
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

111

Dynamic Matching with Better-than-2 Approximation in
Polylogarithmic Update Time∗

SAYAN BHATTACHARYA†, University of Warwick, United Kingdom

PETER KISS‡, University of Warwick, United Kingdom

THATCHAPHOL SARANURAK§, University of Michigan, United States

DAVID WAJC¶, Technion — Israel Institute of Technology, Israel

We present dynamic algorithms with polylogarithmic update time for estimating the size of the maximum

matching of a graph undergoing edge insertions and deletions with approximation ratio strictly better than 2.

Specifically, we obtain a 1+ 1√
2

+𝜖 ≈ 1.707+𝜖 approximation in bipartite graphs and a 1.973+𝜖 approximation

in general graphs. We thus answer in the affirmative the value version of the major open question repeatedly

asked in the dynamic graph algorithms literature. Our randomized algorithms’ approximation and worst-case

update time bounds both hold w.h.p. against adaptive adversaries.

Our algorithms are based on simulating new two-pass streaming matching algorithms in the dynamic

setting. Our key new idea is to invoke the recent sublinear-time matching algorithm of Behnezhad (FOCS’21)

in a white-box manner to efficiently simulate the second pass of our streaming algorithms, while bypassing

the well-known vertex-update barrier.

CCS Concepts: • Theory of computation→ Streaming, sublinear and near linear time algorithms; Approxi-

mation algorithms analysis; Dynamic graph algorithms.

Additional Key Words and Phrases: dynamic algorithms, approximate matching

ACM Reference Format:
Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. 2018. Dynamic Matching with

Better-than-2 Approximation in Polylogarithmic Update Time. J. ACM 37, 4, Article 111 (August 2018), 32 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The maximum matching problem is a cornerstone of combinatorial optimization and theoretical

computer science more broadly. (We recommend [41] for a brief history of this problem.) The

study of this problem and its extensions has contributed foundational advances and concepts

∗
A preliminary version of this paper appeared in the Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2023 [31]. This full version contains (in Sections 1.3.2 and 6) a discussion of the numerous developments

in the area following our conference publication, as well as more detailed follow-up questions, including concerning

applications of our adversarially-robust fully-dynamic almost-maximal matching (AMM) algorithms.

†
Supported by Engineering and Physical Sciences Research Council, UK (EPSRC) Grant EP/S03353X/1.

‡
Work was partially conducted while the author was visiting Max-Planck-Institut für Informatik.

§
Supported by NSF grant CCF-2238138.

¶
Supported in part by a Taub Family “Leaders in Science & Technology” Fellowship. Work done in part while the author

was at Stanford University.

Authors’ addresses: Sayan Bhattacharya, S.Bhattacharya@warwick.ac.uk, University of Warwick, United Kingdom; Peter

Kiss, peter.kiss@warwick.ac.uk, University of Warwick, United Kingdom; Thatchaphol Saranurak, University of Michigan,

United States, thsa@umich.edu; David Wajc, Technion — Israel Institute of Technology, Israel, david.wajc@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

111:2 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

to the theory of computing, from the introduction of the primal-dual method [67], impact on

polyhedral combinatorics [44], and the advocacy for polynomial-time computability as the measure

of efficiency (in static settings) [45].

The maximum matching problem has also been intensely studied in dynamic settings. Here,
the graph undergoes edge updates (insertions and deletions), and we wish to approximate the

maximum matching, while spending little computation time between updates, referred to as update
time. Polynomial update time is trivial to achieve by running exact static algorithms (e.g., [45])

after each update. However, intuitively, such minor changes to the graph should allow for much

faster algorithms, with possibly even exponentially smaller, polylogarithmic update times.

The first sublinear (i.e., 𝑜 (𝑚) = 𝑜 (𝑛2)) update time dynamic matching algorithm was given 15

years ago by Sankowski [79], who used fast dynamic matrix inversion to maintain the maximum

matching size in update time𝑂 (𝑛1.495), recently improved to𝑂 (𝑛1.407) [34]. Unfortunately, a number

of fine-grained complexity results rule out fast, and even sublinear-in-𝑛 update time [1, 2, 40, 58, 66]

for (exact) maximum matching size estimation. This motivates the wealth of work on computing

approximate matchings dynamically.

The first polylogarithmic update time dynamic matching algorithm is due to an influential work

of Onak and Rubinfeld [74], who gave a (large) constant approximation in polylog update time. This

was later improved by Baswana et al. [11] to a 2-approximation in logarithmic update time, later

improved to constant time by Solomon [80]. Numerous other algorithms achieving a 2- or (2 + 𝜖)-
approximation in polylog update time were subsequently developed, with expected amortized

update time improved to worst-case w.h.p.,
1
and oblivious randomized algorithms improved to

advsersarially-robust ones, and then to deterministic ones [4, 14, 21, 26, 28, 33, 35, 36, 62, 82].
2

A complementary line of work studied better-than-two-approximate dynamic matching, pro-

viding a number of small polynomial (even sublinear in 𝑛) update times for approximation ra-

tios below the natural bound of 2 achieved by inclusion-wise maximal matchings. This includes

(1 + 𝜖)-approximate algorithms with 𝑂𝜖 (
√
𝑚) = 𝑂𝜖 (𝑛) update time [57, 77],

(
3

2
+ 𝜖

)
-approximate

algorithms with 𝑂𝜖 (4

√
𝑚) = 𝑂𝜖 (

√
𝑛) update time [22, 23, 56, 62] and a number of tradeoffs between

approximation in the range (3/2, 2) and sublinear-in-𝑛 polynomial update times [16, 17, 28, 78, 82].
3

This state of affairs leaves open a key question, repeatedly raised in the literature [16, 17, 23, 26,

35, 68, 82], first posed by Onak and Rubinfeld in their aforementioned groundbreaking work [74]:

How small can [approximation factors] be made with polylogarithmic update time?
[...] Can the approximation constant be made smaller than 2 for maximum matching?

1.1 Our Results
We resolve the question of polylogarithmic update time better-than-two-approximate dynamic

matching algorithms in the affirmative, for the value version of the problem. That is, letting 𝜇 (𝐺)
denote the maximum matching size in𝐺 , we maintain an estimate 𝜈 that is 𝛼 < 2 approximate, i.e.,

it satisfies 𝜈 ≤ 𝜇 (𝐺) ≤ 𝛼 · 𝜈 at every point in time. Our main result is the following.

1
An algorithm has amortized update time 𝑓 (𝑛) if every sequence of 𝑡 updates starting from an empty graph takes at most

𝑡 · 𝑓 (𝑛) update time. If each operation takes at most 𝑓 (𝑛) time, it has worst-case update time 𝑓 (𝑛) .
2
An algorithmworks against an adaptive adversary if its guarantees hold even when future updates depend on the algorithm’s

previous output. We also say that such an algorithm is adversarially robust, or robust for short. The importance of robustness

for static applications has motivated a recent concentrated effort to design robust dynamic algorithms for myriad problems

(see, e.g., discussions in [19, 28, 38, 49, 71, 82]).

3
Throughout the paper, we use𝑂𝜖 (·) to suppress poly(1/𝜖) factors and 𝑂̃ (·) to suppress poly(log𝑛) factors.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:3

Theorem 1.1. For every 𝜖 ∈ (0, 1), there exists a randomized (1.973 + 𝜖)-approximate dynamic
matching size estimation algorithm with poly(log𝑛, 1/𝜖) worst-case update time. Both the
algorithm’s approximation ratio and update time hold w.h.p against an adaptive adversary.

For bipartite graphs, we obtain a stronger approximation guarantee of 1 + 1√
2

+ 𝜖 ≈ 1.707 + 𝜖 .

Secondary results. Our approach is versatile, and yields the following generic reduction.

Theorem 1.2. For any 𝛼 > 1.5, a dynamic 𝛼-approximate matching algorithm with update time
𝑡𝑢 implies a dynamic

(
𝛼 − Ω

((
1 − 6

(
1

𝛼
− 1

2

))
2

))
-approximate matching size estimator with update

time 𝑂̃ (𝑡𝑢).
Very recently, Behnezhad and Khanna [16] presented new dynamic matching algorithms trading

off approximations 𝛼 ∈ (1.5, 2] and small polynomial update times. Applying Theorem 1.2 to their

algorithms, we obtain improved approximation for dynamic matching size estimation, within the

same update time up to polylog factors.

To obtain ourmain results, we design several two-pass semi-streaming algorithms (see Section 1.3),

including a deterministic (1 + 1/
√
2 + 𝜖)-approximate algorithm on bipartite graphs. This matches

the prior state-of-the-art [63, 65] up to an 𝜖 term, while removing the need for randomization.

