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Abstract. In [2], it was conjectured that a particular shifted sum of even divisor
sums vanishes, and in [11], a formal argument was given for this vanishing. Shifted
convolution sums of this form appear when computing the Fourier expansion of coeffi-
cients for the low energy scattering amplitudes in type IIB string theory [7] and have
applications to subconvexity bounds of L-functions. In this article, we generalize the
argument from [11] and rigorously evaluate shifted convolution of the divisor functions

of the form
∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)|n1|
P and

∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)|n1|
Q log |n1|

where σν(n) =
∑

d|n d
ν . In doing so, we derive exact identities for these sums and

conjecture that particular sums similar to but different from the one found in [2] will
also vanish.

1. Introduction

Shifted convolution sums have a long history of being studied by number theorists
[1, 3, 8, 9, 10, 12, 13, 14, 15]. Recently, the AdS/CFT correspondence and Yang-Mills
theory gives a surprising hint towards the exact evaluation of shifted convolution sums
of divisor functions. Namely, in [2] Chester, Green, Pufu, Wang and Wen conjectured
that for any n ̸= 0 and

φ(n1, n2) = 30− n2

4n2
1
− n2

4n2
2
− 3n

n1
− 3n

n2
+
(

15− 30n1

n

)

log |n1|+
(

15− 30n2

n

)

log |n2|,

the following equality holds:

(1.1)
∑

n1+n2=n

n1,n2∈Z\{0}

φ(n1, n2)σ2(n1)σ2(n2) = σ2(n)
(

ζ(2)n2

2
+ 30ζ ′(−2)

)

,

where ζ denotes the Riemann zeta function. The fact that this summation in (1.1) is
both infinite and and involves even divisor functions makes it particularly challenging
to work with. In [11], the authors give a formal argument verifying (1.1).
In this paper, we examine what can be rigorously proven using the argument presented

in [11]. We apply similar methods to extend these results to more general convolution
sums and give a precise equality. More explicitly, we rigorously evaluate for any n ∈
Z \ {0} and for certain r1, r2, P,Q ∈ C,

(1.2)
∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)|n1|
P and

∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)|n1|
Q log |n1|

1



2 KSENIA FEDOSOVA & KIM KLINGER-LOGAN

in Theorems 1.1 and 1.2 respectively. In doing so we identify the obstacle to making
the formal argument found in [11] rigorous. The exact results found contain extra
terms which do not appear in (1.1). If we further assume that we may interchange the
operations of taking an infinite sum and meromorphic continuation, this generalizes the
argument in [11], and we recover (1.1) as desired. With the help of this non-rigorous
argument, we obtain other identities of a similar form, see Conjecture 1.3.

The initial motivation for the study of sums of the forms in (1.2) is their appearance
in string theory. The sum (1.1) arises in the Fourier modes of the homogeneous solu-
tion to differential equations involving non-holomorphic Eisenstein series which yield
coefficients for to the low energy scattering amplitude in type IIB string theory [7].
More generally, sums of a similar form arise in the maximally supersymmetric N = 4
super-Yang-Mills theory when studying duality properties of certain correlation func-
tions in the 1/N expansion [6]. However, as previously noted, shifted convolution sums
more generally are of great interests to number theorists as well. Specifically, certain
information on shifted convolution sums could yield progress on subconvexity problems
for L-functions derived from modular forms [1, 13].

1.1. Main results. Let c, d ∈ N. If gcd(c, d) divides n, we let

B := {b ∈ Z : ∃ a ∈ Z such that ad− bc = n},(1.3)

(1.4) b∗ := argmin
b∈B

{|b|} and a∗ :=
n+ b∗c

d
.

It is convenient to introduce

uc,d :=
b∗ gcd(c, d)

d
.(1.5)

Moreover, we denote δ2|P =

{

1, for P ∈ 2Z,

0, otherwise.

Theorem 1.1. Let n ∈ Z \ {0}, P ∈ Z, r1, r2 ∈ C such that P < −1, Re(r1) < −1,
and Re(r2) < −1, and let uc,d be as in (1.5). Then
∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)n
P
2 = −nPσr2(n)ζ(−r1)

+ (−1)P2δ2|P ζ(−P )ζ(−r2 − P )
∑

d|n

dr1+P
∏

p|d

(

1 + (1− pP )(pr2 + . . .+ pvp(d)r2)
)

(1.6)

+ (−1)P
∑

d∈N

d ̸ |n

dr1+r2+2P
∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 − P, c
′

d
)

gcd(c′, d)P
·
∑

m∈Z

(m+ uc′,d)
P ,

where the product
∏

p|d is taken over all prime divisors, p, of d while the sum
∑

d|n is

taken over all divisors d of n, and vp(d) denotes the valuation of d at p. The first two
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terms in the right hand side of (1.6) admit meromorphic continuations1 to P ∈ C and

r1 ∈ C. The restriction of the second term to r2 ∈ 2Z and r2 + P ∈ N0 equals
{

−ζ(r2)σr1(n), r2 + P = 0,

0, r2 + P ∈ N.

Moreover, under the same condition, an inner sum in the third term admits a mero-

morphic continuation to P ∈ C and vanishes:

∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 − P, c
′

d
)

gcd(c′, d)P
·
∑

m∈Z

(m+ uc′,d)
P = 0.

