ON SPECTRAL BANDS OF DISCRETE PERIODIC OPERATORS
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ABSTRACT. We consider discrete periodic operator on Z¢ with respect to lattices T’ C Z% of full
rank. We describe the class of lattices I' for which the operator may have a spectral gap for
arbitrarily small potentials. We also show that, for a large class of lattices, the dimensions of
the level sets of spectral band functions at the band edges do not exceed d — 2.
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1. DEFINITIONS AND RESULTS

1.1. Lattices in Z%. Let I' C Z% be a lattice of full rank with a basis ay,...,aq € Z¢ (linearly
independent over R):

I'={ma +... +ngaq: n1,...,nq € Z}.
We will consider discrete Schrodinger operators on ¢2(Z%) with potentials V periodic with respect
to I':

(1.1) (HY)(n) = (AY)(n) + V(n)(n) = Y (m) +V(n)(n),

m: |m—n|1=1
where |n|; = |ni| + ...+ |ng| denotes the ¢! norm, and the potential V' is I'-periodic:
V(in+a)=V(n), VaeTl.

If a1,...,aq is a basis of a lattice I', its dual basis by,...,by is uniquely determined by the
relations

<ai7bj> = 0ij,
where 4,5 is the Kronecker symbol and (-, -) is the standard inner product on R%. The dual lattice
I (also called the reciprocal lattice in literature) is defined by

" = {niby + ... +ngbg: ny,...,ng € 2%} C R

One can easily check that I” as a lattice does not depend on the particular choice of a basis
ai,...,aq of I'. Alternatively, the following is an equivalent coordinate-free definition:

I'={beR%: 209 = 1 Vo €T}

One can view I as the collection of all rational linear relations (modulo Z?) between the coor-
dinates of vectors from I'. In particular, since I' C Z¢, we have I'" D Z<.

Some of our results will assume that I' is not of a certain type. We will say that ' is an even
lattice if (1/2,...,1/2) € I'". In other words, I is even if and only if for any n = (ny,...,n4) € T
we have ny+...+ny € 2Z. A lattice I is even if and only if the potential V(n) = v(ny+...4+nq)
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is [-periodic for any 2-periodic function v on Z. Such potentials will be called checkerboard
potentials.

We will also say that I is divisible if the following is true: for any (gq,...,e4) € {—1,1}% and
any j = 1,2,...,d, there exists an integer p; > 2 such that

l(81, €2y -€j—1,E5,Ej41s - - - ,€d) eI’ or l(51,62, ce €1y €5, Ejtly - - ,€d) el
Pj D;
Note that if we have p; = 2 for at least one j, then the lattice will become even.

For d = 2, T is divisible if and only if I'" contains a vector (1/p,1/p) or (1/p, —1/p) for some
integer p > 2. The second case can be reduced to the first case by reflection, and we can assume
without loss of generality that (1/p,1/p) € I". In this case, I' is divisible if and only if the
potential V(n) = v(ny + ng) is I'-periodic for any p-periodic function v on Z. Such potentials
will be called p-periodic potentials. If p = 2, this condition defines a checkerboard potential.

1.2. Bloch wave expansion. Let V: Z? — R be a I-periodic potential. Denote by ¢3(Z%/T)
the space of all complex-valued functions v: Z¢ — C with quasimomentum . By definition, the
latter means

Y(n+a) =¥ C(n), VneZl acT.
Clearly, if 1 has quasimomentum @, then it also has quasimomentum 6 + b for any b € I".
Therefore, it is natural to consider the quasimomentum as an element of R?/I” or, equivalently,
an element of a representative set of R?/I"” such as the elementary cell

QO = {mbi 4 ...+ naba: M, -, ma €0, 1)}

Any function ¢ with quasimomentum 6 is uniquely determined by its values on any representative
set of Z4/T: for example, on

A={xia1+...+xgaq: x1,...,24 € [O,l)}ﬂZd.

In other words, we can identify the space ¢2(Z?/T") with £2(A), thus making it a finite-dimensional
Hilbert space. With this identification, the classical Floquet—Bloch—Gelfand theorem states that
the operator H is unitarily equivalent to a direct integral:

(1.2) H= [ @h(0)de,

Q/
where h(6) is the “restriction” of the original operator H to the space ¢2(Z?/T'). By “restriction”
we mean an operator defined by the same formula ((1.1)):

(Hy)(n) = ((A0) + V)¢)(n) = (Ay)(n) + (Vi)(n).
Note that ¢2(Z?/T") is not a subspace of £2(Z?). To emphasize this, we use the notation A(#) for
the (formal) action of the operator A on ¢3(Z%/T).
Let
N = #A = #7%/T = dim (2(2%/T).
Since h(0) is a self-adjoint operator on ¢3(Z?/T'), one can numerate its eigenvalues in the non-
decreasing order:
Ei(0) < Ex(0) < ... < En(9).

Each function Ej;(-) is a real-valued Lipschitz and piecewise real analytic function of #. Since
Q) can be identified with the torus R?/T”, each function E;(f) can be extended into R? by
["-periodicity. These functions are usually called the spectral band functions of the I'-periodic

operator H. Denote by
By Ef] ={E;(0): 0 € '}
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the range of E;. The interval [Ej’ , E;r] is called the jth spectral band of the operator H. It is
well known that the spectrum of H is the union of the spectral bands:

o(H) = VUL [E;, Ef].