1.2 Our Techniques
We take the following high-level approach to prove Theorem 1.1: (1) compute a maximal (and

hence 2-approximate) matching𝑀1, and (2) augment𝑀1 if it is no better than 2-approximate, using

the myriad short augmenting paths𝑀1 must have in this case. This approach is common in many

computational models, including the two-pass semi-streamingmodel (see Section 1.3). Implementing

this approach in a dynamic setting, however, faces several challenges. The first challenge if we want

robust algorithms with low worst-case update times is that no robust (near-)maximal matching

algorithms with worst-case 𝑂̃𝜖 (1) update time are known. Of possible independent interest, we

resolve this first challenge in Section 5, by leveraging the robust fast matching sparsifiers of [82].

The more central challenge when trying to implement the above approach is that the search for

augmenting paths requires us to find many (disjoint) edges between matched and unmatched nodes

in𝑀1. In a (multi-pass) streaming setting, this can be done by computing a large (𝑏-)matching in the

bipartite graph induced by edges in𝑉 (𝑀1) ×𝑉 (𝑀1). In a dynamic setting, however, this requires us

to deal with vertex updates, which are notoriously challenging in the context of dynamic matching,

and all algorithms to date require reading all Ω(𝑛) edges of each updated vertex [68].

To overcome the above key challenge, we first note that we do not need to handle vertex updates

individually, but may instead process these in batches of Θ(𝜖𝑛) vertex updates, building on the

periodic recomputation and sparsification techniques common in the literature (see Theorem 2.1).

Our main observation is that these batches of vertex updates, which need to be handled if we

wish to maintain the 𝑏-matchings from the second pass of our semi-streaming algorithms, can be

implemented in 𝑂̃𝜖 (𝑛) time using the sublinear-time algorithm of Behnezhad [12]. This leads to an

amortized 𝑂̃𝜖 (𝑛)/(𝜖𝑛) = 𝑂̃𝜖 (1) additive overhead in the update time (easily deamortized), implying

our main result. This approach is versatile, and similarly underlies our secondary results.

1.3 Further Related Work
Having discussed the rich literature on the dynamic matching problem above, we do not elaborate

on it further here. We do, however, highlight some connections to the literature on matching in

other computational models that is closely related to our work.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

111:4 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Streaming Matching. In the (semi-)streaming model, an 𝑛-node graph is revealed in a stream,

edge by edge, and we wish to compute a large matching using only (optimal) 𝑂̃ (𝑛) space. A line

of work studying the problem of computing an approximately-maximum weighted matching

[39, 47, 50, 53, 70, 76] culminated in a (2 + 𝜖)-approximation [53, 76]. For unweighted graphs,

lower bounds are known [54, 60, 61], but it remains a major open question whether one can break

the barrier of 2-approximation achievable by a trivial maximal matching algorithm. Striving for

better approximation (and insights to break this barrier), several works designed algorithms using

multiple passes over the stream [3, 3, 6, 46, 46, 48, 51, 52, 59, 70]. For 2 passes, the state-of-the-art

approximation ratios are 1.857 [51], and 1 + 1√
2

≈ 1.707 for bipartite graphs using the randomized

algorithms of [63, 65], with the best prior deterministic bound being
12

7
≈ 1.714 [48].

Sublinear-Time Matching. Computation of large matchings in sublinear time has also been the

subject of great interest. In regular bipartite graphs, a maximum matching can be computed in

𝑂̃ (𝑛) time [55]. In general graphs with bounded degrees, it was known how to achieve a (2 + 𝜖)-
approximation in sublinear time [72, 73, 75, 83]. This was recently improved to an 𝑂̃ (𝑛) time

algorithm for any general graph [12]. As discussed in Section 1.2, we use this latter algorithm in a

white-box manner to obtain our main result.

1.3.1 Concurrent work. Independently and concurrently, Behnezhad [13] (in a work in the same

conference) obtained the same main qualitative result as ours: a better-than-two-approximate

polylogarithmic-xwtime dynamic matching size estimation algorithm. The basic approach to

achieve this qualitative result is the same in both papers: Simulate the second pass of a two-pass

streaming algorithm using the sublinear-time algorithm of [12], together with batched computation.

The quantitative differences in the papers’ approximation ratios are due to the two-pass streaming

algorithms used—our newmaximal-b-matching-based algorithms here, and an algorithm inspired by

[64] in [13]. We note that [13] also achieves (3/2− Ω(1))-approximate size estimation algorithm in

time𝑂 (
√
𝑛) (the best update times for (3/2+𝜖)-approximate explicit matching [22, 23, 56, 62]). This

result also uses the high-level approach of batched computation using sublinear-time algorithms,

building on a new characterization of tight examples for the 3/2-approximate matching sparsifiers

(EDCS) of [22].

1.3.2 Subsequent work. The conference versions of this work and the concurrent work of [13]

have sparked an interest in the question of dynamic matching size maintenance. [10] show that

our (1 + 1√
2

+ 𝜖)-approximate two-pass streaming algorithm also works in general graphs, and

show how to implement this in dynamic settings, using distributed algorithms. [30] show that

(1 + 𝜖)-approximate size estimation can be maintained in truly sublinear-in-𝑛 update time for

any constant 𝜖 > 0. This should be contrasted with a conditional lower bound of [69], who show

that such an update time is unlikely if one wishes to maintain such an approximately maximum

matching. Complementing this conditional lower bound, [7, 15] show conditional upper bounds.

Specifically, they provide (1 + 𝜖)-approximate matching algorithms with sublinear-in-𝑛 update

time, provided some generalization of Rusza-Szemerédi graphs cannot be too dense. Proving or

ruling out algorithms for maintenance of large matchings mirroring the recent results for dynamic

size estimation is an exciting research direction. One direction to obtain such algorithmic results

would be to obtain algorithms for dynamic fractional matchings, since the latter are known to be

efficiently roundable dynamically, both in bipartite graphs [4, 28, 32, 82] and in general graphs

[37, 43].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:5

2 PRELIMINARIES
Our input is a graph 𝐺 on 𝑛 nodes 𝑉 , with an initially empty edge set 𝐸, undergoing edge updates

(insertions and deletions). Our objective is to approximate the maximum matching size 𝜇 (𝐺)
well, while spending little update time (computation between updates). In addition, we want

our algorithms to work in the strictest settings: they should have small worst-case update time

guarantees, and they should be (adversarially) robust, i.e., they should work against an adaptive

adversary, and thus their guarantees hold for any update sequence.

Matching theory basics. A matching is a vertex-disjoint subset of edges. A maximal matching is

an inclusionwise-maximal matching. A maximum matching is a matching of largest cardinality.

In a weighted graph with edge weights𝑤𝑒 ∈ R, a maximum weight matching is a matching𝑀 of

largest total weight,𝑤 (𝑀) := ∑
𝑒∈𝑀 𝑤𝑒 . An augmenting path 𝑃 with respect to a matching𝑀 is a

simple path starting and ending with distinct nodes unmatched in𝑀 , with the edges alternatingly

outside and inside𝑀 . Setting𝑀 ← 𝑀
⊕

𝑃 , where
⊕

denotes the symmetric difference, referred

to as augmenting 𝑀 along 𝑃 , increases the cardinality of𝑀 by one. A 𝑏-matching with capacities

{𝑏𝑣}𝑣∈𝑉 is a collection of multi-edges 𝐹 of 𝐸 (that is, edges of 𝐸 may appear multiple times in 𝐹)

with no vertex 𝑣 having more than 𝑏𝑣 multi-edges in 𝐹 . A fractional matching 𝑥 : 𝐸 → R≥0 assigns
non-negative values to edges so that each vertex 𝑣 has fractional degree

∑
𝑒∋𝑣 𝑥𝑒 at most one. In

bipartite graphs, the existence of a fractional matching of size 𝑘 implies the existence of an integral

matching of cardinality ⌈𝑘⌉. In general graphs, this fractional relaxation has a maximum integrality

gap of 3/2, attained by a triangle graph with values 𝑥𝑒 = 1/2 for each edge 𝑒 .

Notation: Let 𝑉 (𝑀) denote the set of all endpoints of edges in a matching 𝑀 , and let 𝑉 (𝑀) :=
𝑉 \ 𝑉 (𝑀). For any disjoint vertex sets 𝐴, 𝐵 ⊆ 𝑉 , we let 𝐺 [𝐴, 𝐵] denote the bipartite subgraph

induced by the edges in𝐺 with one endpoint in 𝐴 and another in 𝐵. Finally, for any subset of edges

𝐸′ ⊆ 𝐸, we let 𝐺 [𝐸′] denote the subgraph of 𝐺 induced by 𝐸′.

2.1 Previous building blocks
A ubiquitous paradigm in the approximate dynamic matching literature is periodic recomputation,
introduced by Gupta and Peng [57]. This approach is particularly useful in conjunction with

sparsification techniques. We will use the vertex sparsification technique introduced by Assadi

et al. [8] in the context of stochastic optimization, and adapted to dynamic settings by Kiss [62].

Combined, these approaches yield the following “reduction” from dynamic matching algorithms

with immediate queries to ones with slower query time.