It is very tempting to change the order of taking a meromorphic continuation and an
infinite sum and thus deduce from Theorem 1.1 that for n ∈ Z\{0} and r1 ∈ R−{−1},

∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)n
P
2(1.7)

appears to be equal to

−nPσr2(n)ζ(−r1) +

{

−ζ(r2)σr1(n), r2 + P = 0,

0, r2 + P ∈ N.
(1.8)

However, we cannot justify the vanishing of the last term in (1.6) and thus cannot infer
that (1.7) is equal to (1.8).
The following statement is a result analogous to Theorem 1.1 but where each sum-

mand is multiplied by log |n2|.

Theorem 1.2. Let n ∈ Z \ {0}, Q ∈ Z, r1, r2 ∈ C such that Q < −1, Re(r1) < −1,
and Re(r2) < −1, and let uc,d be as in (1.5). Then

∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)n
Q
2 log |n2|

= −ζ(−r1)σr2(n)n
Q log |n|

+ 2(−1)Q
∑

d|n

δ2|Q dQ+r1ζ(−Q)

(

∂

∂t1
+

∂

∂t2

)

(

∑

c∈N

ct1 gcd(c, d)t2

)∣

∣

∣

∣

∣

t1=r2+Q
t2=−Q

+ 2(−1)Q
∑

d|n

δ2|Q dQ+r1(log(d)ζ(−Q)− ζ ′(−Q))
∑

c∈N

cr2+Q

gcd(c, d)Q

(1.9)

1Note that 2δ2|P may be continued as a meromorphic function in many ways. Specifically, we choose

eπiP + 1 for P ∈ C.
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+ (−1)Q
∑

d∈N

d ̸ |n

dr1
(

cd

gcd(c, d)

)Q

log

∣

∣

∣

∣

cd

gcd(c, d)

∣

∣

∣

∣

∑

m∈Z

(m+ uc,d)
Q

+ (−1)Q
∑

d∈N

d ̸ |n

dr1+r2+2Q

(gcd(c, d))Q

∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 −Q, c
′

d
)
∑

m∈Z

log |m+ uc′,d|

(m+ uc′,d)−Q
.

The first three terms admit a meromorphic continuation2 in Q and r1 to C. For certain

values of r1, r2, Q the first three terms significantly simplify; specifically,










−ζ(−r1)σr2(n)n
Q log |n|, Q ∈ N and r2 +Q ∈ N,

σr1(n)ζ
′(−r2), Q = 0 and r1, r2 ∈ N,

( log |n|
2

− log(2π))σ0(n), Q = 0 and r1 = r2 = 0.

The meromorphic continuations of the inner sums of the last two terms to Q ∈ N0

vanish; namely,
∑

m∈Z

(m+ uc,d)
Q = 0

and
∑

0<c′≤d

gcd(c′d,d)|n

ζ(−r2 −Q, c
′

d
)
∑

m∈Z

(m+ uc′,d)
Q log |m+ uc′,d| = 0.

Again, it is tempting to change the order of taking a meromorphic continuation and
an infinite sum and thus deduce from Theorem 1.2 that for r1 and r2 as above and
n ∈ Z \ {0},

∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)n
Q
2 log |n2|(1.10)

appears to be equal to










−ζ(−r1)σr2(n)n
Q log |n|, Q ∈ N and r2 +Q ∈ N,

σr1(n)ζ
′(−r2), Q = 0 and r1, r2 ∈ N,

( log |n|
2

− log(2π))σ0(n), Q = 0 and r1 = r2 = 0.

(1.11)

However, we cannot justify the vanishing of the last two terms of (1.9) and so we cannot
deduce this identity.

At the same time, if we assume (1.8) and (1.11), we would recover (1.1). Moreover,
we obtain other conjectural identities which are supported by numerical evidence.

Conjecture 1.3. For any n ∈ Z \ {0},

(1.12)
∑

n1,n2∈Z\{0}

n1+n2=n

σ0(n1)σ0(n2)
[

2 + n2−n1

n
log |n1

n2
|
]

= σ0(n)(2− log
(

4π2|n|
)

).

2As before, note that 2δ2|Q may be continued as a meromorphic function in many ways. Specifically,

we choose eπiQ + 1 for Q ∈ C.
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Moreover, for n1n2 ̸= 0, set

φ(n1, n2) =
11
3
− 20n1n

−1 + 20n2
1n

−2

+
(

1− 12n1n
−1 + 30n2

1n
−2 − 20n3

1n
−3
)

log|n1|

+
(

1− 12n2n
−1 + 30n2

2n
−2 − 20n3

2n
−3
)

log|n2|.

Then we have
∑

n1,n2∈Z\{0}

n1+n2=n

σ0(n1)σ0(n2)φ(n1, n2) = σ0(n)
(

11
3
− log(4π2|n|)

)

.(1.13)

In general, the numerical evidence does not support (1.8) or (1.11).3 As we will prove
in an upcoming article with Danylo Radchenko, the differences between sums similar to
those in Conjecture 1.3 and their informal evaluations with the help of (1.8) and (1.11)
depend on Fourier coefficients of certain Hecke eigenforms.

1.2. Related research. Sums involving divisor functions have received a considerable
attention from number theorists due to their connection to the subconvexity of L-
functions and other problems, see [3, 8, 9, 10, 12, 14, 15, 16]. However, much of what
has been classically studied relates to odd divisor functions, that is, σν(·) for odd ν.
Furthermore, the mentioned sources usually demand that n1 and n2, while satisfying
n1 + n2 = n, belong to a finite set. For example, it is typical to examine truncated
shifted convolution sums where 0 < n1 < n and 0 < n2 < n.

