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We present dynamic algorithms with polylogarithmic update time for estimating the size of the maximum
matching of a graph undergoing edge insertions and deletions with approximation ratio strictly better than 2.

Specifically, we obtain a 1+ % +€ = 1.707 + € approximation in bipartite graphs and a 1.973 + € approximation
in general graphs. We thus answer in the affirmative the value version of the major open question repeatedly

asked in the dynamic graph algorithms literature. Our randomized algorithms’ approximation and worst-case
update time bounds both hold w.h.p. against adaptive adversaries.

Our algorithms are based on simulating new two-pass streaming matching algorithms in the dynamic
setting. Our key new idea is to invoke the recent sublinear-time matching algorithm of Behnezhad (FOCS’21)
in a white-box manner to efficiently simulate the second pass of our streaming algorithms, while bypassing
the well-known vertex-update barrier.
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1 INTRODUCTION

The maximum matching problem is a cornerstone of combinatorial optimization and theoretical
computer science more broadly. (We recommend [41] for a brief history of this problem.) The
study of this problem and its extensions has contributed foundational advances and concepts
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Algorithms (SODA), 2023 [31]. This full version contains (in Sections 1.3.2 and 6) a discussion of the numerous developments
in the area following our conference publication, as well as more detailed follow-up questions, including concerning
applications of our adversarially-robust fully-dynamic almost-maximal matching (AMM) algorithms.

Supported by Engineering and Physical Sciences Research Council, UK (EPSRC) Grant EP/S03353X/1.

#Work was partially conducted while the author was visiting Max-Planck-Institut fiir Informatik.

SSupported by NSF grant CCF-2238138.

ISupported in part by a Taub Family “Leaders in Science & Technology” Fellowship. Work done in part while the author
was at Stanford University.

Authors’ addresses: Sayan Bhattacharya, S.Bhattacharya@warwick.ac.uk, University of Warwick, United Kingdom; Peter
Kiss, peter.kiss@warwick.ac.uk, University of Warwick, United Kingdom; Thatchaphol Saranurak, University of Michigan,
United States, thsa@umich.edu; David Wajc, Technion — Israel Institute of Technology, Israel, david.wajc@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/XXXXXXX XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

111:2 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

to the theory of computing, from the introduction of the primal-dual method [67], impact on
polyhedral combinatorics [44], and the advocacy for polynomial-time computability as the measure
of efficiency (in static settings) [45].

The maximum matching problem has also been intensely studied in dynamic settings. Here,
the graph undergoes edge updates (insertions and deletions), and we wish to approximate the
maximum matching, while spending little computation time between updates, referred to as update
time. Polynomial update time is trivial to achieve by running exact static algorithms (e.g., [45])
after each update. However, intuitively, such minor changes to the graph should allow for much
faster algorithms, with possibly even exponentially smaller, polylogarithmic update times.

The first sublinear (i.e., o(m) = o(n?)) update time dynamic matching algorithm was given 15
years ago by Sankowski [79], who used fast dynamic matrix inversion to maintain the maximum
matching size in update time O(n!*%), recently improved to O(n!47) [34]. Unfortunately, a number
of fine-grained complexity results rule out fast, and even sublinear-in-n update time [1, 2, 40, 58, 66]
for (exact) maximum matching size estimation. This motivates the wealth of work on computing
approximate matchings dynamically.

The first polylogarithmic update time dynamic matching algorithm is due to an influential work
of Onak and Rubinfeld [74], who gave a (large) constant approximation in polylog update time. This
was later improved by Baswana et al. [11] to a 2-approximation in logarithmic update time, later
improved to constant time by Solomon [80]. Numerous other algorithms achieving a 2- or (2 + ¢€)-
approximation in polylog update time were subsequently developed, with expected amortized
update time improved to worst-case w.h.p.,! and oblivious randomized algorithms improved to
advsersarially-robust ones, and then to deterministic ones [4, 14, 21, 26, 28, 33, 35, 36, 62, 82].2

A complementary line of work studied better-than-two-approximate dynamic matching, pro-
viding a number of small polynomial (even sublinear in n) update times for approximation ra-
tios below the natural bound of 2 achieved by inclusion-wise maximal matchings. This includes
(1 + e)-approximate algorithms with O (y/m) = Oc(n) update time [57, 77], (3 + €)-approximate
algorithms with O, (v/m) = O.(+/n) update time [22, 23, 56, 62] and a number of tradeoffs between
approximation in the range (3/2, 2) and sublinear-in-n polynomial update times [16, 17, 28, 78, 82].3

This state of affairs leaves open a key question, repeatedly raised in the literature [16, 17, 23, 26,
35, 68, 82], first posed by Onak and Rubinfeld in their aforementioned groundbreaking work [74]:

How small can [approximation factors] be made with polylogarithmic update time?
[...] Can the approximation constant be made smaller than 2 for maximum matching?

1.1  Our Results

We resolve the question of polylogarithmic update time better-than-two-approximate dynamic
matching algorithms in the affirmative, for the value version of the problem. That is, letting u(G)
denote the maximum matching size in G, we maintain an estimate v that is « < 2 approximate, i.e.,
it satisfies v < p(G) < « - v at every point in time. Our main result is the following.

! An algorithm has amortized update time f(n) if every sequence of ¢ updates starting from an empty graph takes at most
t - f(n) update time. If each operation takes at most f(n) time, it has worst-case update time f(n).

2An algorithm works against an adaptive adversary if its guarantees hold even when future updates depend on the algorithm’s
previous output. We also say that such an algorithm is adversarially robust, or robust for short. The importance of robustness
for static applications has motivated a recent concentrated effort to design robust dynamic algorithms for myriad problems
(see, e.g., discussions in [19, 28, 38, 49, 71, 82]).

3Throughout the paper, we use O (+) to suppress poly(1/¢) factors and O(-) to suppress poly(log n) factors.
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THEOREM 1.1. For every € € (0, 1), there exists a randomized (1.973 + €)-approximate dynamic
matching size estimation algorithm with poly(logn, 1/€) worst-case update time. Both the
algorithm’s approximation ratio and update time hold w.h.p against an adaptive adversary.

For bipartite graphs, we obtain a stronger approximation guarantee of 1 + \/Li +e~1.707 + €.
Secondary results. Our approach is versatile, and yields the following generic reduction.

THEOREM 1.2. For any a > 1.5, a dynamic a-approximate matching algorithm with update time

1_1
a 2

t, implies a dynamic (oc -Q ((1 -6 ))2))—approximate matching size estimator with update

time O(t,,).

Very recently, Behnezhad and Khanna [16] presented new dynamic matching algorithms trading
off approximations & € (1.5, 2] and small polynomial update times. Applying Theorem 1.2 to their
algorithms, we obtain improved approximation for dynamic matching size estimation, within the
same update time up to polylog factors.

To obtain our main results, we design several two-pass semi-streaming algorithms (see Section 1.3),
including a deterministic (1 + 1/V2 + €)-approximate algorithm on bipartite graphs. This matches
the prior state-of-the-art [63, 65] up to an € term, while removing the need for randomization.

1.2 Our Techniques

We take the following high-level approach to prove Theorem 1.1: (1) compute a maximal (and
hence 2-approximate) matching Mj, and (2) augment M; if it is no better than 2-approximate, using
the myriad short augmenting paths M; must have in this case. This approach is common in many
computational models, including the two-pass semi-streaming model (see Section 1.3). Implementing
this approach in a dynamic setting, however, faces several challenges. The first challenge if we want
robust algorithms with low worst-case update times is that no robust (near-)maximal matching
algorithms with worst-case O, (1) update time are known. Of possible independent interest, we
resolve this first challenge in Section 5, by leveraging the robust fast matching sparsifiers of [82].

The more central challenge when trying to implement the above approach is that the search for
augmenting paths requires us to find many (disjoint) edges between matched and unmatched nodes
in M;. In a (multi-pass) streaming setting, this can be done by computing a large (b-)matching in the

bipartite graph induced by edges in V(M;) X V(M;). In a dynamic setting, however, this requires us
to deal with vertex updates, which are notoriously challenging in the context of dynamic matching,
and all algorithms to date require reading all Q(n) edges of each updated vertex [68].

To overcome the above key challenge, we first note that we do not need to handle vertex updates
individually, but may instead process these in batches of ©(en) vertex updates, building on the
periodic recomputation and sparsification techniques common in the literature (see Theorem 2.1).
Our main observation is that these batches of vertex updates, which need to be handled if we
wish to maintain the b-matchings from the second pass of our semi-streaming algorithms, can be
implemented in O, (n) time using the sublinear-time algorithm of Behnezhad [12]. This leads to an
amortized O, (n)/(en) = O (1) additive overhead in the update time (easily deamortized), implying
our main result. This approach is versatile, and similarly underlies our secondary results.

1.3 Further Related Work

Having discussed the rich literature on the dynamic matching problem above, we do not elaborate
on it further here. We do, however, highlight some connections to the literature on matching in
other computational models that is closely related to our work.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Streaming Matching. In the (semi-)streaming model, an n-node graph is revealed in a stream,
edge by edge, and we wish to compute a large matching using only (optimal) O(n) space. A line
of work studying the problem of computing an approximately-maximum weighted matching
[39, 47, 50, 53, 70, 76] culminated in a (2 + €)-approximation [53, 76]. For unweighted graphs,
lower bounds are known [54, 60, 61], but it remains a major open question whether one can break
the barrier of 2-approximation achievable by a trivial maximal matching algorithm. Striving for
better approximation (and insights to break this barrier), several works designed algorithms using
multiple passes over the stream [3, 3, 6, 46, 46, 48, 51, 52, 59, 70]. For 2 passes, the state-of-the-art
approximation ratios are 1.857 [51], and 1 + \/% ~ 1.707 for bipartite graphs using the randomized

algorithms of [63, 65], with the best prior deterministic bound being % ~ 1.714 [48].

Sublinear-Time Matching. Computation of large matchings in sublinear time has also been the
subject of great interest. In regular bipartite graphs, a maximum matching can be computed in
O(n) time [55]. In general graphs with bounded degrees, it was known how to achieve a (2 + ¢)-
approximation in sublinear time [72, 73, 75, 83]. This was recently improved to an é(n) time
algorithm for any general graph [12]. As discussed in Section 1.2, we use this latter algorithm in a
white-box manner to obtain our main result.

1.3.1 Concurrent work. Independently and concurrently, Behnezhad [13] (in a work in the same
conference) obtained the same main qualitative result as ours: a better-than-two-approximate
polylogarithmic-xwtime dynamic matching size estimation algorithm. The basic approach to
achieve this qualitative result is the same in both papers: Simulate the second pass of a two-pass
streaming algorithm using the sublinear-time algorithm of [12], together with batched computation.
The quantitative differences in the papers’ approximation ratios are due to the two-pass streaming
algorithms used—our new maximal-b-matching-based algorithms here, and an algorithm inspired by
[64] in [13]. We note that [13] also achieves (3/2 — Q(1))-approximate size estimation algorithm in
time O(+/n) (the best update times for (3/2+€)-approximate explicit matching [22, 23, 56, 62]). This
result also uses the high-level approach of batched computation using sublinear-time algorithms,
building on a new characterization of tight examples for the 3/2-approximate matching sparsifiers
(EDCS) of [22].

