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ABSTRACT

Flow fluctuations that are commonly associated with multiphase flow in porous media are studied using concepts from non-equilibrium ther-
modynamic and statistical mechanics. We investigate how the Green-Kubo formulation of the fluctuation dissipation theorem can be used to
predict the transport coefficient from the two-phase extension of Darcy’s law. Flow rate-time series data are recorded at the millisecond time-
scale using a novel experimental setup that allows for the determination of flow fluctuation statistics. By using Green-Kubo relations, a trans-
port coefficient is predicted based on the integrated autocorrelation function. Notably, this coefficient aligned closely with the total effective
phase mobility computed using Darcy’s equation for multiphase flow, particularly in scenarios where a linear relationship between flow rate
and pressure gradient was observed. Our results open a new field of coefficient explorations where microscale fluctuations during multiphase

flow are directly linked to macroscale parameters.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0185605

I. INTRODUCTION

In the last decade, there have been notable observations of fluid
fluctuations that occur during multiphase flow in porous media, particu-
larly at low Capillary numbers." " Intermittent flow and fluctuations
influence the energy dissipation on the continuum-scale via the relative
permeability.” Recently, Winkler e al.” investigated two-phase flow fluc-
tuations in a pore network model using the fluctuation dissipation theory
(FDT) from Green-Kubo (G-KB). While the correlation of the fluctuat-
ing contribution from G-KB was reported and Onsager symmetry was
observed, the measurements were neither compared to the relative per-
meability, nor were they experimentally validated. Herein, we address
these issues by studying a simplified experimental system where multi-
phase flow fluctuations can be observed at the millisecond timescale.

In the late nineties, Yuan et al.”* reported pressure fluctuations
during slow-rate mercury injection capillary pressure experiments in

cores. They found the pressure fluctuations to be a result of different
degrees of constriction along the pore paths. DiCarlo et al.” demon-
strated acoustic and hydroacoustic fluctuations during drainage and
imbibition experiments. Rapid fluctuation events were reported during
drainage and found to be related to discrete fluid bursts, as opposed to
imbibition experiments which had limited fluctuation events. Overall,
in these studies, the flow process, pore structure, and interfacial tension
were shown to influence the degree to which pressure fluctuations
were observed.

Recently, pore-scale experiments using synchrotron-based x-ray
microcomputed tomography (micro-CT) have opened a new domain
for researchers to better understand fluid—fluid-rock interactions at
the pore-level during multiphase flow in porous media.'”'" Complex
pore-scale events have been taken as the cause of intermittent
flow behavior based on 3D images of fluid distributions." "> "
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Here, intermittency is observed as dynamic occupancy of a pore by
one immiscible fluid and then another over a periodic timescale.

At the continuum scale, Riicker et al.'” conducted steady state
(SS) experiments to relate pore-scale fluctuations with core-scale
behavior using sandstone and sintered-glass samples. They observed
fluctuations in differential pressure (AP), fluid saturations, and resistiv-
ity readings. Additionally, the AP fluctuations were found to follow a
Gaussian distribution and were not associated with experimental noise.
The observed fluctuations were found to be at the capillary energy scale
suggesting that fluctuations were caused by pore-scale events. Similar
studies were conducted to investigate pore-scale intermittent fluid
dynamics on large (centimeter-scale) core samples.” They showed
pressure fluctuations with higher amplitude in experiments conducted
at medium and low capillary number (Ca) and reported a non-
Gaussian (non-symmetric) distribution.

Pressure fluctuations have been investigated by performing power
spectral analysis using Fourier transformation.”'® By transforming the
pressure fluctuations from the time domain to the frequency domain,
red-noise scaling was observed where the observed fluctuations are
found to occur at various frequencies during the flow process. The
study demonstrated a cascade of timescales for multiphase flow experi-
ments at SS. Spurin et al.'” also performed power spectral analysis of
AP fluctuations by using a continuous wavelet transformation and
highlighted the limitation of Fourier transformations used in their ear-
lier work. They found that the spectral power depends on the fre-
quency of the fluctuations, size of the sample, and rock heterogeneity.
In addition, analysis done by Riicker et al. and McClure et al.'”'*
showed that non-thermal fluctuations play an important role in multi-
phase flow phenomena and constrain the validity of the multiphase
extension of the Darcy’s law.

The study of fluctuations in other physical systems using methods
from statistical physics is not new. Hauge and Martin-Lof'~ derived
the Langevin equation from fluctuating hydrodynamics. Other exam-
ples include studies of non-equilibrium fluctuations in molecular
motors”” and studies in the field of earth sciences to measure transport
coefficients and viscosity of molten silicates at different pressures.”’
The G-KB formula predicts that fluctuations observed during multi-
phase flow are related to the overall permeability, and the measure-
ments suggest that this is true. The question is how precisely the
prediction is linked to the observation.