There are, however, results which do not demand that n1 and n2 belong to a finite
set. In [4], Diamantis studies

(1.14)
∑

n1∈N

n1>h

σα(n1)σβ(h− n1)n
−s
1

for h ∈ Z and α, β, s ∈ C was considered. There, the author characterizes the ratios
of non-critical values of L-functions, corresponding to normalized weight k cuspidal
eigenforms, in terms of (1.14). Additionally, Diamantis analytically continues (1.14) in s
(although not to the whole C) by expressing it as a sum of Estermann L-functions (which
in turn are linear combinations of Hurwitz zeta functions). We note that Theorem 1.1

3That is, take d > 0 and let

φ(n1, n2) =
d
∑

j=0

(

ajn
j
1 + bjn

j
2 + cjn

j
1 log |n1|+ djn

j
2 log |n2|

)

,

with aj , bj , cj , dj ∈ C chosen in such a way that φ(n1, n − n1) = o(|n1|
−1). If the informal argument

could be justified in the current form, then the sum
∑

n1,n2∈Z\{0}

n1+n2=n
σ0(n1)σ0(n2)φ(n1, n2) should be equal

to

σ0(n)



a0 + b0 + (c0 + d0) log(
√

|n|/2π) +
1

2

d
∑

j=1

(aj + bj + (cj + dj) log |n|)n
j



.

However, while the numerical evidence supports the claim for d ≤ 4, for d ≥ 5 the equality doesn’t
hold, as calculations with the help of Pari/GP indicate. Similarly, an informal argument cannot be
justified for r1 ̸= 0, r2 ̸= 0.
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also expresses a convolution sum in terms of Hurwitz zeta functions; however, it does
not appear to be of the form as in [4].

1.3. Acknowledgments. The authors would like to thank Michael Green for originally
suggesting this problem. The authors would also like to thank Danylo Radchenko and
Stephen D.Miller for their insightful conversations. K.K-L. acknowledges support from
NSF DMS-2001909 and DMS-2302309.

2. Preliminaries

In this section, we include supporting lemmas needed for the main theorems. Specif-
ically, Lemma 2.1 is a known result regarding Hurwitz zeta functions. We also extend
upon some results proven in [11] (Lemma 2.2 and Lemma 2.44).

For s ∈ Z with s sufficiently large and a ∈ C with Re(a) ∈ (0, 1),
∑

m∈Z

(m+ a)−s = ζ(s, a) + eπisζ(s, 1− a).(2.1)

We note that the right hand side of (2.1) is defined for all a ∈ C and is a meromorphic
function in s ∈ C. Similarly, for s ∈ Z with Re(s) sufficiently large and a ∈ C with
Re(a) ∈ (0, 1),

∑

m∈Z

(m+ a)−s log |m+ a| = ∂sζ(s, a) + eπis∂sζ(s, 1− a).(2.2)

For the following lemma, we write
∑

m∈Z

(m+ a)−s and
∑

m∈Z

(m+ a)−s log |m+ a| in the

sense of meromorphic continuation as in (2.1) and (2.2).

Lemma 2.1. For s ∈ Z≤0 and any a ∈ C,

ζ(s, 1− a) = (−1)s+1ζ(s, a)(2.3)

and for any s ∈ Z and a ∈ C \ Z,
∑

m∈Z

(m+ a)−s = (−1)s
∑

m∈Z

(m− a)−s(2.4)

and
∑

m∈Z

(m+ a)−s log |m+ a| = (−1)s
∑

m∈Z

(m− a)−s log |m− a|.(2.5)

Moreover, for a ∈ C \ Z and s ∈ Z≤0,
∑

m∈Z

(m+ a)−s = 0.(2.6)

4Lemma 2.4 is given in [11] for a special case but is extended here without much change in the
argument for this more general set up.
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Proof. Without loss of generality assume Re(a) ∈ (0, 1). We note that values of ζ(s, a)
for s ∈ Z<0 are related to the Bernoulli polynomials [5, (25.11.14)] via

ζ(s, a) =
B−s+1(a)

s− 1
,

and the Bernoulli polynomials satisfy [5, (24.4.3)]:

B−s+1(a) = (−1)−s+1B−s+1(1− a).

This proves equation (2.3). The equality (2.4) follows from (2.1):

(−1)−sζ(s, 1− a) + ζ(s, a) = (−1)−s
[

ζ(s, 1− a) + (−1)−sζ(s, 1− (1− a))
]

.

Similarly, (2.5) can be obtained similar to (2.4). In order to show (2.6), we note that
by (2.3),

(−1)−sζ(s, 1− a) + ζ(s, a) = ((−1)−s−s+1 + 1)ζ(s, a)

vanishes. □

The following lemma is contained in [11, Lemma 5.1]. However, for the convenience
of the reader, we added more details to the proof of the statement.

Lemma 2.2. For Re(s) > 1, Re(s+ k) > 1 and d ∈ N,

∑

c∈N

log | gcd(c, d)|

cs
= ζ(s)

∑

ℓ|d

Λ(ℓ)ℓ−s,(2.7)

where Λ is the von Mangoldt function. Moreover,

∑

c∈N

(gcd(c, d))k

cs+k
= ζ(s+ k)

∏

p|d

(

1 + (1− p−k)(p−s + . . .+ p−vp(d)s)
)

,(2.8)

where the product is taken over all possible prime divisors p and vp(d) denotes the

valuation of d at prime p. The sum in (2.8) admits a meromorphic continuation in both

s and k, for which the following holds:

ζ(s+ k)
∏

p|d

(

1 + (1− p−k)(p−s + . . .+ p−vp(d)s)
)

=

{

0, s+ k ∈ −2N,

−dk/2, s+ k = 0.
(2.9)

Proof. First note that log | gcd(c, d)| =
∑

ℓ| gcd(c,d)

Λ(ℓ) and thus

∑

c∈N

log | gcd(c, d)|

cs
=
∑

c∈N

1

cs

∑

ℓ| gcd(c,d)

Λ(ℓ).