1.3.2  Subsequent work. The conference versions of this work and the concurrent work of [13]
have sparked an interest in the question of dynamic matching size maintenance. [10] show that
our (1+ \/% + €)-approximate two-pass streaming algorithm also works in general graphs, and
show how to implement this in dynamic settings, using distributed algorithms. [30] show that
(1 + €)-approximate size estimation can be maintained in truly sublinear-in-n update time for
any constant € > 0. This should be contrasted with a conditional lower bound of [69], who show
that such an update time is unlikely if one wishes to maintain such an approximately maximum
matching. Complementing this conditional lower bound, [7, 15] show conditional upper bounds.
Specifically, they provide (1 + €)-approximate matching algorithms with sublinear-in-n update
time, provided some generalization of Rusza-Szemerédi graphs cannot be too dense. Proving or
ruling out algorithms for maintenance of large matchings mirroring the recent results for dynamic
size estimation is an exciting research direction. One direction to obtain such algorithmic results
would be to obtain algorithms for dynamic fractional matchings, since the latter are known to be
efficiently roundable dynamically, both in bipartite graphs [4, 28, 32, 82] and in general graphs
[37, 43].
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2 PRELIMINARIES

Our input is a graph G on n nodes V, with an initially empty edge set E, undergoing edge updates
(insertions and deletions). Our objective is to approximate the maximum matching size u(G)
well, while spending little update time (computation between updates). In addition, we want
our algorithms to work in the strictest settings: they should have small worst-case update time
guarantees, and they should be (adversarially) robust, i.e., they should work against an adaptive
adversary, and thus their guarantees hold for any update sequence.

Matching theory basics. A matching is a vertex-disjoint subset of edges. A maximal matching is
an inclusionwise-maximal matching. A maximum matching is a matching of largest cardinality.
In a weighted graph with edge weights w, € R, a maximum weight matching is a matching M of
largest total weight, w(M) := 3 ,cp We- An augmenting path P with respect to a matching M is a
simple path starting and ending with distinct nodes unmatched in M, with the edges alternatingly
outside and inside M. Setting M «— M EB P, where EB denotes the symmetric difference, referred
to as augmenting M along P, increases the cardinality of M by one. A b-matching with capacities
{by}vev is a collection of multi-edges F of E (that is, edges of E may appear multiple times in F)
with no vertex v having more than b, multi-edges in F. A fractional matching x : E — Ry, assigns
non-negative values to edges so that each vertex v has fractional degree ) ,5, x. at most one. In
bipartite graphs, the existence of a fractional matching of size k implies the existence of an integral
matching of cardinality [k]. In general graphs, this fractional relaxation has a maximum integrality
gap of 3/2, attained by a triangle graph with values x, = 1/2 for each edge e.

Notation: Let V(M) denote the set of all endpoints of edges in a matching M, and let V(M) :=
V \ V(M). For any disjoint vertex sets A,B C V, we let G[A, B] denote the bipartite subgraph
induced by the edges in G with one endpoint in A and another in B. Finally, for any subset of edges
E’ C E, we let G[E’] denote the subgraph of G induced by E’.

2.1 Previous building blocks

A ubiquitous paradigm in the approximate dynamic matching literature is periodic recomputation,
introduced by Gupta and Peng [57]. This approach is particularly useful in conjunction with
sparsification techniques. We will use the vertex sparsification technique introduced by Assadi
et al. [8] in the context of stochastic optimization, and adapted to dynamic settings by Kiss [62].
Combined, these approaches yield the following “reduction” from dynamic matching algorithms
with immediate queries to ones with slower query time.

Proposition 2.1. Let e € (0,1) and @ > 1. Suppose there exists an algorithm A on a dynamic
n-node graph G with update time t,, that, provided i(G) > € - n, supports ty-time a-approximate
size estimate queries w.h.p. Then, there is another algorithm A’ on G that always maintains an
(a+O(e))-approximate estimate v’ in Oc(t, + tq/n) update time. Moreover if the update time of A is
worst-case, so is that of A’, and if A works against an adaptive adversary, then so does A’.

The above proposition, implicit in prior work, serves as a useful abstraction, and so we provide a
proof of this proposition for completeness in Appendix A. As discussed in Section 1.2, this reduction
is one of the crucial ingredients that allows us to bypass the vertex-update barrier.

Another key ingredient we use is the sublinear-time (approximate) maximal matching algorithm
of Benhezhad [12], whose guarantees are captured by the following proposition. (See Lemma 4.6
for a proof of a detailed description of that algorithm, adapted for a variant of this proposition.)

Proposition 2.2. Lete € (0,1/2). Using O (n) time and O (n) adjacency matrix queries w.h.p. in an
n-node graph G, one can compute a value v which approximates fi, the size of some maximal matching
in G, within additive error en. Namely, i > v > [i — en.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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A simple combination of propositions 2.1 and 2.2 (with ¢, = Oc(n)) immediately yields (yet)

another O, (1)-time (2 + €)-approximation algorithm. As we will show, these propositions are also
useful ingredients for breaking the barrier of 2-approximation within the same update time.

2.2 New algorithmic primitive: Robust Almost-Maximal Matchings

To make our algorithms robust against adaptive adversaries we need an algorithm for maintaining
almost-maximal matchings (AMM), which are defined as follows.

Definition 2.3 ([77]). A matching M is an e-almost maximal matching (e-AMM) in graph G if M is
maximal in some subgraph obtained by removing at most € - (G) nodes of G.

Observation 2.4. IfM is an e-AMM in G, then [M| > 1(1—¢€) - p(G) = (3 — §) - u(G).

Peleg and Solomon [77] showed how to deterministically maintain an e-AMM quickly in bounded-
arboricity (i.e., globally sparse) graphs. In Section 5 we show how to robustly maintain such
matchings quickly in arbitrary graphs, proving the following.

Lemma 2.5. Forany e € (0,1/2), there exists a robust dynamic algorithm that w.h.p. maintains an
€-AMM in worst-case update time O (1).

A well-known fact is that a maximal matching that is close to 2-approximate must admit many
length-three augmenting paths (see e.g., [64, Lemma 1]). Our interest in AMMs is in part motivated
by the following slight generalization of this fact, also presented in Appendix A for completeness.

Proposition 2.6. Lete > 0 and c € R and let M be an e-AMM in G such that |M| < (% +¢) - p(G).
Then M admits a collection of at least (% -3c— %) - fi(G) node-disjoint 3-augmenting paths.

3 ALGORITHMS ON BIPARTITE GRAPHS

In this section we illustrate our techniques for the special case of bipartite graphs, for which we
obtain an improved approximation ratio of 1 + Lz +€ = 1707 + €.

\f

3.1 Two-Pass Streaming Algorithm

Here we present our deterministic two-pass streaming algorithm. We first compute an approximately-
maximal matching M; from the first pass.* Then, in the second pass, we compute a maximal b-
matching M, in the graph between matched and unmatched vertices, with capacities k and |k - b],
respectively, where we set the parameters k € N, § € R and b = 1/§ € R later. Finally, we output
an estimate (1 — §) - [M;| + (6/k) - |Mz]. Our pseudocode is given in Algorithm 1.

Algorithm 1 Bipartite Two-Pass Streaming Algorithm
Parameters: € € Ryg, k € N, § e Rygand b =1/5 € Ryy.
1: M; < (e/8)-AMM in G computed from first pass
k (/NS V(Ml)
lk-b] vg V(M)
3: My « maximal b-matching in G[V(M;), V(M;)] computed from second pass
: Output (1 -90) - |M| + (5/k) - |My].

2: assign each vertex v capacity b, =

'S

First, we prove that the above algorithm’s output estimate corresponds to a matching in G.

4We suggest to the reader to think of M; as a maximal matching (i.e., € = 0). We relax M; to be an (€/8)-AMM since this
will be useful in our dynamic implementation that works against adaptive adversaries.
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Observation 3.1. We have that p(G[M; U Mz]) > (1 —=19) - |My| + (5/k) - |My].

Proor. Since G is bipartite, by the integrality of the bipartite fractional matching polytope, to
prove that G’ := G[M; U M;] contains a large matching witnessing the desired inequality, it suffices
to prove that G’ contains a fractional matching x of value Y, x, = (1 = 8) - |M;| + (6/k) - |Ms|.
Indeed, such a fractional matching is obtained by assigning edge values

1-6 eGMl
Xe =
5/]( eeMz\Ml.

This is indeed a fractional matching, since each vertex v has bounded fractional degree, 3,5, x. < 1:
every vertex v € V(M) has one incident M; edge and at most k many incident M, edges, and so
DiesoXe < (1—0)+(8/k) - k = 1, while every vertex v ¢ V(M;) has no incident M; edge and has
at most k - b incident M, edges, and s0 X5, X, < k-b- (5/k) = 1. o

By Lemma 3.1, Algorithm 1 outputs a valid estimate for the matching size, v < u(G). It remains
to prove that v provides a good approximation of i(G). For this, we require the following.

Lemma 3.2. Let M be a maximal b-matching in a bipartite graph G = (L U R, E), with positive
integral capacities b, = ¢ for allv € L and b, = r for allv € R. Then

t-r
M| > u(G) - —.
M| 2 u(G) -

Proor. Fix a maximum matching M* in G. Next, we define the subset of matched nodes in M*
that are also saturated in M. That is, if dy(v) is v’s degree in M, we let
Liy ={uelnV(M)|du(u) =t}
R, ={ve RNV(M") | du(v) =r}.
Let a == |L},,|/|IM*| and B = |R;,,|/|M*| denote the fraction of M* edges with a saturated L and
R node, respectively. Since M is a maximal b-matching in G, each edge has at least one saturated

endpoint, and so a + § > 1. By double counting the edges of M, relying on o + f > 1, and noting

that & - r + (1 — @) - £ attains its minimum of Z;Trr at a = 71, we obtain the claimed inequality.

D du(®) + ) du(o)

vel veR

D dw®)+ D du(o)

* x
UELSat UERsut

|M]

v
|

(M| o b+ M| Ber)

\%
N = D=

(G) - (@ t+(1=a) 1)
£-r

Zﬂ(G).i’+r'

We are now ready to bound the approximation ratio of Algorithm 1.
Lemma 3.3. Foranye € (0,1), Algorithm 1 withb =1+ V2 and k > 68—,7 run on bipartite graph G

computes a (1 + \/% +€) ~ (1.707 + €)-approximation to yi(G).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
384
385
386
387
388
389
390
391
392

111:8 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Proor. Fix a maximum matching M* in G. Next, for i € {0, 1, 2}, let M denote the edges of M*
with i endpoints matched in M;. By definition, and since |M;| = % - |[V(M;)|, we have that

My = [My| +(1/2) - [My]. (1)

Furthermore, since M; is an €’-AMM in G for €’ = €/8, we have that |M;| < €’ - u(G), since at most
€’ - u(G) nodes of G must be removed from G to make M; maximal, and at least one endpoint of
each M; edge must be removed to achieve the same effect. But then, since Mg, M}, M; partition M*,
whose cardinality is |M*| = u(G), this implies that

IM{1+ M| > (1 =€) - p(G). 2
Now, by Lemma 3.2, since M; is a matching in graph G’ := G[V(M;), V(M;)] and k > ﬁ, we have
k-1kb] _ |kb] kb(1-¢€)

Mol 2 10 prr 2 oy MG 2 A ©

Combining equations (1), (2) and (3), we obtain the following lower bound on our output estimate.
5 % kb(l - el) 5
(1=8) 1M1+ O/) ) 2 (1=8) - (M5 + (1/2) - V1) + (/8 - 2= g

=<1—1/b>-|M;|+(1_1/” 1_6') IM;

2 b il
1-

* * . l/b 1—6’
> (M| +|M;]) mln{l 1/b, : b+1}
2) ) , 1-1/b 1-¢

1-€)- : 1-1 —
>(1-€) pG) mln{ /b, 5 + b+1}
) _ 1-1/b 1
1-2€)- : 1-1 —
> ( €) - p(G) mln{ /b, > +b+1}

= (1-2€)-(2-V2) - pu(G),

where the last equality follows by our choice of b = 1+ V2.
Thus, combining with Lemma 3.1, and using that ¢’ = €/8 < 1/8, we find that the output

matching size estimate v := (1 — §) - [M;| + (8/k) - |M;| is indeed a (1 + \/% + e)-approximation,

since

v<p(G) <ve ! )<v~((1+i)~(l+4e’))<v-(1+i+e)
==Y eIV a-2e)) T V2 B V2 o)

as desired. ]

Remark 3.4. A direct extension of the tight example of [65] proves that this analysis is tight, up to
the exact dependence on €.

