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Mapping the eco-evolutionary factors shaping the development of animals’
behavioural phenotypes remains a great challenge. Recent advances in ‘big be-
havioural data” research—the high-resolution tracking of individuals and the
harnessing of that data with powerful analytical tools—have vastly improved
our ability to measure and model developing behavioural phenotypes.
Applied to the study of behavioural ontogeny, the unfolding of whole behav-
ioural repertoires can be mapped in unprecedented detail with relative ease.
This overcomes long-standing experimental bottlenecks and heralds a surge
of studies that more finely define and explore behavioural-experiential
trajectories across development. In this review, we first provide a brief guide
to state-of-the-art approaches that allow the collection and analysis of high-res-
olution behavioural data across development. We then outline how such
approaches can be used to address key issues regarding the ecological and
evolutionary factors shaping behavioural development: developmental feed-
backs between behaviour and underlying states, early life effects and
behavioural transitions, and information integration across development.

1. Background

During the last decade, the rapid emergence of ‘big behavioural data’
research—the high-resolution tracking of individuals and the harnessing of
that data with powerful machine learning techniques [1-6]—has spurred
major advances in fields as diverse as behavioural genomics and transcrip-
tomics [7-9], behavioural neuroscience [10-15], collective decision-making
[16-19] and movement ecology [20-23]. Huge untapped potential remains,
however, in applying big data approaches to understand the development of
behaviour. In sharp contrast to previous data-limited approaches where only
subsets of animals’ developmental trajectories are measured, big behavioural
data research allows near-continuous monitoring of animals throughout their
entire (or substantial parts of) development. We believe that this innovation,
paired with timely advancements in computation, data storage, and tailored
analytical tools, represents a watershed moment for understanding the ecology
and evolution of behavioural development.

In our review, we begin (§2) by briefly reviewing the state-of-the-art
approaches that allow the collection and analysis of behavioural data at increasing
resolution. Then, we discuss in detail (§3) how these innovations in measuring
and modelling behaviour can be productively applied to fundamental open ques-
tions regarding the rules governing the unfolding of behaviour: mapping the
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nature of developmental feedbacks between behaviour and
underlying states, understanding early-life effects and behav-
ioural transitions across development, and understanding
information integration across development. Big behavioural
data have greatly expanded the empirical toolkit with which
to investigate these fundamental issues in behavioural develop-
ment, and they have also spurred a new generation of
conceptual models of behaviour. Throughout, we focus on
the links between contemporary and potential future empirical
advances and the set of theory and technical models that this
new wealth of data can inform and test. Indeed, many of the
state-of-the-art methods in behavioural analysis that we
review are increasingly simple to use and ready to deploy,
but their application to existing theory in behavioural develop-
ment is largely unrealized; quick progress in this area is thus
achievable, as we will outline. In sum, we believe that this
mutual feedback between new data sources and novel theory
will generate major new insights into one of the foundational
elements of the study of behaviour, behavioural ontogeny.

2. New methods, measures and means of
defining behaviour

One inherent difficulty with measuring the ontogeny of most
traits—behaviour among them—is that, for many organisms,
these traits often take considerable time to fully develop.
Historically, behavioural researchers have tried to circumvent
this issue in several ways (table 1): by limiting the period in
development over which a trait is measured; by measuring a
trait during relatively short periods during development inter-
spersed by larger intervals of time without measurements; by
manipulating early-life conditions and investigating the con-
sequences later in life; and/or by adopting comparative
approaches across individuals of different ages. These
methods, while providing targeted information about certain
periods during development or coarse-grained information
about the arc of development, may miss critical time windows
and complex nonlinearities in behavioural development,
thereby hampering our ability to gain a fuller understanding
of the factors shaping behavioural development. Additionally,
constraints on data collection have also meant that most
studies focus on the development of one or a few behavioural
traits and thus miss out on quantifying biologically meaning-
ful correlations in developmental time series of suites of traits.