For each c ∈ N, the inner sum on the right hand side of the previous equation may be
rewritten as

1

cs

∑

ℓ| gcd(c,d)

Λ(ℓ) =
∑

ℓ|d
so that ℓ|c and c̃ℓℓ=c

1

(c̃ℓℓ)s
Λ(ℓ).
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Since the sum is over all c ∈ N, reindexing we have
∑

c∈N

∑

ℓ|d
so that ℓ|c and c̃ℓℓ=c

1

(c̃ℓℓ)s
Λ(ℓ) =

∑

ℓ|d

∑

c̃ℓ∈N

1

(c̃ℓℓ)s
Λ(ℓ) =

∑

c̃∈N

1

c̃s

∑

ℓ|d

1

ℓs
Λ(ℓ)

giving us (2.7).
To prove (2.8), it suffices to show

∑

n≥0

pk·min(n,νp(d))

pn(s+k)
= (1− p−s−k)−1

(

1 + (1− p−k)(p−s + · · ·+ p−νp(d)s)
)

(2.10)

since the coefficients (gcd(c, d))k of the Dirichlet series are multiplicative. Explicitly,
(gcd(c, d))k multiplicative in c gives the Euler product

∑

c∈N

(gcd(c, d))k

cs+k
=
∏

p

∑

n≥0

pk·min(n,νp(d))

pn(s+k)

=
∏

p

(1− p−s−k)−1
(

1 + (1− p−k)(p−s + . . .+ p−vp(d)s)
)

= ζ(s+ k)
∏

p|d

(

1 + (1− p−k)(p−s + . . .+ p−vp(d)s)
)

since νp(d) = 0 when p does not divide d. To establish (2.10), split the sum on the left
as

∑

n≥0

pk·min(n,νp(d))

pn(s+k)
=

νp(d)−1
∑

n=0

pkn

pn(s+k)
+

∞
∑

n=νp(d)

pkνp(d)

pn(s+k)

=
1− p−sνp(d)

1− p−s
+

∞
∑

n=0

pkνp(d)

pn(s+k)
−

νp(d)−1
∑

n=0

pkνp(d)

pn(s+k)

=
1− p−sνp(d)

1− p−s
+

pkνp(d)

1− p−s−k
− pkνp(d) ·

1− p−(s+k)νp(d)

1− p−s−k
(2.11)

using geometric series. On the other hand,

1 + (1− p−k)(p−s + · · ·+ p−νp(d)s) =

νp(d)
∑

n=0

p−ns −

νp(d)
∑

n=1

p−k−ns

=
1− p−νp(d)s

1− p−s
+ p−νp(d)s + p−k − p−k−νp(d)s − p−k ·

1− p−νp(d)s

1− p−s
.

Finally, multiplying (2.11) by (1− p−s−k), one can verify (2.10) algebraically.
We note that for any d ∈ N and Re(s) > 1,

∣

∣

∣

∣

log | gcd(c, d)|

cs

∣

∣

∣

∣

≤

∣

∣

∣

∣

log |c|

cs

∣

∣

∣

∣

= o(|c|−1+ε), c → ∞(2.12)
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for an arbitrary ε > 0, and

|(gcd(c, d))k| ≤

{

1, Re(k) < 0,

|ck|, Re(k) ≥ 0,

thus
∣

∣

∣

∣

(gcd(c, d))k

cs+k

∣

∣

∣

∣

≤ max{|c−s|, |c−k−s|}.(2.13)

The estimates (2.12) and (2.13) imply that for Re(s) > 1, Re(s + k) > 1, the sums in
(2.7) and (2.8) converge. The right sides of both can be meromorphically continued by
taking the meromorphic continuation of the Riemann zeta function and the meromor-
phic continuations of

∑

ℓ|d Λ(ℓ)ℓ
−s and

∏

p|d

(

1 + (1− p−k)(pr2 + . . .+ p−vp(d)s)
)

. The

formula (2.9) follows from (2.8) by a direct substitution. □

We additionally need the following lemma that evaluates derivatives of meromorphic
continuation of (2.8) at specific points.

Corollary 2.3. For d ∈ N and r1 ∈ C,

∂

∂t1

(

∑

c∈N

ct1 gcd(c, d)t2

)∣

∣

∣

∣

∣

t1=r1
t2=0

= −ζ ′(−r1)(2.14)

and

∂

∂t2

(

∑

c∈N

ct1 gcd(c, d)t2

)∣

∣

∣

∣

∣

t1=r1
t2=0

= ζ(−r1)
∑

ℓ|d

Λ(ℓ)ℓr1 .(2.15)

In both formulas above, where not absolutely convergent, the sums
∑

c∈N c
t1 gcd(c, d)t2

are to be understood as a meromorphic continuation in t1 and t2 given by (2.8).

