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Excitons are the neutral quasiparticles that form when Coulomb interactions create
bound states between electrons and holes. Due to their bosonic nature, excitons are
expected to condense and exhibit superfluidity at sufficiently low temperatures. In
interactingChern insulators, excitonsmay inherit the nontrivial topology and quantum
geometry from the underlying electron wavefunctions. We theoretically investigate the
excitonic bound states and superfluidity in flat-band insulators pumped with light. We
find that the exciton wavefunctions exhibit vortex structures in momentum space,
with the total vorticity being equal to the difference of Chern numbers between
the conduction and valence bands. Moreover, both the exciton binding energy and
the exciton superfluid density are proportional to the Brillouin-zone average of the
quantummetric and the Coulomb potential energy per unit cell. Spontaneous emission
of circularly polarized light from radiative decay is a detectable signature of the
exciton vorticity. We propose that the vorticity can also be experimentally measured
via the nonlinear anomalous Hall effect, whereas the exciton superfluidity can be
detected by voltage-drop quantization through a combination of quantum geometry
and Aharonov–Casher effect. Topological excitons and their superfluid phase could be
realized in flat bands of twisted Van der Waals heterostructures.

excitons | topology | quantum geometry | flat bands | superfluidity

Topological phases that do not depend on protected symmetries can be traced back to
the concept of quantum geometry first introduced byMichael Berry, and then developed
to explain the quantization of the Hall conductivity and of various quantum Hall effects
(1–6). This framework explains how the properties of solids can be connected to the
continuous evolution of the electronic wavefunctions inmomentum space. The quantum
geometry can be formalized through the idea of parallel transport of quantum states, in
which periodic wavefunctions are adiabatically cycled through a variable in parameter
space. In going through the adiabatic cycle, the wavefunctions pick up phases that reflect
on the quantum geometry of the bands (7). The nontrivial topology of Bloch wave
functions is universally captured by a quantized Chern number, and the systems that
display it in two dimensions (2D) are commonly termed Chern insulators (2, 8).

No continuous symmetry is spontaneously broken in these insulators and hence no
gapless collective excitation is expected in their bulk. However, electrons can be excited
from the valence band into the conduction band through the absorption of photons.
Coulomb interactions formmidgap excitons, bound states composed of excited electrons
in the conduction band and holes left in the valence band, which dominate the optical
response (9). Excitonic effects are expected to be strong in 2D insulators because of
reduced screening and enhanced electron–hole overlaps as a consequence of the geometric
confinement (10).

Electron–hole (e-h) excitations in 2D Chern insulators can inherit a Berry phase
from the underlying valence (v) and conduction (c) bands shown in Fig. 1A. In the
reciprocal space with states |i, k〉, with i ∈ {1, 2} a generic two-orbit index, the valence-
and conduction-band states can be written in terms of the orbital basis as |a, k〉 =∑

i Ui,a,k|i, k〉, where a ∈ {v,c} andUa,i,k is the periodic part of the Bloch wave function.
In the electron basis, where creating a hole in the valence band with momentum −k is
equivalent to the annihilation of an electron in the same band with momentum k, the e-h
pair state is defined as |P, k〉 = |c, k〉|v, k〉∗, where “∗” denotes complex conjugation. The
Berry connection of the pair state reads AP,k ≡ −i〈P, k|∂k|P, k〉 = Ac,k − Av,k, where
Aa,k = −i

∑
i U

∗
i,a,k∂kUi,a,k is the Berry connection of band a. The Chern number of

the pair state reads CP = 1
2�

∫
BZ d

2k ·∇k ×AP,k = Cc −Cv, with BZ being the Brillouin
zone. Therefore, if the two bands have different Chern numbers, the e-h pair state has
a finite Chern number. Based on the same type of argument, it has been proposed
that in superconductors with electron pairing between two disconnected Fermi surfaces,
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Fig. 1. Exciton bound state in a flat-band Chern insulator. (A) Schematics of an exciton excitation in a two-band insulator. Electrons can be excited from the
valence band (VB) into the conduction band (CB) through optical processes. Coulomb interaction binds an excited electron in CB and state |e,k+Q〉 ≡ |c,k+Q〉
with a hole Left in VB at state |h,−k〉 ≡ |v,k〉∗, forming midgap exciton states |X, �,Q〉. � denotes a set of quantum of numbers describing the exciton bound
states and Q is the COM momentum. The excitons inherit a Berry phase from the underlying bands when the latter have different Chern numbers, Cv and Cc.
Quantum geometric effects are dominant in the limit of flat bands. (B) CB Berry curvature Ωc,k = −Ωv,k of the flattened Haldanemodel (Materials and Methods).

We take the lattice constant a = 1 and the first BZ is indicated by dashed lines. (C) Momentum-space exciton wave function at rest COMmotion calculated from
the flattened Haldane model. The black dashed lines indicate the first Brillouin zone boundary. At each k point the color and orientation of the arrow represent
the amplitude and phase of the exciton wavefunctionRk.

the Cooper pair state inherits a nontrivial geometric phase from
the underlying Fermi surfaces (11, 12).

The information about the topological nature of exci-
tons is encoded in their profile wavefunction. Excitons are
linear superpositions of electron–hole pair states, |X,Q〉 =∑

k∈BZRk(Q)|e, k +Q〉|h,−k〉 forming an envelope function
Rk(Q) with a finite center of mass (COM) momentumQ even
in centrosymmetric materials. Excitonic bands are defined by the
midgap energy dispersion of excitons with respect to their COM
momentum. In conventional semiconductors, excitons can be
very extended in real space, permitting a simplification (9, 10)
in which their effective mass is approximated by a profile
wavefunction with zero COM momentum. In flat bands, where
the effective mass diverges and the mobility of excitons is
governed by the quantum geometry of the bands, the size of the
excitons is of the order of a lattice constant and their envelope
wavefunction extends over COM momenta in the whole BZ.

Topological flat bands hosting quantum anomalous Hall
states have been experimentally observed in twisted bilayer
graphene (13, 14), thus offering a valuable opportunity for
the exploration of topological and quantum geometric effects.
Nonhydrogenic exciton states arising from the quantum
geometry have been predicted in theory (15–20) and observed
in transition metal dichalcogenide (TMD) monolayers (21). The
effect of the quantum geometry on the COMmotion of excitons
has also been theoretically discussed (22–26). The onset of
superconductivity in a partial filled flat band has been investigated
theoretically and it is found that the superfluid stiffness arises
purely from the quantum metric of the band (26–33).