Proposition 2.1. Let 𝜖 ∈ (0, 1) and 𝛼 ≥ 1. Suppose there exists an algorithm A on a dynamic
𝑛-node graph 𝐺 with update time 𝑡𝑢 , that, provided 𝜇 (𝐺) ≥ 𝜖 · 𝑛, supports 𝑡𝑞-time 𝛼-approximate
size estimate queries w.h.p. Then, there is another algorithm A′ on 𝐺 that always maintains an
(𝛼 +𝑂 (𝜖))-approximate estimate 𝜈 ′ in 𝑂̃𝜖 (𝑡𝑢 + 𝑡𝑞/𝑛) update time. Moreover if the update time ofA is
worst-case, so is that of A′, and if A works against an adaptive adversary, then so does A′.

The above proposition, implicit in prior work, serves as a useful abstraction, and so we provide a

proof of this proposition for completeness in Appendix A. As discussed in Section 1.2, this reduction

is one of the crucial ingredients that allows us to bypass the vertex-update barrier.

Another key ingredient we use is the sublinear-time (approximate) maximal matching algorithm

of Benhezhad [12], whose guarantees are captured by the following proposition. (See Lemma 4.6

for a proof of a detailed description of that algorithm, adapted for a variant of this proposition.)

Proposition 2.2. Let 𝜖 ∈ (0, 1/2). Using 𝑂̃𝜖 (𝑛) time and 𝑂̃𝜖 (𝑛) adjacency matrix queries w.h.p. in an
𝑛-node graph𝐺 , one can compute a value 𝜈 which approximates 𝜇̃, the size of some maximal matching
in 𝐺 , within additive error 𝜖𝑛. Namely, 𝜇̃ ≥ 𝜈 ≥ 𝜇̃ − 𝜖𝑛.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

111:6 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

A simple combination of propositions 2.1 and 2.2 (with 𝑡𝑞 = 𝑂̃𝜖 (𝑛)) immediately yields (yet)

another 𝑂̃𝜖 (1)-time (2 + 𝜖)-approximation algorithm. As we will show, these propositions are also

useful ingredients for breaking the barrier of 2-approximation within the same update time.

2.2 New algorithmic primitive: Robust Almost-Maximal Matchings
To make our algorithms robust against adaptive adversaries we need an algorithm for maintaining

almost-maximal matchings (AMM), which are defined as follows.

Definition 2.3 ([77]). A matching𝑀 is an 𝜖-almost maximal matching (𝜖-AMM) in graph𝐺 if𝑀 is
maximal in some subgraph obtained by removing at most 𝜖 · 𝜇 (𝐺) nodes of 𝐺 .

Observation 2.4. If𝑀 is an 𝜖-AMM in 𝐺 , then |𝑀 | ≥ 1

2
(1 − 𝜖) · 𝜇 (𝐺) =

(
1

2
− 𝜖

2

)
· 𝜇 (𝐺).

Peleg and Solomon [77] showed how to deterministically maintain an 𝜖-AMM quickly in bounded-

arboricity (i.e., globally sparse) graphs. In Section 5 we show how to robustly maintain such

matchings quickly in arbitrary graphs, proving the following.

Lemma 2.5. For any 𝜖 ∈ (0, 1/2), there exists a robust dynamic algorithm that w.h.p. maintains an
𝜖-AMM in worst-case update time 𝑂̃𝜖 (1).

A well-known fact is that a maximal matching that is close to 2-approximate must admit many

length-three augmenting paths (see e.g., [64, Lemma 1]). Our interest in AMMs is in part motivated

by the following slight generalization of this fact, also presented in Appendix A for completeness.

Proposition 2.6. Let 𝜖 > 0 and 𝑐 ∈ R and let𝑀 be an 𝜖-AMM in 𝐺 such that |𝑀 | ≤
(
1

2
+ 𝑐

)
· 𝜇 (𝐺).

Then𝑀 admits a collection of at least
(
1

2
− 3𝑐 − 7𝜖

2

)
· 𝜇 (𝐺) node-disjoint 3-augmenting paths.

3 ALGORITHMS ON BIPARTITE GRAPHS
In this section we illustrate our techniques for the special case of bipartite graphs, for which we

obtain an improved approximation ratio of 1 + 1√
2

+ 𝜖 ≈ 1.707 + 𝜖 .

3.1 Two-Pass Streaming Algorithm
Herewe present our deterministic two-pass streaming algorithm.We first compute an approximately-

maximal matching 𝑀1 from the first pass.
4
Then, in the second pass, we compute a maximal 𝑏-

matching𝑀2 in the graph between matched and unmatched vertices, with capacities 𝑘 and ⌊𝑘 · 𝑏⌋,
respectively, where we set the parameters 𝑘 ∈ N, 𝛿 ∈ R and 𝑏 = 1/𝛿 ∈ R later. Finally, we output

an estimate (1 − 𝛿) · |𝑀1 | + (𝛿/𝑘) · |𝑀2 |. Our pseudocode is given in Algorithm 1.

Algorithm 1 Bipartite Two-Pass Streaming Algorithm

Parameters: 𝜖 ∈ R≥0, 𝑘 ∈ N, 𝛿 ∈ R≥0 and 𝑏 = 1/𝛿 ∈ R≥0.
1: 𝑀1 ← (𝜖/8)-AMM in 𝐺 computed from first pass

2: assign each vertex 𝑣 capacity 𝑏𝑣 =

{
𝑘 𝑣 ∈ 𝑉 (𝑀1)
⌊𝑘 · 𝑏⌋ 𝑣 ∉ 𝑉 (𝑀1)

3: 𝑀2 ← maximal 𝑏-matching in 𝐺 [𝑉 (𝑀1),𝑉 (𝑀1)] computed from second pass

4: Output (1 − 𝛿) · |𝑀1 | + (𝛿/𝑘) · |𝑀2 |.

First, we prove that the above algorithm’s output estimate corresponds to a matching in𝐺 .

4
We suggest to the reader to think of𝑀1 as a maximal matching (i.e., 𝜖 = 0). We relax𝑀1 to be an (𝜖/8)-AMM since this

will be useful in our dynamic implementation that works against adaptive adversaries.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:7

Observation 3.1. We have that 𝜇 (𝐺 [𝑀1 ∪𝑀2]) ≥ (1 − 𝛿) · |𝑀1 | + (𝛿/𝑘) · |𝑀2 |.

Proof. Since 𝐺 is bipartite, by the integrality of the bipartite fractional matching polytope, to

prove that𝐺 ′ := 𝐺 [𝑀1 ∪𝑀2] contains a large matching witnessing the desired inequality, it suffices

to prove that 𝐺 ′ contains a fractional matching ®𝑥 of value

∑
𝑒 𝑥𝑒 = (1 − 𝛿) · |𝑀1 | + (𝛿/𝑘) · |𝑀2 |.

Indeed, such a fractional matching is obtained by assigning edge values

𝑥𝑒 =

{
1 − 𝛿 𝑒 ∈ 𝑀1

𝛿/𝑘 𝑒 ∈ 𝑀2 \𝑀1 .

This is indeed a fractional matching, since each vertex 𝑣 has bounded fractional degree,
∑
𝑒∋𝑣 𝑥𝑒 ≤ 1:

every vertex 𝑣 ∈ 𝑉 (𝑀1) has one incident𝑀1 edge and at most 𝑘 many incident𝑀2 edges, and so∑
𝑒∋𝑣 𝑥𝑒 ≤ (1 − 𝛿) + (𝛿/𝑘) · 𝑘 = 1, while every vertex 𝑣 ∉ 𝑉 (𝑀1) has no incident𝑀1 edge and has

at most 𝑘 · 𝑏 incident𝑀2 edges, and so

∑
𝑒∋𝑣 𝑥𝑒 ≤ 𝑘 · 𝑏 · (𝛿/𝑘) = 1. □

By Lemma 3.1, Algorithm 1 outputs a valid estimate for the matching size, 𝜈 ≤ 𝜇 (𝐺). It remains

to prove that 𝜈 provides a good approximation of 𝜇 (𝐺). For this, we require the following.

Lemma 3.2. Let 𝑀 be a maximal 𝑏-matching in a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), with positive
integral capacities 𝑏𝑣 = ℓ for all 𝑣 ∈ 𝐿 and 𝑏𝑣 = 𝑟 for all 𝑣 ∈ 𝑅. Then

|𝑀 | ≥ 𝜇 (𝐺) · ℓ · 𝑟
ℓ + 𝑟 .

Proof. Fix a maximum matching𝑀∗ in 𝐺 . Next, we define the subset of matched nodes in𝑀∗

that are also saturated in𝑀 . That is, if 𝑑𝑀 (𝑣) is 𝑣 ’s degree in𝑀 , we let

𝐿∗𝑠𝑎𝑡 := {𝑢 ∈ 𝐿 ∩𝑉 (𝑀∗) | 𝑑𝑀 (𝑢) = ℓ}
𝑅∗𝑠𝑎𝑡 := {𝑣 ∈ 𝑅 ∩𝑉 (𝑀∗) | 𝑑𝑀 (𝑣) = 𝑟 }.