Lemma 3.1 implies a two-pass streaming algorithm for computing a (1 + ‘/% + €)-approximate
maximum matching: simply store G[M; U M;] and output a maximum matching in this subgraph
by the stream’s end. The space used in the first and second passes are O(n) and O(nkb) = O(n/e),
respectively. More interestingly for our goals, we show in the next section that Lemma 3.3 can be
used to obtain a dynamic approximation of the same quality, in polylogarithmic update time.
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3.2 Dynamic Algorithm

In this section, we show how to (approximately) implement Algorithm 1 in polylogarithmic update
time in a dynamic setting.

THEOREM 3.5. Lete € (0,1). There exists a robust dynamic algorithm A with worst-case update time
tu = Oc(1) w.h.p. and query timety, = O(n) that outputs w.h.p. a valuev € [p(G)/(1+ \/% +¢€), p(G)].

That is, it answers (1 + \/% + €) approximate matching size estimate queries.

Proor. The dynamic algorithm A is based on Lemma 1. Let €’ = €/12. Throughout the updates,
Algorithm A simply maintains an (¢’/8)-AMM in G, denoted by M;, invoking Lemma 2.5. This
immediately implies the desired update time of ¢, = O(1).

We now describe how Algorithm A responds to a query about the maximum matching size.
To answer this query, the algorithm considers a new auxiliary graph G* = (V*, E*), which is
defined as follows. Set b = 1 + V2. For each u € V(M,), create k := [e,ib} copies of the node u in
G*. Next, for each v € V(M;), create |k - b] copies of the node v in G*. Finally, for every edge
(u,0) € G[V(Ml), V(Ml)], create an edge in G* between every pair (u*,v™) of copies of the nodes
u, v. Note that there is a one-to-one mapping between maximal matchings in the new graph G* and
maximal b-matchings in G [V(Ml), V(Ml)].

We emphasize that our dynamic algorithm A does not explicitly maintain the auxiliary graph
G*. When we receive a query about the maximum matching size in G, we explicitly construct only
the node-set V* of G*, based on the matching M;. This takes only O, (n) time since |V*| = O.(n).
We can, however, access the edges of G* by using adjacency matrix queries: there exists an edge
(u*,v*) in G* iff there exists an edge (u,v) between the corresponding nodes in G.

At this point, we invoke Proposition 2.2 with G = G* and precision parameter e’’ = (¢’)3. This
gives us a value ¥/, which is an estimate of |M,|. We now return v := (1 — 1/b) - |My| + (1/bk) - ¢ as
our estimate of ;1(G). Clearly, this entire procedure for answering a query takes O, (n) time. It now
remains to analyze the approximation ratio. Towards this end, we again appeal to Proposition 2.2.
This proposition asserts that the value ¢ satisfies

IMp| > ¢ > Mz — € - [V*| > | M| = (€')% - 16n > |My| — € - p(G), (4)
Therefore, our estimate v satisfies that v/ > v > v/ — € - u(G), where
vii=(1-1/b) - |My] + (1/bk) - [My]. 5)

Now, by Lemma 3.3 and our choice of k = [%] and b = 1+ V2, we have that v < u(G) <
v (14 \sz +€), from which we obtain that v < v < ju(G) and moreover

u(G) Sv'-(l+%+e') < (v+e'-,u(G))-(l+%+e') Sv~(1+é+e')+3€'-p(G).

Rearranging terms, and using that €’ = €/16 < 1/12, we have that

VSp(G)SV~(1+%+6')/(1—36)Sv-(1+i+e)~(l+46)SV~(1+%+166/).

V2

That is, since €’ = €/16, the estimate v output after a query is (1 + \/% + €)-approximate, wh.p. O

Combining Theorem 3.5 and Propostion 2.1, we obtain our result for bipartite graphs.
THEOREM 3.6. Foranye € (0, 1), there exists a (1+ % +¢€) ~ (1.707 + €) -approximate randomized

dynamic bipartite matching size algorithm with O.(1)-update time. The algorithm’s approximation
ratio holds w.h.p. against an adaptive adversary.
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Remark 3.7. By the same approach as the recent dynamic weighted matching framework of [20]
restricted to bipartite graphs, Theorem 3.6 implies a (1 + \/% + €) robust approximation for weighted

bipartite matching with the same update time, up to an exponential blowup in the dependence on €.’

4 ALGORITHMS ON GENERAL GRAPHS

In this section we present our main result: a robust dynamic algorithm maintaining a (2 — Q(1))-
approximation to the size of the maximum matching in a general graph in worst-case O, (1) update
time. As with our algorithm for bipartite graphs, we start with a two-pass semi-streaming algorithm
in Section 4.1, and then show how to approximately implement it dynamically in Section 4.2.1. Note
that unlike in our implementation for bipartite graphs, we will not be able to refer to Proposition 2.2
in a black-box way to estimate the size of the second matching, defined by the matched and
unmatched node sets of the dynamic matching we explicitly maintain. Instead, we unbox the proof
of Proposition 2.2 in Lemma 4.6, so that it can handle queries suitable for our implementation for
non-bipartite graphs. Finally, in Section 4.2.2 we show that our approach allows us to improve the
approximation of any algorithm with approximation ratio in the range (1.5, 2].

4.1 Two-Pass Streaming Algorithm

The key challenge in extending Algorithm 1 and its analysis to non-bipartite graphs is its reliance
on the integrality of the fractional matching polytope in bipartite graphs. This allowed us to focus
on proving the existence of a large fractional matching, which guarantees the existence of a large
integral matching of (at least) the same size. For general graphs this argument fails, and so instead
we search for length-three augmenting paths (3-augmenting paths, for short) with respect to our
first matching, M;, by computing some large b-matching M, in the edge set V(M;) X V(M;). The
main difficulty with this approach in general graphs is that both the endpoints of an edge (u,v) € M;
might get matched (in M) to the same node w, and the resulting triangle w — u — v — w does not
help us in any way to create a 3-augmenting path involving the edge (u,v) € M;.

We overcome this difficulty using random bipartitions (see Algorithm 2). As before, in the first
pass we compute an (€/4)-AMM M; in the input graph G.® Next, we define the following random
bipartition (L, R) of the node-set V. For each matched edge (u,v) € M;, we arbitrarily include one
of its endpoints in L and the other in R. Next, for each unmatched node v € V(M;), we include
the node v in into one of L and R chosen uniformly at random. Subsequently, we assign a capacity
b, := 1 to all nodes v € V(M;) and a capacity b, := b to all nodes v € V(M;), for some integer b
to be chosen later. Let B = (V, E;) be the bipartite subgraph spanned by edges with a single node
matched in M; and endpoints in opposite sides, i.e.,

Ey:={(u,0) €E|ueV(M),ve V(M) {u,0} NL| = |{u,0} NR| = 1}).

In the second pass, we compute a maximal b-matching M, in B w.r.t. the capacities {b,}. Finally,
we return the maximum matching in the subgraph G[M; U M,].

5This extension is not obtained by using the framework of [20] directly, as the latter requires explicit dynamic matchings.
Nonetheless, their arguments can be extended to the value version of the problem.
®As with the bipartite Algorithm 1, we suggest the reader think of M; as being maximal for now (i.e., € = 0).
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Algorithm 2 General Two-Pass Streaming Algorithm

1: My « (e/4)-AMM computed from first pass

2: for edge (u,v) € M; do

3: s(u) « fand s(v) < r

4: for vertex w € V(M) do

5: s(w) ~ Uni{¢,r}

6: let L — {v|s(v) =¢}and R « {v | s(v) =r}

7: Assign each vertex v capacity b, = L oe V(M)
b ve V(Ml)

8: let B« (V,E,), for Es = {(w,0) € E|u € V(My),v € V(My), |{u,0} NL| = |{u,0} NR| = 1}).
9: M, < maximal b-matching in B computed from second pass
10: Output maximum matching in G[M; U M;]

Intuition: The intuition behind Algorithm 2 is as follows: if M is only roughly 2-approximate,
then many 3-augmenting paths exist in G w.r.t. M;, by Proposition 2.6. Now, a constant fraction
of these (specifically, a quarter) “survive” the random bipartition and have their extreme edges
belong to B. Now, for each augmenting path u” — u — v — v’ that survives, either an augmenting
path containing u — v is found in M; U M, or at least one of u” or v’ is matched b times to nodes in
V(M) other than u or v. Next, since nodes in V(M) can only be matched once in Mj, this limits
the number of paths where u and v do not participate in an augmenting path. This implies a large
number of augmenting paths in M; U M, that are disjoint in their V(M) nodes. Finally, since each

node in V(M;) belongs to at most b such paths, some large Q(1/b) fraction of these augmenting
paths are also disjoint in their V (M;) nodes, from which we conclude that M; U M, contains a large
set of node-disjoint augmenting paths w.r.t. Mj, and that G[M; U M;] contains a large matching.

We now substantiate the above intuition. The first lemma in this vein asserts that M; U M,
contains many 3-augmenting paths w.r.t. M; (assuming M, is not already near maximum in size).

Lemma 4.1. If |M;| = (% +c) - p(G), then G[M; U M,] contains a set P of 3-augmenting paths
w.r.t. M that are disjoint in their V(M;) nodes, with expected cardinality at least

B[Pl > (%) - (i : (% —30) - (%H) - %6) - 4(G).

As the proof of Lemma 4.1 is a little calculation heavy, we defer its proof to Appendix C, and
instead prove the following slightly weaker but simpler bound here.

Lemma 4.2. If |M;| = (% +¢) - u(G), then G[M; U M,] contains a set P of 3-augmenting paths
w.r.t. My that are disjoint in their V(M;) nodes, with expected cardinality at least

E[|P]] = (}1 : (% 3 - 776) - % - (% +c))  1(G).

Proor. Fix a maximum set of node-disjoint 3-augmenting paths in G w.r.t. M;, denoted by £*.
By Proposition 2.6, we have |P*| > (% -3c— 72—5) -p(G). Next, let S € P* be the paths u’ —u—v -0’
who “survive” the bipartition, in that (u, u’), (v,0") € E,. By construction, each path in £* survives
with probability exactly 411. Therefore, E[|S|] = i . (% —3c-— 775) - p(G).