Whereas collecting highly time-resolved data on behav-
iour through the entire course of development was once
often prohibited by daunting logistics and limits on time
and effort, the advent of sophisticated automated tracking
technology, more advanced data storage infrastructure, and
a host of powerful, data-hungry analytical tools can produce
and parse these datasets with relatively low cost in terms
of both person-hours and monetary investment [10,41,42].
We are now at a critical juncture where early studies have
proven the worth of these new technologies for quantifying
and conceptualizing behaviour in new ways [10,43-46], but
where heretofore surprisingly limited consideration has
been paid to the application of these tools to behavioural
development. For the remainder of this section, we focus on
recent innovations in both the measuring and modelling of
behaviour that lay the foundation for the application of
these technologies to answer major open questions in
behavioural development.

(a) Measurement innovations

Behavioural tracking technology has come a long way in the
last decade, with sub-second temporal resolution in move-
ment data now being standard for many automated real-
time trackers. Such datasets, often as simple as a time series
of two- or three-dimensional coordinate points in space, are
commonly obtained via GPS devices, PIT tags, or video track-
ing, and numerous tracking software automate the process of
converting coordinate point data into behavioural metrics
such as activity rates, space use, velocity, etc. [2,6,47-50]. Cru-
ciallyy, many of these tools are specifically designed for
keeping track of individuals through time, even when
observed in groups, allowing behavioural patterns of many
individuals to be tracked simultaneously [6,48,49]. Further-
more, rapid advances are being made in the identification
and tracking of postural movements of body segments,
allowing studies of fine motor development of social inter-
actions, mating displays, resource manipulation, etc. [2,51].
Such approaches have vastly increased both the temporal res-
olution and overall duration of data that can be collected,
allowing animals to be tracked throughout development
with minimal intervention. Tracking technology is not just
limited to tracking animal behaviour during development:
some of the greatest promise lies in pairing high-resolution
behavioural tracking data with complementary, non-behav-
ioural data types with similar resolution. For instance, high-
resolution behavioural data coupled with other high-
throughput data sources have provided insight into both
the neurological [14,52] and transcriptomic correlates of be-
haviour [8]. Internal state variables such as body condition
can be estimated directly from video frames in the case of
video tracking [53]. High-resolution physiological data can
be obtained from a quickly expanding array of non-invasive
biologging tools [54,55], such as heart rate monitors [56,57]
or thermal imaging [58-60], and may help infer stress
levels, respiration rate or energetic state when coupled with
behavioural data. Other approaches use both supervised
and unsupervised machine learning methods to infer
underlying internal state variables from high-resolution be-
havioural tracking data themselves [61-64]. We believe
there is also tremendous value in the simultaneous tracking
of salient environmental variables and behaviour [65-67],
allowing researchers to map detailed behavioural-experien-
tial trajectories (i.e. interactions between behaviours and the
sequence of experiences that result from interacting with
the environment) and track environmental drivers of behav-
iour throughout development, getting us a step closer to
understanding the ecological forces shaping behavioural
development.

(b) Data-driven definitions of behavioural axes
Behavioural biologists have long wrestled with how to ident-
ify and classify behavioural ‘traits’ [68,69], and while novel
methods of measuring and conceptualizing behaviour may
not be a panacea, they offer progress. Equipped with highly
resolved behavioural time series over ontogeny, researchers
have a quickly growing toolset of analytical techniques that
permit, for example, high-throughput auto-labelling of obser-
ver-defined behaviours [70], unsupervised learning of new
behavioural classes, detection of hierarchical sub-structure
in behaviour, or modelling of behavioural transition rates
across a wide range of timescales [10,12,42,71].
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Table 1. A stylized overview of the main methods used to study the development of behaviour, including near-continuous behavioural measurements [JEJj

throughout development, that advances in tracking, computational and analytical tools have recently made possible.

example
methods of quantifying behavioural development references
(1) concentrated measurements early in life [24,25]
| early life adolescence adulthood R
| rd
o M
¥ pehavioural
measurements . . B e . .
(2) periodic measurements throughout development [26-30]
| early life adolescence adulthood %,
I | 7
(3) experimental manipulation early in life, behavioural measurements before/after [31-35]
early life adolescence adulthood <
treatment 1 %
early life adolescence adulthood .
treatment 2 4
(4) éompafative approach across individuals of different ages [29,36-38]
ind. 1 > ind. 5 —>
ind. 3 —> ind. 7 —
ind. 2 3> ind. 6 — >
ind. 4 — ind. 8 e—
'('5) neaf—conﬁnhous béhaviou.ral meés'uremen.ts' throﬁghout d'evelo.pr.nentv B [39,40]
early life adolescence adulthood

