hierarchical model for multiple
response-type data

Let Y;; be the multiple response-type data for subject i
of response-type j, where i = 1,...,/; and j = 1,2,3.
For each subject 7, Y;; is continuous-valued, Y;, is integer-
valued, and Y;3 is count-valued. For ease of notation, we
denote the vector of each type of response variable with
Y; = (Y1, ..., Y1;;)’,and the entire (Z§=1 I;)- dimensional
vector Y = (Y], Y5, Y;) . Let Z; be an I; x p observable
matrix of predictor variables, where j = 1,2, 3, and the
columns of Z; consist of both covariates and basis func-
tions. Thatis, Z; = [Xj, Gj], where X; is aknown I X py
matrix of covariates and G; is an I; x p, matrix of basis
functions such that p = p. + p,. For each pair of response-

types, we define a pair of random effects associated with Gyj],
and GU/), where j = 1,23,/ = 12,3, and j # j'. For

example, GEIZ] and G[lzz] are 11 x r and I» x r, and both have
the same random effects in the models for Y; and Y,. We
let the interaction random effects consist of pre-defined basis
functions or known covariates (see Sect. 2.5 for discussion).
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Define the design matrices

Xi= [z 0, 00, 6l 6o, ]
X; = [012,17 7, 0p,p G[122] 05,.r G%]] ’ ®)

X3 = [0 01 25 00, G 6]

where 0,, , is a m x n matrix of zeros. We assume Y ; has
a linear mixed effects representation on the appropriate link
scale denoted with X’;‘ﬂ The latent representation X;‘.ﬂ has
overlapping (across j) random effects to enforce dependence
across these three data types, where X* € RY x R3PH3r,
B = (BY. 1), By my, By 5. M0 M3 Mh3) s B € RPx,
n; € RPs,andn;; € R". Stacking fixed and random effects
into a single vector B simplifies Gibbs sampling to have fewer
steps. However, it is important to emphasize that 8 can con-
tain both fixed and random effects. That is,

XiB =X, B; + Gy, ©)

i ralrl (/1
where GV = [GJ’Gmin(j,m),max(j,m)’Gmin(j,k),max(j,k)]

and 3 = (77/]" n;nin(j,m),max(j,m)’ ”;nin(j,k),max(j,k))/ for
j#Em,jFkk#m,and j,m, k € {1, 2, 3}. The implied
covariance is given by,

cov(X;BIB1, Bs. B3) = GVcov(n By, B, B1)GY
cov(X?ﬂ, Xjf,ﬂlﬂla B2, B3)

= Gcov(n 1By, B BHGY): j < j, )

where the first Eq. in (7) is of the same form as covariance
parameterizations using basis function expansions (e.g., see
Cressie and Johannesson (2006), Wikle (2010), and Cressie
and Wikle (2011) for standard references), and the second
equation uses the parameterization for multi-type cross-
covariances based on basis function expansions found in
more recent multi-type data literature (Bradley 2022; Xu et al.
2023). The cross-dependence between data types is mod-
eled via basis function expansions where the coefficients are
interpreted as random effects, and the matrix GB’J], are pre-
defined basis functions. In general, there are several choices
for GE;]/ and GEJJ//] and can be specified to be different. In
practice, we suggest the use of complete basis functions so
that one can flexibly model any dependence structure, and set

GEJJ], = GBJJ/,] See Sect. 2.5 for more details on the available
choices for basis functions.

One of the main goals of this article is to perform vari-
able selection for multiple response-type data by putting a
sparsity-inducing prior (i.e., the global-local shrinkage prior)
on the mixed effects coefficients § to allow one to choose a
subset of the given covariates/basis functions for a prediction
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model. However, a traditional linear model (e.g., the horse-
shoe prior) does not allow for both different response-types
and explicitly modeling the cross-variable dependence. Thus,
we consider the following specifications of the hierarchical
model for multiple response-type data:

Y18, 7 e, i, qp ~ MLBX{B + v 'qi, t 71}, &, 1);
Y>|B,n, g2 ~ Binomial{n, logit™ ' (X38 — q2)};