In this work, we theoretically show the existence of topological
excitons in the midgap of generic flat Chern bands when
the conduction and valence bands are topologically distinct.
Although excitons can spontaneously form in narrow gap
insulators (34–37), they aremuch easier to observe when pumped
with light (38). Monochromatic photons can promote coherent

population inversion between flat bands over states spanning
the whole BZ. For that purpose, we develop a nonequilibrium
theory for light-pumped excitons in topological flat bands and
investigate the quantum geometry effects on the exciton profile
wavefunction and its COM motion. We demonstrate that
the envelope wavefunction of topological excitons has a finite
vorticity that is mandated by gauge invariance. We corroborate
our analysis by explicitly solving the out-of-equilibrium equation
of state for excitons on the lattice for the flattened Haldane
model.

Those excitons condense below theKosterlitz–Thouless transi-
tion temperature and form a type of topological neutral superfluid
with profile wavefunctions in momentum space that carry a
finite vorticity, reflecting the Chern number of the state. Exciton
condensates have been observed in double-layer systems, where
Fermi surfaces of electrons and holes are spatially separated
by design (39, 40), and also in the topologically trivial bands
of monolayer transition-metal dichalcogenides (41, 42). We
propose observables for the nontrivial topology and quantum
geometry of excitons in both insulating and superfluid phases,
including the nonlinear Hall effect and a realization of the
Aharonov–Casher effect. Topological excitons are chiral and
expected to spontaneously emit circularly polarized light through
radiative decay. Those states can be a potential platform for re-
alizing photonic qubit gates (43–45) and optoelectronic devices,
such as superradiant pulse emitters (46, 47), in the superfluid
phase.

Results

Exciton Theory in Two-Band Insulators. As a minimal model, we
study a two-band electron system driven by monochromatic light
incident normally to the system, i.e., E(t) = Ee−iΩt + E∗eiΩt ,
where E = E (x̂ cos � + iŷ sin �) with E and � describing the
amplitude and the polarization of the light field, respectively.
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D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 "

C
U

N
Y

 C
IT

Y
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

, 
P

E
R

IO
D

IC
A

L
S

" 
o
n
 A

u
g
u
st

 2
6
, 
2
0
2
4
 f

ro
m

 I
P

 a
d
d
re

ss
 1

3
4
.7

4
.2

0
.1

5
.



The corresponding vector potential can be chosen as A(t) =

− i
Ω

(
Ee−iΩt − E∗eiΩt

)
. Via the Peierls substitution in

momentum space k → k + e
ℏ
A(t) (48, 49), with e > 0

being the elementary charge, the system Hamiltonian is given by
HS(t) =

∑
k Ψ

†
kĤk + e

ℏ
A(t)Ψk + 1

2A

∑
q vqnqn−q, whereΨk is

a two-spinor in orbit space, Ĥk is the 2× 2 Hamiltonian matrix,
nq =

∑
k Ψ

†
k+qΨk is the density fluctuation operator and vq

describes the repulsive density–density interaction. A is the total
system area, and we denote

∑
k ≡ A

(2�)2
∫
d2k as a shorthand.

We are interested in the weak interaction regime, where the
excitons are created through population inversion induced by a
light source. The light frequency Ω is near the optical resonance
and the system is coupled to a reservoir in a steady state. For
more details, see Materials and Methods.

Exciton states are defined in the electron band basis. Diago-
nalizing the single-particle Hamiltonian by a unitary matrix Ûk,
i.e., Û †

k ĤkÛk = "̂k ≡ diag("c,k, "v,k) with "c,k > "v,k, one can
rewrite the system Hamiltonian in band space and the dominant
exciton channels as

HS(t) =
∑

k

 
†
kĤk(t) k

− 1
A

∑

q,q′,Q

Wq,q′;QΦ
†
q+Q

2 ,q−Q
2

Φ
q′+Q

2 ,q
′−Q

2
. [1]

Here,  k = Û †
kΨk ≡ ( c,k, v,k)

T is the two-spinor in band
space, where Φ†

q+Q
2 ,q−Q

2

=  
†
c,q+Q

2

 v,q−Q
2
and Φ

q+Q
2 ,q−Q

2
=

 
†
v,q−Q

2

 c,q+Q
2

are respectively the creation and annihilation

operators of an e-h pair state with COM momentum Q and
relative momentum q. The effective pair interaction is composed

of two parts, Wq,q′;Q = W
(d)
q,q′;Q − W

(e)
q,q′;Q , with

W
(d)
q,q′;Q = vq′−q U

cc
q+Q

2 ,q
′+Q

2
U
vv
q′−Q

2 ,q−Q
2
,

W
(e)
q,q′;Q = vQ U

cv
q+Q

2 ,q−Q
2
U
vc
q′−Q

2 ,q
′+Q

2
, [2]

the direct and exchange e-h interactions, respectively (10, 18),
where Ûk1,k2 ≡ Û †

k1
Ûk2 represents the overlap of the Bloch wave

functions encoding the quantum geometry of the band electrons.
For Coulomb interactions of the Rytova–Keldysh form, that is
widely used in layered semiconductors (50, 51), vq ∼ 1/|q| for
q → 0.

The single-particle Hamiltonian matrix coupled to light is
given by Ĥk(t) = Û †

k Ĥk+ e
ℏ
A(t)Ûk, which takes the multipole

expansion

Ĥk(t) =

∞∑

n=0

1
n!

∑

{�i}ni=1

A
(n)
{�i}(t) T̂

(n)
�n,···�1;k, [3]

where �i ∈ {x, y}, and A
(n)
{�i}(t) =

∏n
i=1[(e/ℏ)A�i(t)] ∼

O(En) represents the light-field n-tensor. The electron multi-

pole tensor T̂ (n) obeys the recursive relation T̂
(n+1)
an+1,an···a1;k =

Dkan+1
T̂

(n)
an,···a1;k with T̂

(0)
k = "̂k and the differential super-

operator Dk = ∂k + i[Âk, ], in which Âk = −iÛ †
k ∂kÛk is

the Berry connection matrix. We note that in general A(n)
{�i}(t) in-

volves onlymth order harmonics, withm ∈ {−n,−n+2, · · · , n}.
Up to linear order of the electric field, which captures the

single-photon processes, the driven band Hamiltonian [3] takes
the simple form

Ĥk(t) =

(
"c,k e−iΩt E · Pcv,k

eiΩt E∗ · P∗
cv,k "v,k

)
,

Pcv,k =
eΔk

Ω
Acv,k, [4]