Big behavioural datasets are large and often inherently
multi-dimensional, and while researchers may opt for dra-
matically reducing the dimensionality of these datasets by,
for instance, calculating simple behavioural metrics directly
from raw data (e.g. activity rates, velocity, position in relation
to focal point or social partner, etc.), a range of tools can now
be applied that retain the high dimensionality of these data-
sets to the degree that it is informative, thus moving a step
closer to quantifying the development of integrated behav-
ioural repertoires. While the specific toolkit in parsing big
behavioural datasets will vary depending on the dataset
and the questions to be answered, a common challenge
among most analyses is reducing collinearities in the data
structure while maintaining informative variation and inter-
pretability. This task—determining the salient axes over
which behaviours vary through ontogeny—sets the stage
for then delimiting specific sets of related behaviours (also
known as behavioural ‘classes” or ‘clusters’) along these axes.

One of the simplest approaches for extracting behavioural
axes in large, highly dimensional datasets is principal com-
ponent analysis (PCA) [72]. More sophisticated techniques
such as spectral analysis [73] or time frequency analysis
[43,45] are specifically designed for time-series analysis and

have also been productively applied to behavioural time
series as a step towards defining the axes of behavioural vari-
ation across development. The important point is that, rather
than researchers pre-defining which behavioural axes are
important, the primary goal of these techniques is to leverage
variation in the data themselves in order to determine axes of
behavioural variation among a suite of (often correlated) be-
havioural metrics. In a dataset of bee behaviours across their
adult lifetime, for instance, PCA was applied to a set of
metrics derived from tracking data (e.g. location in the hive
and movement metrics such as speed and space use), allow-
ing the authors to avoid redundancies among many
potentially non-independent metrics and instead define
orthogonal behavioural axes ordered by the degree to
which they explained variation in the overall dataset [39].
PC axes and more complex, nonlinear dimension reduction
techniques [74,75] are also highly useful as visualization
tools: high-dimensional behaviour such as specific posture
patterns [43,44,46,76,77], social interactions [78] or microhabi-
tat-related behaviours [79] have all been mapped using
computational approaches to defining behavioural axes.
The diversity of tools in this toolset allows researchers to
accommodate the many unique challenges that might arise
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when, for example, behavioural covariance structures change
across development (e.g. thus affecting the ‘loadings’ in a
PCA), or when trade-offs between mapping ‘local’ versus
‘global” behavioural variation are rebalanced [80].

Using statistical techniques to define the major axes of
variation in behavioural time-series data has the potential
to offer insights into fundamental questions about the struc-
ture and development of individual behavioural variation,
that is, individuality. Traditionally, studies on behavioural
individuality and animal personality have sought to describe
behavioural variation along researcher-defined axes such as
‘boldness’, ‘exploration” and ‘sociality’, a modification of
the ‘Big Five’ model of personality variation imported from
human psychology [81]. While this tradition is now firmly
embedded in animal personality research, a steady flow of
critique has questioned both the wisdom of defining traits a
priori (e.g. whether something like ‘boldness” or ‘exploration’
holds the same meaning across diverse species) and the meth-
odological status quo of measuring behaviours along pre-
defined axes (e.g. whether a certain assay actually measures
‘boldness’, ‘exploration’, etc.) [69,82—-84]. Data-driven statisti-
cal approaches to defining behavioural axes have indeed been
offered as alternatives to pre-defining such axes when
quantifying individuality [85,86] (but see [87]), and the grow-
ing availability of high-dimensional behavioural datasets
increases their appeal. Such methods may allow more com-
parability across periods of development, populations or
even species, by first inferring the behavioural axes using
data from all developmental time points/populations/
species in an analysis and then asking how time points/
populations/species differ across these ‘latent” axes.