Y3|B8,r, q3 ~ NB{r, logit ' (X38 — q3)};
Bltg, A, ag, kg, q2, q3, qg

Q@ X5 0.5Jn\ (In (8)
~ CMLB{ G| X5 )].105), . |Jn };
qs T/gA op Kp

Ajla, b~ IB(a, b);
Tlar, br ~ IB(ar, by);
fﬂla‘[ﬁa b‘[ﬁ ~ IB(arﬁa b‘[ﬁ)v

where logit™! denotes the inverse-logit function, i.e.,
logit_l(p) = I_T_);i(r)zgz) for a real z; Binomial(n, p) is a
shorthand for the binomial distribution with n > 0 num-
ber of trials and probability of success p € (0, 1); NB(r, p)
is a shorthand for the negative binomial distribution with
r > 0 number of failures until the experiment is stopped
and probability of success p € (0,1); and IB(a, b) is
a shorthand for the inverted-beta distribution with shape
parameters a > 0 and b > 0. Let I, be an m x m iden-
tity matrix and J, be an n-dimensional vector of ones. Let
T be the global shrinkage parameter for Y;. An unknown
vector B = (B1, ..., ,33,,+3,)/ € R3P+3" contains the mixed
effects (i.e., fixed and random) coefficients for all the multiple
response-type data. The global shrinkage parameter for g is
labeled as 7g. The diagonal matrix A is 3p~+3r) x 3p+3r),
and the /™ diagonal element corresponds to A;, the local
shrinkage parameter for §;, where [ = 1,...,3p + 3r. In
the model for B, the global shrinkage parameter 74 is used
to shrink all the coefficients of B towards zero, while the
local shrinkage parameter A; for B; gives the coefficient
the flexibility to transcend that shrinkage as needed. This
allows the model to conduct variable selection and detect
cross-variable dependence. We use an inverted beta distri-
bution as prior on each global-local shrinkage parameter.
The inverted beta distribution is also known as a beta prime
distribution, which belongs to a class of hypergeometric
inverted-beta family that generalizes various priors in the
Bayesian literature (Polson and Scott 2012) and hence can
be used as a prior for the Bernoulli, binomial, negative bino-
mial, and geometric distributions. One can consider using
a half-Cauchy prior C*(0, 1) as a weakly informative prior
(Carvalho et al. 2009). There is a probabilistic transforma-
tion that links the inverted beta and half-Cauchy distributions
and both of them, as priors, can result in a horseshoe-shaped
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shrinkage profile in a global-local shrinkage setting. In terms
of variable selection, the distribution has the flexibility to
be heavy-tailed, which allows strong signals to escape the
global shrinkage. Define the shape parameters for Y to be
o« = (a1, ...,ay) and kK = (k1, ..., k1,)’, and let each value
be strictly positive values such that ¥k > «. The parameters

= (ag,1s s aﬁ,3p+3,)/ and kg = (kg,1, ... Kﬂ,3p+3r)/
represent shape parameters for 8. All the shape parameters
are given improper priors.

The shape parameters of logit-beta distribution need, for
example, ¥ > «. Adding “0.5” and “1” to the elements of
shape parameters of the prior of 8 ensures shape parameters
that satisfy this constraint. This is similar to adding a random
effect to normal data to guarantee that the posterior density
does not allow for parameters on the boundary of the param-
eter space. By doing so, the prior of 8 can be written as a
CMLB distribution. The global-local shape parameters are
updated via a slice sampling scheme and a latent variables
approach to obtain full-conditional distributions that have the
same form as the likelihoods.

To sample directly from the full-conditional distribution,
we introduce nuisance location parameters q; € RO, qQ €
R", q; € R, g5 € R¥?*Y, and qp = (q). @), 43, q})’
that lead to straightforward block Gibbs sampling. In par-
ticular, when the nuisance location parameters are given an
improper prior as described in Supplementary Appendix A,
we obtain that (8, qp) follows an MLB distribution, which
can be sampled using the form in Eq. (2). Following Bradley
et al. (2019), Gao and Bradley (2019), and Bradley et al.
(2020), since qg is interpreted as a nuisance parameter, it is
marginalized out and estimated to be a zero vector. Details
are provided in Supplementary Appendix A to update 8 in
this way.

2.3 Polya-gamma distributed precision parameters

One can establish a connection between an MLB distri-
bution and a multivariate Gaussian distribution using the
Pélya-Gamma data-augmentation strategy from Polson et al.
(2013). We say arandom variable Z has a P6lya-Gamma dis-
tribution, denoted Z ~ PG(c, d), if

U L
2 507 L G127 1 ) ®

where ¢ > 0,d € R and g ~ Gamma(c, 1) are independent
gamma random variables.

Consider w ~ MLB(u, T~ 'I, &, k), then the integral
identity for a w; underlying the Pélya-Gamma augmentation
scheme (Polson et al. 2013) can be used as:

{exp(t(w; — i)}
{1 +exp(r(w; — @)}

— 2 Miexp fi(w; — i) /OO exp —pi(w; — Ml)z
71 0 2172

p(pilki, 0)dp;,

fwilpwi, T, 0, ki)

(10)
which implies

fwilpi, T, 0, ki, i)
Iol(wl

ti(wi — pi) —pi(wi — 1)*
X eXp T exXp 21:—_2 (11)
.2 2
cer (e 2))

where t; = (o; — «;/2) and p(pilk;, 0) is denoted as the
density of p; ~ PG(k;, 0). The term outside the integral part
in Eq. (10) contains the shape parameters «; and «;, while
the integrand is the kernel of a Gaussian distribution. If we
condition on p;, by completing the square and a few steps
of algebra, the integral leads to a Gaussian in w;, that is,
wilpi, T, o, Kiy i ~ N(ui + ,t—;,l (pitH)™h.
In a continuous-only setting, we simply consider:

Y8, 7,0,k ~ MLB(X;B, 1 ', a, k);