with Δk = "c,k − "vk being the direct gap between conduction
and valence bands and Pcv,k is the effective interband electric
dipole moment arising from the interband Berry connection
Acv,k. In Eq. 4, we have kept only the light-field terms relevant to
optical resonances (52) (for details, see SI Appendix, section 1).
The upper bound on the magnitude of the interband dipole
moment can be estimated from dimensional analysis. For perfect
flat bands in the BZ, where the lattice constant a0 is the
only available length scale, Pcv,k ≲ ea0. For gapped Dirac
fermions with gap Δ0 and Fermi velocity vF , one finds that
Pcv,k ∼ eℏvF/Δ0.
We investigate the dynamics of the driven system exploiting

the Keldysh formalism (53) and introduce the e-h pair order
parameter XQ ,q(t) via the Hubbard–Stratonovich transfor-
mation. By analogy with superconductivity, the order parameter
XQ ,q(t) is a dynamical pairing potential of an electron and a
hole. After integrating out the fermions, we obtain the effective
action for the order parameter as well as the generating function
of the e-h pair correlation functions. The detailed Keldysh
formulation including the equation of motion of XQ ,q(t) is
presented in Materials and Methods. We note that the light field
only couples to the relative motion of the electron and hole since
the photons do not carry in-plane momentum. Moreover, up to
linear order of the electric field, the order parameter only involves
the first harmonic. Eventually, we obtain the order parameter
XQ ,q(t) = �Q ,0Xq(Ω) e−iΩt , with the coefficient

Xq(Ω) = E · Pq,

Pq =
∑

q′,q′′
Π
R
q,q′(Ω,Q = 0)Wq′,q′′;Q=0Pcv,q′′ , [5]

where Π
R
q,q′(!,Q) is the retarded propagator of an e-h pair,

which defines the effective Hamiltonian of an e-h excitation
incorporating the Coulomb interaction (Materials and Methods),
and Pq is the electric polarization of the e-h pair, which is a
linear combination of the band dipole moments averaged over
the whole BZ. Eq. 5 is consistent with the theory of exciton–light
interaction within the dipole approximation (9, 48).
The poles of the e-h pair retarded propagator in Eq. 5 define

the exciton Hamiltonian

hq,q′(Q) = �q,q′Δ
q+Q

2 ,q
′−Q

2
− Zq,q′;QWq,q′;Q , [6]

where Δk1,k2 = "c,k1 − "v,k2 is the indirect band gap, and
Zq,q′;Q =

√
�fq+Q/2,q−Q/2�fq′+Q/2,q′−Q/2 is the spectral

weight that varies from zero to one, with �fk1,k2 = fF (�v,k1) −
fF (�c,k2) and fF the equilibrium Fermi distribution. The spectral
weight is determined by the temperature T and chemical
potential � of the reservoir electrons. It is maximized when
� is at the mid gap and can be significantly suppressed when
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T is comparable to the band gap. The eigenvalue problem of
Hamiltonian [6] gives the e-h pair eigenstates,

∑

q′
hq,q′(Q)R�,q′(Q) = "�(Q)R�,q(Q), [7]

where R�,q(Q) is the profile wavefunction of the pair
states with energy "�(Q), and � labels a complete set of
quantum numbers obeying the orthonormalization condition∑

q∈BZR
∗
�,q(Q)R�′,q(Q) = ���′ . The eigenstates with discrete

midgap energies are defined as the exciton bound states with
corresponding exciton bands "�(Q). We note that Eq. 7 is the
exciton Wannier equation (9) in reciprocal space.

The e-h pair retarded propagator in Eq. 5 has the spectral
representation

Π
R
q,q′(!,Q) = Zq,q′;Q

∑

�

R�,q(Q)R∗
�,q′(Q)

!− "�(Q) + iΓ
, [8]

where Γ is the system-to-reservoir electron tunneling rate. Since
the effective e-h polarization in Eq. 5 only couples the exciton
states at Q = 0, we define "� ≡ "�(Q = 0) and R�,q ≡
R�,q(Q = 0) as shorthand notations. In perfectly flat bands, the
band gap is a constant Δk1,k2 = Δ and the polarization in Eq. 5
can be written as

Pq =
∑

�

"B,�`�R�,q

Ω − "� + iΓ
, `� =

∑

q

R
∗
�,qPcv,q, [9]

where "B,� ≡ Δ − "� is the binding energy. `� is the effective
exciton dipole moment of state � that determines the optical
selection rule, i.e., the bound state � couples to the light field
only if E · `� 6= 0. The time-dependent mean-field Hamiltonian
of the quasiparticles reads

Ĥk(t) =Ĥk(t) +

(
0 Xk(Ω)e−iΩt

X
∗
k(Ω)eiΩt 0

)

=

(
"c,k e−iΩt E · Pcv,k

eiΩt E∗ · P∗
cv,k "v,k

)
, [10]

wherePcv,k = Pcv,k+Pk is the effective interband electric dipole
moment that incorporates the optically pumped exciton order
parameters in Eq. 5. Eqs. 5 and 10 form a complete description
for excitons in a two-band flat-band insulator excited by one-
photon processes.

Since the excitons contribute to the dielectric polarization
in addition to the noninteracting e-h pairs, the exciton levels
"� can be observed from the resonance peaks of the reflection
coefficient (9). At normal light incidence and near resonance,
Ω ∼ "� , the reflection coefficient has the standard form

r(Ω) = iΓ0,�/[Ω−"� + i(Γ0,� +Γ)], where Γ0,� =
4�2�f |`� |2
ℏ��A0

is
the radiative decay rate, withA0 the unit cell area, � = 2�c/Ω the
light wavelength in the insulator and � = �r�0 the high-frequency
dielectric constant (48).Dimension analysis gives an upper bound
for the exciton dipole moment in flat bands, `� ≲ ea0, with a0
the lattice constant. Hence, Γ0,� ≲ "��0/(ℏ

√
�r), where �0 ≈

1/137 is the fine structure constant. For "� ∼ 1 eV and �r ∼ 10
as in TMD monolayers, the estimated exciton radiative lifetime
1/Γ0,� is longer than hundreds of femtoseconds, in agreement
with experiments (54) and first-principle calculations (55, 56).
In twisted bilayer systems like graphene, where small gap flat
bands are usually observed, much longer radiative lifetimes are
expected.