In reservoir engineering, multiphase flow in porous media is typi-
cally modeled by the empirical extension of Darcy’s equation, as shown
in Eq. (1)."" The Darcy’s law takes the familiar form of a linear consti-
tutive model with the transport determined by the effective permeabil-
ity.”” This was first established by Wyckoff and Botset,”” where they
studied the flow of gas and liquid mixtures in unconsolidated sands,

@ ="K pg), 6]
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where u; is the Darcy velocity (m/s) of phase i, k; is relative permeabil-
ity of phase i, K is the absolute permeability (m?), #; is fluid dynamic
viscosity (Pas) of phase i, VP is pressure gradient (Pa/m), p is fluid
density (kg/m®), and g is acceleration due to gravity (m/ sz).
Equation (1) presents a linear relationship between u; and VP.'""
However, recent observations of intermittent flow behavior show that
there can be a non-linear correlation between these two parameters.
This happens under a capillary force dominated flow regime”'****°

ARTICLE pubs.aip.org/aip/pof

and can be understood as a threshold to flow. Capillary barriers lead to
slow fluctuations, and long timescales are necessary to perform experi-
ments that reach stationary conditions.

During multiphase flow in porous media, the dynamic changes in
fluid-configurations leads to flow fluctuations caused by pore-scale
events.”'””” These fluctuations are mechanical in nature, but we now
propose that they share similarities with the thermal fluctuations at the
molecular level”'**® So far, this assumption has not been studied
before.

Thermal fluctuations at the molecular level can be predicted sta-
tistically based on a Gaussian distribution, as explained above. These
are connected to a transport coefficient in G-KB theory. The G-KB
theory is an inherent part of the theory of non-equilibrium or irrevers-
ible thermodynamics.”**” It is an expression of time-reversal invari-
ance or microscopic reversibility. This hypothesis assumes that the
probability to observe, on the average, that a fluctuation in some prop-
erty i at time ¢ is followed by another fluctuation j after a time lag t, is
equal to the probability to observe the reverse situation, that the fluctu-
ation j at time ¢, is followed by the fluctuation i after a time lag 7. In
addition, the regression hypothesis is assumed, stating that a system
subject to a small deviation from its equilibrium state will return to its
original equilibrium state, by a linear law, which is the same on the
molecular- and the macroscopic level.

The G-KB relation has been used for various applications to pre-
dict transport coefficients.”"”’ However, it has never been used to pre-
dict permeabilities in porous media. Winkler et al’ made a first
approach to decompose athermal fluctuations of porous media flows
using non-equilibrium thermodynamics. By defining a suitable repre-
sentative elementary volume (REV) where the ergodic assumption and
the assumption of microscopic reversibility hold,”" they showed that
the steady state flow fluctuations were Gaussian. Additionally, the inte-
gral of the cross correlation functions became symmetric, in line with
Onsager’s reciprocal relation. McClure et al.”’ also investigated the
non-equilibrium thermodynamics of two-phase flows of immiscible
fluids in porous media using time-and-space averaging and demon-
strated that valid transport coefficients can be obtained provided that
there is no net work performed by fluctuating models. This assump-
tion is less restrictive compared to the assumption that fluctuations
obey a Gaussian distribution.

The current work is a continuation of the work of Winkler et al.’
They studied correlation functions for flow fluctuations of wetting and
nonwetting components. In the current work, we investigate whether
FDT can provide insight into the transport behavior (permeability) of
two-phase flow in porous media. In contrast to Winkler et al.,” we pro-
vide experimental results and compare the outcomes from FDT with
the standard expressions derived from Darcy’s law for multiphase flow
using the concept of relative permeability. Previous studies have not
compared G-KB theory with the linear law for multiphase flow.

Il. MATERIAL AND METHODS
A. Experimental system and experiments

Steady state experiments were conducted on a sintered glass sam-
ple with dimensions of 6 mm length and 3 mm diameter. The experi-
ments were conducted at different constant differential pressures while
monitoring the total flow rate at the outlet using a mass flow meter.
The approach we adopted is different from the conventional technique
of performing steady state experiments, where fluids are co-injected
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FLOWMETR Specifications:

¢ Min flowrate (water) = 1.6 pl/min

*  Max flowrate (water) = 3.3 ml/min

¢  Mass flow accuracy liquid = + 2%
measured value.

* Density accuracy = < + 5 kg/m3

* Sensor inner dia. = 250 um

* Internal volume = 13 pL

FIG. 1. Schematic of the core flooding setup used for measuring flow fluctuations under a constant pressure gradient.

under constant flow rates condition. Our novel approach measures the
flux fluctuations under a constant gradient. The experiments were con-
ducted by using DI-water and decane as the wetting and non-wetting
phases, respectively. In situ fluid saturation from x-ray CT scanning
was not recorded during our experiments. A schematic of the core
flooding setup used is shown in Fig. 1. It consists of a pressure regula-
tor, two fluid accumulators, core holder, flow meter, a fractional collec-
tor, and a logging device. Short and precise lines and fittings were used
to avoid leakages and pressure losses. Initially, the sample was fully sat-
urated by injecting several pore volumes (PVs) of DI-water under a
high-pressure gradient. Water absolute permeability was then calcu-
lated at different pressure drops and found to be approximately 10 = 1
Darcy, equivalent t0 9.9 = 0.9 x 10> m*.