(12)
/3|‘E/3, A, O(ﬁ, Kﬁ ~ MLB(OPJ, Tﬁ A

Vag, kp),

where for discussion, we have set the nuisance parameters
to zero. When applying Eqs. (10)-(12), we have Y| and 8
become:

YilB.t.oa ke, V~NXiB+m, V')

Bltg, A, ap, kg, Vg~ N(mg, V1,

a1 —Kkn/2 on—Kn/2 — i 2
T A diag (172,

2 _ (opa—kp1/2 B.p—Kp,p/2 — di
pnT?), mg = ( TR -y v , Vg = diag

(,0/3’11,'}%)»%, pﬁ,pté)\f,), pi ~ PG(;,0), and pg; ~
PG(kg,j,0). This conditionally conjugate augmentation
scheme leads to a connection between the MLLB distribution
and the Gaussian distribution used in the horseshoe model
after integrating out the extra local P6lya-Gamma distributed
precision {p;} and { g, ;}. Furthermore, the shape parameters
in m and mg allow one to model continuous non-Gaussian
data, since upon marginalization of {p; } and {0, ;}, we obtain
a possibly skewed logit-beta distribution. The key point of
this section is that our proposed MLB model is equivalent to
a horseshoe model after introducing and marginalizing {p; }
and {pg, j}. The motivation for the use of the logit-beta distri-
bution instead of the more traditional Gaussian distribution

where m = (
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is that the logit-beta distribution is conjugate with the logit-
beta, binomial, and negative binomial likelihoods. This will
allow us to model multiple response-type data in an efficient
way.

2.4 The shrinkage factor

In the continuous-only setting, the predictive mean for
the coefficients B can be derived as (See Supplementary
Appendix A for details):

E(BIY1,X], 15, A, 7)
= (XX + A AT (X Wi+ AW, (13)
+ XY,

where /1-dimensional vector w; ~MLB(0, I;,, &, k) and p-
dimensional vector wo ~ MLB(0, I, g, k g). As discussed
in the introduction, this modeling framework can model both
symmetric and skewed data by specifying the shape param-
eters. It is worth noting that, when ¥ = 2« and kg = 20,
we can have E(w) = 0 and E(w;) = 0 (see Supplementary
Appendix B for a discussion). Hence, when /1 = p, X’f =1
is the identity, 7 = 15 = 1, k = 20, and kg = 20, the con-
ditional posterior mean for the j™ component of 8, denoted
B, becomes

E(Bjlyj. 15) = (1 —k))yj. (14)
where

1
ki=—— 15
R (1)

can be defined as the shrinkage factor for 81, ; in our method,
which shares the same shrinkage feature with the one for the
horseshoe prior model (See Supplementary Appendix C for
a review of the horseshoe priors). Choosing A; ~ IB(a, b)
can result in different patterns of k;. The density function
of k; lacks a closed-form representation, but it can behave
similarly to a beta distribution. The parameters a and b in the
inverted-beta distribution are analogous to those of the beta
distribution, allowing the probability density function of k;
to place more mass either close to 0 or 1. For example, a
special case occurs when setting @ = b = 1/2, which yields
a horseshoe-shaped profile of k; (see Fig. 1) and develops the
same feature of distinguishing between noise and signal as
the traditional horseshoe model.

2.5 Specification of basis functions

We now give further discussion on choices for basis func-
tions to use in our model. One immediate choice is to
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density

0.50
Shrinkage Factor k

Fig.1 Density plot for the shrinkage factor k; € [0, 1]

use known covariates, including functions of covariates,
pairwise-interactions among covariates, and even the origi-
nal covariates. The downside of this choice is that it can cause
confounding among the mixed effect coefficients (Greenland
et al. 1999). An option to alleviate confounding is to define
an orthogonal projection of the covariates (Griffith 2000,
2002, 2004). That is, one can let XEJJ], contain linear com-

binations of columns from I — X (X/j Xj)_IX/j. An example
is Moran’s I basis functions (Hughes and Haran 2013), which
are defined to be the eigenvectors of an orthogonal projection
of the covariates and are considered as reduced-dimensional
basis functions aiding in analyzing large-dimensional data.
The other responses are allowed to act as covariates as well
provided that the hierarchical model is well defined (e.g.,
Y1/Y2, Y3 and Y2|Y3). In general, the choices are not lim-
ited to the use of covariates and may include the radial basis
functions, the spline basis functions, wavelet basis functions,
Fourier basis functions among many others (see Bradley et al.
2017; Cressie and Johannesson 2008; Wahba 1990; Donoho
and Johnstone 1994, for examples). For instance, a radial
basis function depending on equally spaced knot locations,
referred to as a bisquare function (Cressie and Johannesson
2008), is often used in analyzing multi-resolutional point-
referenced data in spatial settings.