Exciton Bound States with Nontrivial Vorticity.We first
examine the topology of the exciton states implied by
charge U(1) gauge symmetry. Applying local U(1) gauge
transformations to the conduction and valence electron
wave functions Ûk → Ûkdiag{ei�c,k , ei�v,k }, where �a,k
with a ∈ {c,v} are arbitrary phase fields in reciprocal
space, the exciton Hamiltonian transforms as hq,q′(Q) →
ei(�c,q′+Q/2−�c,q+Q/2)ei(�v,q−Q/2−�v,q′−Q/2)hq,q′(Q). In order to
keep the Wannier Eq. 7 gauge-invariant, we define the U(1)
gauge transformation of the exciton wavefunction as

R�,q(Q) → e−i(�c,q+Q/2−�v,q−Q/2)R�,q(Q). [11]

To incorporate the geometric phase of the electron wave
functions we take �a,k =

∫ k
k0
dk′ · Aa,k′ , where Aa,k is the

intraband Berry connection and the initial point k0 and the
integral path fromk0 tok are gauge degrees of freedom.Choosing
an exciton wave function R�,q(Q) ≡ |R�,q(Q)|ei'�,q(Q) with
the phase field analytic in the whole reciprocal space, we
introduce the geometric phase of the exciton state '̃�,q(Q) ≡
'�,q(Q)+

∫ q+Q/2
k0

dk′ ·Ac,k′ −
∫ q−Q/2
k0

dk′ ·Av,k′ . Therefore,
the phase gradient field uq(Q) ≡ ∂q'̃�,q(Q) = ∂q'�,q(Q) +
Ac,q+Q/2 − Av,q−Q/2 is a gauge-invariant observable. The
corresponding vorticity is defined as �q(Q) ≡ ∇q × uq(Q) =


c,q+Q/2 −
v,q−Q/2 = �q(Q)ẑ, where ẑ is the unit vector in z
direction and 
a,k = ∇k × Aa,k is the a-band Berry curvature.
We obtain the quantized total vorticity

� =

∫

BZ

d2q

2�
�q(Q) = Cc − Cv, [12]

which is independent of the COM momentum Q . For Cc =
−Cv, we obtain exciton wavefunctions with vorticity that is twice
of the conduction-band Chern number � = 2Cc. This analysis is
valid for excitons in general, not only for those in flat bands.
We note that in the electron two-orbit space |i, k〉, the exciton

state can be expressed in terms of its profile wavefunction as
|X, �,Q〉 =

∑
q

∑
i,j |Rq(Q)|Xq,ij|i, q+ Q

2 〉|j, q− Q
2 〉∗, where

Xq,ij ≡ ei'qU
i,c,q+Q

2
U ∗
j,v,q−Q

2

are the components of an e-h

four-spinor in the two-orbit basis. This spinor is gauge-invariant
and normalized,

∑
i,j |Xq,ij(Q)|2 = 1. The phase gradient field

is nothing but the Berry connection of the e-h pair states, i.e.,
uq(Q) = −i

∑
ij X

∗
q,ij(Q)∂qXq,ij(Q). The vorticity field is thus

the Berry curvature of the e-h pairs.
One can readily see why the topology of the electron

wavefunctions is formally inherited by the excitonwavefunctions.
For a nonvanishing Chern number, we could choose a gauge in
which the electron wave function is analytic anywhere in the BZ
except at isolated points (57), or else divide the BZ into distinct
analytic regions separated by nonanalytic boundaries (58). This
nonanalyticity is incorporated in the exciton Hamiltonian [6]
through wavefunction overlaps Û that appear in the effective
interaction in Eq. 2. The conventional group-theoretical analysis
of exciton wavefunctions does not apply to topological excitons,
since the wavefunctions of the latter are not analytic (11, 12).
Due to the emergence of gauge degrees of freedom of the exciton
states in Eq. 11, the pairing “symmetry” is gauge-dependent,
even though the vorticity is invariant.
In order to show an explicit example of the vortex exciton states

we study a simple model of two flat bands, Hk = Δ

2 d̂(k) · �,
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where d̂(k) is a 3D unit vector. We parameterize the d̂(k)
vector by an arbitrary meromorphic function �(z) of the

complex variable z ≡ kx + iky as d̂1 + id̂2 =
2�(z)

1+|�(z)|2 ,

d̂1 − id̂2 =
2�∗(z)

1+|�(z)|2 and d̂3 =
1−|�(z)|2
1+|�(z)|2 (59). We obtain

the electron eigenstates Ûk = 1√
1+|� |2

(
1 �∗

� −1

)
up to a U(1)

gauge transformation. One can prove that the Chern number of
the conduction band is equal to the number of poles of �(z),
with “Dirac strings” along the third extra dimension piercing
the BZ. We can simply study the Q = 0 component of the
Wannier equation since the total vorticity is independent of
the COM motion. The effective interaction reads Wk,k′;Q=0 =

vk′−k
(1+�∗(z)�(z′))2

(1+ |�(z)|2)(1+ |�(z′)|2) . Assuming a single pole at k = 0,

one has �(z) ≈ a/z in the vicinity of k = 0, where a is
the residue of the pole characterizing the pole strength and the
c-band Berry curvature is Ωc ≈ 4�/|a|2. For z, z′ in the vicinity
of z = 0 and up to quadratic order in k, k′, we obtain

Wk,k′;Q=0 ≈ vk′−ke
2i(�−�′)�k,k′ , [13]

where �k,k′ = 1 − Ωc
4� [|k − k′|2 − 2i(k × k′)z] and we have

defined the polar coordinates k = k(cos�, sin�).
The correction from the quantum geometry to the bare

interaction in Eq. 13 is composed of two parts. The first one
is the topological factor e2i(�−�′), that incorporates the pole of
�(z). This term modifies the exciton wave function but does
not influence the energy spectrum. The presence of the poles
(nontrivial Chern number) is not a perturbation and the Taylor
expansion of �(z′) about z cannot capture the pole at z = 0.
The second one is the geometric factor �k,k′ , that is perturbative
in the Berry curvature Ωc, which modifies the exciton energy
spectrum (17). The vorticity is incorporated in the topological
factor. We assume that for e2i(�−�′) = 1 the Wannier Eq. 7
at Q = 0 takes an eigenstate R�,k = |R�,k|ei'�,k , that is an
analytic function. By absorbing the topological factor into the
eigenstate, the wave functions can be written as R�,ke

2i�, so
that vorticity is the winding number � = 2. Eq. 13 is the
effective interaction in a “symmetric” gauge, that is, �k,k′ is
invariant under a global rotation about k = 0. In the limit
of Ωc → 0, the ground state wave function should take a
d + id -wave form R0,k = R0,ke

i2� for conventional Coulomb
interaction.