(c) Identifying behavioural classes and quantifying
transitions among classes

Once the axes of behavioural variation are identified, an
important next step is delimiting how different behaviours dis-
tributed along these axes interrelate to each other, creating a
‘map’ of the structure of observed behavioural variation.
Again, there are a diversity of methods to achieve this; how-
ever, one exciting set of methods, unsupervised behavioural
classifiers (i.e. clustering algorithms), are increasingly being
applied to big behavioural datasets as tools to define behav-
ioural classes—groups of behavioural variables with high
similarity [63,80,88,89]. Clustering, while not necessarily
appropriate for all big behavioural datasets or questions,
excels as a tool for dividing large, multi-dimensional behav-
ioural data trait-spaces into interpretable subregions based
on similarity, distance, or regions of high density in data
space. In many cases, researchers may choose to forgo cluster-
ing: behavioural plasticity, for example, could be quantified
without defining clusters and instead measuring ‘movement’
or ‘behavioural entropy’ in a multi-dimensional ‘behavioural
space’. On the other hand, delineating clusters—or discrete
groups of behaviours—may become useful when, for example,
researchers are interested in understanding transition rates
among distinct regions of behavioural trait-space throughout
development. Used as tools to define behavioural diversity
in entire behavioural repertoires, such methods are essentially
a way to generate rich, data-driven ethograms.

A host of clustering algorithms has been deployed in unsu-
pervised classification of behaviour, but many take as an input
a specified and arbitrary number of clusters (i.e. behavioural

classes), k, in a multi-dimensional data space [80]. While one [ 4 |

might treat the decision about the magnitude of k as an optim-
ization problem, many of the behavioural trait-spaces that are
created with high-dimensional, dense behavioural data may
not show clear, discrete boundaries between identified clusters
[39]; in such cases, k is perhaps most useful as a parameter that
is actively toggled to adjust the ‘graininess’ of behavioural par-
titioning. Indeed, creative, flexible use of k as a free parameter
enables researchers to examine the structure or ‘architecture’ of
behavioural repertoires. For example, Berman et al. [44]
showed that, as they increased the number of clusters, k,
new clusters were created largely by subdividing existing clus-
ters in two (rather than more substantially reshuffling the
behavioural map); this led the researchers to conclude that
observed fly behaviours were structured hierarchically, testing
decades-old theory in ethology [90,91].

Finally, once distinct behavioural clusters/classes are
defined, the transitions among these classes can be quantified.
One of the simplest and most common approaches to model-
ling behavioural transitions is to assume that behavioural
transitions follow a Markovian process. These models assume
that the probabilities of transitioning to any other behavioural
state (i.e. cluster) depend only on an animal’s current behaviour,
rather than some sequence of behaviours that preceded the cur-
rent behaviour. Common extensions of this concept are hidden
Markov models (HMMs) whereby a sequence of behavioural
patterns (e.g. movement) are linked to an underlying unmea-
sured (behavioural) state variable (e.g. a specific behavioural
class such as foraging, hiding, walking and running). In this
way, HMMs can be important tools in identifying behavioural
modes [73,92], similar to behavioural clusters discussed earlier.
Recently, HMMs have been extended to include nested latent
states in order to explore hierarchical structures in behavioural
modes (hierarchical hidden Markov models, HHMMSs)
[93,94] —an approach that is likely to be useful in high-
resolution behavioural development data that can be parsed
at a large range of temporal scales.

By determining the axes of behavioural variation, mapping
onto these axes distinct behavioural classes or clusters, and
then quantifying transitions among these classes, we can
begin to ask questions that shed light on behavioural changes
throughout development (figure 1): how do transitions
between behaviours (i.e. clusters) change during develop-
ment? Are there certain regions of this ‘behavioural map’
that are more frequently used by newborns versus adolescents
versus adults? Are there certain areas of behavioural space that
are only accessible to animals after a certain developmental
time point? Do individuals decrease or increase in the
amount of behavioural ‘space’ they use throughout their
lifetime? Are individuals consistently different in how they
‘move through behavioural space’ during development?
While many of these questions have been asked (and
addressed) in some form previously, the degree of precision
and depth with which these questions can now be
addressed—not just for particular behaviours but for much
of an animal’s entire movement repertoire—is unprecedented.