In general, a complete class of basis functions allows
one to approximate any random function (with any depen-
dence structure) in L, provided enough basis functions are
used. Well-known results, like the Karhunen-Loéve expan-
sion and Mercer’s theorem show that any orthogonal basis
can approximate an unknown function and unknown covari-
ance function well (Karhunen 1946; Riesz and Nagy 2012;
Huanget al. 2001; Daw et al. 2022). Similar results have been
developed for non-orthogonal basis matrices (Obled and Cre-
utin 1986; Bradley et al. 2017). In practice, these expansions
can not be evaluated with infinite basis functions, leading to
reduced rank basis expansions, and as such, variable selec-
tion methods are an invaluable tool in this literature. In our
application, we make use of Fourier basis functions, which
are L, complete. These choices are common in the spatial
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random effects, spatio-temporal, and time series literature
(e.g., see Cressie and Wikle 2011, pg 102).

The choice of r is also important. When the random effects
consist of known covariates/functions/interactions, the value
of r is a feature of the observed dataset (see Sect. 3 for exam-
ples). However, when a pre-defined basis function is used, the
value of r has to be selected. The selection is often determined
by certain selection criteria, such as Akaike information cri-
terion and deviance information criterion (e,g, see Bradley
et al. 2011, among others). In this article, we, of course, use
our proposed model to select covariates and basis functions,
and consider r as large as possible such that we obtain a rea-
sonable diagnostic measure of goodness-of-it of the model,
such as posterior predictive p-value (Meng 1994; Gelman
et al. 2003; Gelman 2013), which suggests the model pro-
vides a fit to the dataset.

3 Simulation

The goal of the simulation is to illustrate that our model pro-
vides reasonable performances in terms of variable selection
and estimation for multiple response-type data. In addition,
we compare our method with a version of the horseshoe
model that transforms multiple response-type data (Bradley
2022). We consider several specifications of a simulation
model and apply the model in Eq. (8) to analyze the sim-
ulated data.

We are particularly interested in the case when p grows.
It is well known that variable selection methods tend to per-
form worse as p increases, as the inclusion of unnecessary
covariates and basis functions creates a very large parame-
ter space that is difficult to search through and affects the
MCMC properties (Chen et al. 2011; Garcia-Donato and
Martinez-Beneito 2013; Griffin et al. 2021). As such, we
provide metrics for both estimation and variable selection
when applying our algorithm with various choices of p.

3.1 Simulation setup

To generate Z ;, we specify the /;-dimensional vectoru; ; ~
Uniform(0, 1), where Uniform(0, 1) is a shorthand for the
uniform distribution over the interval [0, 1], j = 1,2, 3,
and k = 1,..., p. We let the first two vectors z; 1 and
z; 2 be equal to sin(ru; 1u; ) and (u;3 — 0.5)2 respec-
tively to include non-linear terms and let z; x = w;; for
k = 3, ..., p. This specification is similar to the simulation
design in Friedman (1991). Each element in z; ; is inde-
pendent and Z; = (zj 1, ..., X p). To specify the random
effects in the simulation model, we consider » randomly
selected pairwise interactions among covariates (i.e., the
element-wise product of two vectors in Z;, where these

two vectors are randomly selected) to define G[/J/], and G[.]I./,].
This allows us to have the design matrix X; in Eq. (5).
This simulation has Iy = 35, I = 35, I3 = 30, and
r = 6. We choose a (3p + 3r)-dimensional coefficient vec-
tor B = (B, B, B5. 0. 5. M53), where we fix the first 6
elements of each main effect coefficient vector, that is,

B = (10,20, 10, 10, 10, 10,0, ..., 0),
B, =1(0,1,1,0,0,1,...,0), (16)
B3 =(2,2,2,0,0,0,..,0),

and the interaction effect coefficient vectors are set equal to
the following realizations, 5, = (1,1,0,0,0,0), ;3 =
(0,1,1,0,0,0), and 5,3 = (0,0,1,1,0,0). Thus, every
non-zero (zero) element of B corresponds to a covariate that
is (not) useful for prediction and should (not) be selected. The
multiple response-type data are simulated according to the
following specifications for the distribution associated with
the data Y = (Y, Y5, Y5)"

Y] ~ N(Xlﬂ7 Il|)7
Y ~ Binomial(40Jy,, logit ™ (X28)), (a7
Y3 ~ NB(20J,, logit™ (X38)),

where N (u, X) is a shorthand for the multivariate normal
distribution with mean g and covariate matrix X.

The data models in (17) represent the more traditional
data model assumptions in the Bayesian hierarchical model-
ing literature (Cressie and Wikle 2011). The model in (17)
differs from our model in two ways: (1) our model assumes
Y, is MLB instead of normal; and (2) we consider fitting
our model with incorrect choices of p. As we discuss in
Sect. 2.3 the MLB itself is a scale mixture of normals, and
hence is different from the normal distribution (see Sup-
plementary Appendix B for general details on the MLB).
Considering the ever-present nature of normal data that arise
due to central limit theorems, in Supplementary Appendix D
we provide a sensitivity study to assess the robustness of our
model to the setting when the data are generated from the nor-
mal distribution. In particular, we compare to the horseshoe
model, which assumes the data are normal, when the data
are generated solely from a normal distribution (i.e., is not of
mixed type). In Supplementary Appendix D, We found that
we perform nearly identical to the horseshoe in terms of vari-
able selection. The correctly specified horseshoe model has
better estimation performance for an extremely small signal-
to-noise ratio, and the difference between the models became
practically negligible as the signal-to-noise ratio increased.