In the presence of a momentum-independent contact interac-
tion vq = v, theWannier Eq. 7 can be solved exactly for the two-
bandmodel (see SI Appendix, section 3 for details).We prove that
the exact solution has at most three bound states. In particular,
if one assumes that the vector d̂(k) satisfies the symmetry
requirements

∑
k d̂�(k) = 0 and

∑
q d̂� d̂�(k) = D���� , with

D� > 0 and
∑

� D� = 1, we obtain three bound states
� = 1, 2, 3, with binding energies "B,� = v(1 − D�)/2 and
wavefunctions R1,q = (d̂1d̂3 + id̂2)/|d̂‖|, R2,q = (d̂2d̂3 −
id̂1)/|d̂‖|, and R3,q = |d̂‖|, up to normalization factors and

gauge transformations, with d̂‖ ≡ d̂1 + id̂2. For concreteness,
we show the R1,q state for the flattened Haldane model with
Cc = −Cv = 1 (detailed in Materials and Methods) in Fig. 1C.
We note that in the absence of the quantum geometry encoded
in the wavefunction overlaps, i.e., Wq,q′;0 = 1, only one bound
state with binding energy "B = v remains.

Effective Exciton Masses and Superfluidity. The COM motion
of excitons in flat bands originates from the effective e-h
interaction in the Wannier Eq. 7. We rewrite the exciton
Hamiltonian [6] in the Q = 0 exciton basis, h̃ex,��′(Q) =∑

q,q′ R∗
�,qhex,qq′(Q)R�′,q′ , and up to quadratic order in the

COM momentum Q , we obtain

h̃ex,��′(Q) =���′"� + �f
∑

�=x,y

V�,��′Q�

+
�f

2

∑

�,�=x,y

M
−1
��,��′Q�Q� , [14]

where the velocity tensor V�,��′ and the mass tensor M−1
��,��′

are proportional to the interaction amplitude and the differential
properties of the single-particle wave functions (SI Appendix,
section 3). For exciton state �, the pairing temperature can
be defined by the binding energy through the relation Tp =
"B,�(Tp). For flat bands, "B,�(T ) = �f (T )"B,�(0). The pairing
temperature as a function of zero-temperature binding energy
is shown in the blue surface in Fig. 2. In inversion-symmetric
systems, V�,��′ = 0, the effective inverse mass tensor of the
exciton state � isM−1

��,�� . If the light frequency is resonant with
the exciton state �, the superfluid density tensor is

��,�� =
�f |E · `� |2

A0Γ2
M

−1
��,�� , [15]

where A0 is the unit cell area. Therefore, the superfluid
transition should occur at the Kosterlitz–Thouless temperature
TBKT = ℏ2�

8

√
det�̂�(TBKT), which is shown in Fig. 2 as a

function of the effective light intensity S ≡ (E/E0)
2 =

ℏ2�|E·`� |2
8A0Γ2Δ

√
detM̂−1

�� , with E0 ∼ ℏΓ/(ea0). In moire materials

with a0 ∼ 100Å (60), an exciton decay time 1/Γ ∼ 100 fs would

Electron-hole plasma

Exciton gas

Exciton Superfluid

Fig. 2. Exciton phase diagram as a function of temperature T , zero-
temperature binding energy "̃B, and effective light intensity S. Energies are
normalized by the band gap Δ, with "̃B ≡ "B(0)/Δ. The pairing temperature
Tp is determined by the binding energy "B(0) (blue surface). As temperature
crosses Tp from Above, exciton bound states form within the light-pumped
electron–hole plasma. The superfluid transition temperature TBKT is a
function of the effective intensity of the light pump S (red surface). TBKT
is determined by the superfluid density in Eq. 15. The finite exciton effective
mass arises from thequantummetric of theunderlying electronbands aswell
as from the Coulomb interaction. When T < TBKT, global phase coherence
develops amongexcitons, which condense.Wenote that Tp = TBKT for "̃B = S
(gray surface).
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correspond to E0 ∼ 4 × 106 V/m. For a fixed light intensity,
the system undergoes three phases as temperature decreases, i.e.,
electron–hole plasma, exciton gas, and exciton superfluid.

Nonlinear Hall Conductivity. Photocurrents can be induced in
insulators by pumping light. Application of a static electric field
E in the presence of pumped light induces an electric current in
addition to the photocurrent. There are three current terms up
to third order in electric fields,

J� = �0,��E� + Σ��
E�E
∗

 + ���
�E�E

∗

 E� , [16]

where �0,�� , Σ��
 , and ���
� are the dc conductivity (1),
the photoconductivity (52, 61–66, 69, 70), and the nonlin-
ear conductivity induced by light (52, 66), respectively. The
anomalous Hall conductivity �NLH = �x�
yE�E

∗

 describes the

anomalous Hall response in the presence of an optical pump,
reflecting the total Berry flux over the BZ. For Hamiltonian
[10], the anomalous Hall conductivity takes the expression
�NLH = e2

ℏ

�f

(Ω−Δ)2 + Γ2

∫
BZ

d2k
(2�)2 |E · Pcv,k|2�k, where �k =

∇k × (∂k'k + Ac,k − Av,k) is the vorticity of e-h pairs, with
'k = Arg(E · Pcv,k) (52, 66). We obtain

�NLH(Ω) =
e2

h

(
∑

�

�2�

(Ω − "�)2 + Γ2
+

�2cv

(Ω − Δ)2 + Γ2

)
,

[17]

where the weights �2� = �f |E · `� |2
∫
BZ

d2k
2� |R�,k|2�k and �2cv =

�f
∫
BZ

d2k
2� |E · Pcv,k|2�k, encode the optical selection rules and

the vorticity field of e-h pairs.
In the presence of rotational invariance, |R�,k| is angle-

independent and the nonlinear Hall conductivity at exciton
resonant frequencies is quantized, since

∫
BZ

d2k
2� |R�,k|2�k = � .

One could measure the nonlinear Hall conductivity in the
Corbino geometry shown in Fig. 3A. For simplicity, we assume
that only one exciton bound state with energy "0 is formed. We
schematically show the nonlinear Hall conductivity as a function
of light frequency in Fig. 3B. When T > Tp, only the e-h
peak with amplitude (�cv/Γ)2 can be observed at Ω = Δ; when

T < Tp an exciton peak with amplitude ��f |E · `� |2/Γ2 forms
at Ω = "0. The amplitude of this peak is proportional to the
exciton vorticity � .

Aharonov–Casher Effect and Electric Field Quantization.