We should note that the number of bands not only depends on the operator H per se, but
also on the choice of the lattice I' (since one can always take a sub-lattice of periods I'y C I’
thus increasing the size of the elementary cell); however, it is not hard to re-calculate the band
structure using a new lattice, and our results will not depend on this ambiguity. An example of
such calculation will be later done for the free operator H = A.

We refer to [I5, 13, 20] for more detailed overview and introduction to spectral theory of
Schrodinger operators with periodic potentials, and to [I, Chapter 10] for some physical foun-
dations of the tight binding approximation that leads to discrete Schrodinger operators.

1.3. Main results. In this paper, we will only consider the case d > 2. Among some natural
questions arising in the theory of periodic operators, we will single out the following.

(1) Can we show that there are no flat bands? In other words, is it true that E; < EJ for
all 57
o the bands overlap? Can we show that the spectrum o 18 an interval for 0o K 1
2) Do the band lap? C how that th fHi i 1 for ||V 17
(3) What is the structure of the level sets {6 € ': E;(6) = Eji}(?

Question (1) is equivalent to the question of absolute continuity of the spectrum of H and
is probably a folklore result for any lattice I' (however, we would like to refer the reader to
[14],[12], and [8]). It will also easily follow from the arguments of the present paper (in particular,
Proposition [3.1)).

Question (2) is often referred to as the discrete Bethe-Sommerfeld Conjecture. The original
Bethe-Sommerfeld conjecture was established in the continuum in [I7], see also [I8, 23], and
states that the spectrum of a Schrodinger operator in the continuum has only finitely many
gaps if d > 2; or, equivalently, that the spectrum does not have gaps located at sufficiently
large energies. In the discrete setting, the kinetic energy operator A is bounded, and one can
imitate large kinetic energy regime by considering small potentials, which leads to Question (2).
For rectangular lattices, the corresponding result was proved in [9] for small potentials, see also
[12, 5], assuming that I" has at least one odd period. As it turns out, a checkerboard potential is
a counterexample which applies to the case when all periods of I' are even: the operator A +eV
has a gap in the middle of the spectrum for all £ > 0.

Until recently, Question (3) has only been addressed in the continuous setting. In [6], it was
shown that, for Schrodinger operators on R?, the level sets mentioned in (3) are finite. Numerous
results were earlier established for the ground state, see for example, [10,[3]. See also some related
results in [24] [11], 2T, 22]. In the tight binding setting, the equivalent of [0] is false with the same
counterexample as (2): the checkerboard potential. Some positive results (both in the discrete
and continuous setting for d = 2) have been obtained in [19]: it is shown that one can construct a
sequence of small perturbations of larger and larger periods to lower the degeneracy of the band
edge and ultimately thansform the band function into a Morse function (however, one cannot
treat all bands simultaneously by this method, as their number grows each time a perturbation
is applied). One should note that (3) is a part of the “effective mass conjecture” which states
that for “generic” potentials all band functions behave like Morse functions around their global
minima and maxima. Also, a proper analogue of this conjecture needs to be formulated in view
of the known counterexamples. We refer the reader to [4] for some particular cases of graphs
and potentials for which the conjecture has been established.

The following are main results of the present paper.
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Theorem 1.1. Suppose that T' C Z% is not divisible. Then each set {0 € Q': E;(0) = Ef} has
dimension at most d — 2.

Remark 1.2. It is easy to see that, in appropriately chosen coordinates, the above set is alge-
braic. In particular, it can be represented as a finite union of smooth submanifolds of T¢, and
therefore any reasonable notion of dimension can be used.

Theorem 1.3. Suppose that I' C Z? is not even. Then there exists ¢ = £(I') > 0 such that, for
any I-periodic potential V' with |V ||~ < €, the spectrum of H is an interval.

One can think that Theorem is an incremental improvement over [9]. However, our proof
is different from [9], and some of the arguments are also used in Theorem [1.1} One can also
note that any lattice I' of rank d contains a rectangular sub-lattice I'; of rank d. Any I'-periodic
potential is also I'y-periodic, and therefore one may be tempted to simply apply the result of [9]
to I'y. However, it may happen that all such I'y are checkerboard lattices: for example, consider
a non-checkerboard lattice T' C Z? with basis {(2,0), (1,2)}. Therefore, Theorem does not
follow from [9] directly.

The example of a checkerboard potential shows that one cannot extend Theorems [1.1] and
to the case of even lattices. For the case of Theorem [1.3] it was observed in [9], [5]. For the case
of Theorem [L.1] it was shown in [6] (and probably known before) that checkerboard potentials
in d = 2 produce Fermi surfaces of dimensions d — 1 at the edges of the spectral gap. This
calculation can easily be extended to arbitrary dimension.

In the case d = 2, Theorem [L.1]is sharp: the p-periodic potentials also produce one-dimensional
Fermi surfaces at the edges of some bands. A simple argument has been provided in [19].