3. Using big behavioural data to uncover the
principles governing behavioural development

We will now discuss how big behavioural data and the associ-
ated innovations in measuring and modelling behaviour
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Figure 1. After dominant behavioural axes have been calculated (e.g. via
PCA), multi-dimensional behavioural data for all individuals and all develop-
mental time points can be projected onto a two-dimensional behavioural/
phenotypic space (e.g. via tSNE (t-distributed stochastic neighbour embed-
ding), UMAP (uniform manifold approximation and projection) or other
dimension reduction tools). Individual behavioural repertoires during subsets
of development can then be characterized (here with contour plots of three
individuals in green, yellow and red shown only for early life, adolescence
and adulthood for ease of visualization; note that high-temporal resolution
allows much finer-grained analyses across many more individuals), and
further quantification of individual behavioural transition rates among distinct
behavioural classes/clusters can be conducted (represented for the ‘red” indi-
vidual with arrows for which size and thickness are proportional to the
magnitude of transition probabilities between different behavioural clusters).
In this example, individuals explore a large range of behavioural space early
in development but become more constrained—and distinct from each
other—as development progresses. Such a pattern of decreasing behavioural
plasticity across development is a major prediction of many Bayesian models
of development, and a pattern of behavioural divergence among individuals
across  development is consistent with behavioural niche specialization
[95,96]. See [43,44] for worked examples of many of the above approaches
in a non-developmental context.

discussed above can be productively applied to fundamental
open questions regarding the principles governing behav-
ioural development.

(a) Mapping behaviour—state connections across
ontogeny

Connections between behavioural decisions and an animal’s
underlying state (e.g. energetic state, informational state,
social rank, etc.) may play a major role in the development
of behaviour: such connections can help explain the evolution
and development of a large range of behaviours and states
(e.g. foraging tactics [97,98], anti-predator behaviours [99-
101], emotions and self-awareness [102,103], developmental
adjustments in response to environmental change [104,105]).
While theoretical and conceptual models employing tech-
niques such as stochastic dynamic programming [106]
have hugely facilitated the investigation of behaviour—state
connections and their role in the development of adaptive

behaviour [107-112], empirical studies that simultaneously
measure behaviour and state throughout development are
relatively few. As discussed above (see §21, ‘Measurement
innovations’), behavioural tracking techniques provide a
powerful way to directly measure state variables (or proxies
of state variables) with as much automation as behaviour,
allowing direct tests of the wealth of theory on behaviour-—
state connections with high-resolution behaviour and state
time series across development.

One major open question is how particular types of be-
haviour-state connections such as dynamic feedback loops
(i.e. bidirectional linkages between state and behaviour) influ-
ence developmental trajectories [113-115]. So far, of the
studies that have been designed to detect behaviour—state
feedbacks, conclusions on the presence and consequences of
these feedbacks have been mixed [116-119]. Nevertheless, be-
haviour-state feedbacks are commonly cited in the literature
as a major causal factor in the formation of behavioural devel-
opmental trajectories. The now possible simultaneous high-
resolution tracking of both behaviour and state can allow
us to (i) detect the presence of feedbacks and (ii) measure
the persistence of both the strength and direction of these
feedbacks across development at a much finer temporal
grain. To be concrete, consider a high-resolution time series
of behaviours and states, where at each point in time ¢, B,
and S; represent behavioural and state measurements,
respectively (figure 2). Behaviour—state feedbacks would be
evident if S; correlated with B; and B, was then correlated
with a change in state (i.e. AS;=5;,,-5;) at some future
point in time, t+ 1. As an example, one could imagine that
energetic state (e.g. fat reserves or hunger level) would
affect foraging behaviour at one time point and that the inten-
sity of any foraging behaviour would then subsequently be
related to a further change in energetic state at the following
time point. Furthermore, by testing for these correlations over
subsets of a developmental time series, one could test for the
degree to which feedbacks persist in both strength and direc-
tion throughout development. Such an investigation could
test whether the slopes in the relationship between S; and
B; and B; and AS; vary as t increases, and whether any
changes are symmetrically represented in both relationships.