Neutral particles with a finite magnetic moment m couple
to an external static electric field E through a gauge field
A = ��m × E (71–75), where � and � are the magnetic and
electric permeabilities, respectively. In the superfluid phase,
phase coherence dictates that the circulation of the gauge field
�AC = 1

ℏ

∮
dr ·A = 2�N produces a quantized geometric phase,

with N an integer. This phase shift is known as the Aharonov–
Casher effect (71), in analogy with the superconducting case.
One could exploit the Aharonov–Casher effect to detect the

superfluidity of the excitons, since they can inherit a magnetic
dipole moment from the electron bands. We start from the ther-
modynamic definition of the orbital magnetization of the bound
state �,m�(Q) ≡ −∂B"�(B,Q)|B=0, where "�(B) is the bound
state energy in the presence of a uniform static magnetic field
B (76). Up to leading order in the magnetic field B, the exciton
Hamiltonian reads h′

ex,q,q′(Q) = hex,q,q′(Q) − B · Mq,q′(Q),
whereMq,q′(Q) are the orbital magnetization matrix element in
e-h space, so thatm�(Q) =

∑
q,q′ R∗

�,q(Q)Mq,q′(Q)R�,q′(Q).
At zero temperature, the leading contributions to the magneti-
zation arise from the Zeeman effect in the single-electron band
and from the quantum geometry.
For a pair of conduction and valence bands embedded

in a set of flat bands, both the effective gap and the in-
teraction term are modified by the magnetic field perturba-
tion. At Q = 0, the magnetic moment m�(Q = 0) =
1
ℏ

∑
k |R�,k|2

∑
a=c,v

∑
b 6=c,v[2(Δ− "�) + �aΔab]Dab,k, where

�c(v) = +1(−1) and Dab,k = −eIm(Aab,x,kA
∗
ab,y,k). For

a two-band model with particle–hole symmetry, the mag-
netic dipole moment vanishes since the orbital magnetiza-
tions of the two bands exactly compensate each other. For
finite COM momentum Q 6= 0, both the effective gap
and the interaction couple to the magnetic field, m�(Q) =
"�
ℏ

∑
k |R�,k(Q)|2

(
Dcv,k+Q/2 − Dcv,k−Q/2

)
. The derivation is

presented in SI Appendix, section 4.

HPS

FBCI

Optical 
pump

A B C

Fig. 3. Signatures of topological excitons in flat-band Chern insulators. (A) Geometry of the Corbino device for observing topological and quantum geometric
properties of excitons. The Flat-band Chern insulator (FBCI) layer is fabricated on top of a high permeability substrate (HPS), which locally reduces speed of light.
Electric terminals consist of a concentric hollow cylindrical metallic conductor (outer plate P2) encircling a solid cylindrical conductor (inner plate P1) attached
on top of the FBCI layer. The radius of P1 and the inner radius of P2 are d and D, respectively. Excitons can be created in the Corbino disk between P1 and P2 as
linearly polarized light is applied from the top of the device. Two terminals T1,2 (T3,4) are attached on the Corbino disk along the radial (angular) direction. The
distance from T1(2) to the disk center is r1(2). (B) Nonlinear Hall (NLH) conductivity �NLH as a function of light frequency Ω as temperature T sweeps cross Tp

(Eq. 17). Application of a driving current Ia between P1 and P2 results in a voltage drop V34 between T3 and T4, which corresponds to �NLH = −Ia/V34 up to a
geometric prefactor. (C) Voltage drop quantization in exciton superfluid phase T < TBKT due to the Aharonov–Casher effect. The voltage drop V12 between T1
and T2 has the form of steps as a function of the applied voltage Va between P1 and P2. The step width and height V0 and V

′
0
, respectively, are described in the

text.
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In practice, for anymultiflat band system away fromhalf filling,
as in twisted bilayer graphene at 3/4 filling (13, 14), the exciton
magnetic moment can be finite and is of the same order as that
of the corresponding electron bands. From dimensional analysis,
one can estimate an upper bound for the orbital magnetization
in flat bands, mz ≲

e
ℏ
Δa20, with a0 the effective lattice constant

in the system. The effective Landé g-factor reads g ≡ mz/�B ≲
2meΔa

2

ℏ2
, where �B ≡ eℏ

2me
is the Bohr magneton. For TBG at the

first magic angle, Δ ∼ 10meV and a0 ∼ 200 Å, we estimate
that the Landé g-factor can be as large as g ∼ 102.

As in the flux quantization in a superconductor, one could
investigate the topological exciton condensate between two plates
of a cylindrical capacitor (Fig. 3A). The applied electric field reads
E(r) = �

2��
êr
r , where � is the linear charge density in the cylinder

and � the dielectric constant in the medium of the condensate,
resulting in a voltage drop between the two plates �V ≡
V1 − V2 = �

2�� ln(D/d). For a magnetic moment m = g�Bẑ
moving on a circle of radius r, the Aharonov–Casher phase for
a circulation reads �AC = ��

ℏ

∮
dr · (m × E) =

g�B��
ℏ

= 2�N .
Therefore, the electric field is screened inside the superfluid,
with a quantized effective linear charge density � = N 2�ℏ

g�B�
. The

voltage drop betweenT1 andT2 (Fig. 3A) changes in integer steps

ΔV = NV ′
0, with V ′

0 = ℏc2

g�B
ln(r2/r1) ∼ c̃2

g ln(r2/r1) × 106 V,
where r1(2) is the distance from T1(2) to the disk center.
c ≡ 1/

√
�� is the speed of light in the exciton condensate,

and c̃ = c/c0 is the reduced speed of light, with c0 the speed
of light in vacuum. In order to observe quantization steps, we

require significantly small values of c̃2

g ln(r2/r1). For practical

purposes, ln(r2/r1) ∼ 1, c̃ ∼ 10−2 on substrates with large
magnetic permeability � ∼ 104 such as iron, and g ∼ 102 in 2D
systems with large unit cell, so that V0 ∼ 1V. We expect that
the voltage quantization shown in Fig. 3C is observable in the
exciton superfluid phase.

Discussion

Moire heterostructures of graphene and TMDs offer a possible
platform for the observation of topological excitons (13, 14).
Themost common experimentally studied samples with excitonic
effects combine a semiconductor with a substrate. In the effective
medium approximation, the dielectric constant of the semicon-
ductor � largely exceeds that of the substrate and produces mostly
dielectric screening. As a result, the effective Coulomb interaction
takes the form of 1/r, where r is the e-h relative distance, when
r is much larger than the dielectric screening length r0. For
r � r0, the Coulomb interaction is proportional to ln r (50, 51).
The Wannier Eq. 7 in the presence of Coulomb interactions is
expected to result in a series of midgap exciton states with energy
spectrum that strongly deviates from that of a hydrogen atom,
since the effective mass approximation is not applicable in flat
bands.
The specific form of the Coulomb interaction will change the

exciton energy spectrum, but will have no effect on the topology
of the excitonic ground state. In our proposal, the excitons are
driven by light in the perturbative regime of interactions. The
light frequency can be used to select the bands that participate in
the formation of bound states. Regardless, the number of bands,
we note that the presence of a well-defined Chern number in any
one of the bands is enough to give the excitons a finite vorticity.
In contrast, in strongly interacting multiband insulators, where

the binding energy is larger than the insulating gap, the excitons
become part of the many-body ground state, which involves all
electron bands, with no explicit exciton-channel separation (37).
In this case, the vorticity of excitons may not be a well-defined
topological quantum number.
The electric dipole moment of excitons `� (Eq. 9) can be very

different compared to the electric dipole moment Pcv of the e-h
excitations at any given momentum. The optical selection rules
for exciton states in flat Chern bands can strongly depend on
the vorticity of the exciton profile functionR�,q. This is distinct
from the exciton selection rules in conventional materials, where
the effective mass approximation is valid. In that approximation,
`� ≈ |R̃�,0|2Pcv, where R̃�,0 =

