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ABSTRACT. In [2], it was conjectured that a particular shifted sum of even divisor
sums vanishes, and in [11], a formal argument was given for this vanishing. Shifted
convolution sums of this form appear when computing the Fourier expansion of coeffi-
cients for the low energy scattering amplitudes in type IIB string theory [7] and have
applications to subconvexity bounds of L-functions. In this article, we generalize the
argument from [11] and rigorously evaluate shifted convolution of the divisor functions
of the form Z o, (1), (n2)|n1|F and Z oy, (n1)0r, (n2)|n1|% log |n1]

nit+ng=n nit+ng=n
nl,nzez\{o} ’I’Ll,nzez\{o}

where 0, (n) = >_;,,d". In doing so, we derive exact identities for these sums and
conjecture that particular sums similar to but different from the one found in [2] will
also vanish.

1. INTRODUCTION

Shifted convolution sums have a long history of being studied by number theorists
[1, 3, 8,9, 10, 12, 13, 14, 15]. Recently, the AdS/CFT correspondence and Yang-Mills
theory gives a surprising hint towards the exact evaluation of shifted convolution sums
of divisor functions. Namely, in [2] Chester, Green, Pufu, Wang and Wen conjectured
that for any n # 0 and

p(nne) = 30 = 5 — i — 30— 30 4 (15 — ) log |y | + (15 — 222 ) log [no],
the following equality holds:
n2
(1.1) Z p(n1,n2)o2(n1)oz(ng) = o2(n) <% + 30C/(_2)),
n1+n2:n

n1,n2€Z\{0}

where (¢ denotes the Riemann zeta function. The fact that this summation in (1.1) is
both infinite and and involves even divisor functions makes it particularly challenging
to work with. In [11], the authors give a formal argument verifying (1.1).

In this paper, we examine what can be rigorously proven using the argument presented
n [11]. We apply similar methods to extend these results to more general convolution

sums and give a precise equality. More explicitly, we rigorously evaluate for any n €
Z \ {0} and for certain 1,79, P,Q € C,

(1.2) Y oo m)m|Tand D" oy, (01)0y, (n2) 1| @ log ny |
ni+ng=n ni+ng=n
n1,n2€Z\{0} ni1,n2€Z\{0}
1
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in Theorems 1.1 and 1.2 respectively. In doing so we identify the obstacle to making
the formal argument found in [11] rigorous. The exact results found contain extra
terms which do not appear in (1.1). If we further assume that we may interchange the
operations of taking an infinite sum and meromorphic continuation, this generalizes the
argument in [11], and we recover (1.1) as desired. With the help of this non-rigorous
argument, we obtain other identities of a similar form, see Conjecture 1.3.

The initial motivation for the study of sums of the forms in (1.2) is their appearance
in string theory. The sum (1.1) arises in the Fourier modes of the homogeneous solu-
tion to differential equations involving non-holomorphic Eisenstein series which yield
coefficients for to the low energy scattering amplitude in type IIB string theory [7].
More generally, sums of a similar form arise in the maximally supersymmetric N’ = 4
super-Yang-Mills theory when studying duality properties of certain correlation func-
tions in the 1/N expansion [6]. However, as previously noted, shifted convolution sums
more generally are of great interests to number theorists as well. Specifically, certain
information on shifted convolution sums could yield progress on subconvexity problems
for L-functions derived from modular forms [1, 13].

1.1. Main results. Let ¢,d € N. If ged(c, d) divides n, we let

(1.3) B:={beZ:3a € Z such that ad — bc = n},
. . . ntbc
(1.4) b= argrbne%l{|b|} and a := T
It is convenient to introduce
b* ged(c, d
(1.5) Ued = w
d
1 for P € 27
Moreover, we denote dojp = o E ’
0, otherwise.

Theorem 1.1. Let n € Z \ {0}, P € Z, r1,r9 € C such that P < —1, Re(r;) < —1,
and Re(rq) < —1, and let u.q4 be as in (1.5). Then

> on(m)on(n)ng = —n"o,(n)¢(~r)
nit+ng=n
ni1,n2€Z\{0}

(16)  + (=1 20yp¢(=P)¢(=ra = P) Y _d" T (1+ (1= p")(p + ...+ p™ 7))

dn pld
P ri+ra+2P C<_T2 — b %) P
FEDTL T Y i@ e
deN 0<c'<d ’ meZ
dfn ged(c,d)|n

where the product Hp|d 15 taken over all prime divisors, p, of d while the sum de 18
taken over all divisors d of n, and v,(d) denotes the valuation of d at p. The first two
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terms in the right hand side of (1.6) admit meromorphic continuations' to P € C and
r1 € C. The restriction of the second term to ro € 27 and ro + P € Ny equals

_C(TQ)O-H (n)7 ro+ P = 0,
0, To + P eN.