One commonly cited behaviour—state feedback mechan-
ism is the asset-protection principle [120]: if having high
‘state’ (here, residual reproductive value) makes it less
likely that an individual will take risks (here, actions that
are associated with increased mortality but potentially
increased state benefits, e.g. foraging under predation risk),
a negative feedback might be generated [121,122]. Low-state
individuals would thus take more risks compared with
high-state individuals, thus increasing their state and becom-
ing less likely to take further risks. The strength of this
negative feedback may be expected to change over develop-
ment (figure 2). For example, prey outgrowing a dominant
gape-limited predator or gradually learning how to better
evade predators may represent particular ecologies that gen-
erate systematic decreases in risk—and hence the strength of
the negative feedback—through a prey’s lifetime [123].
Figure 2 illustrates such a scenario where temporally high-
resolution behaviour and state tracking allow us to test for
the change in behaviour-state feedback strength across devel-
opment: while negative feedbacks, indicated by slopes of the
relationships between S; and B; and B; and AS; having oppos-
ing signs, persist throughout development, the absolute
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Figure 2. High-resolution behavioural tracking paired with similarly high-resolution tracking of state variables allow tests that detect behaviour—state feedbacks and
quantify how both the strength and direction of these feedbacks change across development. In this schematic, for example, negative feedbacks between behaviour
and state persist throughout development, but are stronger earlier in life (blue—green lines represent individuals in early development, purple in mid-development
and magenta at maturity; note that with highly temporally resolved datasets, such an analysis could be done more continuously).

values of the slopes of these lines—and thus the strength of
feedbacks—decrease through life. Thus, the ability to detect
behaviour—state feedbacks and quantify how the strengths
of these feedbacks change through time will afford us greater
potential to map the rules governing the unfolding of devel-
opmental trajectories to the specific selective forces particular
to a species’ ecology.

(b) Early-life effects and behavioural transitions
Continuous tracking of behaviour during development is
particularly promising for understanding early-life effects
[124,125]. Such early-life effects (e.g. parental imprinting or
social experience during early life stages [126-128], the influ-
ence of early-life stressors on later behaviour [129,130], etc.)
are typically studied experimentally by manipulating
environmental stimuli early in life and then measuring out-
comes (e.g. behaviour) later in life (table 1, example 3). The
focus on early life has been particularly intense relative to
other periods of animal life because (i) the developmental
consequences of phenotypic adjustments made early in
development may be outsized compared with those of later
adjustments (e.g. the epiphenotype hypothesis [131]), (ii) ani-
mals may show greater developmental plasticity early in life
[107], perhaps reflecting adaptive strategies in environments
where animals gradually accrue fitness-related information
from steady streams of imperfect cues [132], and (iii) early-
life experiences often have long-lasting consequences for be-
haviour and fitness [133-136], with effects even persisting
across multiple generations [137]. Despite their importance,
however, the developmental routes connecting early-life
experiences and their long-term outcomes often remain
unmeasured and thus obscured.

Experiments based on near-continuous tracking through-
out development will allow us to unravel the behavioural
mechanisms that link early-life experiences to outcomes later
in life. High-resolution tracking will provide both longer and
more highly resolved time series of behavioural data that
measure the entire developmental time course of responses

to salient early-life stressors or stimuli. Whereas previous
approaches might capture gross patterns or periods of
sensitivity to cues in a few key periods of development,
high-throughput behavioural measurements could more clo-
sely estimate the exact ‘cue-response curve’ [138]. Of key
interest will be the periods of life near ‘switching points” in
cue sensitivity when animals switch from being sensitive to
cue input to being unresponsive to cues. A highly temporally
resolved dataset could then address, for example, whether
these switching points represent a rapid switch, which may
signal a threshold-mediated response or criticality in the
underlying cue-response systems [139], or a more graded
change in cue sensitivity, as one might observe during many
learning processes [111,140]. Furthermore, it is around these
switching points that individual variation is likely to exist;
differences in the timing and magnitude of cue responses to
ecological factors will further our understanding of the
ecological and evolutionary factors driving individual variation.