Co-injection experiments were conducted at constant inlet pres-
sures controlled by a pressure controller from ELVEFLOW. The pres-
sure controller can provide unique performance with pressure stability

TABLE . Summary of calculated parameters during the 2-phase flow experiments.

and pressure resolution of 0.005% and 0.003% full scale (FS), respec-
tively. Fluids were simultaneously injected at a water fractional flow of
roughly 50% (F,,~ 0.5) and at different inlet pressures. Based on the
injection pressures, corresponding Ca were calculated by using Eq. (2),
as reported by Spurin et al.'’ Details of the experimental parameters
are summarized in Table [,

Ca = (2)

SR,
) (ﬂ _ Ji) ’

M Nw
where Ca is the dimensionless Capillary number, g, is Darcy’s average
total flux (m/s), y is interfacial tension between the wetting and non-
wetting phases (N/m), and f,, is water fractional flow.

A mass flow meter by BRONKHORST was connected at the core
holder outlet, and the total flow rate was measured at an interval of
30ms. The mass flow meter provides accurate readings within =2%

Pressure Pressure Average Capillary Linear law Average integral Average
drop (psi) drop (Pa) flux (m/s) number, Ca coefficient (m?/Pa s) ACF (m?/s) F (1/Pa)
1.5 10342 1.96 x 10°° 491 x 10°° 8.28 x 1012 1.33
2.0 13790 236 x 107° 632 x 107° 8.84 x 1072 1.24
25 17237 3.18 x 107° 7.96 x 10°° 1.09 x 10~ 8.68 x 1072 1.27
3.0 20684 3.94 x 107° 9.51 x 107° 5.71 x 1072 1.93
4.0 27579 5.07 x 10°° 127 x 107> 5.17 x 1012 2.14
5.0 34474 591 x 107° 148 x 107° 8.19 x 10712 339 x 10712 242
5.5 37921 6.51 x 107° 1.63 x 107° 8.75 x 10712 3.99 x 1072 222
6.0 41369 691 x 107° 173 x 107> 7.74 x 10712 3.84 x 1072 2.09
7.0 48263 7.80 x 1077 1.96 x 10> 6.81 x 1071 3.12 x 10712 225
8.0 55158 8.48 x 10~° 212 x107° 6.81 x 10712 298 x 10712 2.29
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accuracy of the measured value. Conducting steady state experiments
using this setup and approach facilitated the measurement of flow fluc-
tuations (at milliseconds), utilized in the application of fluctuation dis-
sipation theorem. To capture the fluctuations from each reading, the
following steps were considered. First, only data recorded after achiev-
ing steady state were used for analysis. This implies that the macro-
scopic variables fluctuate around well-defined and constant averages.™
To ensure the attainment of a steady-state flow, both fluids were simul-
taneously injected at a 50:50 ratio for over 50 pore volumes (PV).
Second, only the fluctuations were considered by subtracting the mean
average from the time series data. We assumed that the fluctuations
were representative of the intermittency between the water and oil
phase fluxes. Based on the fluctuation time series in the data, we com-
puted a probability density function (PDF) using kernel density esti-
mation (KDE) technique, which computed a normalized PDF of the
dataset, using the MATLAB function KernelDistribution. The autocor-
relation function (ACF) was then determined using the MATLAB
function autocorr. An average of three runs was taken at each pressure
drop tested. One should note that all three runs (for each of the pres-
sure drops) were consistent and within acceptable error range as will
be shown in Sec. I1I.

For further analysis, the ACF curve was then fitted to an expo-
nential decay function by using the least squares method. We, there-
fore, assumed that only the zero-frequency response of the ACF was
required for all subsequent calculations. The implication of this
assumption is considered within Sec. I11. Consequently, the integral of
the ACF was determined based on the area under the fitted curve. The
integral of the ACF was necessary for prediction of the transport coef-
ficient using FDT as will explained in Sec. 11 B.

B. Thermodynamic description of relative permeability

In non-equilibrium thermodynamics theory (NET), the set of
fluxes and their corresponding driving forces (gradients) are defined
by the system’s entropy production. Here, we consider two component
fluxes, driven by a pressure gradient. There are two routes for determi-
nation of transport coefficients, representative of porous media perme-
abilities: (1) the linear flux—force relations and (2) the G-KB
formulation of the fluctuation dissipation theorem (FDT). The flux-
force relations are linear when the system response is proportional to
the gradients that drive the fluxes. Such responses are described in the
simplest way in familiar equations for heat-, mass-, charge-, and
volume-transport, ie., Fourier’s, Fick’s, Ohm’s, and Darcy’s law,
respectively.”” The FDT represents more complex relationships when
porous media are concerned.”* The definition of the REV average vari-
ables is central. The FDT can then be used to relate fluctuations in
steady state flows to the system’s permeability coefficients. Hence,
FDT establishes a connection between the small fluctuations in a sys-
tem and its macroscopic behavior. The FDT has been applied success-
fully in homogeneous solutions.””"® Herein, our aim is to present a
comparative analysis; using linear (Darcy) law as well as FDT to deter-
mine the overall transport coefficient for two-phase fluid flow in
porous medium.