Moreover, under the same condition, an inner sum in the third term admits a mero-
morphic continuation to P € C and vanishes:

C(—T - P7 C_,)
> S St wa)” = 0.

0<c!/<d mMEZ
ged(c/ d)|n

It is very tempting to change the order of taking a meromorphic continuation and an
infinite sum and thus deduce from Theorem 1.1 that for n € Z\ {0} and r, € R—{-1},

(1.7) Y. on(m)on(na)ny
ni+no=n
n1,n2€Z\{0}

appears to be equal to

—((r9)o, (n), ro+ P =0,

(1) 1P, (n)C(—r1) + {07 A PEN

However, we cannot justify the vanishing of the last term in (1.6) and thus cannot infer
that (1.7) is equal to (1.8).

The following statement is a result analogous to Theorem 1.1 but where each sum-
mand is multiplied by log |ns|.

Theorem 1.2. Letn € Z \ {0}, Q € Z, r1,r2 € C such that Q < —1, Re(r;) < —1,
and Re(rq) < —1, and let u.q4 be as in (1.5). Then

Y. on(m)on,(ng)ng log ns|
nit+ng=n
n1,n2€Z\{0}

= —((~711)0,,(n)n%log |n|

QZéz\QdQﬂlQ( Q)<8t1 (‘%2) (thl ged(c, d)! )

dln ceN tij:ﬁj_QQ
(1.9)
_1\Q Q+r1 - A ﬂ
+2(<1) ;awd 1 (log(d)¢(—Q) — ¢'( Q));Ngcd@ 73

Note that 202 p may be continued as a meromorphic function in many ways. Specifically, we choose
e™P 41 for P € C.
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+<_1)dem _d Qlo _cd Z(m+u )@
ged(e, d) & ged(e, d) e
;j/ql\; meZ
dT1+T2+2Q ’ log |m —+ u d|
—1)¥ S —re— 0. < =l e L
=D deZN (ged(c, d))@ OZ ¢(=r2 =@ 7) Z (m + ueq)~@
<c'<d meZ
dfn ged(c/,d)|n

The first three terms admit a meromorphic continuation® in Q and ry to C. For certain
values of r1,19, Q) the first three terms significantly simplify; specifically,

—((=r)o,(n)n@logln|, Q€N andry+Q €N,
or, (n)C'(—12), Q=0 and r,ry € N,
(2 — log(2m))oo(n), Q=0 andr =7y =0.

The meromorphic continuations of the inner sums of the last two terms to ) € Ny

vanish; namely,
Z(m + ugd)Q =0
meZ

> (2= Q,9) Y (m+usg)?log |m + e al = 0.
0<c/<d mEZ
ged(c'd,d)|n

and

Again, it is tempting to change the order of taking a meromorphic continuation and
an infinite sum and thus deduce from Theorem 1.2 that for r; and 74 as above and
n € 2\ {0},

(1.10) > 0n, ()0, (n2)nd log [ny|
nit+ng=n
ni1,n2€Z\{0}

appears to be equal to
—((=r1)on(n)n?logln|,  QeNandr,+Q €N,
(1.11) or (n)C'(=rg), @ =0and r,ry €N,
(logT‘n' —log(27))oo(n), Q@ =0and r, =mr=0.
However, we cannot justify the vanishing of the last two terms of (1.9) and so we cannot
deduce this identity.

At the same time, if we assume (1.8) and (1.11), we would recover (1.1). Moreover,
we obtain other conjectural identities which are supported by numerical evidence.

Conjecture 1.3. For any n € Z \ {0},

(1.12) S oo(m)oo(ng) |2 + 25 log |g—;\] — o0(n)(2 — log (47%n])).

ny,ng€L\{0}
ni1+na=n

2As before, note that 202/ may be continued as a meromorphic function in many ways. Specifically,
we choose e™@ + 1 for Q € C.
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Moreover, for niny # 0, set
@(ny,no) =4 — 20nn~" + 20nin >
+ (1= 12nn~" 4 30nin =2 — 20n{n"?) log|n,|
+ (1= 12non~" 4 30030~ — 20n3n"?) log|na|.
Then we have
(1.13) Z o0(n1)oo(n2)p(ni, n2) = oo(n) (4 — log(47°|nl)).