Proof. We use (2.8) with t1 = −s− k and t2 = k,
∑

c∈N

ct1 gcd(c, d)t2 = ζ(−t1)
∏

p|d

(

1 + (1− p−t2)(pt1+t2 + . . .+ pvp(d)(t1+t2))
)

.(2.16)

To establish (2.14), we note

∂

∂t1

(

1 + (1− p−t2)(pt1+t2 + . . .+ pvp(d)(t1+t2))
)∣

∣

t2=0
= 0.

Thus, taking the derivative of both sides of (2.16), considering the meromorphic con-
tinuation, and substituting t2 = 0, t1 = r1, we obtain

∂

∂t1

(

∑

c∈N

ct1 gcd(c, d)t2

)∣

∣

∣

∣

∣

t1=r1
t2=0

= −ζ ′(−r1)
∏

p|d

(

1 + (1− p−t2)(pt1+t2 + . . .+ pvp(d)(t1+t2))
)

∣

∣

∣

∣

∣

∣

t1=r1
t2=0
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= −ζ ′(−r1),

which implies (2.14). In order to show (2.15), we note that

∂

∂t2
(1− p−t2)

∣

∣

∣

∣

t2=0

= p−t2 log p
∣

∣

t2=0
= log p

and
1 + (1− p−t2)(pt1+t2 + . . .+ pvp(d)(t1+t2))

∣

∣

t2=0
= 1.

We thus get

∂

∂t2
(1 + (1− p−t2)(pt1+t2 + . . .+ pvp(d)(t1+t2)))

∣

∣

t2=0

=
∂

∂t2
(1− p−t2)

∣

∣

∣

∣

t2=0

·(pt1+t2 + . . .+ pvp(d)(t1+t2))
∣

∣

t2=0

= log(p) · (pt1 + . . .+ pvp(d)t1).

Summing over all possible prime divisors of d, we obtain

ζ(−r1)
∂

∂t2





∏

p|d

(1 + (1− p−t2)(pt1+t2 + . . .+ pvp(d)(t1+t2)))





∣

∣

∣

∣

∣

∣

t1=r1
t2=0

=ζ(−r1)
∑

p|d

log(p) · (pr1 + . . .+ pvp(d)r1).

We can instead write this as a sum over all divisors of d with the help of the von
Mangoldt function

ζ(−r1)
∑

ℓ|d

Λ(ℓ)ℓr1

yielding (2.15). □

The following lemma allows us to rewrite the sums over a, b ∈ Z\{0} with ad−bc = n
for a fixed n ∈ Z \ {0} as a sum over integers for c, d ∈ N. Additionally, we denote

vc,d :=
cd

gcd(c, d)
(2.17)

and

δc|n :=

{

1, c divides n,

0, c does not divide n,

for c, d ∈ N. We use the notation that 2 divides 0, thus we write δ2|0 = 1.

Lemma 2.4. Let n ∈ Z \ {0}, c, d ∈ N. Let f : Z → C be such that for |x| sufficiently

large, |f(x)| < |x|−1−ε for some ε > 0. Let

Tn(c, d) :=
∑

a,b∈Z\{0}

ad−bc=n

f(bc),
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where the sum above is over all possible a, b ∈ Z \ {0} with ad − bc = n; if there exists

no such c, d, then the sum is equal to zero. Then Tn(c, d) can be rewritten as

(2.18) Tn(c, d) =

{

∑

m∈Z f((m+ uc,d)vc,d)− δc|nf(−n)− δd|nf(0), gcd(c, d) | n,

0, gcd(c, d) ̸ | n

for uc,d, vc,d ∈ C defined in (1.5) and (2.17), respectively.

Proof. If gcd(c, d) ̸ | n, then there do not exist a, b ∈ Z such that ad− bc = n holds, and
Tn(c, d) = 0. We let B, b∗ and a∗ be as in (1.3) and (1.4).

We note that the set B is parameterized by m ∈ Z, and each of its elements takes
the form

b(m) = b∗ +
m

gcd(c, d)
d.(2.19)

The corresponding a(m) ∈ Z, defined by the property a(m)d− b(m)c = n, is equal to

(2.20) a(m) = a∗ +
m

gcd(c, d)
c.

We rewrite

b(m)c =

(

b∗ gcd(c, d)

d
+m

)

cd

gcd(c, d)
= (m+ uc,d)vc,d

and obtain

Tn(c, d) =

{

∑∗ f((m+ uc,d)vc,d), gcd(c, d) | n,

0, gcd(c, d) ̸ | n,

where the sum
∑∗ is taken over all possible m ∈ Z such that a(m)b(m) ̸= 0. We

consider the following possibilities:

(i) Let d | n, then the definition of B implies b∗ = 0. Thus the definition of uc,d, (1.5),
implies uc,d = 0 and

a(m)b(m) =
md

gcd(c, d)

n+ m
gcd(c,d)

cd

d
=

md

gcd(c, d)

(

n

d
+

mc

gcd(c, d)

)

.

(1) If c ̸ | n, then n
d
+ mc

gcd(c,d)
= 0 has no integer solutions in m. Thus, the only

integer m such that a(m)b(m) = 0 is m = 0. In this case

f((m+ uc,d)vc,d)|m=0 = f(0).

(2) If c | n, then either m = 0 or m = −n gcd(c,d)
cd

in which case

f((m+ uc,d)vc,d)|m=−
n gcd(c,d)

cd

= f(−n).

(ii) Let d ̸ | n.
(1) If c ̸ | n, then a(m)b(m) cannot be equal to zero.
(2) If c | n, then b∗ = −n

c
, and a∗ = 0. Moreover, when a(m)b(m) = 0 then

a(m) = 0 and so m = 0.