Now, for each survived path u’ —u —ov — v’ € S, either both u and v are matched (exactly once)
in My, thus contributing an augmenting path, or at least one of ¥’ and v" must be matched in
M, to b distinct nodes in V(M;). But since each vertex in V(M) is matched at most once in My,
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there are thus at most |V(M;)|/b = 2|M;|/b paths in S whose middle edges do not belong to a
3-augmenting path in M; U M,. Therefore, there are at least |S| — 2|M;|/b many edges (u,v) in M;
whose endpoints are both matched in M, to some (different) nodes u”” and v”’, respectively. Each
such edge contributes an augmenting path to a set £ of the desired size,

E[|P[] = E[|S]] - 2'24” > (}1 . (% C3e- 72_6) _ % . (% +C))  1(G). o

The preceding two lemmas imply the existence of a multitude of 3-augmenting paths that are
disjoint in their V(M;) nodes. We now use these augmenting paths to prove the existence of
numerous (though possibly fewer) augmenting paths that are disjoint in all their nodes. Since

each of the two V(M) nodes of a 3-augmenting path belong to at most b such paths, it is easy to
find some 1/(2b — 1) fraction of these augmenting paths that are disjoint in all their nodes. The
following lemma, resembling [48, Lemma 6], increases this fraction to 1/b.

Lemma 4.3. Let P be a set of 3-augmenting paths w.r.t. My in G[M; U M,] such that each V (M)

(resp. V(M) ) node belongs to at most one (resp., b) paths in P. Then P contains a set of node-disjoint
3-augmenting paths P’ C P of cardinality at least |P’| > } - |P|.

Proor. Consider the graph G’ = (V(M,), E’) obtained by replacing each path u’ —u —v — 2’ in
P with a single edge u” — o’. This graph G’ is bipartite, by virtue of our random bipartition of G.
Now, since this bipartite graph G’ has maximum degree b, it contains a matching of size at least
|E’|/b = |P|/b: the fractional matching assigning values 1/b to each edge has value |E’|/b, and so
G’ contains an integral matching of at least the same value. On the other hand, disjoint edges in G’
have a one-to-one mapping to node-disjoint paths in P, since each node in V(M;) belongs to at
most one such path. Thus, the maximum matching in G’ corresponds to a collection #* C P of
node-disjoint augmenting paths in G[M; U M,]| w.r.t. Mj, of cardinality at least |P’| > |P|/b. O

The three preceding lemmas imply that G[M; U M;] contains a large set of vertex-disjoint
3-augmenting paths w.r.t. M;, assuming this latter matching is not already large. As we now show,
this implies that G[M; U M,] contains a better-than-2-approximate matching.

THEOREM4 4. Lete € (0,1/4). Then, Algorithm 2withb = 9 satisfies i(G) > E[u(G[M;UM,])] >

(3+ 135 —€) - u(G), and is thus (5 + 77 — €)™ < 1.973(1 + 2€)-approximate in expectation.

144 44

Proo¥. Let [M;| = (3 +c¢) - p(G), where ¢ € [—€/8,1/2], with the lower bound on ¢ following
from Observation 2.4 and M being an (¢/4)-AMM. Let £’ be a maximum set of vertex-disjoint
3-augmenting paths w.r.t. M in G[M; U M;]. Then, augmenting along these paths, we find that
M; €p P’ contains a matching (hence of size at most u(G)) of the desired expected cardinality.

E(|M D P11 = BlIM] + |#']]

(e )] 5
€
8"
1

:(%+m—e)-p(G).

Above, the first inequality follows from Lemma 4.1 and Lemma 4.3, the second inequality mainly
relies on the parenthetical expression being increasing in ¢ > —€/8 (for our choice of b = 9). Finally,
the equality holds by our choice of b = 9. O
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4.2 Dynamic Algorithms

In this section we provide the dynamic algorithms yielding our main results, theorems 1.1 and 1.2.
As with the bipartite case, our general approach is to approximately implement our two-pass
streaming algorithm in a dynamic setting. Unlike the algorithm for bipartite graphs, here we need
to (slightly) unbox the sublinear-time algorithm of [12] to find a large set of edges in M; which
belong to 3-augmenting paths in G[M; U M,], as explained below.

4.2.1 Breaking the barrier of two in polylog time. In this section, we present a robust dynamic
(1.973 + €)-approximate maximum matching size with worst case update time of t, = O. (1), and a
query time of t; = Oc(n), provided y(G) > en. This, combined with Proposition 2.1, implies our
main result, Theorem 1.1.

For our dynamic (approximate) implementation of Algorithm 1, which works on bipartite graphs,
all we needed was to estimate |M;|. In contrast, for our dynamic (approximate) implementation of
Algorithm 2, we will need to estimate the size of the set # as guaranteed by Lemma 4.1. Specifically,
we note that the proofs of Lemmas 4.1, 4.3 and 4.4 imply the following observation.

Observation 4.5. Let ]\711 C M be the set of edges in M; whose two endpoints are matched in M, in

Algorithm 2 run with b = 9. Then, |M;| + % -E [|]\711|] > % and also u(G) > |Mp| + % M.

To estimate |M; | efficiently, we make use of the following extension of the algorithm of [12].

Lemma 4.6. Consider a graph G’ = (V',E’) with |V’| = n’, and a matching M with V(M) C V'
that is not necessarily part of G’ (i.e., we might have M ¢ E’). For any matching M’ in G, let kyy
denote the number of edges in M both of whose endpoints are matched in M’. There is an algorithm
which, given adjacency matrix query access to the edges of G’, w.h.p. runs in O (n’) time and returns
an estimate x € [kyy — €20/, kyr] for some maximal matching M’ in G’.

This lemma follows from the work of [12] rather directly, though it requires some unboxing of
the results there, due to the organization of that work. We substantiate this lemma in Appendix B.

Given the above, we are now ready to prove the main result of this section, which is summarized
in the theorem below.

THEOREM 4.7. Foranye € (0, 1/4) there exists a robust dynamic matching size estimator algorithm
A with worst-case update time Oc(1) that, provided p(G) > € - n, supports Oc(n)-time queries and
outputs a (1.973 + €)-approximate estimate w.h.p.

Proor. The dynamic algorithm A is based on Algorithm 2. For its updates, it maintains an
(€/4)-AMM M, in the input graph G, using Lemma 2.5, and a balanced binary search tree (BST)
of edges in the graph, allowing for logarithmic-time insertion, deletion and edge queries. This
immediately implies a worst-case update time of t,, = O, (1).

We now describe how Algorithm A responds to a query about the maximum matching size. To
answer this query, the algorithm considers a new auxiliary graph G* = (V*, E*), which is defined as
follows. For each node u € V(M;), create a node 0,, in G*. Next, for each node v € V(M,), create b
nodes 1,, ..., b, in G*. Finally, for every edge (u,v) € E,, withu € V(M;) and v € V(M;), create an
edge (0y,i,) in G* for all i € {1,..., b}. Note that there is a one-to-one mapping between maximal
matchings in the new graph G* and maximal b-matchings in B.

We emphasize that our dynamic algorithm A does not explicitly maintain the auxiliary graph
G*. When we receive a query about the maximum matching size in G, we explicitly construct only
the node-set V* of G*, based on the matching M. This takes only O(n) time. We can, however,
simulate adjacency matrix queries in G* efficiently: there exists an edge (0,, i,) in G* iff there exists
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an edge (u,v) between the corresponding nodes in G, verifiable in O(log n) time using our edge-set
BST.

At this point, we estimate the size of M, by invoking Lemma 4.6 with G’ = G* and M = M;.
This gives us, in time Oc(n) a value satisfying k € [|]\’/fl| — €?n, |M1|], w.h.p. We now return
vi= M| + % -k as our estimate of y(G). All in all, our algorithm has query time ¢, = Oc(n).

It remains to analyze the approximation ratio. For this, we observe that, by our hypothesis that
u(G) = €-n,

BUT > B[+ 5 (8 - )|

1 _ e’n
= I+ || - 5
u(G) 2
= 1.973 - (1+2¢)
H(G)
= 1.973 - (1 + 2¢) —e n©
H(G)

D v 6

1.973 - (1 + 5¢) ©)
In the above derivation, the second inequality follows from Observation 4.5. Similarly, we have
w.h.p.:

1 -
v < M|+ 5 M| < p(G). (7)

The second inequality in the above derivation again follows from Observation 4.5. From (6) and (7),
we conclude that we return in response to each query a 1.973(1 + 5¢)-approximation to y(G) in
expectation. Therefore, by standard Chernoff bounds, running O, (log n) copies of this algorithm
(increasing update and query time appropriately) and taking the average of these will then result
in a 1.973(1 + O(€)) approximation of the desired value, w.h.p. Reparameterizing € appropriately,
the theorem follows. O

Combined with Observation 2.1, the above theorem implies our main result, Theorem 4.7.

4.2.2  New time/approximation tradeoffs. In this section we show our secondary result: a black-
box method to improve dynamic matching algorithm’s approximation ratio, at the cost of only
outputting a size estimate. We start with the following observation.

Proposition 4.8. Let G be an n-node graph, € € (0,1) and a > 1. Then, given an e-AMM M’ and
a-approximate maximum matching M’ in G, one can compute in O(n) time a matching M in G
which is both a-approximate and an e-AMM.

Proor. The subgraph G[M’ U M”'] has maximum degree two, and is thus the union of paths
and cycles. Let M be the matching obtained by taking from each connected component C in
G[M’ U M"] either the set of edges of M’ or M”’ that are most plentiful in C, breaking ties in favor
of M’. By construction, it is clear that M is a matching, and that moreover |[M| > |M"’|, and so M is
a-approximate. On the other hand, M matches all nodes of M’ in each component, and therefore
overall. That is, after removing at most eu(G) nodes in V \ V(M) € V' \ V(M’), we obtain a graph
in which M is maximal. That is, the matching M is also an e-AMM. m]

We are now ready to prove Theorem 1.2, restated below for ease of reference.
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THEOREM 1.2. For any a > 1.5, a dynamic a-approximate matching algorithm with update time

t,, implies a dynamic (a -Q ((1 -6(L- %))2))—approximate matching size estimator with update

time O(t,).

PROOF. Let € > 0 be some sufficiently small constant. We describe how to obtain a new dynamic
matching size estimator A for G, with update time O, (t,,) that, provided u(G) > e-n, supports O (n)-
time queries and outputs a f-approximate estimate w.h.p., for some f = a — Q((1-6(1/a—1/2))?)).
The theorem then immediately follows from Proposition 2.1.

The algorithm A works as follows. It maintains an e-AMM M, invoking Lemma 2.5, taking Oc(1)
update time. It also maintains @-approximate matching M!’, by running the dynamic algorithm
guaranteed by the theorem’s hypothesis, taking t, update time. Therefore, Algorithm A has an
overall update time of ¢, + O (1) = Oc(t,).

Upon receiving a query, Algorithm A first invokes Proposition 4.8 to obtain a matching M; (based
on M; and M;’) that is simultaneously an e-AMM and an a-approximate maximum matching in G.
This takes O(n) time. The rest of the query algorithm remains exactly the same as in Section 4.2.
This implies that Algorithm A has an overall query time of O (n).