" Enaan
In general, the numerical evidence does not support (1.8) or (1.11).* As we will prove
in an upcoming article with Danylo Radchenko, the differences between sums similar to
those in Conjecture 1.3 and their informal evaluations with the help of (1.8) and (1.11)
depend on Fourier coefficients of certain Hecke eigenforms.

1.2. Related research. Sums involving divisor functions have received a considerable
attention from number theorists due to their connection to the subconvexity of L-
functions and other problems, see [3, 8, 9, 10, 12, 14, 15, 16]. However, much of what
has been classically studied relates to odd divisor functions, that is, o,(-) for odd v.
Furthermore, the mentioned sources usually demand that n; and ns, while satisfying
ny + ny = n, belong to a finite set. For example, it is typical to examine truncated
shifted convolution sums where 0 < ny <n and 0 < ny < n.

There are, however, results which do not demand that n; and ns belong to a finite
set. In [4], Diamantis studies

(1.14) Z oa(ni)og(h —ny)ny®

n1 €N
ni>h

for h € Z and «, 5,s € C was considered. There, the author characterizes the ratios
of non-critical values of L-functions, corresponding to normalized weight k cuspidal
eigenforms, in terms of (1.14). Additionally, Diamantis analytically continues (1.14) in s
(although not to the whole C) by expressing it as a sum of Estermann L-functions (which
in turn are linear combinations of Hurwitz zeta functions). We note that Theorem 1.1

3That is, take d > 0 and let
d
o(ni,ng) = Z(ajn]l + bjnd + ¢jnd log [n1| + d;nd log |n2|),
=0
with aj,bj,c;j,d; € C chosen in such a way that p(ni,n —ny) = o(|n1|™"). If the informal argument

could be justified in the current form, then the sum > .., .,z (03 00(n1)00(n2)@(n1, n2) should be equal
nit+na=n
to

d
1 )
o0(n) | ap + bo + (o + do) log(v/In]/2m) + 5 > (aj +b; + (¢ + dj) log n[)n’ | .
j=1
However, while the numerical evidence supports the claim for d < 4, for d > 5 the equality doesn’t
hold, as calculations with the help of Pari/GP indicate. Similarly, an informal argument cannot be
justified for r1 # 0,79 # 0.
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also expresses a convolution sum in terms of Hurwitz zeta functions; however, it does
not appear to be of the form as in [4].

1.3. Acknowledgments. The authors would like to thank Michael Green for originally
suggesting this problem. The authors would also like to thank Danylo Radchenko and
Stephen D. Miller for their insightful conversations. K. K-L. acknowledges support from
NSF DMS-2001909 and DMS-2302309.

2. PRELIMINARIES

In this section, we include supporting lemmas needed for the main theorems. Specif-
ically, Lemma 2.1 is a known result regarding Hurwitz zeta functions. We also extend
upon some results proven in [11] (Lemma 2.2 and Lemma 2.4%).

For s € Z with s sufficiently large and a € C with Re(a) € (0, 1),

(2.1) > (m+a)™ =((s,a) + €((s, 1~ a).

We note that the right hand side of (2.1) is defined for all a € C and is a meromorphic

function in s € C. Similarly, for s € Z with Re(s) sufficiently large and a € C with
Re(a) € (0,1),

(2.2) Z(m +a)*log|m + a| = 0,((s,a) + €™ 0,((s,1 — a).

meZ

For the following lemma, we write Z(m +a)® and Z(m +a) *log|m + al in the

meZ meZ
sense of meromorphic continuation as in (2.1) and (2.2).

Lemma 2.1. For s € Z<y and any a € C,
(23) C(Sa - CL) = (_1)S+1C(87 a)
and for any s € Z and a € C\ Z,

(2.4) Y (mta) = (1> (m—a)*

meZ meZ
and
(2.5) Z(m +a) ®log|m +a| = (-1)° Z(m —a) *log|m — al.
meZ mez

Moreover, for a € C\ Z and s € Z<y,

(2.6) Z(m +a)™*=0.

mEZ

“Lemma 2.4 is given in [11] for a special case but is extended here without much change in the
argument for this more general set up.
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Proof. Without loss of generality assume Re(a) € (0,1). We note that values of ((s,a)
for s € Z are related to the Bernoulli polynomials [5, (25.11.14)] via

B_.i1(a
(o) = Tt
and the Bernoulli polynomials satisfy [5, (24.4.3)]:
B_yn(a) = (1B (1 - a).
This proves equation (2.3). The equality (2.4) follows from (2.1):
(“1)C(5.1 —a) + C(s,a) = (~1)[C(s,1 — @) + (~1)C(s,1 — (1 — a)].