The Poisson distribution is an alternative choice to the neg-
ative binomial specification in (17), however, it is well known
that the Poisson distribution is a limiting case of the negative
binomial. The binomial distribution is by far the standard dis-
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tributional assumption for the number of success outcomes
out of a finite number of trials (McCullagh 2019). Other alter-
natives to the simulation data models in (17) could include
zero-inflated models (Hall 2000) and the Conway-Maxwell
Poisson (COM-Poisson) distribution (Sellers 2023). How-
ever, our model can not be immediately adapted to these
alternatives due to our use of conjugacy, which highlights
a limitation of our approach. One should not consider our
model if zero-inflation is present or the assumption of COM-
Poisson appears appropriate. In practice, posterior predictive
p-values can be used to assess how appropriate our model
assumptions are (Meng 1994; Gelman et al. 2003; Gelman
2013). To aid with comparison, we also use the same link
function between the simulated data and our proposed model
(i.e., the logit) so that the estimated coefficients are on the
same scale as the true coefficients.

We consider 20 replicate datasets. In each replicate, our
method in Sect.2.2 is implemented using the block Gibbs
sampler in Supplementary Appendix A to generate 5,000
iterations with a burn-in of 2,000. We choose a = b = 0.5
for the local shrinkage parameter to produce a horseshoe-
shaped shrinkage pattern. We leta, = b; = ary, = brﬂ =10
for the global shrinkage parameter. We denote the estimated
posterior mean of 8 with /§ and define the root mean squared
error (RMSE) to be

(13)
L+ 5L+ 13

{ (XB — XB)' (X —XB) }‘/2
to evaluate the estimation performance, where X = (X/1 , X,2’
X;)/ . We also report the average false negative rate (FNR)
and the average false positive rate (FPR) to assess the model’s
performance of selecting variables. Specifically, FPR (FNR)
are the proportion out of the zero (non-zero) elements of f
such that the method suggests the variable is non-zero (zero).
We provide a plot of receiver operating characteristic (ROC)
curve to assess our ability to do hard-threshold. Recall that
soft variable selection methods can be used to select vari-
ables by specifying a threshold value c, such that |8;| < ¢
suggests the variable is zero. Here we choose ¢ = 0.5. When
threshold is changing, the ROC curve presents the trade-off
between sensitivity (i.e., true positive rate) and specificity
(i.e., 1—false positive rate), where both vary from O to 1.
Generally, when the method suggests more elements as non-
zero (positive), the true positives will increase, but this will
also cause the false positives to increase. We also calculate
the area under the curve (AUC), which is equivalent to the
two sample Wilcoxon rank-sum statistic (Mann and Whitney
1947). In practice, the higher the AUC, the better the model
is at selecting variables. To compute the FPR and FNR in the
simulation study, we apply credible set. Specifically, we see
whether a 95% credible interval of a posterior mean of f;
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Table 1 Average metrics over 20 independent replicates by p

p 10 20 30 40
RMSE 0.554 0.580 0.592 0.614
FNR 0 0 0.014 0.106
FPR 0.002 0 0 0

Fig.2 In the left panel we plot a boxplot of the RMSE (y-axis) by the
choice of p (x-axis) over 20 independent replicate data sets. In the right
panel we plot FNR. The data is simulated as described in Sect. 3.1

contains zero or not to determine if the mixed effect coeffi-
cient is a zero or not.

3.2 Simulation results

When computing the AUC when plotting the true positive
rate (TPR), which is equal to 1— FNR, against the FPR for
p = 20 we obtain a value of 98.9%. This result is con-
sistent across replicates. This AUC value shows that our
method has a strong ability to do hard-threshold and can
select the correct predictive covariates while avoid selecting
non-predictive covariates.

In Table 1, we provide the mean RMSE, FPR, and FNR
over the 20 replicate datasets. We find that, as p increases, an
increasing trend of RMSE is presented. It shows that the esti-
mation performance of our method is related to the dimension
of the coefficient vector (i.e., 3p + 3r). A better performance
is observed when 3p + 3r is smaller than the number of
objects n. The increasing trend in FNR along with p sug-
gests that our method performs better in selecting the useful
covariates when 3 p + 3r is not larger than n. The FPR, which
is almost O in each case, indicates that our method have a
robust performance in correctly labeling an irrelevant ele-
ment regardless of the amount of zero elements. Boxplots
of the RMSE and FNR in Fig.2 (FPR is not shown since
it’s close to 0 in each case) indicate the added variability in
RMSE and FNR as p increases and the high performance of
our method in terms of these metrics.
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In Supplementary Appendix E, we provide a plot of the
estimates versus the truth for a single replicate dataset over
different choices of p (i.e., p = 10,20, 30,40). We can
notice that our method has a consistent estimation perfor-
mance for the continuous-valued data regardless of the value
of p. For the integer-valued data and count-valued data, the
estimated value points below the blue line in the bottom
panels indicate that our method tends to underestimate the
coefficients. The value points around one suggests that our
method has the ability to capture the enforced interaction
effect (dependence) across the response-types.