Thus, if d | n, the term f(0) has to be omitted, and if c | n, the term f(−n) has to be
omitted. That implies (2.18) and finishes the proof. □
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3. Proofs of main theorems

In this section, we rigorously evaluate (1.2) and prove Theorems 1.1 and 1.2.

3.1. Proof of Theorem 1.1. We first need the following lemma:

Lemma 3.1. Let n ∈ Z \ {0}, r2 ∈ C, d ∈ N and P ∈ Z such that P < −1 and

Re(r2) < −1 then the sum
∑

c∈N

cr2
∑

a,b∈Z\{0}

ad−bc=n

(bc)P(3.1)

equals

(−1)P+1nPσr2(n) + 2dP δ2|P ζ(−P )ζ(−r2 − P )
∏

p|d

(

1 + (1− pP )(pr2 + . . .+ pvp(d)r2)
)

,

for d | n and equals

(−1)P+1nPσr2(n) + dr2+2P
∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 − P, c
′

d
)

gcd(c′, d)P

∑

m∈Z

(m+ uc′,d)
P ,

for d ̸ | n.

Proof of Lemma 3.1. In what follows, we consider two different cases: d | n and d ̸ | n.
First assume d | n. In this case, we have gcd(c, d) | n, and the definition of b∗ in (1.4)

implies b∗ = 0. Hence, by (2.17), uc,d = 0. With the help of Lemma 2.4 for f(x) = xP

with P < 1, we write
∑

a,b∈Z\{0}

ad−bc=n

(bc)P =
∑

m∈Z\{0}

(mvc,d)
P − (−n)P δc|n

(2.17)
= 2δ2|P

(

cd

gcd(c, d)

)P

ζ(−P ) + (−1)P+1δc|nn
P .(3.2)

Multiplying by cr2 and summing over c ∈ N, we obtain

∑

c∈N

cr2

(

2δ2|P

(

cd

gcd(c, d)

)P

ζ(−P ) + (−1)P+1δc|nn
P

)

= 2dP δ2|P ζ(−P )
∑

c∈N

cP+r2

gcd(c, d)P
+ (−1)P+1nPσr2(n).(3.3)

Finally, for Re(r2) < −1 and P < −1, Lemma 2.2 gives

∑

c∈N

cP+r2

gcd(c, d)P
= ζ(−r2 − P )

∏

p|d

(

1 + (1− pP )(pr2 + . . .+ pvp(d)r2)
)

,

and, together with (3.3), this implies the first statement of the lemma.
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When d ̸ | n and gcd(c, d) | n,
∑

a,b∈Z\{0}

ad−bc=n

(bc)P = (−1)P+1δc|nn
P +

∑

m∈Z

((m+ uc,d)vc,d)
P

(2.17)
= (−1)P+1δc|nn

P +

(

cd

gcd(c, d)

)P
∑

m∈Z

(m+ uc,d)
P .(3.4)

When d ̸ | n and gcd(c, d) ̸ | n,
∑

a,b∈Z\{0}

ad−bc=n

(bc)P = 0.

When d ̸ | n, multiplying (3.4) by cr2 and summing over c, we obtain

∑

c∈N

cr2
∑

a,b∈Z\{0}

ad−bc=n

(bc)P = (−1)P+1nPσr2(n) +
∑

c∈N

gcd(c,d)|n

cr2+PdP

gcd(c, d)P

∑

m∈Z

(m+ uc,d)
P .(3.5)

We note that for any function f : N → C with sufficient decay at infinity,

(3.6)
∑

c∈N

gcd(c,d)|n

f(c) =
∑

0<c′≤d

gcd(c′,d)|n

∞
∑

j=0

f(jd+ c′),

and for any j ∈ N0 and c′ ∈ Z,

(3.7) gcd(jd+ c′, d) = gcd(c′, d) and uc′,d = ujd+c′,d.

Rewriting the second term in (3.5) with the help of (3.6), we get

∑

0<c′≤d

gcd(c′+jd,d)|n

∞
∑

j=0

(jd+ c′)r2+PdP

gcd(c′ + jd, d)P

∑

m∈Z

(m+ uc′+jd,d)
P

(3.7)
=

∑

0<c′≤d

gcd(c′,d)|n

∞
∑

j=0

(jd+ c′)r2+PdP

gcd(c′, d)P

∑

m∈Z

(m+ uc′,d)
P

= dr2+2P
∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 − P, c
′

d
)

gcd(c′, d)P

∑

m∈Z

(m+ uc′,d)
P ,

where uc,d is defined as in (1.5). This implies the second statement of the Lemma. □

Proof of Theorem 1.1. We note that for Re(r1) < 0, Re(r2) < 0, and P < −1,

(3.8)
∑

n1+n2=n

n1,n2∈Z\{0}

σr1(n1)σr2(n2)n
P
2

converges absolutely as

|σr1(n1)σr2(n2)n
P
2 | ≤ |σ0(n1)σ0(n2)n

P
2 | = o(nε

1)o(n
ε
2)|n2|

P



14 KSENIA FEDOSOVA & KIM KLINGER-LOGAN

for any ε > 0. Assuming the factorization

n1 = ad, n2 = −bc, a, b, c, d ∈ Z,

we rewrite each summand of (3.8) as
∑

d∈N

dr1
∑

c∈N

cr2
∑

a,b∈Z\{0}

ad−bc=n

(−bc)P .(3.9)

We note for Re(r1) < −1, Re(r2) < −1, and P < −1, (3.9) is absolutely convergent
since

∣

∣

∣

∣

∣

∣

∑

d∈N

dr1
∑

c∈N

cr2
∑

b∈Z\{0}

∑

a∈Z\{0}

(−bc)P δad−bc=n

∣

∣

∣

∣

∣

∣

≤
∑

d∈N

∑

c∈N

∑

b∈Z\{0}

dr1cr2+P |b|P .