Similarly, (2.5) can be obtained similar to (2.4). In order to show (2.6), we note that
by (2.3),

(=) 7¢(s, 1 —a) +((s,a) = (1) + 1)¢(s, a)

vanishes. O

The following lemma is contained in [11, Lemma 5.1]. However, for the convenience
of the reader, we added more details to the proof of the statement.

Lemma 2.2. For Re(s) > 1, Re(s+ k) > 1 and d € N,

log | ged(c, d)| _
2.7 — Ay
(2.7) 2T s () 2_A(

ceN l)d

where A is the von Mangoldt function. Moreover,

(28) > (gcig%w =Cs+R) [JO+ 0 —p B+ +pD)),

ceN pld

where the product is taken over all possible prime divisors p and v,(d) denotes the
valuation of d at prime p. The sum in (2.8) admits a meromorphic continuation in both
s and k, for which the following holds:

0 s+ ke —2N
2.9 k 1 1 — —k —s o —vp(d)s\) _ ) ,
(29) C(s+ )g( +(A=p M+ +p )) i eiheo
Proof. First note that log | ged(c, d)] Z A(¢) and thus
L] ged(e,d)
1
Z 0g|gcd c,d)| Z Z Al
ceN cEN 4] ged(c,d)

For each ¢ € N, the inner sum on the right hand side of the previous equation may be

rewritten as
= 3 A0= 3 k)

4] ged(e,d) lld
so that £|c and ¢pl=c
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Since the sum is over all ¢ € N, reindexing we have

1 1 1
— 0) = —» —A(l
Y Y Aan-yy dan-y iyl
ceN l)d lld éeN ¢eN l)d
so that £|c and ¢gl=c
giving us (2.7).
To prove (2.8), it suffices to show

pk-min(n,up(d))

(2.10) = (1 — pfsfk)*l(l + (1 — p*k)(p*s 4. _|_p*’/p(d)5))

(s+k)
= pn s

since the coefficients (ged(c,d))* of the Dirichlet series are multiplicative. Explicitly,
(ged(e, d))* multiplicative in ¢ gives the Euler product
k-min(n,vp(d))

d(c,d))
S I

ceN p n>0

=[[a—-p= " A+ —p ) +...+p D))

=Cs+ k) ][O+ -p )+ ... +p @)

pld

since v,(d) = 0 when p does not divide d. To establish (2.10), split the sum on the left
as

-min(n,v, vp(d)-1 v,
Zpk (@) Z e p@
pn(s+k) - pn s+k n s+k
n>0 n=0 n= I/p(d
B 1 _p_SVp(d) N a k:Vp vp(d)—1 pkup
o __ m—S s+k
1 p n—O
(2 11) _ 1— p_sz(d) N p"”’p(d) B pkl/p(d) ‘ 1—0p —(s+k)vp(d)
’ 1— ps 1 — pfsfk 1— pfsfk
using geometric series. On the other hand,
vp(d) vp(d)
L+ (L=p ™) p* 4 4 p Zp sz’“ e
_ 1— p—up(d)s 1— p—up(d)s

e S Bt J e U -
—-p 1—p

Finally, multiplying (2.11) by (1 — p~*7*), one can verify (2.10) algebraically.
We note that for any d € N and Re(s) > 1,

log | ged(c, d)| log|c|

(2.12) =o(le|™*), ¢— o0

cs
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for an arbitrary £ > 0, and

1 Re(k) <0
d d k; < ) )
|(gC (Ca )) | — {lck’, Re(k) 2 07
thus
ged(c, d k sl | —k—s
(2.13) \M < mase{ =], ||},

The estimates (2.12) and (2.13) imply that for Re(s) > 1, Re(s + k) > 1, the sums in
(2.7) and (2.8) converge. The right sides of both can be meromorphically continued by
taking the meromorphic continuation of the Riemann zeta function and the meromor-
phic continuations of -, A(¢)(~* and Hp|d(1 +(1=—pM)P2+...+p D). The
formula (2.9) follows from (2.8) by a direct substitution. O

We additionally need the following lemma that evaluates derivatives of meromorphic
continuation of (2.8) at specific points.