The case of divisible lattices for d > 3 is currently open. It is easy to see that the “minimal”
potential counterexample would be T' = (3Z)? whose fundamental domain has 27 points.

Theorem [1.1] is strongly related to the question of irreducibility of the Fermi varieties. For
discrete Schrodinger operators with rectangular lattices I' and coprime periods, irreducibility
was shown in [7] for d = 2 and in [2] for d = 3. Recently, a breakthrough in that direction was
obtained in [I6], where irreducibility was established in all dimensions for rectangular lattices
with coprime periods. For such lattices, Theorem is a corollary of irreducibility. Our method
of proof of Theorem is substantially different and does not imply irreducibility.

1.4. Outline of the proofs. The proofs of both main results (Theorems and are based
on the analysis of the (real or complex) Fermi surfaces of the free Laplacian, see Section 2.1 for
the definitions. In the case of Theorem a standard observation [12] [5, @] implies that is is
sufficient to show that any interior point of the spectrum of the free Laplacian belongs to the
interior of some spectral band. In the proof of Theorem [I.3], we show that the opposite can only
happen if the real Fermi surface of the free Laplacian has a non-trivial translation symmetry,
which implies that the lattice must be even.

In the case of Theorem [I.I| we consider the complex Fermi surfaces and follow the scheme
introduced in [6] for the continuous Schrodinger operators on R?. We fix an energy and a spa-
tial direction and consider the eigenvalue equation as an equation on the component 6; of the
quasimomentum corresponding to that direction. In the discrete case, the equation is equiva-
lent to vanishing of some finite-dimensional determinant, and the values of 6; corresponding to
spectral band edges produce degenerate roots of that equation. Following the approach of [6],
we would like to show that, for “almost every” choice of 6s, ..., 8,, the above equation on 6, has
no degenerate roots. The latter is easy to establish for the free operator. In order to include
the potential as a perturbation, one would like to separate the roots by “walls” on which the
norm of the resolvent is large so that the roots cannot cross them as the potential is gradually
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added to the operator. In order to construct these walls, one needs to consider values of the
quasimomenta with large imaginary parts. Note that this situation is somewhat more simple
than the one in [6], since one needs to only deal with finitely many roots. As a consequence, we
were able to consider all dimensions rather than only d = 2.

2. THE REAL FERMI SURFACE AND THE PROOF OF THEOREM

Most of the paper deals with the case of the free Laplacian; that is, the case V = 0. Let
(2.1) F(0) :=2cos(27m6) + ...+ 2cos(2mby), 0= (61,...,04) € R%
It is well known that the Laplace operator A on 2(Z%) is unitarily equivalent to an operator of
multiplication by F(6) on L?([0,1)%). Denote by

69(%) _ 62m<n’0>.

The above unitary equivalence can be formally written as

(A(0)eg)(n) = F(0)eg(n),
and therefore ey can be considered as a generalized eigenfunction of the absolutely continuous
spectrum for A. We will call ey the standard (generalized) eigenfunction of A with the momen-
tum 6. These eigenfunctions are parametrized by @ € [0,1)%. We would like to relate it with the
Floquet expansion . Let
N =T")7°.

We will use the following natural convention: if b € A’, then any equality that involves b or
components of b, will be considered modulo Z?. For example, we will often use notation like
b=0,o0rbe A\ {0}, meaning in the latter case b # 0 mod Z?. For the components of b (say,
by = 1/2), the equalities are considered modulo Z.

Note that #A’ = #A = N, and there are exactly N distinct standard eigenfunctions of A
who have quasimomentum 6. Moreover, one can easily check that these functions span the space
(2(R?/T) of all functions with quasimomentum 6:

(2(Z%)T) = spanf{egp: b € A'}.
It will be convenient for us to work in the above basis (which is orthogonal, and each element

has norm v/N). This basis also identifies £2(Z%/T') with ¢2(A’).
The operator h(0) = A(6) + V, therefore, is unitarily equivalent to the following operator:

(2.2) (h(0))(b) = F(O+b)p(b) + > _V(b—c)p

Here o € (2(A), and the difference b — ¢ is considered in I"/Z? which is identified with A’. V is
the discrete Fourier transform of V:

V(b) ZV n)ey(n), be .
\/_’VLEA

2.1. The real Fermi surface. In this section, we will identify [0,1)¢ with the d-dimensional
torus T¢. Let E € R. Define

(2.3) Fe={0€T F) = E}.

The subset Fg is usually called the real Fermi surface of the free Laplacian on Z®. Denote also
the (real) singular set
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Clearly, Sg is non-empty only for F € {—2d,—-2(d — 2),...,2(d — 2),2d}. The set Fg is empty
for |E| > 2d and consists of a single point for |E| = 2d.

Lemma 2.1. Suppose that d > 3 and E € (—2d,2d), ord =2 and E € (—4,0)U (0,4). Then
Fr\ Sk is a smooth connected d — 1-dimensional real analytic submanifold of T¢.

Proof. The fact that Fg \ Sg is a submanifold follows from the implicit function theorem. To
show that Fg \ Sg is connected, consider the map

f: Fe\Seg — [~1,1]% (01,...,04) — (cos2mby, cos 2mbsy, . . ., cos 2mly).