The two sets of equations (linear law and FDT) for determination
of permeabilities have a common root in the entropy production of
the system. The entropy production in isothermal porous medium has
in the outset two terms, one for each fluid (wetting and non-wetting
phase, w and ). In a discrete isothermal porous system at constant

ARTICLE pubs.aip.org/aip/pof

composition (saturation), with the x-direction as the direction of net
transport, the entropy production is given by

0= _]wl% _]nlA’un .

T Ax T Ax

Here, y; (i = w, n) is the chemical potential of the wetting and non-
wetting fluids in ], T is temperature in K, J; is the particle flux of com-
ponent i in m~*s ™', In the present experiments at steady state with
two-phase co-injection, constant temperature, and constant concentra-
tion, the chemical potential difference throughout the system, Ay;,
simplifies

3)

A,Lli = ViAp, (4)

where V; (i = w, n) is the partial volume per particle of component i
in m®, and Ap is hydrostatic pressure difference between the two sides
of the system. It should be noted that the force-flux relations are for-
mulated with the pressure gradient component of the chemical poten-
tial while neglecting the concentration gradient part. Nevertheless, the
diffusive fluxes are accounted for through pressure diffusion, in addi-
tion to viscous phenomena. Furthermore, the characteristic times of
the experiment reflect these phenomena; hence, there is no additional
timescale for diffusion to report. We can vary the total flow and the
fractional composition of the flows. For the REV,

1 Ap, 1 Au, 1 Ap
w=—Lyw———— Lwn— = —=LwwVw + Ly Vi) —,
4 T Ax T Ax T( Vw t V)Ax (5)
_ 1 Au,, 1Aw, 1 Ap
]n - 7an?A7x7Lnn? AX - 7T(anvw+LnnVn)A7x7 (Sb)

where Ly, Ly, Lyw, and Ly, are coefficients that quantify the rela-
tionship between the thermodynamic forces and the resulting fluxes.
Their values reflect the properties of the system. In the context of fluid
flow through porous medium, they characterize how easily the fluid
flows. Following Onsager, the conductivity matrix is symmetric. The
coefficients are functions of state variables and reflect different types of
mechanisms for flow, ie., ganglion dynamics, viscous flow, diffusion,
etc. While the main coefficients are connected to Darcy’s or FicK’s law,
viscous flow, or diffusion, respectively, the coupling coefficients are
related to energy storage or depletion. The storage and depletion terms
are interesting for the characterization of mechanisms. Darcy’s veloci-
ties for wetting and non-wetting phases are then written as

_ 1 Ap  k,KAp
Uy = w]w - T (VwwaVw + VWLW”V”)KJC - WKX’ (63)
1 Ap k,K Ap
U, = Vn]n - _? (VnanVw + VnerVn) Ix - = ]7” IX’ (6b)

where k; is the relative permeability of fluid i (i = w, n) and K is the
absolute permeability, #; is fluid viscosity i (i = w, n). The average vol-
umetric flux, ]y, as measured by our mass flow meter, is given by

Jv = vy + up
=Vl + Vilu

L (VLo Vi 4+ Vi Lun Vs -+ VoL Viy + VoL V)Ap
T nt=ww ¥ w wihwn n n=nw 't w ntnn Yle
1. A ke ko] A

P__[ }K ;

Sy S R o .
T Ax Ny  Nal Ax

%
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The final term comes from Darcy’s law [Eq. (1)] by adding the Darcy

velocities for each phase and assuming no gravitational potential.
Based on Eq. (7), the main transport coefficient Lyy can be

related to the phase mobilities from 2-phase Darcy, which is given by

L ky Kk
== {— + —} K, ®
T e M

where Lyy is the transport coefficient attached with the pressure gradi-

ent AP/Ax, [';—“ + H K is a product of the relative and absolute per-

meability terms and viscosities (yielding an effective mobility for both
phases) based on Eq. (1) with no gravitational force. In summary, Eq.
(8) can be used for determining the transport coefficient Ly based on
the linear flux—force approach highlighted earlier.

The fluxes in the linear flux—force relations are time average
fluxes over the REV cross section. On the molecular level, the fluxes
have fluctuating contributions, J; g, the average of which is zero. In
NET, the correlations of the fluctuating contributions are given by the
FDT™ as shown by

<L-,R(t)]j,R(t/)> = M6(t —1). )

Vi
The left-hand side of Eq. (9) expresses the correlation of two particle
fluxes, the first taking place at #, and the second taking place at ¢'. The
kg is the Boltzmann constant and L;; are the symmetric Onsager coeffi-
cients for the two fluctuating phenomena, (Lj;+ Lj) = 2L;. The
expression has been integrated over the volume V;, which we do not
know a priori. The timescale and the range over which the fluctuating
contributions are correlated is small compared to those of the average
fluxes. The correlations may, therefore, be described by delta-
functions. The flux of each component that is considered in Eq. (9),
yielding auto- or cross correlations.