Corollary 2.3. Ford € N and r € C,

(2.14) 83251 (Z " ged(e, d)t2>

ceN

=—('(-r)
t1=r1
to=0

and
a t1 to
(2.15) o (CGZNC ged(c, d) )

In both formulas above, where not absolutely convergent, the sums Y ¢ ged(c, d)*
are to be understood as a meromorphic continuation in t; and ty given by (2.8).

Proof. We use (2.8) with t; = —s — k and ty = k,
(216) Y rged(e,d)” = ((—t) [T(1+ (1 = p ) (T2 4L prr(@e)y),
ceN pld
To establish (2.14), we note
1

Thus, taking the derivative of both sides of (2.16), considering the meromorphic con-
tinuation, and substituting to = 0,¢; = r1, we obtain

0%1 (Z M ged(e, d)tQ)

ceN

=((=r) Y A

t1=r1 ?ld
to=0 ‘

0.

|t2=0 -

t1=r1
to=0

= — (=) [T+ (= p )"+ 4 4 pr@Dti2))

pld t1=r1
to=0
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= _CI<_T1)a
which implies (2.14). In order to show (2.15), we note that
0
S (1 =p™" =p “logp|,_, =logp
atz( ) 1220 o
and
1+ (1—p2)(pht2 4 ... —|—p”P(d)(t1+t2))|t2:0 = 1.
We thus get
0 ] v
g (L A =p™ ) 4@
a — U
R SR UR e
2 to=0
=log(p) - (P + ... +p "),
Summing over all possible prime divisors of d, we obtain
9 —t2 t1+t2 vp(d)(t1+t2)
C(—Tl)a—t [[a+@=-p™)@" "+ +p )
2 pld t1=r1
to=0
=((=r1) ) _log(p) - (p* + ... +p ™).
pld

We can instead write this as a sum over all divisors of d with the help of the von
Mangoldt function
(=) Y A0
0d
yielding (2.15). O

The following lemma allows us to rewrite the sums over a,b € Z\ {0} with ad—bc = n
for a fixed n € Z \ {0} as a sum over integers for ¢, d € N. Additionally, we denote

cd
(217) Ve, d = m
and
Sum = {1, ¢ divides n,
0, ¢ does not divide n,

for ¢,d € N. We use the notation that 2 divides 0, thus we write g = 1.

Lemma 2.4. Let n € Z\ {0}, ¢,d € N. Let f : Z — C be such that for |x| sufficiently
large, |f(z)| < |xz|7'17¢ for some e > 0. Let

Tale,d):= Y flbe),

a,beZ\{0}
ad—bc=n



SHIFTED CONVOLUTION SUMS MOTIVATED BY STRING THEORY 11

where the sum above is over all possible a,b € Z \ {0} with ad — bc = n; if there exists
no such c,d, then the sum is equal to zero. Then T,(c,d) can be rewritten as

(218) 7;(6, d) — {OZmEZ f((m + uc,d)vc,d) - 5c|nf(_n) - 5d|nf(0), izzgj Z; ‘/}/n[r,;

for uea,veq € C defined in (1.5) and (2.17), respectively.

Proof. 1f ged(e,d) Jn, then there do not exist a, b € Z such that ad — bc = n holds, and
To(c,d) = 0. We let B,b* and a* be as in (1.3) and (1.4).

We note that the set B is parameterized by m € Z, and each of its elements takes
the form

m
2.1 b =b"+ ——d.
(2.19) (m) * gedle.d)
The corresponding a(m) € Z, defined by the property a(m)d — b(m)c = n, is equal to
m
2.20 =a*+ ——c.
(2.20) a(m) =a +gcd(c,d)c
We rewrite
b* gcd(c, d cd
b(m)c = (% + m) M = (m + uc,d)vc,d
and obtain

T+ ued)vea), ged(ce, d) | n,
ned = {0, ged(c,d) [,

where the sum >_" is taken over all possible m € Z such that a(m)b(m) # 0. We
consider the following possibilities:

(i) Let d | n, then the definition of B implies b* = 0. Thus the definition of u. 4, (1.5),
implies 4.4 = 0 and

md 1T gedieacd md (n me
b = & ’ = - i, o~ .
almbim) = G d scd(e. ) \d T ged(c.d)
(1) If ¢ fn, then 5 + ﬁ = 0 has no integer solutions in m. Thus, the only

integer m such that a(m)b(m) = 0 is m = 0. In this case
f((m + ued)vea) lm=o = f(0).