The set f(Fg) is a convex (d — 1)-dimensional polygon in the hyperplane {(t1,...,t4): t1+...+
tq = E/2}. The set f(Fg \ Sg) can be obtained from f(Fg) by removing finitely many points.
In the case d > 3, this implies that f(Fg \ Sg) is connected. In the case d = 2 and under
the assumptions of the lemma, we have Sp = &, and therefore f(Fgr \ Sg) = f(Fg) is also
connected.

Let ay,ay € Fg \ Sg. Since there is a continuous path between f(a;) and f(as), it can be
lifted to a continuous path between ay,a), € Fg \ Sg where f(a3) = f(a2). It remains to explain
how to connect ay with ab, for which it is sufficient to construct a path, say, from (6, ...,60)
to (—01,...,0;) (assuming that both points are on Fg). Since |E| < 2d, by a small continuous
perturbation one can assume that | cos 2m6;| < 1 for all j. In this case, one can fix the coordinates
(03, ...,04) and consider the section by the two-dimensional hyperplane:

2cos 210y + 2cos2mly = E — F(03,...,04).

By assumption, the right hand side is contained in (—4,4). If it is not zero, the equation defines
a smooth connected curve in the coordinates 6y, 6, where one can easily connect (6;,62) with
(=61, 05) (still, staying within Fg \ Sg). If the right hand side is 0, one can perturb both ¢, and
03 to make it non-zero. The only case when it is not possible is when there is no 63, that is,
d=2and £E=0.1

Remark 2.2. Let d = 2. For |E| > 4, the set Fg is empty. For |E| =4, Fp consists of a single
point (0,0) € T? or (1/2,1/2) € T% For 0 < |E| < 4, the set Fg is a one-dimensional simple
closed real analytic curve surrounding an oval-shaped area with center at (0,0) for £ > 0 and
(1/2,1/2) for E < 0. If E = 0, the set Fy is a union of four intervals whose interiors do not
intersect. The set Fy \ Sp has four connected components.

Lemma 2.3. Let d = 2. Suppose that Ey, E5 € (0,4) and Fg, +b = Fg, for some b € T2. Then
b=0 andE1 :EQ.

Proof. Consider both Fg, and Fg, as Z>-periodic subsets of R%. Since each connected component
of Fp, and Fpg, is an analytic curve, we must have Fg, + b = Fg,. Since the barycenter of
each connected component of Fp, must be translated into the barycenter of some connected
component of Fg,, we must have b € Z? and therefore, without loss of generality, b = 0 and
Fp, = Fg,. In view of the definition of Fg, the latter is only possible for £y = Es.

Corollary 2.4. Let d =2 and Ey, Ey € R. Suppose that Fg, # & and Fg, +b = Fg, for some
b€ T2 Then either b=0 and Ey = Fy, or b= (1/2,1/2) and E; = —F,.

Proof. From Remark it follows that E = 0 is the only case for which Fp, considered as a
Z*-periodic subset of R?, is non-empty and connected. Therefore, E; = 0 if and only if Ey = 0,
and the statement of the corollary follows in this case. Since Fg, = F_g, + (1/2,1/2), the case
0 < |Ey| < 4 follows from Lemma 2.3, If |Ey| = 4, then Fp, = Z* or Fp, = Z* + (1/2,1/2),
therefore we must also have |Fy| = 4 and the conclusion follows. B



ON SPECTRAL BANDS OF DISCRETE PERIODIC OPERATORS 7

Let Fr be a Fermi surface . We will call a point 6 € Fg generic if 0 + b ¢ Fg for any
be N, b+# 0mod Z? Except for the special case d = 2, E = 0, almost every point of Fg is
generic. The proof below is based on the following observation: if Fr has too many non-generic
points, then it has a non-trivial translational symmetry by a vector from A’. This symmetry
generates a symmetry on two-dimensional slices. Each slice is a two-dimensional Fermi surface,
but the symmetry does not have to preserve the energy of a slice. However, Lemma [2.3| implies
that, even for slices with different energies, possible (non-trivial) symmetries that transform one
into another, are restricted to vectors whose components are equal to 1/2.

Theorem 2.5. Let Fg be a Fermi surface with d > 3 ord =2 and E # 0. Suppose that
[ is not even (that is, suppose that (1/2,...,1/2) ¢ TV ). Then the set of non-generic points of
Fr is contained in a finite union of (d — 2)-dimensional real analytic submanifolds of T¢. As a
consequence, the set of generic points is open in Fg and has full (d — 1)-dimensional measure

Proof. For each b € A"\ {0}, consider the function F(0 + b) — E. Clearly, this function is
real analytic on a connected real analytic manifold Fg \ Sg (in fact, it is an rational function
in appropriate coordinates). As a consequence, it is either identically zero, or its zero set is
contained in a finite union of (d — 2)-dimensional submanifolds. In order to prove the theorem,
it would be sufficient to show that none of the functions F'(6 4+ b) — E' is identically zero.