In our experimental setup, we measure the total volume flux Jy
only. This provides a single coefficient for transport, due to autocorre-
lations of the volume flux (Jy = V,,J,, + V,.J,,). Equation (9) is then
written as

_ ZkBLVV

v St—1). (10)

<]V,R(t)]V,R(t,)>
The left-hand side of Eq. (10) gives the autocorrelation function. The
right-hand side contains Lyy, i.e., the transport coefficient that repre-
sents the total volume flux in our experiments. Note that we do not
specify any of the cross-coefficients in Eq. (10). By integrating Eq. (10)
over time ¢, we obtain

2kpLyy J

v h dt<]V.R(t)]V,R(t/)>~ (11)
L

v
For t<t the integrand is zero. The correlation function
<]V,R(t)]V‘R(t’)> depends only on t — #'. The foundation of Eq. (11)
lies in Onsager’s regression hypothesis, asserting that the regression of
fluxes on the microscale is equivalent to that on the macroscale, i.e.,
the time of the experiment. We assume that this holds true.

We see that the strength of the correlations determines the
Onsager coefficient. Boltzmann’s constant enters because the integra-
tion in principle takes place over all the molecular fluctuations and
relaxation times. This means that a timescale from femtoseconds and
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up is involved. In practice, experimental time correlations of shorter
time scales are not observable due to limitations in an instrument’s
temporal resolution. The implications of this will be discussed in Sec.
111. At this point, we propose a practical ratio between that measured
by the linear law and that measured by the FDT.

By introducing Lyy /T, we obtain a practical ratio,

Lyy/T 7
J\, dt(Jvr()Jvr(t')) 2k

The F is the pre-factor (1/Pa), containing V, T, and kg. The integral
is taken from the shortest timescale that can be observed with the
apparatus used. The Lyy is the coefficient of the linear law,
f;,’o dt<]V7R(t) Jv (t )> is the integral of the time-correlation function.
The prefactor is essential for predicting Lyy from FDT. Indeed, F
would be particular for each porous media and experimental setup.

In this study, we computed the transport coefficient, Lyy, from
the linear (Darcy) law, i.e., using the RHS of Eq. (7). We also solved for
F, which can be used for predicting a transport coefficient from FDT
as explained above. Our assumption is that the linear law and the G-
KB relation provide the same result. The shortest timescale available in
the DFT study was 30 ms, and the measured fluctuations relate to the
total volumetric flux, Jy, only. Therefore, our setup did not allow for
the evaluation of correlations below 30 ms nor the determination of
the cross correlation coefficients, i.e., Lj.

To summarize; this study seeks to understand if the FDT, as
expressed in Eq. (12), provides valuable insights into the transport behav-
ior of the two-phase fluids in porous media, and how the FDT results
compare to Darcy’s law total effective mobility, as presented in Eq. (7).

F=

(12)

lll. RESULTS AND DISCUSSION

The experimental results are summarized in Table I. The experi-
ments were conducted at Ca between 4.9 x 107° and 2 x 107>, All
measurements were conducted at pressure drops within the capillary
dominated flow regime.'" Figure 2 shows the measured relationship
between the average flux with respect to pressure drop. Figure 2 high-
lights measured points (highlighted in blue color) for a regime with
linear behavior. The regression line for the experiments was forced to

x107
1F
’ n
08 I /’ n
w .
E a "
x 0.6 m
= ’
i -
o R2 = 0.9997 —O©—Linear Data
g 0.4} - = Nonlinear Data
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0 " ; " . y
0 2 4 6 8 10
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FIG. 2. Relationship between measured average flux and pressure drop.
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go through zero. At low pressure drops (1.5-4 psi), the linear relation-
ship between the average flux and pressure drops has an R* = 0.9999.
Hence, this obeys Darcy’s law. At higher pressure drops (above 5 psi),
there was a systematic deviation from the linear trend with a more pro-
nounced effect at 7 and 8 psi. This deviation represents the onset of
non-linearity, ie, non-Darcy behavior. No threshold value was
observed on the low-pressure drop side. Thus, in our experiments, the
Darcy law regime applied until a pressure drop of 4 psi, which is equiv-
alent to Ca = 1.27 x 107>, As the pressure drop increased (increased
Ca), we come outside this regime. More elaborate methods are then
needed to decompose data in the non-Darcy regime.

The non-Darcy behavior was most evident at the two highest
pressure drops tested, giving Ca=1.96 x 10 > and 2.12 x 10">. Gao
et al’ showed similar behavior using a mini-core sample of
Bentheimer sandstone. They observed non-linear behavior at
Ca =210~ which correlated with rapid sub-minute changes in fluid
configurations in their reported 3D images. Similar observations have
also been reported by other authors™ ®"” where a power-law relation
has been proposed at a capillary dominated flow regime. Gao et al.’
suggested that at a critical Ca, there is intermittent flow because of
increased flow conductance compared to Darcy’s flow. Note that the
non-Darcy flow behavior is different from the flow described during
viscous dominated flow."’