(2) If ¢ | n, then either m =0 or m = —%fd)

f((m+ Uc,d)vc,d>|m:_%flcﬁd) = f(—n).

in which case

(ii) Let d fn.
(1) If ¢ Jn, then a(m)b(m) cannot be equal to zero.
(2) If ¢ | n, then b* = =2, and a* = 0. Moreover, when a(m)b(m) = 0 then
a(m) =0 and so m = 0.
Thus, if d | n, the term f(0) has to be omitted, and if ¢ | n, the term f(—n) has to be
omitted. That implies (2.18) and finishes the proof. O
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3. PROOFS OF MAIN THEOREMS

In this section, we rigorously evaluate (1.2) and prove Theorems 1.1 and 1.2.

3.1. Proof of Theorem 1.1. We first need the following lemma:

Lemma 3.1. Let n € Z\ {0}, o € C, d € N and P € Z such that P < —1 and
Re(ry) < —1 then the sum

(3.1) e > (be)”

ceN a,beZ\{0}

ad—bc=n
equals
(=1)"* "0y, (n) 4 2d"0yp¢ (= P)(=ra = PY [ J (1 + (1 = ") (07 + ... + p*72)),
pld
for d | n and equals
P+1, P ro+2P ((=r2 — P, CE/) P
( 1) n 0'7»2( )+d2 Z WZ(TH‘.‘U@}O!) 5
0<c’<d meZ
ged (¢, d)|n

ford Jn.

Proof of Lemma 3.1. In what follows, we consider two different cases: d | n and d Jn.

First assume d | n. In this case, we have ged(c, d) | n, and the definition of b* in (1.4)
implies b* = 0. Hence, by (2.17), u.q = 0. With the help of Lemma 2.4 for f(z) = z”
with P < 1, we write

Z (be)? = Z (mvea)” = (=) dejn

a,beZ\{0} meZ\{0
ad—bc=n MO}

3.2 0 iy () GP) + (1) g

Multiplying by ¢ and summing over ¢ € N, we obtain

Zcrz (252|P( d(i d)) C(—P)-i-( )P+156‘nn )

ceN
CP+T2
3.3 = 2d" 65 p((—P — D nfo,
( ) 2|PC( )CGZNng(C’ d)P +( ) n 02(n)
Finally, for Re(r) < —1 and P < —1, Lemma 2.2 gives
CP+T2 P 79 vp(d)ra
ZW:C(—TQ_P)H(]."'(:[—]? )(p ++pp )),
ceN ’ pld

and, together with (3.3), this implies the first statement of the lemma.
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When d Jn and ged(c, d) | n,
Z (be)” = (=) Sn” + Z((m + Ueg)Ved)”

a,beZ\{0} meZ
ad—bc=n

21 P+1 P cd g P
(3.4) (10 (=1)" " 0gn’ + (—)) Z(m + Ueq)

meZ
When d Jn and ged(c,d) [n,

> (k)" =0.

a,beZ\{0}
ad—bc=n

When d }Jn, multiplying (3.4) by ¢"2 and summing over ¢, we obtain
CT‘Q +PdP

(35) Z "2 Z bC )P_HTLPO'TQ (n) + Z ng(Td)P (m + Uc’d)P.

ceN a,beZ\{0} ceN ’ mezZ
ad—bc=n ged(e,d)|n

We note that for any function f : N — C with sufficient decay at infinity,

(3.6) Yo o flo= ) ijd+c

ceN 0<c/<d 7=0
ged(c,d)|n ged(c/,d)|n

and for any j € Ny and ¢ € Z,

(3.7) ged(jd + ' d) = ged(d,d) and  up g = Ujare a-

Rewriting the second term in (3.5) with the help of (3.6), we get
(jd + )r=+trar P

2 chd (@4 g, )P 2" i)

0<c!'<d meEZ

ged(c/+jd,d)|n
(jd + )r=+trar
Z Z acd(c d)P Z(m—l—ud’d)P

o<c’<d j=0 meZ
ged (¢, d)|n
C/
:dr2+2P Z C(_TQ_P,d)Z(m—FU/ )P
ged(d, d)P )
0<c/<d ! meEZ
god(c/ d)ln

where u. 4 is defined as in (1.5). This implies the second statement of the Lemma.