While switching points often represent relatively brief
and intense periods of behavioural transition, individuals
are also transitioning among behavioural states on more fre-
quent timescales second-by-second and day-by-day. Such
state-switching is another important facet of behavioural
development and—as we have discussed above (see §2c,
‘Identifying behavioural classes and quantifying transitions
among classes’)—can now be captured by high-resolution be-
havioural tracking. And while state-switching models that
calculate transition probabilities among behavioural states
have been applied to behavioural data for decades, relatively
large temporal graininess has only allowed transitions
between high-level behavioural categories to be modelled
[141,142]. By contrast, the richness of datasets produced
through most automated tracking techniques allows much
more sub-structure in behaviour to be modelled. For
example, whereas a relatively low-resolution time series
may allow the estimation of transition rates on the scale of
a day (i.e. estimating the probability of behavioural shifts
from one day to the next throughout development), the
highly resolved datasets typical of automated tracking
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technology not only enable the estimation of those same day-
to-day transition rates with greater accuracy, but also allow
the estimation of transition rates between behaviours that
occur on finer scales of hours or minutes [143-147].
Leveraging previously discussed approaches to define
and classify behaviour (see §2b, ‘Data-driven definitions of
behavioural axes’, and §2c, ‘Identifying behavioural classes
and quantifying transitions among classes’), transition
models (including Markov models) will allow us to address
fundamental questions concerning the structure of behav-
ioural development: when and to what extent are
behavioural patterns during development path-dependent?
Are behaviours operating at different timescales structured
hierarchically (i.e. do distinct behavioural patterns consist of
non-overlapping behavioural subclasses operating at shorter
timescales)? Are individuals consistent not only in constitu-
ent behaviours but also in the transition rates among
behaviours? Applied specifically to the study of individual
behavioural variation across development, differences in
individual-level behavioural plasticity can be quantified as
changes to the structure of behavioural repertoires (i.e. behav-
ioural transition matrices). Many state-switching models can
also investigate how environmental cues influence behaviour
by combining both behavioural and non-behavioural data as
input [148] (see §2a, ‘Measurement innovations’). In total,
these tools bring us closer to understanding the development
of entire behavioural repertoires, the ‘architecture” of behav-
iour throughout development and the factors that influence
individual variation in developmental trajectories.

(c) Information integration across development
Key to understanding behavioural development is under-
standing the cues to which developing organisms respond,
how these cues are integrated with previous information
available to animals, and how specific sequences of cues
shape behavioural change [111,149-152]. In particular, Baye-
sian updating models have been very successful at
describing behavioural development [111]. Briefly, Bayesian
updating as it applies to developing animals is an infor-
mation theoretic method for modelling an animal’s
informational state (and consequently, optimal behavioural
responses), given its prior information (based, for example,
on evolutionary history or epigenetically inherited infor-
mation [153,154]) combined with incoming, often imperfect,
information through its current experience (or a sequence of
experiences) [155]. While there are some empirical findings
that corroborate predictions from Bayesian models of behav-
ioural development [156-158], in general, empirical tests of
these predictions remain relatively rare [111]. We believe
that new experimental possibilities associated with high-
resolution behavioural tracking—allowing us to track the
unfolding of behaviour under different cue regimes over pro-
longed periods of time—put us in the position to test many of
the untested predictions of Bayesian models of development.
The key predictions in Bayesian models of development
relate (i) the structure of environmental fluctuations and (ii)
the availability and quality of information to the degree
and duration of behavioural plasticity [111,159]. As long as
the environment does not change and animals receive a
steady stream of informative cues throughout development,
the observed degree of behavioural plasticity at an indiv-
idual level (and, in some cases, behavioural diversity

at a population level) is predicted to decrease with age
[107,108,136,160]. If, however, reliable cues are rare, if these
reliabilities change through time, or if the environment fluctu-
ates through time, periods of plasticity throughout
development may be extended [109,110,160,161]. Likewise,
cues received late in life might not elicit strong behavioural
responses because they may be perceived to be associated
with rare events or there may not be sufficient time left in life
to capitalize on any benefits conferred through altering one’s
phenotype [162]. Experimenters could manipulate ‘priors’
(e.g. by manipulating parental experience, or sampling from
evolutionarily divergent populations), the structure of environ-
mental fluctuations, and/or the reliability of cues during
development and then follow behavioural change over develop-
ment. This sort of approach could produce large enough
datasets to estimate the entire developmental time course of
changes in behavioural plasticity at an individual level, offering
direct tests of many of the core predictions stemming from
Bayesian models of behavioural development.