Let 𝛼 := |𝐿∗𝑠𝑎𝑡 |/|𝑀∗ | and 𝛽 := |𝑅∗𝑠𝑎𝑡 |/|𝑀∗ | denote the fraction of 𝑀∗ edges with a saturated 𝐿 and

𝑅 node, respectively. Since𝑀 is a maximal 𝑏-matching in𝐺 , each edge has at least one saturated

endpoint, and so 𝛼 + 𝛽 ≥ 1. By double counting the edges of𝑀 , relying on 𝛼 + 𝛽 ≥ 1, and noting

that 𝛼 · 𝑟 + (1 − 𝛼) · ℓ attains its minimum of 2
ℓ ·𝑟
ℓ+𝑟 at 𝛼 = 𝑟

ℓ+𝑟 , we obtain the claimed inequality.

|𝑀 | = 1

2

(∑︁
𝑣∈𝐿

𝑑𝑀 (𝑣) +
∑︁
𝑣∈𝑅

𝑑𝑀 (𝑣)
)

≥ 1

2

©­«
∑︁
𝑣∈𝐿∗𝑠𝑎𝑡

𝑑𝑀 (𝑣) +
∑︁
𝑣∈𝑅∗𝑠𝑎𝑡

𝑑𝑀 (𝑣)
ª®¬

=
1

2

· (|𝑀∗ | · 𝛼 · ℓ + |𝑀∗ | · 𝛽 · 𝑟)

≥ 1

2

· 𝜇 (𝐺) · (𝛼 · ℓ + (1 − 𝛼) · 𝑟)

≥ 𝜇 (𝐺) · ℓ · 𝑟
ℓ + 𝑟 . □

We are now ready to bound the approximation ratio of Algorithm 1.

Lemma 3.3. For any 𝜖 ∈ (0, 1), Algorithm 1 with 𝑏 = 1 +
√
2 and 𝑘 ≥ 8

𝜖𝑏
run on bipartite graph 𝐺

computes a (1 + 1√
2

+ 𝜖) ≈ (1.707 + 𝜖)-approximation to 𝜇 (𝐺).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

111:8 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Proof. Fix a maximum matching𝑀∗ in 𝐺 . Next, for 𝑖 ∈ {0, 1, 2}, let𝑀∗𝑖 denote the edges of𝑀∗

with 𝑖 endpoints matched in𝑀1. By definition, and since |𝑀1 | = 1

2
· |𝑉 (𝑀1) |, we have that

|𝑀1 | = |𝑀∗2 | + (1/2) · |𝑀∗1 |. (1)

Furthermore, since𝑀1 is an 𝜖
′
-AMM in𝐺 for 𝜖′ = 𝜖/8, we have that |𝑀∗

0
| ≤ 𝜖′ · 𝜇 (𝐺), since at most

𝜖′ · 𝜇 (𝐺) nodes of 𝐺 must be removed from 𝐺 to make𝑀1 maximal, and at least one endpoint of

each𝑀∗
0
edge must be removed to achieve the same effect. But then, since𝑀∗

0
, 𝑀∗

1
, 𝑀∗

2
partition𝑀∗,

whose cardinality is |𝑀∗ | = 𝜇 (𝐺), this implies that

|𝑀∗
1
| + |𝑀∗

2
| ≥ (1 − 𝜖′) · 𝜇 (𝐺). (2)

Now, by Lemma 3.2, since𝑀∗
1
is a matching in graph𝐺 ′ := 𝐺 [𝑉 (𝑀1),𝑉 (𝑀1)] and 𝑘 ≥ 1

𝜖 ′𝑏 , we have

|𝑀2 | ≥ 𝜇 (𝐺 ′) ·
𝑘 · ⌊𝑘𝑏⌋
𝑘 + ⌊𝑘𝑏⌋ ≥

⌊𝑘𝑏⌋
𝑏 + 1 · |𝑀

∗
1
| ≥ 𝑘𝑏 (1 − 𝜖

′)
𝑏 + 1 · |𝑀∗

1
|. (3)

Combining equations (1), (2) and (3), we obtain the following lower bound on our output estimate.

(1 − 𝛿) · |𝑀1 | + (𝛿/𝑘) · |𝑀2 |
(1),(3)

≥ (1 − 𝛿) ·
(
|𝑀∗

2
| + (1/2) · |𝑀∗

1
|
)
+ (𝛿/𝑘) · 𝑘𝑏 (1 − 𝜖

′)
𝑏 + 1 · |𝑀∗

1
|

= (1 − 1/𝑏) · |𝑀∗
2
| +

(
1 − 1/𝑏

2

+ 1 − 𝜖′
𝑏 + 1

)
· |𝑀∗

1
|

≥ (|𝑀∗
1
| + |𝑀∗

2
|) ·min

{
1 − 1/𝑏, 1 − 1/𝑏

2

+ 1 − 𝜖′
𝑏 + 1

}
(2)

≥ (1 − 𝜖′) · 𝜇 (𝐺) ·min

{
1 − 1/𝑏, 1 − 1/𝑏

2

+ 1 − 𝜖′
𝑏 + 1

}
≥ (1 − 2𝜖′) · 𝜇 (𝐺) ·min

{
1 − 1/𝑏, 1 − 1/𝑏

2

+ 1

𝑏 + 1

}
= (1 − 2𝜖′) · (2 −

√
2) · 𝜇 (𝐺),

where the last equality follows by our choice of 𝑏 = 1 +
√
2.

Thus, combining with Lemma 3.1, and using that 𝜖′ = 𝜖/8 < 1/8, we find that the output

matching size estimate 𝜈 := (1 − 𝛿) · |𝑀1 | + (𝛿/𝑘) · |𝑀2 | is indeed a

(
1 + 1√

2

+ 𝜖
)
-approximation,

since

𝜈 ≤ 𝜇 (𝐺) ≤ 𝜈 ·
(

1

(2 −
√
2) · (1 − 2𝜖′)

)
≤ 𝜈 ·

((
1 + 1

√
2

)
· (1 + 4𝜖′)

)
≤ 𝜈 ·

(
1 + 1

√
2

+ 𝜖
)
,

as desired. □

Remark 3.4. A direct extension of the tight example of [65] proves that this analysis is tight, up to
the exact dependence on 𝜖 .

Lemma 3.1 implies a two-pass streaming algorithm for computing a (1 + 1√
2

+ 𝜖)-approximate

maximum matching: simply store 𝐺 [𝑀1 ∪𝑀2] and output a maximum matching in this subgraph

by the stream’s end. The space used in the first and second passes are 𝑂̃ (𝑛) and 𝑂̃ (𝑛𝑘𝑏) = 𝑂̃ (𝑛/𝜖),
respectively. More interestingly for our goals, we show in the next section that Lemma 3.3 can be

used to obtain a dynamic approximation of the same quality, in polylogarithmic update time.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:9

3.2 Dynamic Algorithm
In this section, we show how to (approximately) implement Algorithm 1 in polylogarithmic update

time in a dynamic setting.

Theorem 3.5. Let 𝜖 ∈ (0, 1). There exists a robust dynamic algorithmA with worst-case update time
𝑡𝑢 = 𝑂̃𝜖 (1) w.h.p. and query time 𝑡𝑞 = 𝑂̃𝜖 (𝑛) that outputs w.h.p. a value 𝜈 ∈ [𝜇 (𝐺)/(1+ 1√

2

+𝜖), 𝜇 (𝐺)].
That is, it answers (1 + 1√

2

+ 𝜖) approximate matching size estimate queries.

Proof. The dynamic algorithm A is based on Lemma 1. Let 𝜖′ = 𝜖/12. Throughout the updates,
Algorithm A simply maintains an (𝜖′/8)-AMM in 𝐺 , denoted by 𝑀1, invoking Lemma 2.5. This

immediately implies the desired update time of 𝑡𝑢 = 𝑂̃𝜖 (1).
We now describe how Algorithm A responds to a query about the maximum matching size.

To answer this query, the algorithm considers a new auxiliary graph 𝐺∗ = (𝑉 ∗, 𝐸∗), which is

defined as follows. Set 𝑏 = 1 +
√
2. For each 𝑢 ∈ 𝑉 (𝑀1), create 𝑘 := ⌈ 8

𝜖 ′𝑏 ⌉ copies of the node 𝑢 in

𝐺∗. Next, for each 𝑣 ∈ 𝑉 (𝑀1), create ⌊𝑘 · 𝑏⌋ copies of the node 𝑣 in 𝐺∗. Finally, for every edge

(𝑢, 𝑣) ∈ 𝐺
[
𝑉 (𝑀1),𝑉 (𝑀1)

]
, create an edge in𝐺∗ between every pair (𝑢∗, 𝑣∗) of copies of the nodes

𝑢, 𝑣 . Note that there is a one-to-one mapping between maximal matchings in the new graph𝐺∗ and

maximal 𝑏-matchings in 𝐺
[
𝑉 (𝑀1),𝑉 (𝑀1)

]
.