∑
k R�,k is a constant and Pcv

takes the value at the band extremes (9). For example, in TMD
materials, circularly polarized light selects e-h excitations as well as
excitons in only one of the two valleys (10). In general, quantum
geometry and topological constraints can dictate distinct selection
rules for excitons and e-h excitations.
We finally remark that exciton superfluidity can also be

detected via photoluminescence. At the onset of superfluidity,
the spectrally integrated photoluminescence intensity can be
substantially enhanced, while the photon statistics revealed by
the emission can strongly deviate from a Poissonian distribution,
revealing a bunching transition (40). We expect that radiative
decay of topological excitons should lead to the spontaneous
emission of circularly polarized light at the exciton resonance
frequency. In order to observe the exciton superfluidity, the
superfluid coherence time, limited by the light pump, should
be larger than the radiative life time, which again depends on
the exciton dipole moment and energy spectrum. We leave the
exploration of these directions to a future study.

Materials and Methods

Keldysh Theory for Light-Pumped Excitons. Diagonalization of the single-
particle Hamiltonian by a unitary matrix Ûk results in the Hamiltonian

HS(t) =
∑

k

 
†
k
Ĥk(t) k − 1

2A

∑

a1 ,...,a4

∑

k1 ,...k4

w
a1 ,a2 ,a3 ,a4
k1 ,k2 ,k3 ,k3 + k2 − k1

×  
†
a1 ,k1

 
†
a4 ,k3 + k2 − k1

 a2 ,k2 a3 ,k3 , [18]

where a1,··· ,4 = c,v. The effective Coulomb interaction reads

w
a1 ,a2 ,a3 ,a4
k1 ,k2 ,k3k4

= vk3−k1
U
a1 ,a3
k1 ,k3

U
a4 ,a2
k4 ,k2

. [19]

We consider the weakly interacting regime, up to leading order of the
light field. The effective interaction [19] is dominated by the exciton channel

wa,ā,a,ā
k1 ,k2 ,k3 ,k4

and wa,a,ā,ā
k1 ,k2 ,k3 ,k4

, where ā = v (c) for a = c (v). The other matrix

elements involve intrabanddensityfluctuations,whichcontribute toobservables
only in higher orders of the electric field. Therefore, Hamiltonian Eq. 18 can be
simplified into Eq. 1. For simplicity, we assume that the reservoir is composed
of noninteracting electrons in equilibrium with a constant density of states and
that each site of the system uniformly couples to the reservoir via tunneling
processes. The reservoir electrons obeys the Fermi–Dirac distribution function
fF(�) = 1/[e(�−�)/T + 1]. In the regime of strong interactions, the exciton
dynamics can be more complicated, since all interaction channels become
intertwined (37).
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We write the Keldysh action of the light-driven interacting two-band system
asS = S0 + SI, where

S0 =

∫∫
dt1dt2

∑

k

 ̄k(t1) Ğ
−1
k

(t1, t2) k(t2), [20]

SI =
∑

�=± 1

�

∫
dt

∑

k1 ,...,k4

Wk1 ,k2;k3 ,k4Φ̄�,k1 ,k2(t)Φ�,k3 ,k4(t), [21]

where Ğ−1
k

(t1, t2) is the single-particle Green’s function incorporating the light
field and the fermionic bath. The dipole–dipole interaction potential is defined
as Wk1 ,k2;k3 ,k4 = 1

A�k1−k2 ,k3−k4
W k1+k2

2 ,
k3+k4

2 ;k1−k2
via Eq. 2.

We introduce the complex Hubbard–Stratonovich fields X�,k,p(t) and
X∗
�,k,p

(t) as order parameters to decouple the interaction in Eq. 21 (53).

In time-contour space, we apply the Keldysh–Larkin–Ovchinikov rotations R and
R̄ to the fermionic fields { ,  ̄} and bosonic fields {X̄, X}, i.e., (t) → R (t)

and  ̄(t) =  ̄(t)R̄, and X(t) →
√
2RX(t) and X̄(t) →

√
2X̄(t)R, where

R = (�1 + �3)/
√
2 and R̄ = (1 − i�2)/

√
2, with �1,2,3 being the Pauli

matrices in time-contour space. Integrating out the fermionic fields, we obtain
the effective action for the bosonic fields

Seff[X
∗, X; V∗, V] = −

∫
dt X̄(t)

(
�1 ⊗ Ŵ−1

)
X(t)

− iTr ln
[
1 − Ğ(X̆ + V̆)

]
, [22]

where for a matrix field M̆ with elements M��′ ,aa′ ,kk′(t, t
′) we have defined

TrM̆ =
∑
�=1,2

∑
a=c,v

∑
k

∫
dtM��,aa,kk(t, t), and X̆k1 ,k2(t1, t2) ≡

�(t1 − t2)

(
�0 ⊗ X̂

(1)
k1 ,k2

(t2) + �1 ⊗ X̂
(2)
k1 ,k2

(t2)

)
, with X̂

(�)
k1 ,k2

(t) =

X�,k1 ,k2(t)�+ + X∗
�,k1 ,k2

(t)�−. �± ≡ (�1 ± i�2)/2 are the Pauli matrices

in band space. V̆ takes the same matrix structure as that of X̆ incorporating the
source fields V�,k,p(t) and V

∗
�,k,p

(t) that generate dipole–dipole correlation

functions.
In Eq. 22, the single-particle Green’s function satisfies the period-

icity Ğk(t1 + T0, t2 + T0) = Ğk(t1, t2), where T0 = 2�/Ω is
the period of the light field. Its Fourier transform is Ğk(t1, t2) =∑

m,n=Z

∫
! e−i(!+mΩ)t1ei(!+nΩ)t2 Ğk,mn(!), where we have defined

∫
! ≡

∫ Ω/2
−Ω/2

d!
2� as the integral over first Floquet zone. We have

Ğk(!) =

(
R̂k(!) K̂k(!)