Similarly for Re(r1) < −1, Re(r2) < −1, and P < −1,
∣

∣

∣

∣

∣

∣

∣

∑

c∈N

cr2
∑

a,b∈Z\{0}

ad−bc=n

(−bc)P

∣

∣

∣

∣

∣

∣

∣

= O(1)

for d → ∞. Multiplying the formula in Lemma 3.1 by (−1)P and obtain (1.6).
We now turn to the meromorphic continuation. We note that 2δ2|P can be meromor-

phically continued by taking 1 + e2πiP . We consider the second term on the right side
of (1.6). There are three possible cases:

(1) If r2 + P ∈ 2N+ 1, then δ2|n vanishes.
(2) If r2 + P ∈ 2N, then ζ(−r2 − P ) vanishes.
(3) If r2 + P = 0, then r2 ∈ 2Z implies P ∈ 2Z. Using (2.9), we obtain that the

second line in the right hand side of (1.6) becomes (−1)P+1ζ(r2)σr1(n). Since
we assumed P = −r2 and r2 is even, (−1)P+1 = −1.

It remains to show, for d ̸ | n,

∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 − P, c
′

d
)

gcd(c′, d)P

∑

m∈Z

(m+ uc′,d)
P = 0.(3.10)

We note the element c′ = d is not present in the sum (3.10) because, in this case,
gcd(c′, d) = d divides n = ad − bc, but this contradicts the assumption d ̸ | n. For any
other c′, there is a pair d− c′ in the sum 0 < c′ ≤ d (for c′ = d/2, we consider c′ to be
its own pair). We note that gcd(d− c′, d) = gcd(c′, d) and ud−c′,d = −uc′,d imply

ζ(−r2 − P, 1− c′

d
)

gcd(d− c′, d)P

∑

m∈Z

(m+ ud−c′,d)
P =

ζ(−r2 − P, 1− c′

d
)

gcd(c′, d)P

∑

m∈Z

(m− uc′,d)
P

(2.4)
= (−1)P

ζ(−r2 − P, 1− c′

d
)

gcd(c′, d)P

∑

m∈Z

(m+ uc′,d)
P .(3.11)
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We can rewrite (3.10) by grouping together contributions from the elements c′ and d−c′

and applying (3.11) to get

1

2

∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 − P, c
′

d
) + (−1)P ζ(−r2 − P, 1− c′

d
)

gcd(c′, d)P
·
∑

m∈Z

(m+ uc′,d)
P .

In turn, (2.3) implies that for r2 + P ∈ N0 and r2 ∈ 2Z, the sum above vanishes. □

3.2. Proof of Theorem 1.2. In order to prove Theorem 1.2, we need the following
lemma.

Lemma 3.2. Let n ∈ N, r2 ∈ C, d ∈ N, and Q ∈ Z with Re(r2) < −1, Q < −1 then

the sum
∑

c∈N

cr2
∑

a,b∈Z\{0}

ad−bc=n

(bc)Q log |bc|(3.12)

equals

(−1)Q+1σr2(n)n
Q log |n|(3.13)

+ 2δ2|Qd
Qζ(−Q)

(

∂

∂t1
+

∂

∂t2

)

(

∑

c∈N

ct1 gcd(c, d)t2

)∣

∣

∣

∣

∣

t1=r2+Q
t2=−Q

+ 2δ2|Qd
Q(log(d)ζ(−Q)− ζ ′(−Q))

∑

c∈N

cr2+Q

gcd(c, d)Q
,

for d | n, and equals

(−1)Q+1σr2(n)n
Q log |n|

+

(

cd

gcd(c, d)

)Q

log

∣

∣

∣

∣

cd

gcd(c, d)

∣

∣

∣

∣

∑

m∈Z

(m+ uc,d)
Q

+
dr2+2Q

(gcd(c, d))Q

∑

0<c′≤d

gcd(c′+jd,d)|n

ζ(−r2 −Q, c
′

d
)
∑

m∈Z

log |m+ uc′+jd,d|

(m+ uc′+jd,d)−Q

for d ̸ | n.

Proof of Lemma 3.2. As in the proof of Lemma 3.1, we use Lemma 2.4 with f(x) =
xQ log |x| with Q < −1 and note again that when d | n, we have b∗ = 0. Thus for d | n,
we write

∑

a,b∈Z\{0}

ad−bc=n

(bc)Q log |bc| =
∑

m∈Z\{0}

(mvc,d)
Q log |mvc,d| − (−n)Q log |n|δc|n

(2.17)
= (−1)Q+1δc|nn

Q log |n|
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+ 2δ2|Q

(

cd

gcd(c, d)

)Q(

log

(

cd

gcd(c, d)

)

ζ(−Q)− ζ ′(−Q)

)

=(−1)Q+1δc|nn
Q log |n|

+ 2δ2|Q
(cd)Q

gcd(c, d)Q
log(c)ζ(−Q)

− 2δ2|Q
(cd)Q

gcd(c, d)Q
log(gcd(c, d))ζ(−Q)

+ 2δ2|Q
(cd)Q

gcd(c, d)Q
(log(d)ζ(−Q)− ζ ′(−Q)).