Suppose that F(§ +b) = E on Fg \ Sg. By continuity, the same also holds on Fg, and
therefore we have Fg + b = Fg. Fix some 0’ € TY2 and denote by

P@)={0 €T 0= (0,050}

the two-dimensional torus obtained by fixing all coordinates of 6 except for the first two. Suppose

that Fg N P(0) # @. Let b = (b, b, ') and define
G; = {(61,03): 2cos2mby + 2cos2mby = E;}, j=1,2,
where
Ei=FE—-F(@#), E,=FE—F(@ +V).
Since Fg = Fg + b, we have
G1 + (b1, b2) = Go.
Apply Lernma with the above Fi, Fy, and conclude that by = by = 1/2 or by = by = 0. Now,
without loss of generality we could have chosen any two components of 6 instead of #; and 6s,

and hence we have by = by = ... = by(= 0 or = 1/2). The case by = by = ... =1/2 is forbidden
due to the assumption on I', which completes the proof. B

Remark 2.6. While the proof of Theorem works for d = 2 if E # 0, it fails for the special
case d = 2, F = 0, if [ contains vectors of the form (a,a) or (a,—a) (in other words, if I' is
p-divisible for some p > 3). However, one can modify the argument as follows, in a way similar
to [9].

Proposition 2.7. Assume that d =2 and E =0, and I is not even. Then, almost every point
0 € Fo satisfies the following:

(1) #{be N':0+0be Fo} is odd.

(2) For any b € N, we have (VF)(0 +b) # 0.

Proof. First, note that (2) holds for every point on Fy which is not a translation of a corner
point by a vector b € A’. Therefore, we only need to establish (1). Recall that F; is a union of
four line segments, each of which is parallel to (1,1) or (1,—1). As a consequence, for almost
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every point 0 € Fy and any vector b € A’ that is not of the form (a, a) or (a, —a), we would have
0+b ¢ Fy. In other words, after removing finitely many points from F,, we can assume, for the
purposes of establishing (1), that A’ only contains vectors of the form (a,a) and (a, —a).

Under the above assumptions, it is easy to see that A’ (considered as an additive group modulo
7?) is generated by at most two vectors, of the form (1/r,1/r) and (1/s,—1/s), respectively,
with r, s € N. Since I" is not even, both r and s must be odd. If 8 belongs to the interior of a
line segment of Fy parallel to (1,1), the cardinality of the set in (1) becomes equal to the total
number of vectors of the form (a,a) in I, which is equal to r and therefore is odd. Similarly,
for 6 in the interiors of the remaining line segments, one needs to consider vectors of the form
(a,—a) € T"; again, the total number of such vectors is odd. In fact, one can check that (1)
holds for all points 6 € Fy including the corner point if one only counts vectors of the form (a, a)
and (a,—a). 1

2.2. Proof of Theorem [1.3] After all preparations, the rest of the proof is standard as dis-
cussed in [12, B, ©]. In order to prove Theorem [1.3] it would be sufficient to show that any
E € (—2d,2d) is in the interior of some spectral band of A. Indeed, if E; is in some gap of the
spectrum of A 4 ¢;V and €; — 0+ as j — 00, one can by choosing a subsequence assume that,
for some fixed 1 < k < N — 1, we have

By (g5) < By < By (gy),

where E;f(g;) denote the spectral band edges of A+¢;V. By choosing a further subsequence, we
can additionally assume that E; — E € [—2d, 2d]. Since the spectral band edges are continuous
in €, we have

Ei(0)" < E < By, (0).

In other words, E¥ must be between two consecutive spectral bands of the free Laplacian A with
non-overlapping interiors, and therefore £ € (—2d,2d) since A has no flat bands.
Let E € (—2d,2d). The band functions of the free Laplacian A have the form

(B/(0),..., Ex(0)} = {F(0 +b): be AY.

As a consequence, the following is true for the eigenvalue counting functions of the operators
Agi

(2.4) N(O,E)=#{j: E;(0) <E} =#{be \': F(0+b) < E}.

Recall that o(A) is an interval. If E is not in the interior of any band, then the counting function
must be a constant in 6:

#{beN: F(0+0b) < E} = const.
Therefore, the following is sufficient: for any E € (—2d,2d), find 6, 03 such that N(6;, E) #
N(6y, E).

First, let us consider the case d > 3 or E # 0. Let 6 be a generic point in the sense of Theorem
such that (VF)(0) # 0, and let u be any direction satisfying (u, (VF)(0)) # 0. Clearly, for
|t] < 1, the function t — F'(6 + tu) — E is strictly monotone in ¢ and vanishes at ¢ = 0. On the
other hand, F(0 + b+ tu) # E for all b € A"\ {0}. As a consequence,

N@O+tu,E)=N(O —tu, E) £ 1

for 0 < t < 1, which provides required points 6y, 6-.

In the case where Theorem is not applicable (that is, £ = 0 and d = 2), one can use
Proposition and observe that if one passes any 6 from that proposition along any direction
which is not perpendicular to (VF)(6 4 b) for all b € A’, then the counting function changes by
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an odd number, and therefore also cannot be a constant. The latter is a simple version of the
“perturb and count” argument from [9].®

3. THE COMPLEX FERMI SURFACE AND THE PROOF OF THEOREM [1.1]

Since h(f) is an operator on a finite-dimensional Hilbert space, all questions about spectral
bands, essentially, become questions about some concrete algebraic equations (depending on I'
and V). In particular, spectral band functions have the following description, assuming 6 € T%:

dj: £ =FE;(#) if and only if det(h(f) — E) =0.