We emphasize that our dynamic algorithm A does not explicitly maintain the auxiliary graph

𝐺∗. When we receive a query about the maximum matching size in𝐺 , we explicitly construct only

the node-set 𝑉 ∗ of 𝐺∗, based on the matching𝑀1. This takes only 𝑂𝜖 (𝑛) time since |𝑉 ∗ | = 𝑂𝜖 (𝑛).
We can, however, access the edges of𝐺∗ by using adjacency matrix queries: there exists an edge

(𝑢∗, 𝑣∗) in 𝐺∗ iff there exists an edge (𝑢, 𝑣) between the corresponding nodes in 𝐺 .

At this point, we invoke Proposition 2.2 with 𝐺 = 𝐺∗ and precision parameter 𝑒′′ = (𝜖′)3. This
gives us a value𝜓 , which is an estimate of |𝑀2 |. We now return 𝜈 := (1 − 1/𝑏) · |𝑀1 | + (1/𝑏𝑘) ·𝜓 as

our estimate of 𝜇 (𝐺). Clearly, this entire procedure for answering a query takes 𝑂̃𝜖 (𝑛) time. It now

remains to analyze the approximation ratio. Towards this end, we again appeal to Proposition 2.2.

This proposition asserts that the value𝜓 satisfies

|𝑀2 | ≥ 𝜓 ≥ |𝑀2 | − 𝜖′′ · |𝑉 ∗ | ≥ |𝑀2 | − (𝜖′)2 · 16𝑛 ≥ |𝑀2 | − 𝜖′ · 𝜇 (𝐺), (4)

Therefore, our estimate 𝜈 satisfies that 𝜈 ′ ≥ 𝜈 ≥ 𝜈 ′ − 𝜖 · 𝜇 (𝐺), where
𝜈 ′ := (1 − 1/𝑏) · |𝑀1 | + (1/𝑏𝑘) · |𝑀2 |. (5)

Now, by Lemma 3.3 and our choice of 𝑘 = ⌈ 8

𝜖 ′𝑏 ⌉ and 𝑏 = 1 +
√
2, we have that 𝜈 ′ ≤ 𝜇 (𝐺) ≤

𝜈 ′ ·
(
1 + 1√

2

+ 𝜖
)
, from which we obtain that 𝜈 ≤ 𝜈 ′ ≤ 𝜇 (𝐺) and moreover

𝜇 (𝐺) ≤ 𝜈 ′ ·
(
1 + 1

√
2

+ 𝜖′
)
≤ (𝜈 + 𝜖′ · 𝜇 (𝐺)) ·

(
1 + 1

√
2

+ 𝜖′
)
≤ 𝜈 ·

(
1 + 1

√
2

+ 𝜖′
)
+ 3𝜖′ · 𝜇 (𝐺).

Rearranging terms, and using that 𝜖′ = 𝜖/16 ≤ 1/12, we have that

𝜈 ≤ 𝜇 (𝐺) ≤ 𝜈 ·
(
1 + 1

√
2

+ 𝜖′
)
/(1 − 3𝜖) ≤ 𝜈 ·

(
1 + 1

√
2

+ 𝜖
)
· (1 + 4𝜖) ≤ 𝜈 ·

(
1 + 1

√
2

+ 16𝜖′
)
.

That is, since 𝜖′ = 𝜖/16, the estimate 𝜈 output after a query is

(
1 + 1√

2

+ 𝜖
)
-approximate, w.h.p. □

Combining Theorem 3.5 and Propostion 2.1, we obtain our result for bipartite graphs.

Theorem 3.6. For any 𝜖 ∈ (0, 1), there exists a (1 + 1√
2

+ 𝜖) ≈ (1.707 + 𝜖)-approximate randomized

dynamic bipartite matching size algorithm with 𝑂̃𝜖 (1)-update time. The algorithm’s approximation
ratio holds w.h.p. against an adaptive adversary.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

111:10 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Remark 3.7. By the same approach as the recent dynamic weighted matching framework of [20]
restricted to bipartite graphs, Theorem 3.6 implies a

(
1 + 1√

2

+ 𝜖) robust approximation for weighted

bipartite matching with the same update time, up to an exponential blowup in the dependence on 𝜖 .5

4 ALGORITHMS ON GENERAL GRAPHS
In this section we present our main result: a robust dynamic algorithm maintaining a (2 − Ω(1))-
approximation to the size of the maximum matching in a general graph in worst-case 𝑂̃𝜖 (1) update
time. As with our algorithm for bipartite graphs, we start with a two-pass semi-streaming algorithm

in Section 4.1, and then show how to approximately implement it dynamically in Section 4.2.1. Note

that unlike in our implementation for bipartite graphs, we will not be able to refer to Proposition 2.2

in a black-box way to estimate the size of the second matching, defined by the matched and

unmatched node sets of the dynamic matching we explicitly maintain. Instead, we unbox the proof

of Proposition 2.2 in Lemma 4.6, so that it can handle queries suitable for our implementation for

non-bipartite graphs. Finally, in Section 4.2.2 we show that our approach allows us to improve the

approximation of any algorithm with approximation ratio in the range (1.5, 2].

4.1 Two-Pass Streaming Algorithm
The key challenge in extending Algorithm 1 and its analysis to non-bipartite graphs is its reliance

on the integrality of the fractional matching polytope in bipartite graphs. This allowed us to focus

on proving the existence of a large fractional matching, which guarantees the existence of a large

integral matching of (at least) the same size. For general graphs this argument fails, and so instead

we search for length-three augmenting paths (3-augmenting paths, for short) with respect to our

first matching,𝑀1, by computing some large 𝑏-matching𝑀2 in the edge set 𝑉 (𝑀1) ×𝑉 (𝑀1). The
main difficulty with this approach in general graphs is that both the endpoints of an edge (𝑢, 𝑣) ∈ 𝑀1

might get matched (in𝑀2) to the same node𝑤 , and the resulting triangle𝑤 − 𝑢 − 𝑣 −𝑤 does not

help us in any way to create a 3-augmenting path involving the edge (𝑢, 𝑣) ∈ 𝑀1.

We overcome this difficulty using random bipartitions (see Algorithm 2). As before, in the first

pass we compute an (𝜖/4)-AMM𝑀1 in the input graph 𝐺 .6 Next, we define the following random

bipartition (𝐿, 𝑅) of the node-set 𝑉 . For each matched edge (𝑢, 𝑣) ∈ 𝑀1, we arbitrarily include one

of its endpoints in 𝐿 and the other in 𝑅. Next, for each unmatched node 𝑣 ∈ 𝑉 (𝑀1), we include
the node 𝑣 in into one of 𝐿 and 𝑅 chosen uniformly at random. Subsequently, we assign a capacity

𝑏𝑣 := 1 to all nodes 𝑣 ∈ 𝑉 (𝑀1) and a capacity 𝑏𝑣 := 𝑏 to all nodes 𝑣 ∈ 𝑉 (𝑀1), for some integer 𝑏

to be chosen later. Let 𝐵 = (𝑉 , 𝐸2) be the bipartite subgraph spanned by edges with a single node

matched in𝑀1 and endpoints in opposite sides, i.e.,

𝐸2 := {(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑉 (𝑀1), 𝑣 ∈ 𝑉 (𝑀1), |{𝑢, 𝑣} ∩ 𝐿 | = |{𝑢, 𝑣} ∩ 𝑅 | = 1}).

In the second pass, we compute a maximal 𝑏-matching𝑀2 in 𝐵 w.r.t. the capacities {𝑏𝑣}. Finally,
we return the maximum matching in the subgraph𝐺 [𝑀1 ∪𝑀2].

5
This extension is not obtained by using the framework of [20] directly, as the latter requires explicit dynamic matchings.

Nonetheless, their arguments can be extended to the value version of the problem.

6
As with the bipartite Algorithm 1, we suggest the reader think of𝑀1 as being maximal for now (i.e., 𝜖 = 0).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:11

Algorithm 2 General Two-Pass Streaming Algorithm

1: 𝑀1 ← (𝜖/4)-AMM computed from first pass

2: for edge (𝑢, 𝑣) ∈ 𝑀1 do
3: 𝑠 (𝑢) ← ℓ and 𝑠 (𝑣) ← 𝑟

4: for vertex𝑤 ∈ 𝑉 (𝑀1) do
5: 𝑠 (𝑤) ∼ Uni{ℓ, 𝑟 }
6: let 𝐿 ← {𝑣 | 𝑠 (𝑣) = ℓ} and 𝑅 ← {𝑣 | 𝑠 (𝑣) = 𝑟 }

7: Assign each vertex 𝑣 capacity 𝑏𝑣 =

{
1 𝑣 ∈ 𝑉 (𝑀1)
𝑏 𝑣 ∈ 𝑉 (𝑀1).