3.3 Comparison with the hierarchical generalized
transformation

The most natural comparison would be the horseshoe model.
However, the horseshoe model has yet to be developed for
multiple response-type data. Other methods, such as gen-
eralized linear models for count data in Datta and Dunson
(2016), semiparametric linear models where the errors are
modeled non-parametrically (Kundu and Dunson 2014), and
a Gaussian approximation approach (Piironen and Vehtari
2017) may also be considered for comparison, but again,
these methods are not immediately comparable in a multi-
ple response-types setting. Another path to handle multiple
response data is to transform the multi-type data so that the
transformations can be reasonably modeled using the horse-
shoe method. A recent fully Bayesian framework allows
the transformations of multiple response-type data to be
unknown, and the uncertainty in the choice of transforma-
tion is accounted for in a fully Bayesian framework. This
approach is called the hierarchical generalized transforma-
tion (HGT) model (Bradley 2022). The HGT treats posterior
replicates of the unknown transformation as data for use in the
“preferred model”. Thus, instead of comparing our method
to the horseshoe model, we compare it to the HGT-horseshoe
model to account for multiple response-types.

To implement HGT-horseshoe, we obtain posterior repli-
cates of the transformed multiple response-type data from a
latent conjugate multivariate model, which are continuous-
valued. Consequently, the continuous transformed data is
suitable for the horseshoe model to perform variable selec-
tion. Generally, the transformation is treated as unknown and
the transformed data is set to over-fit the original data so that
it can be viewed as a “proxy” for the original data. See Sup-
plementary Appendix F for a technical review of the HGT
model.

We repeat the simulation 10 times (which is large enough
to gain significant difference) and provide the boxplots of
the RMSE. We conduct this comparison for all members of
response-types combining together, as well as each one indi-
vidually. Figure3 shows that our method outperforms the
HGT-horseshoe model in terms of RMSE for the combination

RMSES for all data RMSES for continuous-valued data

RMSE
RMSE

[ —
!

| —
Method " e Method
RMSEs for integer-valued data RMSEs for count-valued data
# 2 |
; p
§ ‘ ]
z i
s . —
\

Method Method

Fig.3 We plot boxplots of the RMSE by our proposed method (labeled
as “MLB”) and the competing method HGT-horseshoe (label as “HGT”)
for comparison over 10 independent replicates of the simulated data.
Top left: comparison for the combination of all the data; top right: com-
parison only for the continuous-valued data; bottom left: comparison
only for the integer-valued data; bottom right: comparison only for the
count-valued data

of all the data, the integer-valued data, and the count-valued
data. A supportive evidence is that the pairwise p-values for
paired t-tests are 0.0007, 0.0004, and 3.929¢ — 05, respec-
tively for each case. For the case of the continuous-valued
data, the paired t-test results in a p-value of 0.2471, which
suggests that the performance between our method and the
competing method in terms of RMSE is not significantly dif-
ferent in this case. This is expected because both methods
technically use the same global-local shrinkage framework
designed for continuous data.

We also compare the performance of variable selection
by both methods using FNR and FPR. The FNR is quite
large (between 0.2 and 0.4) over 10 replicates for the HGT-
horseshoe model, while our method has smaller FNR. Both
approaches give near zero FPR rates over 10 replicate data
sets.

4 Data analysis

4.1 The data set: multiple response-type data on
natural disasters in the U.S.

The National Centers for Environmental Information (NCEI),
part of the National Oceanic and Atmospheric Administra-
tion (NOAA), is an important governmental program that is
responsible for preserving, monitoring, assessing, and pro-
viding public access to severe weather and climate events
both in the United States and internationally with their
historical perspective. In particular, NCEI tracks and eval-
uates climate events in the U.S. and globally that have
great economic and societal impacts. The U.S. Billion-dollar
Weather/Climate Disaster report by NCEI (https://www.ncei.
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noaa.gov/access/billions/) provides readers with an aggre-
gated loss perspective for weather and climate events with
costs equaling or exceeding $1 billion in damages (adjust-
ing for inflation) from 1980 to 2022. This report assesses
numerous weather and climate disasters, including tropical
cyclones, floods, droughts, severe local storms, wildfires,
crop freeze events and winter storms, and estimates the loss
reflecting direct effects of the aforementioned weather and
climate disasters. While each region of the United States
faces a unique combination of weather and climate events,
every state in the country has been impacted by at least one
billion-dollar disaster since 1980. The U.S. has endured a
total of 332 weather and climate disasters since 1980, where
the total public costs have exceeded $2.278 trillion and the
total associated deaths have exceeded 15, 355. The num-
ber and cost of disasters are noticeably increasing over time
and that climate change is increasing the frequency of some
types of extremes that lead to billion-dollar disasters. This
gives motivation to use our method to conduct a data analy-
sis on discovering what features that significantly influence
the number of a climate event every year, alongside with the
public costs and public health cost in terms of deaths due to
the natural disaster in a multiple response-type data setting.
Our interests also lie in estimating the dependence across
public costs, event counts, and associated deaths due to the
most frequent disaster event, local severe storms.