We now analyze the approximation guarantee of A. Towards this end, observe that as o > 1.5,
we can write 1 = 1 + ¢ where 0 < ¢ < 1/6. So, we have that |[M;| = (} +z) - 4(G) for some z > c.
Therefore, by Lemma 4.2 and Lemma 4.3, there exists some set P’ of node-disjoint length-three
augmenting paths w.r.t. M; in G[M; U M;] whose cardinality satisfies

|P’| 1 {1 (1 7¢\ 2 (1
i@ 259 =5 (55 F) -5 (5))

Augmenting along these paths with respect to M;, we obtain a new matching in G[M; U M;] of
cardinality at least (% +2z+ f(2)) - u(G). Now, for b > 2 (as we will choose), this matching size
is decreasing in z, as observed by taking the derivative of 1/2 + z + f,(z) w.r.t. z. Therefore, the
matching size is minimized at z = ¢, and we find that p(G[M; U M;]) = 1/2 + ¢ + f,(c). Taking
another derivative, this time with respect to b, we find that this expression is minimized (ignoring
the € dependence) at b* = ml(i_zzcc). Note that b > 16, as ¢ € (0,1/6). This optimal b* need not be an

integer, however, and so we take b = [b*] < %b* in our algorithm, and find that M; U M, contains a

. . . 9(1-6¢)?
matching of size at least y(G) times 1/2+z+ f;(2z) > 1/2+c+f%b*(c) > 1/2+C+m—0(6/b).

Moreover, some b - f,(z) many edges M, C M, have both of their endpoints matched in the b-
matching M.

We conclude that E[u(G[M; U M,])] gives a strictly-better-than-a approximation to u(G) (again
using that ¢ < 1/6). Specifically, the gain we get in the approximation ratio is of the order of
O((1-6¢)%) = 0((1 - 6(1/a — 1/2))?). Now, using the fact that u(G) > en and we are running
the same query algorithm as in Section 4.2, our estimation using the sub-linear-time algorithm
(Lemma 4.6) gives a strictly-better-than-a approximation to (G) in expectation. As before, taking
the average of O(log n) copies of this algorithm will provide the same bound w.h.p., at an additional
logarithmic multiplicative overhead to the update and query times. O

Remark 4.9. We note that the reduction of Theorem 1.2 preserves robustness and worst-case update
time.
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5 AMMS AGAINST ADAPTIVE ADVERSARIES

In this section we prove Lemma 2.5. That is, we provide a robust dynamic algorithm for maintaining
an e-AMM in worst-case polylogarithmic update time. But first, we motivate our algorithm, and
characterize the kind of matching we wish to compute.

We first recall a useful tool in the literature, namely edge sparsification: maintaining a sparse
subgraph of G containing a large matching-a so-called matching sparsifier. Such sparsifiers naturally
allow to achieve speedups in the algorithms needed for Proposition 2.1, as a large matching in
a sparsifier can be computed quickly. One influential such sparsifier that we will use are kernels,
introduced by Bhattacharya et al. [25].

(e,d)-kernel if K’s maximum degree is at most d and each edge e € E \ Ex has at least one endpoint
of degree at least d(1 — €) in K.

Definition 5.1. Fore > [0,1] andd € N, a subgraph K = (V,Ek) of graph G = (V,E) is an

These sparsifiers will play an integral role in robustly and efficiently maintaining an AMM in
this section. We start by motivating their use in computing AMMs in a static setting.

5.1 From kernels to AMMs

To motivate the interest in bounded-degree graphs, we recall the following observation, which
follows from the fact that the 21(G) endpoints of a maximum matching form a vertex cover (i.e.,
are incident on each edge of the graph).

Fact5.2. Let G = (V,E) be a graph of maximum degree A. Then |E| < 2u(G) - A.

When d and p(G) are small, Fact 5.2 and Definition 5.1 imply that (€, d)-kernels of G are quite
sparse subgraphs compared to the size of a maximum matching contained within them. In particular,
since maximal matchings are computable in linear time, in kernel K computing a maximal matching
requires only |Ex| < 2u(K) - d = O(u(G) - d) time. The following result of [41] implies that
essentially the same amount of time is needed to compute a near-maximum-weight matching in K.

Proposition 5.3. Let G = (V, E, w) be a weighted graph. There exist a deterministic algorithm for
computing a (1 + €)-approximate maximum weight matching of G in time O (|E|).

We now explain how to find large matchings in a kernel K that allow us to obtain an AMM of
G. For this, we will need to upper bound the number of high-degree nodes in K. Specifically, for
an (¢, d)-kernel K of graph G, we denote by Hx := {v | dx(v) > d(1 — €)} the set of high-degree
nodes in K. We will wish to argue that a removal of few high-degree nodes in the kernel yields
a subgraph in which our matching is maximal. We therefore need to prove that the number of
high-degree nodes is itself small in terms of y(G).

Lemma 5.4. Let K = (V, Ex) be an (¢, d)-kernel K of G with e < 1/4. Then |Hk| < 4p(G).

ProoF. We consider the fractional matching x € RE where x, = 1[e € Ex]/d. By the degree
bound of X, this is a feasible fractional matching in G. Using this fractional matching, we can show

that
1 3
5'(1_6)’|HK| < Z er Szxe < E'IJ(G),

vEHK edv e

where the first inequality follows from the definition of Hix and possible double counting of edges,
and the last inequality follows from the integrality gap of % of the factional matching polytope.
Simplifying the above and using € < 1/4, we have that indeed |Hg| < (3/(1—€))-p(G) < 4u(G). O
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We now show that it is sufficient to match the (1 — ®,(1))-fraction of vertices of Hx in order to
find an AMM in G through Lemma 5.5. Lemma 5.6 then proves that there exists a static algorithm
with running time O, (k - u(G)) for computing an AMM of G given access to kernel K.

Lemma 5.5. Let K = (V,Ek) be an (¢, d)-kernel of G = (V,E), fore € (0,1/4) andd > % Then,

a maximal matching M in K that matches at least a (1 — c - €)-fraction of Hk is a 4ce-AMM in G.
Moreover, such a matching exists for ¢ = 2.

Proor. First, we argue that such a matching M, if it exists, is indeed a 4ce-AMM in G. We recall
that every edge in E \ Ex has a high-degree endpoint in K. Therefore, if we remove the ce fraction
of high-degree nodes Hx unmatched by M, each edge in E \ Ex in the resulting graph G’ has at
least one endpoint matched in M. On the other hand, every edge in Ex has an endpoint matched in
M, by maximality of M in K. We conclude that after removing ce - |Hk| < 4ce - u(G) nodes in G
(with the inequality relying on Lemma 5.4), we obtain a graph G’ where M is maximal. That is, M
is a 4ce-AMM.

We now argue the existence of such a matching M for ¢ = 2. Since H has maximum degree d > é,
by Vizing’s theorem [81] it can be (d + 1)-edge-colored, i.e., decomposed into (d + 1) matchings.
A randomly-chosen color in this edge coloring is a matching M’ that matches each edge with
probability #, and thus it matches each high-degree vertex v with probability at least

Pr[o matched] > d(1-¢€)/(d+1) = (1—€)/(1+€) > 1 - 2e.

Finally, extending this matching M’ to also be maximal in K by adding edges of K greedily then
proves the existence of the desired 8¢-AMM contained in the kernel K. O

We now turn to making the above proof of existence constructive.

Lemma 5.6. Given an (¢,d)-kernel K = (V,Ex) of G = (V, E), one can compute an e-AMM in G in
deterministic time O¢(d - u(G)).

ProOF. Let €’ = €/12. By Fact 5.2, the number of edges in K is at most |Ex| = O(d - p(G)). We
then compute a (1 + €’)-max weight matching M’ in the graph G with edge weights equaling the
number of high-degree nodes incident on them, w, = 3¢, 1[v € Hx] € {0, 1, 2}. By Proposition 5.3,
this can be done in deterministic time O.(d - (G)). By Lemma 5.5, this guarantees that at least a
(1-2€")/(1+¢€") = (1 - 3€’) fraction of high-degree nodes in K are unmatched by this dynamic
subroutine. We then extend M’ to also be maximal in K, by scanning over the |Ex| = O(d - p(G))
edges of K (in the same deterministic time) and adding them to M” where possible. By Lemma 5.5,
this results in a 12¢’-AMM, i.e., an e-AMM, after a total of O¢(d - p(G)) deterministic time. O

So far, we have provided a static AMM algorithm with deterministic time O¢(d- u(G)), provided we
have access to a kernel. To dynamize the above, we first show how to maintain a kernel dynamically
through periodic recomputation.

5.2 Periodic kernels and AMMs

In [82], Wajc provided a method for rounding dynamic fractional matchings to matching sparsifiers,
and from these (by methods underlying Algorithm 3), we can obtain integral matchings. Crucially
for our needs, his framework was robust, and allowed for worst-case update times. Unfortunately
for us, the lemma statements in his work do not immediately imply a robust dynamic kernel
maintenance. However, they do allow for kernel queries, with running time O(d - 1(G)).

Lemma 5.7. Lete € (0,1) and d = O.(1) be sufficiently large. Then, there exists a robust algorithm
with worst-case update time t, = O (1) allowing for (e, d)-kernel and e-AMM queries in worst-case
query time ty = Oc(d - u(G)). The query’s outputs are a kernel and an e-AMM w.h.p.
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Given the ability to query a kernel, the ability to query an AMM then follows directly from
Lemma 5.6. As the proof and presentation of an algorithm allowing for kernel queries essentially
requires repeating verbatim numerous lemmas in [82], we defer its proof to Appendix D.

We now turn to designing a robust dynamic algorithm that always maintains an AMM.

5.3 Robust dynamic AMMs

So far, we have provided a method to answer AMM queries in a dynamic setting. Lemma 5.8 proves
that once an AMM is computed it remains an AMM for ~ € - u(G) updates.

Lemma 5.8. Lete € (0,1/2). If M is an e-AMM in G, then the non-deleted edges of M during any
sequence of at most € - u(G) updates constitute a 66-AMM in G (during the updates).

ProoF. Let G, M and G’, M’ be the graph and matching before and after the updates, respectively.
Since each update can decrease the size of the maximum matching size by at most one, we have

% 1(G) < (1-€) - p(G) < u(G).

Now, recall that for some set of vertices U C V of size at most |U| < € - p(G) nodes from G, the
matching M is maximal in G[V \ U]. Now, after these € - u(G) updates, it might be that 2¢ - p(G)
edges in G’ are now not incident on edges in M’. (The factor of two arises due to edges of M that
are deleted leaving two uncovered edges, addressable by removing two more nodes). That is, after
removing a node set U’ C V of size at most |U’| < 3€e - u(G) < 6¢ - u(G’) nodes from G’, we obtain
a graph G’[V \ U’] where M’ is maximal. That is, M’ is an O(€)-AMM in G’. o

This “stability” of AMMs again lends itself to the periodic re-computation framework of [57],
which, together with our algorithms for querying AMMs, allow us to maintain AMMs (always).

Lemma 2.5. For any e € (0,1/2), there exists a robust dynamic algorithm that w.h.p. maintains an
€-AMM in worst-case update time O (1).

Proor. We will run the dynamic AMM query algorithm A of Lemma 5.7, whose update fits
within our update time budget. We will periodically query A, and spread this computation over
these periods to guarantee low worst-case update time. Specifically, we will divide the update
sequence into epochs, where if the graph G at the start of epoch i is G;, then the epoch has length
t € [e-u(G)/3,e- u(G;)]. In order to determine the length of the epochs, we run the deterministic
dynamic (2 + €)-approximate fractional matching algorithm of [27], which in particular gives us
a2+ e < 3-approximation of ;(G;) in worst-case update time O, (1), again fitting within our
time budgets. Now, during phase i, we spend the time ¢, for the e-AMM query subroutine of
A, so as to finish computing M;. The amount of time spent per update to achieve this goal is at

most LSZ((Z% = O,(1), again fitting within our time updates. We now describe and analyze the

matchings maintained by this algorithm (these are not always M;).