Proof of Theorem 1.1. We note that for Re(r1) < 0, Re(ry) < 0, and P < —1,
(38) Z Ory (nl)o-m (nQ)ng

ni+ng=n
n1,n2€Z\{0}

converges absolutely as

|07, (1) 03, (n2)n3 | < Joo(n1)oo(n2)ny | = o(nf)o(ns)|nal”

13
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for any € > 0. Assuming the factorization
ny =ad, ny=—bc, a,bc,de,

we rewrite each summand of (3.8) as

(3.9) ddnd e > (=be)h

deN ceN a,beZ\ {0}
ad—bc=n

We note for Re(r;) < —1, Re(ry) < —1, and P < —1, (3.9) is absolutely convergent
since

DAY Y Y (b0 badcbemn | YD Y dn |

deN  ceN  bez\{0} acZ\{0} deN ceN bez)\ {0}

Similarly for Re(r1) < —1, Re(ry) < —1, and P < —1,

e Y (=be)"| =0(1)

ceN a,beZ\ {0}
ad—bc=n
for d — oo. Multiplying the formula in Lemma 3.1 by (—1)¥ and obtain (1.6).
We now turn to the meromorphic continuation. We note that 20, p can be meromor-
phically continued by taking 1 + ¢*™. 'We consider the second term on the right side
of (1.6). There are three possible cases:

(1) If ro + P € 2N + 1, then 0y, vanishes.

(2) If ro + P € 2N, then ((—ry — P) vanishes.

(3) If ro+ P = 0, then ry € 2Z implies P € 2Z. Using (2.9), we obtain that the
second line in the right hand side of (1.6) becomes (—1)F*1((ry)o,, (n). Since
we assumed P = —ry and 7y is even, (—1)FT! = —1.

It remains to show, for d fn,

C(_TQ - P7 %/) P
3.10 - 2 o = 0.
( ) Z ng(Cl,d)P Z(m+u ,d)
0<c!/<d mEeEZ
ged (¢, d)|n
We note the element ¢ = d is not present in the sum (3.10) because, in this case,
ged(d,d) = d divides n = ad — be, but this contradicts the assumption d fn. For any
other ¢, there is a pair d — ¢ in the sum 0 < ¢ < d (for ¢ = d/2, we consider ¢ to be
its own pair). We note that ged(d — ¢, d) = ged (¢, d) and ug— g = —uy 4 imply

((=r— P1—%) p (r-P1-%) ,
ged(d — ¢, d)P 2 (mta-ed)” = ged(c, d)P 2 (m = e
I mezZ ) meZ
(2.4) C(—T2—P71—C—/)
(3.11) = (_1)P ged(c, d)P 4 Z(m + Uc',d)P-

meZ
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We can rewrite (3.10) by grouping together contributions from the elements ¢ and d — ¢’
and applying (3.11) to get

1 C(_T2_P’c_/)+(_1)PC(_T2_Pa1_ c_,) P
2 > : ged(c, d)P LD (mtuea)”.

0<c/<d
ged(c/,d)n

meZ

In turn, (2.3) implies that for r, + P € Ny and 75 € 2Z, the sum above vanishes. U

3.2. Proof of Theorem 1.2. In order to prove Theorem 1.2, we need the following
lemma.

Lemma 3.2. Letn € N, 1, € C, d € N, and Q € Z with Re(ry) < —1, Q < —1 then
the sum

(3.12) Zc’""’ Z (be)@ log |be|

ceN a,beZ\ {0}
ad—bc=n

equals

(3.13) (—1)9*o,, (n)n? log |n|

0 0
+ 252|QdQ<<—Q) <8_tl + a_t> (Z Ctl gcd(C, d)t2>

ceN ti=r2+Q

to=—Q

cr2t@

+ 2004 (log(d)(-Q) = (=@ X_ g
ceN ’

for d | n, and equals

(1), (n)n? log|n|

+ L Q Z m + u
ged(e, d) gcd c,d) Cd
Jr2+2Q , log [m + U ja.dl
+ o 2= Qg 7
e s

0<c/<d meZ
ged(c+jd,d)|n

ford Jn.