8: let 𝐵 ← (𝑉 , 𝐸2), for 𝐸2 = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑉 (𝑀1), 𝑣 ∈ 𝑉 (𝑀1), |{𝑢, 𝑣} ∩ 𝐿 | = |{𝑢, 𝑣} ∩ 𝑅 | = 1}).
9: 𝑀2 ← maximal 𝑏-matching in 𝐵 computed from second pass

10: Output maximum matching in 𝐺 [𝑀1 ∪𝑀2]

Intuition: The intuition behind Algorithm 2 is as follows: if 𝑀1 is only roughly 2-approximate,

then many 3-augmenting paths exist in𝐺 w.r.t.𝑀1, by Proposition 2.6. Now, a constant fraction

of these (specifically, a quarter) “survive” the random bipartition and have their extreme edges

belong to 𝐵. Now, for each augmenting path 𝑢′ − 𝑢 − 𝑣 − 𝑣 ′ that survives, either an augmenting

path containing 𝑢 − 𝑣 is found in𝑀1 ∪𝑀2, or at least one of 𝑢
′
or 𝑣 ′ is matched 𝑏 times to nodes in

𝑉 (𝑀1) other than 𝑢 or 𝑣 . Next, since nodes in 𝑉 (𝑀1) can only be matched once in𝑀2, this limits

the number of paths where 𝑢 and 𝑣 do not participate in an augmenting path. This implies a large

number of augmenting paths in𝑀1 ∪𝑀2 that are disjoint in their 𝑉 (𝑀1) nodes. Finally, since each
node in 𝑉 (𝑀1) belongs to at most 𝑏 such paths, some large Ω(1/𝑏) fraction of these augmenting

paths are also disjoint in their𝑉 (𝑀1) nodes, from which we conclude that𝑀1 ∪𝑀2 contains a large

set of node-disjoint augmenting paths w.r.t.𝑀1, and that 𝐺 [𝑀1 ∪𝑀2] contains a large matching.

We now substantiate the above intuition. The first lemma in this vein asserts that 𝑀1 ∪ 𝑀2

contains many 3-augmenting paths w.r.t.𝑀1 (assuming𝑀1 is not already near maximum in size).

Lemma 4.1. If |𝑀1 | =
(
1

2
+ 𝑐

)
· 𝜇 (𝐺), then 𝐺 [𝑀1 ∪ 𝑀2] contains a set P of 3-augmenting paths

w.r.t.𝑀1 that are disjoint in their 𝑉 (𝑀1) nodes, with expected cardinality at least

E[|P|] ≥
(
𝑏

𝑏 + 1

)
·
(
1

4

·
(
1

2

− 3𝑐
)
− 1

𝑏
·
(
1

2

+ 𝑐
)
− 7𝜖

8

)
· 𝜇 (𝐺).

As the proof of Lemma 4.1 is a little calculation heavy, we defer its proof to Appendix C, and

instead prove the following slightly weaker but simpler bound here.

Lemma 4.2. If |𝑀1 | =
(
1

2
+ 𝑐

)
· 𝜇 (𝐺), then 𝐺 [𝑀1 ∪ 𝑀2] contains a set P of 3-augmenting paths

w.r.t.𝑀1 that are disjoint in their 𝑉 (𝑀1) nodes, with expected cardinality at least

E[|P|] ≥
(
1

4

·
(
1

2

− 3𝑐 − 7𝜖

2

)
− 2

𝑏
·
(
1

2

+ 𝑐
))
· 𝜇 (𝐺).

Proof. Fix a maximum set of node-disjoint 3-augmenting paths in𝐺 w.r.t.𝑀1, denoted by P∗.
By Proposition 2.6, we have |P∗ | ≥

(
1

2
− 3𝑐 − 7𝜖

2

)
· 𝜇 (𝐺). Next, let 𝑆 ⊆ P∗ be the paths 𝑢′−𝑢 −𝑣 −𝑣 ′

who “survive” the bipartition, in that (𝑢,𝑢′), (𝑣, 𝑣 ′) ∈ 𝐸2. By construction, each path in P∗ survives
with probability exactly

1

4
. Therefore, E[|𝑆 |] ≥ 1

4
·
(
1

2
− 3𝑐 − 7𝜖

2

)
· 𝜇 (𝐺).

Now, for each survived path 𝑢′ − 𝑢 − 𝑣 − 𝑣 ′ ∈ 𝑆 , either both 𝑢 and 𝑣 are matched (exactly once)

in 𝑀2, thus contributing an augmenting path, or at least one of 𝑢′ and 𝑣 ′ must be matched in

𝑀2 to 𝑏 distinct nodes in 𝑉 (𝑀1). But since each vertex in 𝑉 (𝑀1) is matched at most once in 𝑀2,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

111:12 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

there are thus at most |𝑉 (𝑀1) |/𝑏 = 2|𝑀1 |/𝑏 paths in 𝑆 whose middle edges do not belong to a

3-augmenting path in𝑀1 ∪𝑀2. Therefore, there are at least |𝑆 | − 2|𝑀1 |/𝑏 many edges (𝑢, 𝑣) in𝑀1

whose endpoints are both matched in𝑀2 to some (different) nodes 𝑢′′ and 𝑣 ′′, respectively. Each
such edge contributes an augmenting path to a set P of the desired size,

E[|P|] = E[|𝑆 |] − 2|𝑀1 |
𝑏
≥

(
1

4

·
(
1

2

− 3𝑐 − 7𝜖

2

)
− 2

𝑏
·
(
1

2

+ 𝑐
))
· 𝜇 (𝐺). □

The preceding two lemmas imply the existence of a multitude of 3-augmenting paths that are

disjoint in their 𝑉 (𝑀1) nodes. We now use these augmenting paths to prove the existence of

numerous (though possibly fewer) augmenting paths that are disjoint in all their nodes. Since
each of the two 𝑉 (𝑀1) nodes of a 3-augmenting path belong to at most 𝑏 such paths, it is easy to

find some 1/(2𝑏 − 1) fraction of these augmenting paths that are disjoint in all their nodes. The

following lemma, resembling [48, Lemma 6], increases this fraction to 1/𝑏.

Lemma 4.3. Let P be a set of 3-augmenting paths w.r.t.𝑀1 in 𝐺 [𝑀1 ∪𝑀2] such that each 𝑉 (𝑀1)
(resp. 𝑉 (𝑀1)) node belongs to at most one (resp., 𝑏) paths in P. Then P contains a set of node-disjoint
3-augmenting paths P′ ⊆ P of cardinality at least |P′ | ≥ 1

𝑏
· |P |.

Proof. Consider the graph 𝐺 ′ = (𝑉 (𝑀1), 𝐸′) obtained by replacing each path 𝑢′ − 𝑢 − 𝑣 − 𝑣 ′ in
P with a single edge 𝑢′ − 𝑣 ′. This graph 𝐺 ′ is bipartite, by virtue of our random bipartition of 𝐺 .

Now, since this bipartite graph𝐺 ′ has maximum degree 𝑏, it contains a matching of size at least

|𝐸′ |/𝑏 = |P |/𝑏: the fractional matching assigning values 1/𝑏 to each edge has value |𝐸′ |/𝑏, and so

𝐺 ′ contains an integral matching of at least the same value. On the other hand, disjoint edges in𝐺 ′

have a one-to-one mapping to node-disjoint paths in P, since each node in 𝑉 (𝑀1) belongs to at
most one such path. Thus, the maximum matching in 𝐺 ′ corresponds to a collection P′ ⊆ P of

node-disjoint augmenting paths in 𝐺 [𝑀1 ∪𝑀2] w.r.t.𝑀1, of cardinality at least |P′ | ≥ |P|/𝑏. □

The three preceding lemmas imply that 𝐺 [𝑀1 ∪ 𝑀2] contains a large set of vertex-disjoint

3-augmenting paths w.r.t.𝑀1, assuming this latter matching is not already large. As we now show,

this implies that 𝐺 [𝑀1 ∪𝑀2] contains a better-than-2-approximate matching.

Theorem 4.4. Let 𝜖 ∈ (0, 1/4). Then, Algorithm 2 with𝑏 = 9 satisfies 𝜇 (𝐺) ≥ E[𝜇 (𝐺 [𝑀1∪𝑀2])] ≥(
1

2
+ 1

144
− 𝜖

)
· 𝜇 (𝐺), and is thus (1

2
+ 1

144
− 𝜖)−1 < 1.973(1 + 2𝜖)-approximate in expectation.

Proof. Let |𝑀1 | =
(
1

2
+ 𝑐

)
· 𝜇 (𝐺), where 𝑐 ∈ [−𝜖/8, 1/2], with the lower bound on 𝑐 following

from Observation 2.4 and 𝑀 being an (𝜖/4)-AMM. Let P′ be a maximum set of vertex-disjoint

3-augmenting paths w.r.t. 𝑀1 in 𝐺 [𝑀1 ∪𝑀2]. Then, augmenting along these paths, we find that

𝑀1

⊕
P′ contains a matching (hence of size at most 𝜇 (𝐺)) of the desired expected cardinality.