The determinant in the right hand side is a real analytic function of § € T¢. In fact, it also
extends to a complex analytic function of § € C?, which is I"-periodic. Let z = > . One
can easily check (using, for example, the explicit formula (2.2)) that det(h(f) — E) is a Laurent
polynomial in z, whose coefficients are complex analytic functions of 6, ... 60,4, E.

Overview of the proof. The proof of Theorem [1.1]is completed in the end of this section after
some preparations. For £ = Ef, we consider the level sets

L=1{0€cR" E;0) =E}

and show that they correspond to degenerate roots of the equation det(h(6) — E) = 0, considered
as an equation in #; (Proposition . The condition of having a degenerate root can be stated
in terms of vanishing of the discriminant (Proposition . If one considers the discriminant as
a function of one parameter ¢, it either vanishes for all t € C, or the set of its zeros is discrete.
The final conclusion that precedes the proof of Theorem is Corollary which states that,
for almost every value of #, the vanishing set of the discriminant is discrete. For the latter, it is
sufficient to show that it does not vanish identically in ¢ € C. We show that by estimating the
diagonal part of the operator for the values of ¢ with large imaginary parts, which allows us to
show that the zeros are separated from each other (Lemma , Corollary , Lemma , and

the separation is strong enough to be preserved after adding the potential.

The following result is well known and implies that A + V' has no flat bands.

Proposition 3.1. Fiz (0y,...,0;) € C' and E € C. Then the set

{6, € C: det(h(0y,...,04) — E) =0}
1s finite modulo translations 01 — 01 + 1.
Proof. The set under consideration is invariant under translations ¢, — 6 41, and is also a zero
set of an entire function. Therefore, it is sufficient to show that det(h(f) — E) is not identically
zero as a function of 6. Since |cos276,| — +o00 as |Im ;| — +oo uniformly in Re 6, we have
that the absolute values of all eigenvalues of A(#) approach +o00 as |Im6;| — +oo uniformly

in Re#;. Since A(f) is a normal operator and h(f) — E is a bounded perturbation of A(€), the
same holds for the eigenvalues of h(f) — F, and therefore for the determinant. B

Proposition 3.2. Suppose that E;(0) = E]i Fiz (0y,...,0,) € R and consider the function

as an analytic function of n. Then n = 61 is a zero of f of multiplicity at least two. A similar
statement holds if one considers f as a Laurent polynomial in z = e*™.

Proof. The argument repeats a similar argument from [6]. Fix 8 = (6,,...6;) and consider
E;(-,0') as a function of its first (real-valued) argument. From Proposition [3.1] that function
cannot be constant in #; on any interval. Since it attains its maximal or minimal value at Ef, the
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equation E;(n,¢') = Eji F 0, considered as an equation in 1 € R, has at least two solutions near
6 for sufficiently small 6 > 0. As a consequence, the root n = 6; of the function f splits
into two distinct roots after a small perturbation of the parameter Eji, and as a consequence is
of multiplicity at least two. B

Clearly, any Laurent polynomial can be multiplied by an appropriate power of z and made
a regular polynomial (with no additional roots). Therefore, the condition of having roots of
multiplicity two or higher is an analytic condition which can be formulated in terms of its
discriminant. Recall that, for a monic polynomial

p(2) = 2"+ an_12" ... +ag

with roots z1, ..., z,, its discriminant is defined as
2
A(p) = H (zi — 25)".

1<i<j<n

It is clear that A(p) vanishes if and only if p has roots of multiplicity greater than or equal to 2.
It is well known (see, for example, [25 Section 5.9]) that A(p) is a polynomial function of the
coefficients ag, ..., a,_1.

Proposition 3.3. Fiz E, (0,,...,04), and fix o, ..., 1uq € C. Consider the following family of
functions of 61 :

det(h(',gz+tu2,93+tu3,...,0d+tud>—E), teC.

Then the set of t € C for which the function in the left hand side has a root of multiplicity > 2,
1s discrete in C or is equal to the whole C.

Proof. Rewrite the left hand side as a Laurent polynomial in z and multiply to the appropriate
power of z. Note that, since the coefficient at the lowest power of z may sometimes vanish, this
multiplication may result in adding a degenerate root z = 0. However, since the said coefficient
is analytic in ¢, this itself can only happen for a discrete set of values of t. Modulo this remark,
the set of ¢ under consideration is a zero set of the discriminant of some polynomial whose
coefficients are analytic in ¢, from which the claim of the proposition follows. R

In the following lemmas, we will use a version of the function F' defined on the (d — 1)-
dimensional torus. It will be denoted by the same symbol as in the original definition ({2.1)):

F(0') = 2cos(2mby) + ... + 2cos(2704), O = (0s,...,04) € T

Lemma 3.4. Fiz a lattice ' C Z¢. Then there exists a subset S C T?!, dim S < d—2, such that
the following is true. For any vector u = (gq,...,&q) € {—1,1}471 such that I does not contain
vectors of the form é(jzl, €3,...,Eq) with integer p > 2 and for any 0 = (0o, ...,04) € T\ S,
the following holds. One can find to = to(0') > 0 such that, for allt > to, if for some 6 € C we
have
12cos 20y + F(0' —itu)| < e™,
then, for any b= (by,0') € A"\ {0}, we have
12cos2m(0y + by) + F(0' + b —itu)| > e™.