Among natural weather and climate disasters listed in the
report, in this real data analysis, we focus on local severe
storms (e.g., tornado, hail, straight-line wind damage), which
have caused the highest number of billion-dollar disaster
events in the U.S. with a percent frequency of 48.2% from
1980 to 2022. We consider using our proposed Bayesian vari-
able selection method for the multiple response-type data
associated with the local severe storms. We model the disaster
costs with an MLB distribution since it is continuous-valued.
The event counts are non-negative and integer-valued, which
are bounded by the total disaster counts each year, thus these
counts are modeled by a binomial distribution with sample
size of the total number of disaster events. Let Y; denote
the CPI-adjusted costs of local severe storms in billions of
US Dollars, Y be the severe storm counts, and Y3 represent
the deaths in which the severe storm resulted. The data on
reported deaths are count-valued and are modeled as neg-
ative binomial. We analyze the data across the 1981-2020
period and remove the data from 1987 as zero storm event
was recorded this year (i.e., I} = I = I3 = 39). See Fig.4
for a plot of public costs, events counts, and deaths due to
local severe storms from 1981 to 2020 (excluding the year
of 1987).
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Fig.4 We plot the posterior means of cost (left), event counts (middle),
and associated deaths (right) due to severe storms versus the observed
values, respectively, with the use of the Fourier basis functions. The
red lines represent the predicted values from our model and the black
circles represent the observed values. The title of each panel indicates
the response-type of data

4.2 Setup and analysis

We consider the design matrices for each response-type,
respectively, to be

xXi=[1v, 6}y 6l oy, ].
X; =[10,1 ¥ oy, 621, (19)
X5 =[105,1 05, G GH].

where we specify the random effects as the Fourier basis
functions (Konidaris et al. 2011). The Fourier basis function
can be seen as functional covariate as it exploits proper-
ties of sine and cosine to recover the amplitude and phase
of each sinusoid, which allows one to capture the vari-
ability depending on time. The linear dependence among
the columns of (X*,, X;l, X;‘/)/ can be investigated by con-
ducting a QR decomposition, that is, X* = QR, where
X* = (X*/, Xf, X;"/)’, Q is an orthogonal matrix, and R is an
upper triangular matrix. In particular, we choose the value of
r to be 36 to ensure that the matrix R from the QR decompo-
sition of X* is a full rank matrix. Consequently, the columns
in X* are linearly independent, which alleviates confounding
among the mixed effect coefficients. Severe storm counts Y,
is introduced as a predictor for severe storm cost Y as there
appears that a linear relationship exists between Y| and Y3
(See Sect. 2.5 for a discussion). We additionally include an
intercept for each matrix as a fixed effect. The design matri-
ces, except the intercepts, are centered and rescaled to be
between 0 and 1. We let a = b = 0.5 for the local shrinkage
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Fig. 5 We plot the 95% point-wise credible predictions of cost (left),
event counts (middle), and associated deaths (right) due to severe storms
versus the observed values, respectively, with the use of the Fourier
basis functions. The black lines represent the observed values. The blue
lines are the 95% point-wise credible intervals. The title of each panel
indicates the response-type of data

parameter to produce a horseshoe-shaped shrinkage pattern.
We choose a; = b; = Ary = br/S = 10 for the global shrink-
age parameter. We run our block Gibbs sampler in Appendix
A of the Supplementary Materials over 10,000 iterations with
a burn-in of 2,000. Standard diagnostics suggests no issues
with lack of convergence.

To assess the in-sample error, we denote the posterior
mean of predictive replicates with Y ;j and calculate the in-
sample root mean square prediction error (RMSPE) for each
response-type data,

(20)

(Y; - Y)Y, =Y )"?
I ’

where Y j is the posterior mean of the predictive data
of a response type and j = 1,2,3. The RMSPEs for
each response-type are as follows: 0.78 (costs), 0.65 (event
counts), and 65.90 (associated deaths). The relatively small
quantity in the value of each RMSPE, compared to the range
of each response-type data (see Fig.4 for reference), sug-
gests that the in-sample error is small in each response-type
data and that our model provides reasonable predictions that
are close to the data. In Fig.4 we plot the posterior means
of cost, event counts, and associated deaths due to severe
storms versus the observed values, respectively. In Fig.5
we plot the 95% point-wise credible predictions versus the
observed values, respectively. We see that, in Fig. 4, the pos-
terior means are reasonably close to the data, and, in Fig.5,
that the observed data are generally contained within the 95%
point-wise intervals. The visual evidences in both plots sug-
gest that the predictions reflect the general patterns of the
data and our model has the ability to capture most of the
functional variabilities.