The results presented in Fig. 2 were utilized to determine the
coefficient Lyy using Eqs. (7) and (8), through two different
approaches. The first approach involved considering the initial points
where the linear effect was observed and calculating the average flux vs
pressure drop. This fitting was forced to pass through the origin.
Consequently, this slope was valid only up to a pressure drop of 4 psi,
as shown in Fig. 2. When a non-linear effect was observed, i.e., between
a pressure drop of 5-8 psi, the slope is calculated locally for each exper-
imental measurement. The local slope was determined using a mid-
point finite difference method. We therefore assume that a linear
response would still occur over a small change in the pressure drop.
All calculated slopes (coefficient) are summarized in Table I and
reported as a total effective mobility, see Eq. (8).

Next, we analyzed the fluctuations from the measured total flux
at different pressure drops. Figures 3(a) and 3(b) are typical examples
of time series of flux fluctuations for 1.5 and 8 psi, respectively. The
statistical frequency of the flux was also measured by plotting the prob-
ability density function (PDF) of the flux fluctuation, as shown in Figs.
3(c)-3(f). The flux fluctuation, as depicted in the figures, is determined
by subtracting the mean of the flux data from the original flux data. In
other words, flux fluctuation is calculated as follows: flux fluctuation
= flux data — mean(flux data). We conducted triplicate runs at each
pressure drop to test repeatability. It is evident from the figures that
there was consistency between the experiments; only a slight difference
was seen attributable to experimental inaccuracies. Additionally, we
observed two defined trends from the PDF distribution. First, there
was a bimodal distribution (non-Gaussian), with two peaks observed.
The bimodal distribution was more pronounced at the lower pressure
drops. Second, there was the presence of a long tail, especially when
the pressure drop was increasing. In their study, Riicker et al.'” dem-
onstrated that the fluctuation histograms are not symmetric and
exhibit a bimodal distribution. However, the non-Gaussian pattern of
the averages becomes increasingly symmetric. The non-Gaussian
behavior could be related to different mechanisms taking place during
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flow over a wide range of time scales. Similarly, Wang et al.'® observed
that the PDF of the measured pressure fluctuations had a non-
symmetric distribution. Our results, however, contrasted with the find-
ings of Winkler et al.,” who found that fluctuations in their flow time
series data were Gaussian.

Our paper incorporates the non-Gaussian nature of the fluctua-
tion distributions to characterize these fluctuations. At the molecular
level, these distributions are nearly Gaussian. However, on the molecu-
lar level, a shift away from Gaussian behavior is expected, particularly
when the system is not in equilibrium. It appears that two phenomena
are superimposed, resulting in a bimodal distribution. By averaging
over the experiment, the tails shown in the Figs. 3(c)-3(f) become less
significant. In other words, the tails do not have weight in the analysis.
In summary, the underlying assumption that allows us to derive the
Green-Kubo relations is the assumption of local equilibrium.
However, it is anticipated that this assumption may not hold true
when the driving force becomes too large.

It is worth mentioning that plotting the probability density func-
tions (PDFs) on a linear-log scale enables a clearer demonstration of
the long tail decay relative to the flux fluctuations, as presented in the
supplementary material (Fig. S13). Additionally, we analyzed the statio-
narity of the flux data for all experiments by dividing the time series
data into separate segments and calculate the mean and variance of
each segment. If the means and variances of different segments of the
time series vary significantly, it suggests non-stationarity in the data,
which could also indicate inconsistencies in the data recording. The time
series was found to be nearly stable, with a slight variance change
observed among the three data segments. This slight variation could be
attributed to minor experimental artifacts, as expected. A detailed analysis
of stationarity can be found in the supplementary material (Table S1).

Given consistent PDF results from the repeated experiments, F
was calculated based on Eq. (12), which is a function of the coefficient
Lyy and the integral of the ACF. The integral of the ACF was calcu-
lated by determining the area under the ACF curve. For a more sim-
plistic approach, the ACF curve was fitted with an exponential decline
function using the least squares method before computing the integral.
We therefore consider only the zero-frequency response of the ACF.

It is worth noting that the calculation of the integral of the ACF,
the experimental ACF curves (original ACF) yielded inconsistent
results for the high Ca flows due to fluctuations in the ACF, as shown
in Figs. 4(a)-4(c). This effect was most pronounced at higher Ca flows
(as pressure drop increases) while a zero-frequency response that
decays to zero was observed for the lower Ca flows. To verify the con-
sistency of the results when fitting the ACF to a zero-frequency model,
the ACF fitting that followed by integration was conducted for three
different time intervals (0-500, 0-1000, and 0-2000 s). The results were
consistent with only small differences (less than 1%) for all time inter-
vals, as presented in the supplemental material. Based on the consis-
tency of the analysis, all ACF curves and subsequent integrations of the
ACEF presented herein were based on using a time interval of 0-1000's.