Proof. Since there are at most 297! possible choices for a vector v with the stated properties,
we can without loss of generality assume that u € {—1,1}¢7! is fixed. It will also be convenient
to use O-notation in some estimates. One can check that the constants in these estimates are
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bounded by, say, 2d. The following observation will be important: if z,y € R and e = sign(y),
then

1 .
(3:2) cos(z + iy) = 56“"6‘“ +O(e .

Suppose, by contradiction, that there exists a sequence t; — +o0o0 and a vector b = (by,') € A/,
b # 0, such that, for some 6, = 6,(j) we have

(3.3) 12 cos 210y + F(0' —itju)| < €™,

(3.4) 12cos2m(0; + b1) + F(V + 0" —itju)] < e™;

Assume first that 6; = x + iy, where z,y € R. Using (3.2)), we have

(35) F(Ql o itju) _ 627rtj{€27ri6202 4+ 627risd9d} + O(e_Qmj),

(36) F(Q’ + b/ . itju) — e27rtj{e27ri€2(92+b2) 4+t e27rz’€d(9d+bd)} + 0(6_27rtj>.

Let ¢ = sign(y). Then, by combining (3.3)), (3-4), and (3.2)), we have
e2rlulg=2misa | o2nt; fo2micads |y o2micaba) — (™),
e2rll=2mis(eby) | 2mt; fo2mieaOrtba) 4y 2mica0atba)} = (™).
Multiply the second equality by e*™#* and subtract one from another. We obtain
Q2T [mieata 4 4 oPmiaba) _ mt; 2mich f dmisaOatba) 4 4 o2mica(Batba)} = O (™)
as t; — +o00. Clearly, this can only happen if

(37) 62#16202 4. 627rzsd0d _ e27rzsb1 e27r162(02+bg) 4.+ 627rzeb1 62msd(0d+bd)'

As a consequence, if
0 ¢ S:={0 cT": (38.7) holds for some b = (by,b') € A"\ {0} and some ¢ € {1, —1}},

then the conclusion of the lemma is true. Due to the definition of S, we have dim S < d — 2,
unless ([3.7)) is satisfied for all ¢ € T! for some fixed € and b. The latter, however, would imply

—€b1 = €2b2 = €3b3 =...= Sdbd,
or, equivalently, b;(—¢,,€3,...,24) € I". Together with the inclusion I D Z¢, we arrive to
p(—e,e9,e3,...,64) € I, which contradicts the assumption on I'. B

Corollary 3.5. Under the assumptions of Lemma [3.4], suppose that, in addition,

9/ ¢ Sv — U (S + b/) U U {el c P]:[‘dfl: 6271'7,'52(92+b2) 4L+ 627ri5d(0d+bd) — O}
b=(b1,b")EN’ b=(b1,b’)eN’

Then
|F(0 + b —itu)| = 32 Vit > t4(0)), Vb= (b, V) € .
Moreover, for any 0, € C, the inequality
12cos2m(0) + by) + F(0 + b —itu)| < ™
may hold for at most one choice of b= (by,b') € \'.

Proof. The first claim follows from the definition of S and (3.5). The second claim follows from
Lemma [3.4] applied to 6 + b for all possible b € A’. B
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Lemma 3.6. Under the assumptions of the previous lemma and corollary, fix some 0 € Td_l\g
and u € {—1,1}471. Fort > 0, consider the following 1-periodic subset of C:

O, = {6, € C: [2c0os2m(01 + by) + F(0' + ' — itu)| > e™/? Vb= (b, V) € N'}.
There ezists tg = to(0') such that, for t > to, every connected component of C\ ©; is bounded
and contains at most one root of the equation
(3.8) det(A(n, 8 —itu)) = 0,
considered as an equation on n € C, and that root is simple.

Proof. Choose a large ty so that the conclusion of Corollary holds for the given choice of u,
and suppose that t > tq. For these t and every n € C\ 6;, Lemma implies that exactly
one diagonal entry of A(f;,#') is smaller than e™/2 in absolute value. In other words, for any
n € C\ O, there exists a unique b = b(n) = (b, ') € A’ such that

(3.9) 12cos 2m(n + by) + F(0 + V' — itu)| < e™/2.

Let W be a connected component of C\ ©,. Clearly, b(n) is constant on W. The first claim of
Corollary implies, perhaps after choosing a larger ty, that W NR = & and

1
(3.10) |2cos2m(n +b1)| > 563”/2, Ve W.

We will use these estimates to obtain a bound on the size of W. Suppose that
m=xr+ipp €W, m=c+1/2+iy € W; z,y1,92 €R.
Since W does not intersect the real line, we can assume without loss of generality that y;,ys > 0.
From (3.2)) and (3.10)), it follows that
| cos 2m(ny + by) — cos2m(ny + by)| = ™.