E[|𝑀1

⊕
P′ |] = E[|𝑀1 | + |P′ |]

≥
(
1

2

+ 𝑐
)
· 𝜇 (𝐺) +

(
1

𝑏 + 1 ·
(
1

4

·
(
1

2

− 3𝑐
)
− 1

𝑏
·
(
1

2

+ 𝑐
)
− 7𝜖

8

))
· 𝜇 (𝐺)

≥
(
1

2

− 𝜖
8

+ 1

𝑏 + 1 ·
(
1

4

· 1
2

− 1

𝑏
· 1
2

)
− 7𝜖

8

)
· 𝜇 (𝐺)

=

(
1

2

+ 1

144

− 𝜖
)
· 𝜇 (𝐺).

Above, the first inequality follows from Lemma 4.1 and Lemma 4.3, the second inequality mainly

relies on the parenthetical expression being increasing in 𝑐 ≥ −𝜖/8 (for our choice of 𝑏 = 9). Finally,

the equality holds by our choice of 𝑏 = 9. □

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:13

4.2 Dynamic Algorithms
In this section we provide the dynamic algorithms yielding our main results, theorems 1.1 and 1.2.

As with the bipartite case, our general approach is to approximately implement our two-pass

streaming algorithm in a dynamic setting. Unlike the algorithm for bipartite graphs, here we need

to (slightly) unbox the sublinear-time algorithm of [12] to find a large set of edges in 𝑀1 which

belong to 3-augmenting paths in 𝐺 [𝑀1 ∪𝑀2], as explained below.

4.2.1 Breaking the barrier of two in polylog time. In this section, we present a robust dynamic

(1.973 + 𝜖)-approximate maximum matching size with worst case update time of 𝑡𝑢 = 𝑂̃𝜖 (1), and a

query time of 𝑡𝑞 = 𝑂̃𝜖 (𝑛), provided 𝜇 (𝐺) ≥ 𝜖𝑛. This, combined with Proposition 2.1, implies our

main result, Theorem 1.1.

For our dynamic (approximate) implementation of Algorithm 1, which works on bipartite graphs,

all we needed was to estimate |𝑀2 |. In contrast, for our dynamic (approximate) implementation of

Algorithm 2, we will need to estimate the size of the set P as guaranteed by Lemma 4.1. Specifically,

we note that the proofs of Lemmas 4.1, 4.3 and 4.4 imply the following observation.

Observation 4.5. Let𝑀1 ⊆ 𝑀1 be the set of edges in𝑀1 whose two endpoints are matched in𝑀2 in
Algorithm 2 run with 𝑏 = 9. Then, |𝑀1 | + 1

𝑏
· E

[
|𝑀1 |

]
≥ 𝜇 (𝐺)

1.973· (1+2𝜖) , and also 𝜇 (𝐺) ≥ |𝑀1 | + 1

𝑏
· |𝑀1 |.

To estimate |𝑀1 | efficiently, we make use of the following extension of the algorithm of [12].

Lemma 4.6. Consider a graph 𝐺 ′ = (𝑉 ′, 𝐸′) with |𝑉 ′ | = 𝑛′, and a matching 𝑀 with 𝑉 (𝑀) ⊆ 𝑉 ′
that is not necessarily part of 𝐺 ′ (i.e., we might have 𝑀 ⊈ 𝐸′). For any matching 𝑀 ′ in 𝐺 ′, let 𝑘𝑀 ′
denote the number of edges in𝑀 both of whose endpoints are matched in𝑀 ′. There is an algorithm
which, given adjacency matrix query access to the edges of𝐺 ′, w.h.p. runs in 𝑂̃𝜖 (𝑛′) time and returns
an estimate 𝜅 ∈ [𝑘𝑀 ′ − 𝜖2𝑛′, 𝑘𝑀 ′] for some maximal matching𝑀 ′ in 𝐺 ′.

This lemma follows from the work of [12] rather directly, though it requires some unboxing of

the results there, due to the organization of that work. We substantiate this lemma in Appendix B.

Given the above, we are now ready to prove the main result of this section, which is summarized

in the theorem below.

Theorem 4.7. For any 𝜖 ∈ (0, 1/4), there exists a robust dynamic matching size estimator algorithm
A with worst-case update time 𝑂̃𝜖 (1) that, provided 𝜇 (𝐺) ≥ 𝜖 · 𝑛, supports 𝑂̃𝜖 (𝑛)-time queries and
outputs a (1.973 + 𝜖)-approximate estimate w.h.p.

Proof. The dynamic algorithm A is based on Algorithm 2. For its updates, it maintains an

(𝜖/4)-AMM 𝑀1 in the input graph 𝐺 , using Lemma 2.5, and a balanced binary search tree (BST)

of edges in the graph, allowing for logarithmic-time insertion, deletion and edge queries. This

immediately implies a worst-case update time of 𝑡𝑢 = 𝑂̃𝜖 (1).
We now describe how Algorithm A responds to a query about the maximum matching size. To

answer this query, the algorithm considers a new auxiliary graph𝐺∗ = (𝑉 ∗, 𝐸∗), which is defined as

follows. For each node 𝑢 ∈ 𝑉 (𝑀1), create a node 0𝑢 in 𝐺∗. Next, for each node 𝑣 ∈ 𝑉 (𝑀1), create 𝑏
nodes 1𝑣, . . . , 𝑏𝑣 in𝐺

∗
. Finally, for every edge (𝑢, 𝑣) ∈ 𝐸2, with 𝑢 ∈ 𝑉 (𝑀1) and 𝑣 ∈ 𝑉 (𝑀1), create an

edge (0𝑢, 𝑖𝑣) in 𝐺∗ for all 𝑖 ∈ {1, . . . , 𝑏}. Note that there is a one-to-one mapping between maximal

matchings in the new graph 𝐺∗ and maximal 𝑏-matchings in 𝐵.

We emphasize that our dynamic algorithm A does not explicitly maintain the auxiliary graph

𝐺∗. When we receive a query about the maximum matching size in𝐺 , we explicitly construct only

the node-set 𝑉 ∗ of 𝐺∗, based on the matching 𝑀1. This takes only 𝑂 (𝑛) time. We can, however,

simulate adjacency matrix queries in𝐺∗ efficiently: there exists an edge (0𝑢, 𝑖𝑣) in𝐺∗ iff there exists

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

111:14 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

an edge (𝑢, 𝑣) between the corresponding nodes in𝐺 , verifiable in𝑂 (log𝑛) time using our edge-set

BST.

At this point, we estimate the size of 𝑀1 by invoking Lemma 4.6 with 𝐺 ′ = 𝐺∗ and 𝑀 = 𝑀1.

This gives us, in time 𝑂̃𝜖 (𝑛) a value 𝜅 satisfying 𝜅 ∈ [|𝑀1 | − 𝜖2𝑛, |𝑀1 |], w.h.p. We now return

𝜈 := |𝑀1 | + 1

𝑏
· 𝜅 as our estimate of 𝜇 (𝐺). All in all, our algorithm has query time 𝑡𝑞 = 𝑂̃𝜖 (𝑛).

It remains to analyze the approximation ratio. For this, we observe that, by our hypothesis that

𝜇 (𝐺) ≥ 𝜖 · 𝑛,

E[𝜈] ≥ E
[
|𝑀1 | +

1

𝑏
· (|𝑀1 | − 𝜖2𝑛)

]
= |𝑀1 | +

1

𝑏
· E

[
𝑀1

]
− 𝜖

2𝑛

𝑏

≥ 𝜇 (𝐺)
1.973 · (1 + 2𝜖) − 𝜖

2𝑛

≥ 𝜇 (𝐺)
1.973 · (1 + 2𝜖) − 𝜖 · 𝜇 (𝐺)

≥ 𝜇 (𝐺)
1.973 · (1 + 5𝜖) . (6)

In the above derivation, the second inequality follows from Observation 4.5. Similarly, we have

w.h.p.:

𝜈 ≤ |𝑀1 | +
1

𝑏
· |𝑀1 | ≤ 𝜇 (𝐺). (7)

The second inequality in the above derivation again follows from Observation 4.5. From (6) and (7),

we conclude that we return in response to each query a 1.973(1 + 5𝜖)-approximation to 𝜇 (𝐺) in
expectation. Therefore, by standard Chernoff bounds, running 𝑂𝜖 (log𝑛) copies of this algorithm
(increasing update and query time appropriately) and taking the average of these will then result

in a 1.973(1 +𝑂 (𝜖)) approximation of the desired value, w.h.p. Reparameterizing 𝜖 appropriately,

the theorem follows. □

Combined with Observation 2.1, the above theorem implies our main result, Theorem 4.7.

4.2.2 New time/approximation tradeoffs. In this section we show our secondary result: a black-

box method to improve dynamic matching algorithm’s approximation ratio, at the cost of only

outputting a size estimate. We start with the following observation.