Additionally, we use the posterior predictive p-value to
access the out-of-sample goodness-of-fit. Specifically, the

Table 2 Joint credible regions for elements of 7, that do not contain
zero

Element in 1, Joint credible region

1 [—1.49 —0.21]
5 [0.37, 1.51]

6 [—1.14, —0.07]
7 [0.29, 1.34]

10 [0.10, 1.23]

16 [—1.42, —0.26]
17 [0.45, 1.57]

18 [0.21, 1.30]

23 [0.03, 1.15]

24 [—1.44, —0.34]
27 [0.32, 1.39]

31 [—1.27, =0.19]
posterior predictive p-value is defined as

PUT (S = T(y)IH, 6], 1)

where replication y;e‘" is the posterior predictive data of a
response-type, y; is the observed data of a response-type,
H is the assumed model (i.e., our proposed model), 6 is the
unknown model parameter and random effects (i.e., ), and
j = 1,2,3. The test statistics 7 is chosen to be chi-square
statistic, that is,

{yj — EQGjlyr, y2, y3))?

(22)
E(yjly1, y2, ¥3)

T(yj) =

To interpret the posterior predictive p-values, it is commonly
known that p-values being close to zero suggests that the
estimates produced by the assumed model are not close to
the true data. Conversely, p-values close to one show that
the estimates are too close to the true data. Thus, a desired p-
value should be close to 0.5. The posterior predictive p-values
for each response-type data are as follows: 0.60 (costs), 0.40
(event counts), and 0.42 (associated deaths), which show that
our proposed model has a reasonable out-of-sample fit to the
data in the sense that the values are subjectively close to 0.5.

We construct joint credible regions associated with the
coefficients B to determine the significance of elements of §.
Table 2 presents point-wise the credible intervals that do not
contain zero for elements of 5,. Similar tables for 55 and
1,3 are given in Appendix E of the Supplementary Materi-
als. For the mixed effect coefficients corresponding to storm
costs, we have a 95% credible interval of [8.29, 10.11], which
does not contain zero and is thus deemed significant. It is not
surprising that the number of occurrences of severe storms
has a relationship with the public cost associated directly
with the disaster. The significant elements among 715, 113,
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and 7,3 indicate the dependence across public costs, event
counts, and associated deaths due to local severe storms, since
these coefficients are associated with Fourier basis functions
that are shared across responses-types. Recall that the coef-
ficients associated with the basis functions are interpreted as
random effects, which is standard in the spatial, time series,
and spatio-temporal statistics literature (Cressie and Wikle
2011), and as such, these random effects that appear to be
present in our study are interpreted as left-over terms after
the means have been modeled via covariates.

5 Discussion

Multiple-type outcomes are often encountered in many sta-
tistical applications, one may want to study the association
between multiple responses and determine the covariates
useful for prediction. However, the literature on variable
selection methods for multiple-type data is arguably under-
developed. In this article, we have proposed a novel Bayesian
variable selection approach in a global-local shrinkage prior
framework that makes use of the MLB distribution. One
benefit of our model is that a transformation or a Gaussian
approximation on the data is not needed to perform vari-
able selection for multiple response-type data, and thus one
can avoid computational difficulties and restrictions on the
joint distribution of the responses. Another benefit is that it
allows one to parsimoniously model cross-variable depen-
dence. Specifically, our method uses basis functions and
random effects to model dependence between responses and
dependence can be detected by our proposed global-local
shrinkage model with a sparsity-inducing model. Finally, the
use of the MLB distribution aids with a computationally effi-
cient Gibbs sampling algorithm.

In the simulation study, our model provides reasonable
estimation and variable selection performance for multiple
response-type data. In a comparison with the hierarchical
generalized transformation version of the horseshoe method,
an approach that incorporates unknown transformations of
multiple response-type data to a global-local shrinkage
framework, our method outperforms the competing method
in terms of overall estimation and selecting the relevant
covariates. Finally, we apply our model to study the pub-
lic health and financial costs of natural disasters dataset
provided by NCEI. Using the Fourier basis functions with
random effects, we discovered what features are significant
for predicting the number of a climate event (i.e., local severe
storms) every year, alongside with the public costs and deaths
due to the natural disaster in a multiple response-type data
setting. With the unique feature of our model, we find there
appears to be dependence across response-types. Also, the
prediction performance is reasonable in terms of in-sample
fit and out-of-sample fit.

@ Springer

As discussed in the introduction, conjugate modeling and
variable selection are both extremely active areas in statistics
that show no signs of slowing down. The methodological
contributions described above may offer strategies for those
developing their own methods in these areas. In this new era
of “big data” observing multi-type data is becoming more
and more common, and as such, this approach offers a tool
to those who want to use an existing method and do not want
to compromise by performing variable selection for single-
type data. To aid those interested in using this methodology,
the first author has provided R code at https://github.com/
hwuatfsu/MLBpriorsMRT.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10380-
1.
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