We multiply the expression above by cr2 and sum over c ∈ N. The first term becomes
∑

c∈N

cr2(−1)Q+1δc|nn
Q log |n| = (−1)Q+1nQ log |n|

∑

c∈N

cr2δc|n

= (−1)Q+1nQ log |n|σr2(n).

The second line becomes

∑

c∈N

cr22δ2|Q
(cd)Q

gcd(c, d)Q
log(c)ζ(−Q) = 2δ2|Qd

Qζ(−Q)
∑

c∈N

cr2+Q

gcd(c, d)Q
log(c)

= 2δ2|Qd
Qζ(−Q)

∂

∂t1

(

∑

c∈N

ct1 gcd(c, d)t2

)∣

∣

∣

∣

∣

t1=r2+Q
t2=−Q

(3.14)

since
∑

c∈N

cr2+Q

gcd(c, d)Q
log(c) is absolutely convergent for Re(r2) < −1 and Q < −1.

The third line becomes

−
∑

c∈N

cr22δ2|Q
(cd)Q

gcd(c, d)Q
log(gcd(c, d))ζ(−Q)

= −2ζ(−Q)δ2|Qd
Q
∑

c∈N

cr2+Q

gcd(c, d)Q
log(gcd(c, d))(3.15)

= 2ζ(−Q)δ2|Qd
Q ∂

∂t2

(

∑

c∈N

ct1 gcd(c, d)t2

)∣

∣

∣

∣

∣

t1=r2+Q
t2=−Q

.

The fourth line becomes

∑

c∈N

cr22δ2|Q
(cd)Q

gcd(c, d)Q
(log(d)ζ(−Q)− ζ ′(−Q))

= 2δ2|Qd
Q(log(d)ζ(−Q)− ζ ′(−Q))

∑

c∈N

cr2+Q

gcd(c, d)Q
.(3.16)
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When d ̸ | n and gcd(c, d) | n,
∑

a,b∈Z\{0}

ad−bc=n

(bc)Q log |bc| = (−1)Q+1δc|nn
Q log |n|+

∑

m∈Z

((m+ uc,d)vc,d)
Q log |(m+ uc,d)vc,d|

(2.17)
= (−1)Q+1δc|nn

Q log |n|

+

(

cd

gcd(c, d)

)Q

log

∣

∣

∣

∣

cd

gcd(c, d)

∣

∣

∣

∣

∑

m∈Z

(m+ uc,d)
Q

+

(

cd

gcd(c, d)

)Q
∑

m∈Z

(m+ uc,d)
Q log |m+ uc,d|.(3.17)

Multiplying by cr2 and summing over c, we leave the first and the second line as it is
and rewrite the third line similar to the proof of Lemma 3.1,

∑

c∈N

cr2
(

cd

gcd(c, d)

)Q
∑

m∈Z

(m+ uc,d)
Q log |m+ uc,d|

=
∞
∑

j=0

∑

0<c′≤d

gcd(c′+jd,d)|n

(jd+ c′)r2+QdQ

(gcd(c, d))Q

∑

m∈Z

(m+ uc′+jd,d)
Q log |m+ uc′+jd,d|

=
dr2+2Q

(gcd(c, d))Q

∑

0<c′≤d

gcd(c′,d)|n

ζ(−r2 −Q, c
′

d
)
∑

m∈Z

(m+ uc′,d)
Q log |m+ uc′,d|.

□

Proof of Theorem 1.2. The theorem follows from Lemma 3.2 similarly to the proof of
Theorem 1.1.

The first term in the right side of (1.9) admits a meromorphic continuation trivially.
For the second and the third summands in (1.9), we consider the cases Q ∈ N and
Q = 0 separately.

For Q ∈ N, δ2|Qζ(−Q) vanishes. This implies that what remains from the second and
the third terms is

−(−1)Q2δ2|Qζ
′(−Q)

∑

d|Q

∑

c∈N

cr2+Q

gcd(c, d)Q
.(3.18)

By Lemma 2.2, (3.18) is a multiple of δ2|Qζ(−r2 − Q). If we additionally assume that
Q+ r2 ∈ N, then δ2|Qζ(−r2 −Q) = 0, and (3.18) vanishes.

For Q = 0, by Lemma 2.3, (3.14) becomes

−2ζ(0)ζ ′(−r2) = ζ ′(−r2).

For Q = 0, by Lemma 2.3, (3.15) becomes

−2ζ(0)
∑

c∈N

cr2 log | gcd(c, d)| =
∑

c∈N

cr2 log | gcd(c, d)| = ζ(−r2)
∑

ℓ|d

Λ(ℓ)ℓr2 .
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For Q = 0, (3.16) becomes

2(log(d)ζ(0)− ζ ′(0))ζ(−r2) = −ζ(−r2) log

(

d

2π

)

.

Combining these three terms, we obtain

ζ ′(−r2) + ζ(−r2)
∑

ℓ|d

Λ(ℓ)ℓr2 − ζ(−r2) log

(

d

2π

)

.

For r2 > 0, this is equal to ζ ′(−r2), and for r2 = 0, this is equal to − log(2π).
Finally, the sum

∑

m∈Z

(m+ uc,d)
Q

vanishes by (2.6). The inner sum in the last term on the right side of (1.9) vanishes by
the similar argument as for (3.10) in Theorem 1.1. □
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