0 Âk(!)

)−1

, [23]

which contains the Keldysh, Floquet, and band spaces. The retarded component
reads R̂−1

k
(!) = ℏ(! + iΓ/2) − ĤF,k, where ĤF,k,mn ≡ Ĥk,m−n −

nℏΩ�mn is the Floquet Hamiltonian, with Ĥk,m = 1
T0

∫ T0
0 dtĤk(t)e

imΩt ,

and Γ = 2�|
|2�/ℏ the effective single-particle decay rate, 
 the tunneling
strength between the system and the bath and � the bath DOS. The

advanced component satisfies Âk(!) = R̂†
k
(!). The Keldysh component

reads K̂k(!) = R̂k(!)Σ̂(!)Âk(!), where Σ̂(!) = −iℏΓ(1 − 2f̂F(!))
is the Keldysh component of the self-energy arising from the coupling to
the bath. The matrix fF,mn(!) = �mnfF(! + mΩ) is diagonal in Floquet
space and encodes the Fermi–Dirac distribution function of the bath. Moreover,
the observables are directly related to the lesser Green’s function Ĝ<

k
(!) =

(K̂k(!) − R̂k(!) + Âk(!))/2.
In the absence of the source fields V = V∗ = 0, Eq. 22 gives

the effective action of the order parameters. Taking the saddle point

�Seff[X, X̄]/�X
(2),∗
k1 ,k2

(t)|X(2)=0 = 0, we obtain the classical equations of

motion (EOM) for the order parameter Xk1 ,k2(t) ≡ X�=1,k1 ,k2(t),

∑

k′ ,k′′
Ŵ−1
k1 ,k2;k′ ,k′′

Xk′ ,k′′(t) = iKcv,k′ ,k′′(t, t; [X]), [24]

and the complex conjugation, where K̂ is the Keldysh component of theGreen’s
function Ğ of the saddle-point Hamiltonian

Hk1 ,k2
(t) = Hk1

(t)�k1 ,k2 + Xk1 ,k2(t)�+ + X∗
k1 ,k2

(t)�−. [25]

We obtain Ğ = (Ğ−1 − X̆)−1 ≡
(
R̂ K̂

0 Â

)
, where X̆k1 ,k2(t1, t2) =

�(t1 − t2)�0 ⊗ (Xk1 ,k2(t)�+ + X∗
k1 ,k2

(t)�−). Eqs. 24 and 25 form the

self-consistent dynamical equations for excitons.
Expanding the EOM [24] up to linear order in the order parameter, we obtain

the linear gap equation for the excitons,

Xk1 ,k2(t) = i
∑

k′

∫
dt′
(
Ŵ−1 − �̂R

)−1

k1 ,k2;k′ ,k′
(t, t′)Kcv,k′(t

′, t′), [26]

where

�Rk1 ,k2 ,k3 ,k4
(t1, t2) =

i

2
�k1 ,k3�k2 ,k4

× Tr�
[
�−R̂k1(t1, t2)�+K̂k2(t2, t1) + �−K̂k1(t1, t2)�+Âk2(t2, t1)

]

[27]

is the retarded interband polarization function. The Keldysh component of the
interbandGreen’s functionKcv,k is thesource thatgenerates theorderparameter.
Conversely, Kcv,k = 0 in the absence of the light pump.

The generating function of the interband electric dipole correlation functions
is defined by Z[V∗, V] ≡

∫
DX̄DX eiSeff[X

∗ ,X;V∗ ,V]. In particular, we calculate

the dipole propagatorΠ�1�2(1, 2) ≡ − i
2

�2 ln Z
�V∗
�1

(1)�V�2 (2)

∣∣∣∣
V=0

and obtain

Π
�1�2(1, 2) =

〈
��1�2(1, 2)

〉

+
i

2

(〈
p
�1
− (1)p�2+ (2)

〉
−
〈
p
�1
− (1)

〉 〈
p
�2
+ (2)

〉)
, [28]

where “1” and “2” are short-hand notations for (k1, k2, t1) and (k3, k4, t2),
respectively, 〈· · · 〉 ≡

∫
DX∗DX · · · eiSeff[X

∗ ,X], and

��1�2(1, 2) =
i

2
Tr�,�

[
Ğk4 ,k2

(t2, t1; [X
∗, X])(
�1 ⊗ �−)

× Ğk1 ,k3
(t1, t2; [X

∗, X])(
�2 ⊗ �+)
]
, [29]

p
�1
− (1) = iTr�,�

[
Ğk1 ,k2

(t1, t1; [X
∗, X])

(

�1 ⊗ �−

)]
, [30]

p
�2
+ (2) = iTr�,�

[
Ğk4 ,k3

(t2, t2; [X
∗, X])

(

�2 ⊗ �+

)]
, [31]

with 
1,2 = �0,1, respectively.
Up to leading order effects of the light pump, the order parameter X is

proportional to the light field. On the right-hand side of Eq. 26, it is sufficient to
take the pump-free retarded polarization function. In frequency space, it takes
the expression�R

k1 ,k2 ,k3 ,k4
(!) = −�k1 ,k3�k2 ,k4�fk1k2/(!−Δk1 ,k2

+ iΓ).

The source term is proportional to the light field Kcv,k(t, t) = ie−iΩt�fk1k2
(E · Pcv,k)/(Ω − Δk1k2

+ iΓ). Finally, we obtain Eq. 5 from Eq. 26. See
SI Appendix, section 2 for details.

Flat-Band Haldane Model. In general, a two-band flat-band model reads
Hk = Δ

2 d̂(k) ·�, where d̂(k) is a unit vector, i.e., |d̂(k)| = 1. The conduction
and valence bands take the energies �a = �aΔ/2 and the eigenstates

 a(k) = 1√
2(1+�ad̂3(k))

(
�a + d̂3(k) d̂1(k) + id̂2(k)

)T
up to a U(1)
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gauge transformation, with �c(v) = +1 (−1). Exploiting the Haldane model
on honeycomb lattice, we introduce the d-vector

d1(k) = t1
∑

j

cos(k · aj), d2(k) = t1
∑

j

sin(k · aj),

d3(k) = −t2
∑

j

sin(k · bj), [32]

where t1,2 are real parameters and a1 = a(1, 0), a2 = a(−1/2,
√
3/2),

a3 = −a1 − a2, b1 = a2 − a3, b2 = a3 − a1, b3 = a1 − a2. We define
d̂(k) = d(k)/|d(k)|. For this model, Cc = −Cv = 1,

∑
k d̂�(k) = 0 and∑

k d̂� d̂�(k) = D���� .
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