Together with the triangle inequality, this contradicts (3.9) for large t. As a consequence, W
cannot contain two points whose real parts differ by 1/2, and therefore is contained in a strip of
width 1/2. Due to (3.2) and the fact that F'(6' + b —itu) does not depend on 6, it is also clear
that W is contained in a horizontal strip, say, |37| < 20t, and therefore is bounded.

Assume that there are two roots 7, m2 of (3.8) in the same connected component of C \ 6.
In view of the above, we have

0 = cos2m(n + by) — cos2m(ny + by) = —2sinw(n; — n2) sinw(m + 12 + by).

Since W N R = @ and W is connected we have (n; + 1) # 0, and therefore the second factor
cannot vanish. Since W is contained in a vertical strip of width 1/2, the first factor can only
vanish for n; =n,. 1

Corollary 3.7. Under the assumptions of Lemma suppose that §' € T4=1\ S', where S is
defined in Corollary[3.5, and E € o(H). Then the set

{t € C: det(h(-,0' —itu) — E) =0 has a degenerate root}
1s discrete in C.

Proof. From Proposition [3.3] it is sufficient to produce a single value of ¢t € C such that all roots
of the above equation are simple. Since E € o(H), we have |E| < 2d + ||V ||o. Apply Lemma
and choose t satisfying e™/2 > 2d + 2||V||» in addition to the choices already made. For
these t, we have

det(A(0y, 0 — itu) + s(V — E)) £ 0, V0, € Oy, Vs € [0, 1].
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Let fs(n) := A(n, 0 —itu)+s(V — E). Clearly, fs(n) is holomorphic on C and, for any connected
component W of C\ 6, we have |fs(n)] > ¢ > 0 on OW (here we used the fact that W is
bounded from the previous lemma). Since OW is a piecewise smooth Jordan curve, the number
of zeros of fs in W is equal to

1 £,

2mi ow f 5(77)
and is continuous and therefore constant in s. By considering s = 0 and using the previous
lemma, we see that this integral can only be equal to 0 or 1. As a consequence, each root of the
equation det(h(6q,0" — itu) — E') = 0, considered as an equation on 6y, is simple.

3.1. Proof of Theorem Let ¥ = EjjE and consider the level set
L={0eR" E;(0) =E}.

Assume that I' is not divisible. Without loss of generality (perhaps, after switching the roles
of the components of #), one can assume that I' satisfies the assumptions of Lemma . From
Proposition [3.1] it also follows that the intersection of L with any line of the form ¢’ = const is
finite. As a consequence, it would be sufficient to show that, under the assumptions of Lemma
3.4] we have dim L' < d — 2, where

L'={# e R"™': 30, € R such that (6,,6') € L}

is the projection of L onto the 8’ hyperplane.
Let u € {—1,1}%7! be the vector from Lemma , and consider the decomposition

0 =su+w, weW:=R"'n{u}t, sekR.
From Proposition [3.3] it follows that W = W; U W5, where
Wy ={we W: det(h(-,w + su) — E) = 0 has a degenerate root for all s € C}

and
Wy ={w e W: det(h(-,w + su) — E) = 0 has a degenerate root for a discrete set of s € C}.
Clearly, the union is disjoint. Similarly, for the variable ¢’ we have R~ = U; U Us,, where
Uy =Wy +Ru, U;=W;+Ru.
We will show that dim U; < d—2 and dim(L'NUy) < d—2. From Corollary for any w € W,

and s € R, the vector su 4+ w cannot belong to the complement of S (see Corollary [3.5) and
therefore must belong to S. Therefore, U; C S and dim U, < d— 2. For each w € W5, a vector
¢’ = su + w can only belong to L’ if the equation det(h(6;, su + w) — E) = 0 has degenerate
roots (as an equation in 6;; see Proposition . By the definition of W5, this can only happen
for a discrete set of values of s € R, and therefore L' N U, has discrete intersection with any line
parallel to u. This implies dim(L' N Us) < dim Wy < d — 2 and completes the proof.

3.2. On some divisible lattices. First, consider the case p = 2, and let V' be a checkerboard
potential. It is easy to see that the operator h(f) is now unitarily equivalent to

(005(01) + UO + cos(6) B v : COS(Qd)) '

As a consequence, the internal edges of the spectral bands are defined by the equation cos(6;) +
...+ cos(6;) = 0 and therefore the corresponding Fermi surfaces have dimensions d — 1.

Regarding periodic potentials with larger periods, the following result is established in [19]
Remark 4.1].
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Proposition 3.8. Let d = 2, p > 3, the lattice ' be spanned by {(1,1), (p,0)} and v(ni,ng) =
Vini4ns) modp b€ a real-valued p-periodic potential. Assume that Vo < V; =2 forj=1,2,...,p—1.
Then the right edge of the left-most spectral band of the corresponding discrete Schrodinger
operator is equal to Vi, and the corresponding Fermi surface has dimension one.

As a consequence, for any divisible lattice I' C Z?2, there exists a I-periodic potential such
that the conclusion of Theorem [I.1] does not hold.
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