By Lemma 5.8, we need to provide a matching M, , at the start of each phase i + 1 which is an
O(€)-AMM in G4, thus guaranteeing that the non-deleted edges of M/, ; remain an O(e)-AMM.
Reparameterizing appropriately will then yield the desired result. It remains to define our matchings
M. Using our estimate of ;(G) obtained by the dynamic fractional matching, we test whether
u(Gi) € [1/€,10/€]. If this is the case, then M, , is obtained by querying the AMM algorithm A at
the beginning of phase i + 1, in time O (1). (This relied on p(Gi41) < p(Gi) +6 < p(G;) - (1+¢€) =
Oc(1).) By the properties of A, the matching M;,, is an e-AMM in G;;; w.h.p. Now, if conversely
1(G;) > 10/e, then we have that

S HG) < (1-0) w(Gi) < p(G) ~ b < p(Grn).
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Now, M;, is an e-AMM in G;, which is obtained from G;;; by at most € - u(G;) < 2€ - p(Giyr)
updates. Therefore, by Lemma 5.8 M; is a 12e-AMM in Gj;;. We therefore take M, , to be M;.
Reparameterizing € appropriately, the lemma follows. O

6 CONCLUSION AND FUTURE DIRECTIONS

We presented the first dynamic matching (size estimation) algorithm breaking the approximation
barrier of 2 in polylogarithmic update time. While this presents a major advance in our understand-
ing of the dynamic matching problem, many questions remain. We mention a few such questions
which we find particularly intriguing, and some progress on these following the publication of this
paper’s conference version.

Explicit fast matching. In our work we show how to maintain a better-than-two approximate
estimate of the maximum matching size. Can one also maintain an explicit matching of similar
approximation ratio within the same time bounds? We note that unless all greater than 1.5 approxi-
mation ratios are possible for explicit matching in polylog time, then Theorem 1.2 would imply a
separation between the attainable time/approximate tradeoffs for explicit dynamic matching and
its size estimation counterpart.

Better approximation in o(n) update time? Known conditional impossibility results rule out an
exact algorithm with pi=Q) update time [2, 40, 58], but the best approximation ratios currently
known are % + €[22, 23, 56, 62]. Can one do better in o(n) time? Following the publication of the
conference version of this paper, the sublinear+streaming connection to dynamic algorithms has
resulted in better time/approximation tradeoffs for the value version of the problem [10, 18, 29, 30].
Again, one may ask, can explicit matching algorithms with such improved guarantees be obtained?
In a similar vein, sub-logarithmic speedups were obtained for (1 + 0(1))-approximate matching [5].
Can one obtain stronger speedups for (1 + €)-approximate matching? On the flip side, can we show
any (conditional) hardness of approximate dynamic matching, for any approximation ratio?

Unconditional impossibility results. With this work we bring dynamic matching with better-
than-two approximation into the polylogarithmic update time regime—the range where uncondi-
tional impossibility are known for numerous data structures and dynamic algorithms. Can such
unconditional impossibility results be proven for (approximate) dynamic matching?

More applications of robust AMMs. A plethora of recent developments in fast (static) graph
algorithms rely on invocations of adversarially-robust dynamic algorithms (i.e., ones that work
against an adaptive adversary). Our work adds almost-maximal matchings to the list of algorithmic
subroutines useful for this approach. (Subsequently, [32] derandomized this result, though at the
cost of amortization.) Robust AMMs played a key role for dynamic problems, both here, in the follow-
up [10], and in the bounded-arboricity matching algorithms of [77]. What further applications
can our robust dynamic AMM algorithms for arbitrary graphs find for other (dynamic and static)
algorithmic problems?

Acknowledgements. We thank the anonymous SODA and J.ACM reviewers for helpful comments.
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APPENDIX
A  PROOFS OF BASIC BUILDING BLOCKS

Here we substantiate some key propositions implied by prior work. We stress that we provide
proofs mostly for completeness, due to our propositions being slight variants or being differently
organized than their previous counterparts. That is, we do not claim novelty of the underlying
ideas of this section.

A.1 Proof of Proposition 2.1

A key component of Proposition 2.1 is the following vertex sparsification technique for dynamic
settings by Kiss [62], adapted from such a vertex sparsification of Assadi et al. [9] in the context of
stochastic matching.

Proposition A.1. There exists a randomized algorithm which for each update to G makes an update

toO (lofj ") contracted subgraphs, such that w.h.p. throughout any (possibly adaptively generated)
update sequence, one subgraph G’ has a matching of cardinality p(G) - (1 — O(€)) and nodeset of
sizen’ < p(G)/e. Moreover, any matching M’ in G’ can be transformed into a matching in G of
cardinality |M'| in time O(|M'|). For any matching M’ in any G’ undergoing edge updates we can

maintain a matching of cardinality |[M’| in G with O(1) worst-case update time.

Proor. Consider a random graph G’ obtained by hashing each node into one of k/e buckets, for
some integer k, and contracting all nodes that are hashed into the same bin. That is, two contracted
nodes neighbor in G’ if their corresponding bins contain neighboring nodes in G. By storing for each
edge e in G’ a list of edges inducing e, we can easily transform a matching M’ in G’ to a matching in
G of the same cardinality in time O(|M’|). The majority of this proof is thus dedicated to showing

that O (IOgn) such contractions for each value k = [(1 +¢€)'] with i € [log,, (n)] C [O (10%)]

€2

suffice to guarantee that one of these G’ contains a matching of cardinality at least u(G) - (1 — 3¢).
Fix an integer i and k = [(1 + €)'] < n. Fix a matching M in G of cardinality |M| < k. The

probability that a vertex v incident on some edge of M is contracted into a separate bin than the
other 2|M| — 1 endpoints can be expressed as follows:

2-€

2k
p ) >(1-5-¢).

(1-1/(kje —1)3MI=1 > (1 -
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Thus, by linearity, the number X of such endpoints of edges of M satisfy that E[X] > (1-5¢) - 2|M].
Observe that X is the sum of negatively associated random variables, by [42], since the hashing of
vertices is equivalent to the folklore balls and bins experiment, so by standard Chernoff Bounds,

Pr[X <2-|M|-(1-6¢€)] <exp (—@(elel)) .

If at least 2|M|- (1—6-¢) endpoints of M are hashed to unique vertices then at least |M|—2|M|-6¢ >
|M]| - (1 —12¢) edges of M had both of their endpoints assigned to unique vertices in G’ hence are
present in G’.

We say that the contraction is bad if for some matching M of cardinality in the range [k, k(1+€)+1]
if the number of edges of M that are not present in G’ is lesser than |M| - (1 — 12¢). Otherwise,
it is good. Now, there are Zfz(:e)ﬂ (") < ke- nk(*e)+l < pk(1+€)+2 possible matchings of size
|M| € [k, k(1 + €)]. Therefore, by randomly contracting the graph for range [k, k(1 + €) + 1] some
c102g " many times, for a sufficiently large C, we have that the probability that all contractions for

range [k, k(1 +¢€) + 1] are bad is

Clogn _3

Prl[all contractions are bad] < n*(*€)*2 . exp (—@(ezk) —
€
Therefore, taking union bound over the log,, (n) possible value of k, we find that with high
probability, each range [k, k(1 + €) + 1] has some good contraction.
2
1053 n) contracted graphs, there exists a good contraction

We conclude that, w.h.p., among the O (

for every k = [(1+¢€)'], and in particular for k < y(G) < k(1 +¢€) + 1. That is, one of the contracted
graphs contains a large matching, u(G”) > u(G) - (1 — 12¢), and has few nodes, n’ < k/e < u(G)/e,
as desired. O

We now proceed towards proving Proposition 2.1, restated below for ease of reference.

Proposition 2.1. Let ¢ € (0,1) and a > 1. Suppose there exists an algorithm A on a dynamic
n-node graph G with update time t,, that, provided i(G) > € - n, supports ty-time a-approximate
size estimate queries w.h.p. Then, there is another algorithm A’ on G that always maintains an
(& + O(e€))-approximate estimate v’ in O (t, + tq/n) update time. Moreover if the update time of A is
worst-case, so is that of A’, and if A works against an adaptive adversary, then so does A’.

’

ProoF. Let € = o’ - € - 2 (here a’ is some O(1) factor). Using the algorithm described by
Proposition A.1 we can generate T = O, (1) graphs G; : i € [T] with the following properties: A)
1(G;) < p(G) for all i € [T], B) There is an i € [T] satisfying that u(G;) > (1 —€’) - u(G) and
u#(Gi) 2 n- ¢, C) All sub-graphs G; undergo a single update when G undergoes an update.

Our algorithm proceeds as follows: on all T generated sub-graphs we run algorithm A at all
times. Furthermore, on each sub-graph we maintain an O(1) = a’-approximate estimate on the
maximum matching size fi; using algorithms from literature (randomized against an adaptive
adversary) in O, (1) worst-case time. For all sub-graphs we monitor the relationship of f; and |V;|.
If fi; increases above the threshold of |V;| - € we start a run of the query algorithm on G; returning
us an a-approximate estimate of y1(G;) which will define v;. We distribute the work of this query
over |V;| - (¢)? updates and re-initiate the query every |V;| - (¢)? updates. The matching size queries
of G; always run on the state of G; at the start of the query (even though G; undergoes updates
during it’s run). If j; decreases bellow the threshold of |V;| - € we stop the querying process and set
v, = 0. Note that at initialization we just set v = p(G;) for all i € [T] statically.

At all times we maintain the output max;cg v}, the maximum of our matching size estimates.
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Algorithm 3 Vertex set sparsification

1: Initialize v; = p(G;)

2: Maintain contracted sub-graphs G; and a’-approximate matching size estimates fi;
3: Run algorithm A on every G;

4: fori € [T] do

5: if [i; becomes at least |V;| - € then

6: Initiate a matching size query of G; in O(t,) time on the current state of G;
7: Distribute the work over the next |V;| - €2 updates
8 Repeatedly recompute distributed over every |V;| - €2 updates
9: Let v; be the latest finished estimate
10: if [i; reduces below |V;| - € then
11: Terminate the querying process of p(G;)
12: Set v <0

13: At all times return max;e[r] v;

We first discuss the update time of Algorithm 3. The maintenance of the T contracted sub-graphs
and matching size estimates fi; takes O (1) w.c. time. Running algorithm A on each of the contracted
sub-graphs takes update time O, (t,,) (and is worst case if A has worst-case update time). A matching
size query will only be initiated and run on contracted sub-graph G; if fi; > p(G;)/a’ = |Vi| - €, that
is if u(G;) > |Vi| - €/2. Each re-computation of the estimate v] will be distributed over some |V;] - €?
updates, that is, it will take O(t4/(|Vi| - €%) = Oc(tq/|Vi|) worst-case time. Finding and returning
the maximum matching size estimate v; takes Oc(1) = O(T) time. Therefore, the total update time
of the algorithm is Oc(ty + tq- B/n) and is worst-case if A has worst-case update time. Furthermore,
all components of the algorithm but A are randomized against an adaptive adversary..