Proof of Lemma 3.2. As in the proof of Lemma 3.1, we use Lemma 2.4 with f(x) =
29 log |z| with @ < —1 and note again that when d | n, we have b* = 0. Thus for d | n,
we write

Z (be)? log |be| = Z (Mveq)? log [mveq| — (—n)% log ||y,

a,beZ\{0} meZ\{0}
ad—bc=n

(2;7)(_1)62-‘,-156'””@ log |77,|



16 KSENIA FEDOSOVA & KIM KLINGER-LOGAN
cd Q cd
20— ) (log( —L—V¢(—Q) - (-
! Q'Q(gcd@,d)) (Og(gcd@,d))“ A= @)
:(—1)Q+15c|an log |n|

c Q
N 252@%@@«_@)

(cd)?

_252|Qgcd(c,d) IOg(ng<Cad))C( Q)
cd)@

+ 20  log(d)S(-@) - C(-Q)

We multiply the expression above by ¢ and sum over ¢ € N. The first term becomes

ZCTQ D95,n%log |n| = (—1)9Tn Qlog]n!ZCQ eln

ceN ceN
= (=1)9"nClog |n|o,, (n).

The second line becomes

(cd)? 2 +Q

220910 ———— 1 —Q) = 2090d?¢(— —1

%C 2|Qgcd(c7 d)Q Og<C)C< Q) 2|1Q c( Q) Z ng(C, d)Q Og(C)

(3.14) = 2050d“C(~ (Z ¢ ged(c, d) )
t1=r2+Q
to=—Q

2@
since z@; W log(c) is absolutely convergent for Re(ry) < —1 and @ < —1.

The third line becomes

cd)®
=3 2t os(edlc D)(-Q)

cr2t@

(3.15) = —20(—Q)dygd? Z W log(ged(c, d))

=2¢(—Q 52|QdQ (Z " ged(c, d)! )

The fourth line becomes

t1=r2+Q
to=—Q

(3.16) = 2050d?(log(d)((-Q) = ('(-Q)) Y | —gCS(Q ik
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When d Jn and ged(c, d) | n,
Z (be)? log |be| = (—=1)9*15,,n% log |n| + Z((m + Ue,d)Ve.d)? 10g | (M 4 Ue,a) Ve dl

a,be€Z\{0} meZ
ad—bc=n

(2.17) (—1)Q+150|an log |n|

() s

cd @
1 - c Q] cdl
(3.17) + (gcd(c, d)> ngz(m + Ueq)” log |m + e 4l

gcdcd 'Z m—i_qu

Multiplying by ¢ and summing over ¢, we leave the first and the second line as it is
and rewrite the third line similar to the proof of Lemma 3.1,

cd Q
Z “ (M) Z(m + Ueq)? log |m + ue 4l

ceN mEZ

N jd+ ) rede
RIS | (gcd(c) d))® (m + e 1 ja.a)? log [m + uejaa

- 0<c’<d meZ
ged(c+jd,d)|n
dT2+2Q o
( Cd c d (ocd(c. )@ Z C - )Z(m+uc’,d) log!m+ucz,d|.
g 0<c/<d meZ
ged(¢/,d)n

O

Proof of Theorem 1.2. The theorem follows from Lemma 3.2 similarly to the proof of
Theorem 1.1.

The first term in the right side of (1.9) admits a meromorphic continuation trivially.
For the second and the third summands in (1.9), we consider the cases € N and
@ = 0 separately.

For @ € N, 50((—Q) vanishes. This implies that what remains from the second and

the third terms is
7"2+Q

(3.18) —(-1)92000 (=) 3> g ged(c, d)@

djQ ceN
By Lemma 2.2, (3.18) is a multiple of dyo¢(—r2 — Q). If we additionally assume that
Q@ + 12 € N, then dyo((—72 — Q) = 0, and (3.18) vanishes.
For @) = 0, by Lemma 2.3, (3.14) becomes
—2¢(0)¢'(=r2) = ¢'(=72).
For @ = 0, by Lemma 2.3, (3.15) becomes
—2¢(0) Zc’” log | ged(e, d)| = Z "2 Jog | ged(c, d)| —ry) ZA ).

ceN ceN od
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For Q =0, (3.16) becomes

2(0g(d)0(0) = ¢/O)6(-ra) = ~¢(-ra)log 5 )

Combining these three terms, we obtain

¢'(=ra2) +¢(—72) Z A — ((—rq) 10g<%).

o|d

For 5 > 0, this is equal to ¢’(—r3), and for ro = 0, this is equal to — log(27).
Finally, the sum

Z(m + uqd)Q

meZ

vanishes by (2.6). The inner sum in the last term on the right side of (1.9) vanishes by
the similar argument as for (3.10) in Theorem 1.1. O
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