Figures 4(a)-4(c) are typical examples of the ACF analysis con-
ducted by comparing the experimentally measured ACF (original
ACEF) to the fitted ACF at 1.5, 4, and 8 psi, respectively. Similar analy-
ses were conducted for all measured pressure drops (see supplemental
material). At low pressure drops of 1.5, 2, and 2.5 psi, the fitted ACF
line matched the original ACF curve. However, as the pressure drop
increases, the fitting does not perfectly match the original ACF [as
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observed in Figs. 4(b) and 4(c)], which suggests that other responses in
addition to the zero-frequency response could be relevant. It is evident
from Figs. 4(b) and 4(c) that there is an increasing presence of oscilla-
tions at the initial part of the experimentally measured ACF curves,
i.e., between time 10° and 10's. These oscillations are absent during
the lowest pressure drops at similar time intervals, as shown in
Fig. 4(a). Consequently, the fitting, which is based on a simple model,
does not fully match the original ACF at higher pressure drops. In
other words, the model performs better when there are no oscillations

in the ACF curve. As a result, the integral of the fitted ACF at higher
pressure drops are affected by the model’s inability to capture the oscil-
lations in the experimentally measured ACF’s. The increasing presence
of the oscillations could be attributed to a memory effect caused by dif-
ferent flow regimes or modes of transport operating at different spec-
tral frequencies, which was increasingly observed as the pressure drop
was increased.”® Such oscillations could also be related to saturation
waves as observed by Riicker et al.'” during steady state (SS) co-
injection experiments. The development of sufficient models to
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capture such memory effect will require additional work. Inadequate
statistics in ACF evaluations, stemming from a limited number of rep-
licable readings (only three conducted for each pressure drop), could
also lead to increased oscillations in the ACFs. Given the time required
to conduct an experiment, simulation studies are better suited for a
larger number of replicate studies, which could be used in the future to
supplement our experiment works.

The prefactor, F, was calculated for each pressure drop as shown
in Fig. 5. At the lowest pressure drops, it was evident that F was
approximately constant and roughly around 1.2 (1/Pa). As the pres-
sure drop increased (corresponding to 3-8 psi), F jumped to around
1.9 (1/Pa). Figure 5 can be further explained based on the ACF analy-
sis shown in Figs. 4(a)-4(c): at the lowest pressure drops [Fig. 4(a)],
the fitting is matching with the original ACF resulting in a prefactor of
approximately 1 (1/Pa). This becomes inconsistent at higher pressure
drops primarily due to increased oscillations in the ACF as explained
earlier. It is also worth highlighting that, despite pressure drops
between 1.5 and 4 psi falling within the linear-Darcy region, as shown
in Fig. 2, the presence of the fluctuations at 3 and 4 psi in the ACF
curves resulted in a prefactor of approximately 2 (1/Pa). This effect
was likely due to the inability of the exponential decay function to cap-
ture the oscillating ACF trend. It is worth noting that all
drop experiments with oscillations in their ACF resulted in similar

prefactor values given the standard deviation associated with the
measurement.

As established earlier, F is a practical ratio that gives insight into
the prediction of transport coefficient based on FDT. To predict the
transport coefficient using FDT, F must be known from an indepen-
dent measurement. Herein, we see that F was 1.3 at the lowest pressure
drops (1.5 and 2.5 psi) considering experimental errors. However, F
increased to 2.2 (1/Pa) as pressure drop is increased from 3 and 8 psi.
At low pressure drops between 1.5 and 2.5 psi, the zero-frequency
model matches the experimental ACF well, whereas at higher pressure
drop the zero-frequency model does not match the experimental ACF
well. These observations suggest that additional responses (frequen-
cies) play a role, which needs to be the focus of future work. Our cur-
rent results suggest that the FDT can predict total effective phase
mobility with a prefactor of approximately unity for low Ca flows
when the ACF displays a zero-frequency response.

Transport coefficients using the G-KB relation are typically deter-
mined by starting with fluctuations at the molecular level and, thus,
integrating the autocorrelation function from femtoseconds and up.”’
At a timescale of millisecond, as used here (30 ms sampling time), all
actual fluctuations cannot be fully captured. Here, the fluctuations at
time scales smaller than milliseconds were not captured. Figure 6(a)
(re-produced based on ACF plot shown by Karki and Stixrude')
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shows a typical ACF plot that captures all molecular fluctuations. The
missing part of the autocorrelated time series in our experiment is
highlighted as a hypothetical realization. Because of this issue, we
instead proposed a practical ratio (or prefactor), F which is particular
for a given porous media and experimental setup. Therefore, consider-
ing the RHS of Eq. (12), we could replace kg with «p, reflecting a possi-
ble non-thermal behavior of the fluctuations, when the formula is
applied for porous medium, resulting in

Lyy/T Vi

F: o0 = .
J, at(Jva®pa)) 2T

13)

The factor F is particular for each porous media and experimental
setup. Such an approach has some resemblance to the statistical
mechanical application to granular media, which also has an effective
Boltzmann constant, defined as x = 1.”” Future work could focus on
the determination of F for different rock types, technological

——1.5Psi
——2.5Psi
A\ 3 Psi
TR ~ ——5 Psi
2 AN 8 Psi
- \ ﬁ
g / ~ \.\
o
z l
of
0.2 : : : :
1070 16~ 10° 10°
Time (s)

ARTICLE pubs.aip.org/aip/pof

developments to measure higher frequency fluctuations, and/or theo-
retical developments to deal with the missing frequencies.