4. Limitations and future challenges

Big behavioural data are powerful tools with great potential to
test fundamental open questions in behavioural development
in the context of ecology and evolution (box 1). The wealth
of data that high-resolution tracking provides, however, is lim-
ited in its scope to advance our knowledge of behavioural
development without the idea-rich scaffolding that theory
and hypothesis generation provide [163,164]. Thus, through-
out this review, we have paid particular attention (see §3,
‘Using big behavioural data to uncover the principles govern-
ing behavioural development’) to how big data tools can both
test and advance current theory in this field. Nevertheless,
limitations remain that researchers must confront.

First, linking high-resolution behavioural tracking to
metrics requiring terminal sampling (e.g. gene expression
changes in the brain or experience-dependent epigenetic
changes across development) will require creative experimen-
tal design and/or the development of new technologies (e.g.
multi-electrode arrays or wireless neurotelemetry [165]).
Further challenges arise when considering the combination
of high-resolution behavioural and environmental time
series. In some cases, salient environmental changes that
have dramatic effects on behavioural development may
occur only rarely (e.g. once or twice over the course of an
individual’s development), limiting the ability of researchers
to estimate their effects. These types of scenarios would make
studies that look for correlations among environmental
metrics from passive sensors and high-resolution behavioural
data difficult; on the other hand, they may offer great
opportunities for experimentally manipulating candidate
environmental variables/stressors (their timing or intensity,
for example) while tracking behavioural development. Next,
while methodological advances allowing the collection of
temporally rich behavioural data across development vastly
reduce the amount of work effort per datapoint, a fundamen-
tal limitation that will always remain is the relative lifespan
(in particular, the duration of development) of research ani-
mals. For species with long developmental periods, there
are inherent challenges to collecting near-continuous devel-
opmental data. This might be partially addressed, for
example, by subsampling populations of longer-lived species
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Behaviour-state connections

when they are linked?
Q2 How common are state-behaviour feedbacks?

Early-life effects and behavioural transitions

between behavioural classes throughout development.

Information integration across development

Box 1. Representative major open questions in behavioural development and their big data approaches.

Approach: Detect presence of dynamic feedbacks between behaviour and state (i.e. bidirectional state-behaviour linkages);
quantify both the strength and direction of state-behaviour feedbacks through development.

Q1 What are the relative rates of change in behaviour and state during development and what are the dynamic consequences

Q3 How is the strength and direction of feedbacks affected by certain ecological conditions/selective environments?
Q4 Are feedbacks more important in shaping developmental trajectories in particular developmental stages?

Approach: Measure behavioural-experiential trajectories continuously throughout life; quantify fine-grained transitions

Q5 What are the behavioural-experiential mechanisms linking early-life experiences and long-term behavioural outcomes?
Q6 When and to what extent are behavioural patterns throughout development path-dependent?

Q7 To what extent are behaviours that operate at different timescales structured hierarchically?

Q8 Do individuals differ in their behavioural transition rates? Is this an ecologically important axis of behavioural variation?

Approach: Pair high-resolution behavioural tracking data with similarly resolved monitoring of environmental cues.

Q9 How are developmental responses to recent cues moderated by the specific sequences of past cues?
Q10 How does behavioural development relate to the structure of environmental fluctuations?
Q11 How does the availability and quality of information affect behavioural development?

by age class and conducting behavioural observations over
shorter periods of development (relative to that species) but
for individuals spread across age classes in order to get a
fuller picture of development in the aggregate (e.g. combine
approaches 4 and 5 in table 1). These and similar sorts of
trade-offs will exist in most experiments in which researchers
desire to test the whole of behavioural development, but the
ever-growing technological advances in this field are also
likely to continue to rebalance these trade-offs in favour of
ever-richer behavioural developmental datasets across
species.

5. Concluding remarks

For the last three-quarters of a century, a steady stream of
technological advancement has allowed the discovery of
new behaviours as well as innovations in the quantification
of previously observed behaviours (e.g. audio recording of
echolocation in bats [166] and cetaceans [167], spectrographic
analysis of birdsong [168], high-speed cameras revealing
feeding innovations [169,170], automatic sensing and social
network analysis uncovering novel social and collective beha-
viours [65], machine learning algorithms as behavioural
classifiers [89]). In turn, these technological advances in
quantifying behaviour have been productively applied to
understanding both the proximate and evolutionary causes
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