It remains to argue that the algorithm maintains v’ such that v < u(G) <v' - (a + O(¢)) at all
times. Say that G; is a ’successful’ contraction if G; satisfies property B). By Proposition A.1, w.h.p.,
there is a successful contraction at all times, at time point 7; let that contraction be G;. We will
separate two instances:

i) Throughout the run of the algorithm at all times it held that ji; > |V;| - e: The algorithm has
ran the matching size query sub-routine on G; after every |V;| - €* edge updates. Let G;° be the past
state of the graph G; when the algorithm started calculating the current estimate (v;")". By the
scheduling of this calculation we know that 7y > 7; — €% - |V;|. Hence, p(G;°) > p(G*) — €* - |V;],
where p(G") > p(G) - (1 —€’) and pu(G;") > |V|; - €. Hence, (v;')" - a - (1+0(€)) = p(G).

ii) At time 7; G; is a successful contraction but at some prior point during the run of the algorithm
[I; became less than |V;| - €: we know that at some point 7y prior to 7; ji; must have increased above
[Vi| - €. Define the state of G; at the two time points as G;* and G;" respectively. As at 7; G;" is
a successful contraction we know that (G;") > |V;| - €’. When fj; crossed the threshold at 7 it
held that /i; = |V;| - € that is u(G*); < |V;| - € - ar. As per each update the maximum matching size
may only change by 1 we have that 7; — 7y > |V;| - € - a. Hence, by time 7; the algorithm already
had an updated estimate of v/ (that is one calculated in the previous €* - |V;| updates such that
1(G;) = |V;| - € during these updates). Here we can refer back to the previous case (pretending the
algorithm initialized at 7). O

A.2 Proof of Proposition 2.6

We now give a proof extending standard arguments that small maximal matchings contain many
length-three augmenting paths to showing that small e-AMM likewise contain many such paths.
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Proposition 2.6. Lete > 0 and c € R and let M be an e-AMM in G such that |M| < (% +¢) - p(G).
Then M admits a collection of at least (5 — 3¢ — %) - pi(G) node-disjoint 3-augmenting paths.
Proor. The above bound for € = 0 is well-known (see, e.g., [64]). We reduce to this case by

removing the at most € - (G) nodes in V \ V(M) needed to make M maximal. This yields a graph
G’ with u(G’) = p(G) - (1 - ¢), and therefore

1 % + ¢ ’ 1 ’

M| <[=+c]-pu(G) < (G < [z +c+el|-pu(GhH,

2 1—-€ 2

Consequently, by the special case of this proposition with € = 0, we have that the maximum number
of disjoint 3-augmenting paths that M admits in G’ (and hence also in G) is at least

(% - 3(c+e)) -u(G') = (% - 3(c+e)) (1-¢)-p(G) = (% —-3(c+e) — g) - 1(G),
as claimed. ]

B PROOF OF LEMMA 4.6

In this section we prove Lemma 4.6 which we re-state for convenience.

Lemma 4.6. Consider a graph G’ = (V',E’) with |[V’| = n’, and a matching M with V(M) C V'
that is not necessarily part of G’ (i.e., we might have M € E’). For any matching M’ in G’, let kyp
denote the number of edges in M both of whose endpoints are matched in M’. There is an algorithm
which, given adjacency matrix query access to the edges of G, w.h.p. runs in O.(n’) time and returns
an estimate x € [kyy — €2n’, kyr | for some maximal matching M’ in G’.

Our proof of this lemma is a minor modification of the argument from [12, Section 5]. We claim
no novelty for this proof. To make our notations consistent with the ones used by [12], we will focus
on an n-node graph G = (V, E) (different from our dynamic input graph). Let 7 be a permutation
of the edges of graph G = (V, E). Let GMM(G, ) stand for the output of the greedy maximum
matching algorithm when run on graph G with edge ordering 7.

B.1 Building blocks

Lemma B.1 is explicitly concluded by [12], whereas Lemma B.2 is a slight modification of a con-
struction appearing in Section 5 of [12] we need to fit our arguments.

Lemma B.1. There is a randomized algorithm that in O(IE|/IV]) expected time returns the matched
status of a random v under GMM (G, ), for random n. This algorithm relies on list access to the edges
of G.

In order to prove Lemma 4.6 we have to work with adjacency matrix queries. Based on a slight
modification of Section 5 of [12] we can derive the following tool for this purpose.

Lemma B.2. Let § € (0,1/2). For a given n-node graph G = (V,E) there exists a supergraph

H = (Vy,Eg) of G (i.e, Vg 2V and Ey 2 E) satisfying the following:

|Ex| = ©5(n).

V| = ©5(n?).

At most § - n nodes of V are matched to nodes in Vi \ V. by GMM(H, ), w.h.p. over .

GMM(H, ) N E is a maximal matching in G[V \ Vyack |, where Vgjaer €V are nodes in V

that are matched to nodes in'V \ Vg.

e Any adjacency list query to Ey (querying the i-th neighbour of a vertex according to some
ordering of neighbours) can be implemented using one adjacency matrix query to E (querying
the existence of any edge (u,v)).
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Informally, the main change in our construction compared to that of [12] is that our construction
will allow us to argue that the random matching in the constructed graph H is, w.h.p., a maximal
matching after ignoring a small set of nodes. In contrast, the construction in [12] resulted in an
“expected” version of this guarantee. As the high-probability bounds will simplify our discussion
later, we modify this construction below. The second change we make is in externalizing the fact
that the matching computed this way is maximal, rather than 2-approximate, as stated in [12]. We
now turn to proving the above lemma.

Proor oF LEMMA B.2. The node-set of His Vg :=V UV*U (W;...,W,) U (Uy,...,U,), where
V ={01,05,...,0,} (note that G = (V,Eg[V])), V" = {0}, 05,...,0;}, W; = {wil, wiz, ...wl'}, and the
set Uy = {u},u?,...,uj} is of size s := 10n/8 for all i € [n]. To specify the edge-set Ey, we now
define the ordered adjacency list for every node v € Vj.

e Every node v; € V has degree exactly n: For any j € [n],if (v;,0;) € E then the j** neighbor
of v; is the node v; € V, otherwise it is the node 0}5 e v*.
e Every node o] € V* has degree exactly n + s: For any j € [n], if (v;,0;) € E then the jth
neighbor of o] is the node wlj € W, otherwise it is the node v; € V. Furthermore, for all
j € [s], the (n + j)*" neighbor of v} is the node u{ e ;.
e Each node in U}, for any j € [n], has only one neighbor (which is 0;).
e Node wlj may have degree at most one: if (v;,0;) € E then w{ is a neighbour of v} € V*,
otherwise it is an isolated vertex of H.
Note that |Vg| = 2n + n? + ns = ©(n?/8) and that similarly |Ey| = n® + |E| + ns = ©(n?/6).
Furthermore, from the above discussion it is immediate that an adjacency list query to Ey (i.e.,
querying for the j-th neighbor of a vertex) can be implemented using at most one adjacency matrix
query to E. It remains to prove the remaining two properties of H.

To this end, recall that V5, denotes the set of vertices in V matched to V* nodes. Then,
by maximality of GMM(H, 7), we have that GMM(H, =) N E is indeed maximal matching of
G[V \ Viack]- We now turn to bound |Vyj4ex|. To this end, we say a node v* € V* is occupied if its
earliest edge in 7 has its other endpoint in W; or U;. Trivially, such an occupied vertex v* € V* is
matched to a vertex of U,- U W,» under GMM (H, ). The following simple claim, which follows by
a Chernoff bound together with the simple observation that it is unlikely for a node in V' to be
matched in V (and thus contribute to |Vsjacr|).

Claim B.3. Let & be a uniformly random permutation of Ef. Let X, : v* € V* represent the indicator
variable of v* being occupied and Xp = 3, Xy+. Then X > n - (1 — 6) w.h.p.

Proor. Note that each v € V* has at most n edges with vertices of V’ and has at least 10n/4
edges with vertices in U,» and W,-. Therefore,
n-10/8 1
EXy] =Pr(Xy-=1) > ————=1- ——— > 1-§/10.
[Xor] = PriXe- =1) n-(10/8+1) 10/8+1 /
On the other hand, the variables {X,+ | v € V} are independent binary variables. Therefore, by
Chernoff’s bound, we have that

Pr(Xo <n-(1-8)) < Pr(Xo < n-(1—5/10)—%3)
< Pr (xo < E[Xo] - E[Xo] - g) ®)
< 2-exp (_W) (9)
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< n oW (10)

Inequality 8 follows from the fact that n > E[Xo] = n - (1 — ). Inequality 9 is an application of
Chernoff’s bound. Inequality 10 follows as long as n - §2 € Q(log(n)). O
The above claim completes the proof of the last requirement of Lemma B.2. O

B.2 The algorithm

We now introduce the algorithm that will build on the previous two lemmas and inform the proof
of Lemma 4.6, given in Algorithm 4. Recall that we wish to estimate the number of edges in some
input matching, which here, to avoid confusion, we denote by M*, that are both matched in some
maximal matching in G.

Let H = (Vi, Efr) be the supergraph of G defined by Lemma B.2 of G with § = €2/8. For a
permutation 7 of Ey, define M’ () := GMM(H, ) N (V X V) to be the set of edges in GMM(H, r)
both of whose endpoints are in V. Let M(r) be a maximal matching in G that is obtained by
augmenting M’ (), i.e., we start with M = M’ (), visit the edges e € E in an arbitrarily fixed
order, and obtain the matching M(r) by greedily adding as many edges to M as possible. Note that
M’ () € M(x) C E’. Note also that M () will be the maximal matching that Lemma 4.6 refers to
as M’. We now slightly overload our notations and let kjy () denote the number of edges in M*
both of whose endpoints are matched in M’ ().’

Algorithm 4 Extended Sub-Linear Algorithm

1. if [M*| < € - n then
2: Return x =0
3: (Implicitly) construct H = (Vg, Ef) as in Lemma B.2 with § = €2/8
4: Sample a permutation 7 of Ey uniformly at random
10%-log(n)
5: L «— —
6: Sample L edges ey, ..., er € M* uniformly at random with replacement
7: Let X; be one if both endpoints of edge e; are matched by GMM(H, n) and X = }; X;
s Return x = XMl _ ne
: =TI 2

Claim B.4. Algorithm 4 can be implemented in time O,(n) in expectation.

Proor. The construction of H is implicit, and as such takes no time. Let Ty (v, ) stand for the
time it takes to calculate the matched status of vertex v € Viy in GMM(H, xr) using the algorithm
of [16]. By Lemma B.1 we have that I% [Ty (v, )] = Oc(|EH|/|VH|) = Oc(1). Therefore, since

o~Vy

the endpoints of the sampled edges S = (JX, ¢; C Vy are a subset of of vertices of cardinality
|S| > €2 - n, and since |Vy| = ©(n?) we have the expected time to calculate their matched status
(using adjacency matrix queries, using the construction of H) is

Val  ~
Iihsr[TH(fh m)] < UNI%H[TH(U, 7)) - Sl < Oc(n)

]

We now argue that Algorithm 4 provides a good approximation of the number of nodes in M*
both of whose endpoints are matched by GMM (H, ). But first, we recall the basic Chernoff bounds
that we will rely on here.