Figure 6(b) shows the time correlation functions of the lag time
as a function of the pressure drop used. Depending on the pressure
drop, the decay in the ACF profile varies. Initially, there is a sudden
decay of the auto correlation during a short timescale. This is followed
by slow logarithmic decay, which is more pronounced at higher pres-
sure drop and increases as the pressure drop is increasing. Finally,
there is slow decay in the ACF over much longer time scales.
Furthermore, fluctuations in the ACF are observed and become more
pronounced as the pressure drop increases. Additionally, the fluctua-
tions are minimal at low pressure drops, but appear periodic at higher
pressure drops. Such periodic fluctuations could be related to memory
effects, which could result from different flow regimes or periodic
modes of energy transfer. For example, capillary energy could be accu-
mulated in the system and then released in a periodic manner over a
timescale longer than a single fluid-fluid displacement event. These
processes may influence the flow behavior and could affect phase
mobilities. These potential memory effects warrant further investiga-
tions. Such long-term memory effect may influence the flow behavior
depending on the amplitude of the fluctuating production at this scale.
Based on spectral power analysis, Spurin et al.'” showed that AP fluc-
tuations at both low and high periods/frequencies can play a role in
large scale flow properties. The small contributions can be attributed
to non-linear flow dynamics that may play a role in continuum scale
flow properties. Memory was also observed as periodic saturation
waves by Riicker et al."* Yet the correlation of the fluctuating contribu-
tion needs to be considered in comparison with the larger earlier time-
scale contributions that also contribute to the transport coefficient.
Future work will study the aspect of memory observed in the reported
AFCs. In addition, a new theoretical approach needs to be developed
to handle memory effects when the G-KB relation is used. Additional
analysis will be conducted to assess the oscillations and non-
stationarity observed in the auto-correlation functions (ACFs). This
will involve the application of common parametric spectral
approaches, including wavelet transformation, dynamic mode decom-
position (DMD), and autoregressive moving average (ARMA)."”*""!
Additionally, stochastic adaptive estimators, such as the Kalman filter,
recursive least mean squares, and least squares, will be employed."”
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FIG. 6. (a) Time Autocorrelation function of flow fluctuations highlighting fluctuations at the molecular scale. The first part of the figure indicates the timescale and corresponding
inaccessible fluctuation that cannot be measured due to system limitation. (b) Actual ACF calculated at different at different pressure drops. The actual measurements were

recorded at 30 ms intervals.
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IV. CONCLUSIONS

Our aim was to contribute to the development of a deeper under-
standing of transport phenomena in porous media and open new pos-
sibilities for predicting and characterizing fluid flow in such systems.
To this end, transport coefficients determined by linear flux—force rela-
tions were compared to those determined by the G-KB formulation of
the fluctuation dissipation theorem. By determining the prefactor cor-
rectly, the coefficient Lyy could possibly be calculated for different
experiments at different fractional flow regimes. Herein, we provide
the first experimental evidence of using the FDT to determine Lyy
when F is independently measured. Further work is indeed required to
test different porous systems under a range of different fractional flows
and flow regimes.

We studied fluctuations in steady-state flows in porous media
involving two incompressible immiscible phases, employing concepts
from non-equilibrium thermodynamics and statistical mechanics. We
showed that the Green-Kubo theory can be used to describe the trans-
port coefficient (total effective mobility) based on the autocorrelation
function of the fluctuating flux. The time-dependent function showed
a dependency on the experimentally tested pressure drops. The decay
in the ACF was found to be fast at low pressure drop while there were
periodic fluctuations (memory) in the ACF at higher pressure drops.
Additionally, the periodic fluctuations in the ACF were not perfectly
captured using the zero-frequency model. The periodic fluctuations
are presumably due to memory effects and their impact on transport
properties should be considered in future work. The fluctuations could
also be attributed to inadequate statistics, potentially leading to
increased ACF fluctuations, given that only three replicates’ measure-
ments were conducted for each pressure drop. In the future, simula-
tions studies are likely better suited to evaluate the larger number of
replicate studies required to study ACF fluctuations.

Provided that the ACF displays a zero-frequency response, which
occurred at low Ca flows, the prefactor F was nearly unity, meaning
that the transport coefficient of the linear Darcy law regime and the
transport coefficient of the FDT from the G-KB theory yielded that
same result. The fundamental implications of the F being nearly unity
at low Ca flows and increasing for higher Ca warrants further investi-
gations. Finally, the memory effects could explain the erratic behavior
observed in our pre-factor, F, outside the linear Darcy law regime. The
G-KB approach presented herein did not consider memory effects nor
cross correlation functions. Further theoretical developments will be
required for systems where memory effects are observed in the ACF.
Further experimental advancements will be required for the determi-
nation of cross correlation functions.

SUPPLEMENTARY MATERIAL

See the supplementary material section for the additional results
that, although not incorporated into the main body of the manuscript,
contribute further perspectives to our study. The supplementary mate-
rial includes supplementary figures detailing the calculation of integral
ACF from the measured flow-time series data for all reported pressure
drops.
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