Recall that in the statement of Lemma 4.6 we defined the notation kpy only if M’ is a matching in G’, which is not the
case with M’ (). Nevertheless, for ease of exposition, we use the notation ks (7).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:29

Lemma B.5. Chernoff bound: Let X be the sum of independently distributed (or negatively associated)
random variables X, . .., X, with X; € [0,1] for eachi € [m]. Then for all § € (0,1):

52 -E[X])

Pr(|X — E[X]| 25'E[X])32-exp(— 3

Lemma B.6. W.h.p., The output k of Algorithm 4 satisfies
KM(r) 2 K 2 KM(x) — 1 €2,

Proor. First, by Lemma B.2, we have that w.h.p., the set of nodes Vg, € V that are matched to
nodes in V7 \ V have cardinality at most |Vyjgex| < ne?/8. Moreover, GMM(H, r) N E is a maximal
matching in G[V \ Vyjgek].

Observe that whenever k = 0 is returned by the algorithm due to |[M*| being small, the algorithm
returns a trivially correct solution. As M’ () is an €2/8-AMM, we conclude that:

2
, , n-e

M (m)] < IM(m)] < IM' ()] + ——. (11)

Define M;; to be the set of edges of M* such that both of their endpoints are matched by

GMM(H, ). By the guarantees of the construction of H we know that there can be at most - €2/8

vertices of V matched by an edge not in M’ (x). Therefore,

n-e?

IMp;| > k() = [Mpg| — (12)

Note that using the Algorithm 4 is sampling from edges of M* and determining if they are in
Myp; (hence approximating ks, ). Specifically, by inequalities (11) and (12), we get the following.

2 2
K, € wwiT]g[:«M(n)i + [M(m)] = M ()| € [rmm + 28]

We will argue that with high probablhty € [KM* + e ] dependent on the randomization
of M;. Observe that X; are independently dlstrlbuted random variables taking values in [0, 1] and

X is a binomial variable with parameters k, |1<M;{ /|M|. We will consider two cases:

3 . .
Case (A): ky;, < "5~ In this case, we derive that

, X'|M| +n-62 B X - |M|> n-e?
S € [Kkum;, £ 8 = oM g
(X MI 62)
<
L
62
= (B(L Ku:, /IM]) 2 2 ) (13)
. 62
< Pr (B(L, €) > T) (14)
< Pr(B(Le) >2-E[B(Le)])
< 2-exp (—%) (15)
< pom
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In the above derivation, (13) holds as Ky, /IM| < € (as otherwise k = 0 would have been returned

by the algorithm), and (14) is true assuming n- €?/8 > 2-L-€ = 0(1). Finally, (15) follows from
Chernoff bound (Lemma B.5) on a binomial random variable.

Case (B): kp;, > - %3. In this case, we derive that

X - |M| n-e n-e¢ L
Pr( 3 Q[KM;Ii 3 ]) = Pr(|X—E[X]|2 3 M

= Pr

S'KM;I

IX -E[X]| > E[X] - e )

< Pr(|x—E[X]|2E[x1-”'ez)
8-n
2 /)2 .
< 2-exp(—(6/8)+[x]) (16)
L-wp, et
= exp —W (17)
< n oW,

In the above derivation, (16) follows from Chernoff bound (Lemma B.5), and (17) holds due to on our
assumptions on |M| and KM;{.Therefore, with high probability X - |M|/k € [KM; +e%-n/8] € [KMm(r) =
€”-n-(1/8+1/4)] (recall that k() = kum). This implies that k < kp+€*-n-(1/8+1/4-1/2) < ky
andk >k — €2 -n-(1/8+1/4—1/2) > kp — € - n. o

Having concluded that Algorithm 4 can be implement in low expected time, and is correct w.h.p.,
we are now ready to prove Lemma 4.6, restate below for ease of reference. (Note that here G = (V, E)
are renamed G’ = (V’,E’), and n” and kyy correspond respectively to n and x(rr), whereas M* in
Algorithm 4 is renamed M.)

Lemma 4.6. Consider a graph G’ = (V',E’) with |V’| = n’, and a matching M with V(M) C V'
that is not necessarily part of G’ (i.e., we might have M € E’). For any matching M’ in G’, let kyy
denote the number of edges in M both of whose endpoints are matched in M’. There is an algorithm
which, given adjacency matrix query access to the edges of G, w.h.p. runs in Oc(n') time and returns
an estimate x € [kyy — €2n’, kyr ] for some maximal matching M’ in G’.

Proor. By Claim B.4, Algorithm 4 runs in expected O,(n) time and returns a correct solution
with high probability. To improve its running time guarantee to a high probability bound we only
need to incur a blowup of O(log(n)) in running time: run the algorithm O(log(n)) time in parallel
and output the solution given by the first terminating copy. One of these algorithms will terminate
within at most twice the expected time, by Markov’s inequality, and so w.h.p., one of these completes
after O (n) time. Finally, by union bound and Lemma B.6, all of the log n algorithms’ output satisfies
the desired bounds with probability 1 — 1/poly(n), and so w.h.p., we obtain a solution satisfying
the desired bounds after O,(n) time. o

C OMITTED PROOFS FROM SECTION 4

Here we prove the tighter bound on the number of V(M;)-disjoint 3-augmenting paths in the
subgraph M; U M, as output by Algorithm 2, restated below.
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Lemma 4.1. If |M;| = (% +¢) - u(G), then G[M; U M,] contains a set P of 3-augmenting paths
wr.t. My that are disjoint in their V(M) nodes, with expected cardinality at least

b 1 1 1 1 s

Proor. Fix a maximum set of disjoint length-three augmenting paths w.r.t. M; in G, denoted
by #*. By Proposition 2.6, we have |P*| > (3 —3c— %) - u(G). Next, let S € P* be the paths
u’ —u — o — o’ that “survive” the bipartition, in the sense that (u,u"), (v,0") € E,. By construction,
each path in P* survives with probability exactly i. Therefore, E[|S|] = i . (% - 3c-— 776) - p(G).
Let D := P* \ S be the set of paths that did not survive this bipartition.

Fori € {0,1,2},letS; € Sand D; C D be the sets of paths #' —u —v — 0 in S and D (respectively)
with i of their V/(M;) nodes u and v matched in M,. Now, by our bipartition, if u' —u—v—0v" € S,UD;,
i.e., if u and v are both matched in M, then they are matched to distinct nodes. Therefore, G[M; UM, |
contains a set of augmenting paths # w.r.t. M; that are disjoint in their V' (M;) nodes, of cardinality
|P| = |S2| + |D2|. We now turn to lower bounding |Sz| + | Ds|.

To bound S| + |D,|, we will double count the edges of M,, once from their V(M;) endpoints,

and once from their V(M;) endpoints. First, by definition, since each edge in M; has exactly
one endpoint in V(M;) and each node in V(M;) is matched at most once in M,, we have that
|M,| = 2|S;| + |S1]| + 2|D3| + |D1| < |S2| + |D2| + |M;|, where the inequality follows from |M;| >

2 ,(Si| + |Di]), by definition. On the other hand, for each of the [S| — |Sy| = |So| + |S1]| survived
paths ' —u —v — 0’ € Sy U S; that does not have both its internal nodes matched in M;, we
have by maximality of M, that u’ and/or v’ must contribute b distinct edges to M,. Therefore,
|Mz| = b - (|So| + |S1]). Combining the above, we obtain

b (IS| = 152]) < [Mz| < |S2| + [De| + [Mi],
which after rearranging, yields
b-|S| = IMi| < (b+1) - [Sy| +D2f < (b+1) - (ISo| +D2l).

Simplifying and combining with the lower bound on E[|S|], we obtain the claimed bound, as
follows.

BRI = Bl + 10el) > 57 - (B0 - 5 - v
b 1 (1 7€ 1
2 pr1 (z (5‘ C‘?)‘z (5“))'“<G>~

D OMITTED PROOFS OF SECTION 5

We stress that the following is essentially implied by the work of [82], from which we now repeat
significant amount of text essentially verbatim. The only difference here will be our final proof of
Lemma 5.7, allowing us to efficiently periodically compute an e-AMM, and the use of this lemma in
the subsequent section. Readers familiar with [82] are encourage to read ahead to that lemma.

Overview. Briefly, [82] identified an edge-coloring-based approach to compute, based on the
efficient maintenance of edge colorings and a particular fractional matching of [25], a kernel. (See
Algorithm 5.) We start by recalling the type of fractional matching needed here, due to [4].
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Definition D.1. Forc > 1 andd > 1, a fractional matching X is (c, d)-approximately-maximal
(c,d)-AMIM if every edge e € E either has fractional value x, > 1/d or it has one endpoint v with
Dleso Xe = 1/c with all edges e’ incident on this v having value x,, < 1/d.

As proven in [4, Appendix A], the dynamic fractional matching of [27] is precisely such an
approximately-maximal matching.

Lemma D.2. Forall e < 3, there is a deterministic dynamic (1 + 2, max{54logn/e (3/€)*'})-

AMfM algorithm with t, = O(log® n/€’) worst-case update time, changing at most O(log n/e?) edges’
fractions per update in the worst case.

Now, we turn to the sparsification procedure of [82], given in Algorithm 5. Briefly, this algorithm
decomposes the graph into a logarithmic number of subgraphs, based on grouped x-values, edge
colors these subgraphs using at most y = 2 times their maximum degree, and then outputs the
union of these subgraphs.

Algorithm 5 Edge-Color and Sparsify [82]

1: forie{1,2,...,[2log,,.(n/€)]} do

2: letE; 2 {e|x. € (1+€)7, (1+e) ]}

3 compute a 2[(1 + €)']-edge-coloring y; of G; = G[E;]. > Note: A(G;) < (1+¢)’
4 Let S; be a sample of min{2[d(1 + €)], 2[(1 + €)']} colors without replacement in y;.

5: Return K = (V,U; Upes, M)-

The following lemma of [82] allows us to compute kernels from AM{Ms using Algorithm 5.

Lemma D.3. Letc > 1,e > 0 andd > w. IfX is a (c,d)-AMfM, then the subgraph K
output by Algorithm 5 when run on X with € and d is a (c(1+ O(e),d(1 + O(e),0)-kernel, w.h.p.

We are now ready to prove our (periodic) algorithmic kernel and AMM algorithm’s guarantees,
restated below for ease of reference.

Lemma 5.7. Lete € (0,1) and d = O.(1) be sufficiently large. Then, there exists a robust algorithm
with worst-case update time t, = O (1) allowing for (¢, d)-kernel and e-AMM queries in worst-case
query time ty = Oc(d - (G)). The query’s outputs are a kernel and an e-AMM w.h.p.

ProOOF. We maintain the dynamic (1+2¢, O (1))-AMfM of Lemma D.2, using O, (1) deterministic
w.c. update time and number of changes to edges per update. In addition, we maintain the subgraphs
G; in Algorithm 5. In each such subgraph we maintain 2[(1 + €)']-color edge colorings in each
G; in O(log n) deterministic w.c. time per change to X, using the logarithmic-time (2A — 1)-edge
coloring algorithm of [24]. This concludes the description of the updates, which by the above take
deterministic w.c. update time ¢, = Oc(1).

Next, to compute a kernel, we run the sampling step of Algorithm 5. As this is bottlenecked by the
time to write down the O(log® ) colors (matchings), each of size no greater than y:(G) (by definition),
this query takes deterministic O(;(G)). Finally, this output graph K is an (O(¢), d(1+O(e))-kernel
w.h.p., by Lemma D.3. Finally, to output an e-AMM, we appeal to the static algorithm Lemma 5.6,
which runs in deterministic time O, (d - ;(G)) = O(u(G)) and outputs an e-AMM, provided K is a
kernel, i.e., it also succeeds w.h.p. m]
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