Proposition 4.8. Let 𝐺 be an 𝑛-node graph, 𝜖 ∈ (0, 1) and 𝛼 ≥ 1. Then, given an 𝜖-AMM 𝑀 ′ and
𝛼-approximate maximum matching 𝑀 ′′ in 𝐺 , one can compute in 𝑂 (𝑛) time a matching 𝑀 in 𝐺
which is both 𝛼-approximate and an 𝜖-AMM.

Proof. The subgraph 𝐺 [𝑀 ′ ∪𝑀 ′′] has maximum degree two, and is thus the union of paths

and cycles. Let 𝑀 be the matching obtained by taking from each connected component C in

𝐺 [𝑀 ′ ∪𝑀 ′′] either the set of edges of𝑀 ′ or𝑀 ′′ that are most plentiful in C, breaking ties in favor

of𝑀 ′. By construction, it is clear that𝑀 is a matching, and that moreover |𝑀 | ≥ |𝑀 ′′ |, and so𝑀 is

𝛼-approximate. On the other hand,𝑀 matches all nodes of𝑀 ′ in each component, and therefore

overall. That is, after removing at most 𝜖𝜇 (𝐺) nodes in 𝑉 \𝑉 (𝑀) ⊆ 𝑉 \𝑉 (𝑀 ′), we obtain a graph

in which𝑀 is maximal. That is, the matching𝑀 is also an 𝜖-AMM. □

We are now ready to prove Theorem 1.2, restated below for ease of reference.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:15

Theorem 1.2. For any 𝛼 > 1.5, a dynamic 𝛼-approximate matching algorithm with update time
𝑡𝑢 implies a dynamic

(
𝛼 − Ω

((
1 − 6

(
1

𝛼
− 1

2

))
2

))
-approximate matching size estimator with update

time 𝑂̃ (𝑡𝑢).

Proof. Let 𝜖 > 0 be some sufficiently small constant. We describe how to obtain a new dynamic

matching size estimatorA for𝐺 , with update time 𝑂̃𝜖 (𝑡𝑢) that, provided 𝜇 (𝐺) ≥ 𝜖 ·𝑛, supports 𝑂̃𝜖 (𝑛)-
time queries and outputs a 𝛽-approximate estimate w.h.p., for some 𝛽 = 𝛼 −Ω((1−6(1/𝛼 −1/2))2)).
The theorem then immediately follows from Proposition 2.1.

The algorithmA works as follows. It maintains an 𝜖-AMM𝑀 ′
1
, invoking Lemma 2.5, taking 𝑂̃𝜖 (1)

update time. It also maintains 𝛼-approximate matching 𝑀 ′′
1
, by running the dynamic algorithm

guaranteed by the theorem’s hypothesis, taking 𝑡𝑢 update time. Therefore, Algorithm A has an

overall update time of 𝑡𝑢 + 𝑂̃𝜖 (1) = 𝑂̃𝜖 (𝑡𝑢).
Upon receiving a query, AlgorithmA first invokes Proposition 4.8 to obtain a matching𝑀1 (based

on𝑀 ′
1
and𝑀 ′′

1
) that is simultaneously an 𝜖-AMM and an 𝛼-approximate maximum matching in 𝐺 .

This takes 𝑂 (𝑛) time. The rest of the query algorithm remains exactly the same as in Section 4.2.

This implies that Algorithm A has an overall query time of 𝑂̃𝜖 (𝑛).
We now analyze the approximation guarantee of A. Towards this end, observe that as 𝛼 > 1.5,

we can write
1

𝛼
= 1

2
+ 𝑐 where 0 < 𝑐 < 1/6. So, we have that |𝑀1 | =

(
1

2
+ 𝑧

)
· 𝜇 (𝐺) for some 𝑧 ≥ 𝑐 .

Therefore, by Lemma 4.2 and Lemma 4.3, there exists some set P′ of node-disjoint length-three
augmenting paths w.r.t.𝑀1 in 𝐺 [𝑀1 ∪𝑀2] whose cardinality satisfies

|P′ |
𝜇 (𝐺) ≥ 𝑓𝑏 (𝑧) :=

1

𝑏
·
(
1

4

·
(
1

2

− 3𝑧 − 7𝜖

2

)
− 2

𝑏
·
(
1

2

+ 𝑧
))
.

Augmenting along these paths with respect to 𝑀1, we obtain a new matching in 𝐺 [𝑀1 ∪𝑀2] of
cardinality at least

(
1

2
+ 𝑧 + 𝑓𝑏 (𝑧)

)
· 𝜇 (𝐺). Now, for 𝑏 ≥ 2 (as we will choose), this matching size

is decreasing in 𝑧, as observed by taking the derivative of 1/2 + 𝑧 + 𝑓𝑏 (𝑧) w.r.t. 𝑧. Therefore, the
matching size is minimized at 𝑧 = 𝑐 , and we find that 𝜇 (𝐺 [𝑀1 ∪𝑀2]) ≥ 1/2 + 𝑐 + 𝑓𝑏 (𝑐). Taking
another derivative, this time with respect to 𝑏, we find that this expression is minimized (ignoring

the 𝜖 dependence) at 𝑏∗ = 16(1+2𝑐)
1−6𝑐 . Note that 𝑏 ≥ 16, as 𝑐 ∈ (0, 1/6). This optimal 𝑏∗ need not be an

integer, however, and so we take 𝑏 = ⌈𝑏∗⌉ ≤ 17

16
𝑏∗ in our algorithm, and find that𝑀1∪𝑀2 contains a

matching of size at least 𝜇 (𝐺) times 1/2+𝑧+ 𝑓𝑏 (𝑧) ≥ 1/2+𝑐+ 𝑓 17𝑏
16
𝑏∗ (𝑐) ≥ 1/2+𝑐+ 9(1−6𝑐)2

2312(1+2𝑐)) −𝑂 (𝜖/𝑏).
Moreover, some 𝑏 · 𝑓𝑏 (𝑧) many edges 𝑀̂1 ⊆ 𝑀1 have both of their endpoints matched in the 𝑏-

matching𝑀2.

We conclude that E[𝜇 (𝐺 [𝑀1 ∪𝑀2])] gives a strictly-better-than-𝛼 approximation to 𝜇 (𝐺) (again
using that 𝑐 < 1/6). Specifically, the gain we get in the approximation ratio is of the order of

Θ((1 − 6𝑐)2) = Θ((1 − 6(1/𝛼 − 1/2))2). Now, using the fact that 𝜇 (𝐺) ≥ 𝜖𝑛 and we are running

the same query algorithm as in Section 4.2, our estimation using the sub-linear-time algorithm

(Lemma 4.6) gives a strictly-better-than-𝛼 approximation to 𝜇 (𝐺) in expectation. As before, taking

the average of𝑂 (log𝑛) copies of this algorithm will provide the same bound w.h.p., at an additional

logarithmic multiplicative overhead to the update and query times. □

Remark 4.9. We note that the reduction of Theorem 1.2 preserves robustness and worst-case update
time.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

5 AMMS AGAINST ADAPTIVE ADVERSARIES
In this section we prove Lemma 2.5. That is, we provide a robust dynamic algorithm for maintaining

an 𝜖-AMM in worst-case polylogarithmic update time. But first, we motivate our algorithm, and

characterize the kind of matching we wish to compute.

We first recall a useful tool in the literature, namely edge sparsification: maintaining a sparse

subgraph of𝐺 containing a large matching–a so-calledmatching sparsifier. Such sparsifiers naturally
allow to achieve speedups in the algorithms needed for Proposition 2.1, as a large matching in

a sparsifier can be computed quickly. One influential such sparsifier that we will use are kernels,
introduced by Bhattacharya et al. [25].

Definition 5.1. For 𝜖 ≥ [0, 1] and 𝑑 ∈ N, a subgraph 𝐾 = (𝑉 , 𝐸𝐾) of graph 𝐺 = (𝑉 , 𝐸) is an
(𝜖, 𝑑)-kernel if 𝐾 ’s maximum degree is at most 𝑑 and each edge 𝑒 ∈ 𝐸 \ 𝐸𝐾 has at least one endpoint
of degree at least 𝑑 (1 − 𝜖) in 𝐾 .

These sparsifiers will play an integral role in robustly and efficiently maintaining an AMM in

this section. We start by motivating their use in computing AMMs in a static setting.

5.1 From kernels to AMMs
To motivate the interest in bounded-degree graphs, we recall the following observation, which

follows from the fact that the 2𝜇 (𝐺) endpoints of a maximum matching form a vertex cover (i.e.,

are incident on each edge of the graph).

Fact 5.2. Let 𝐺 = (𝑉 , 𝐸) be a graph of maximum degree Δ. Then |𝐸 | ≤ 2𝜇 (𝐺) · Δ.

When 𝑑 and 𝜇 (𝐺) are small, Fact 5.2 and Definition 5.1 imply that (𝜖, 𝑑)-kernels of 𝐺 are quite

sparse subgraphs compared to the size of a maximummatching contained within them. In particular,

since maximal matchings are computable in linear time, in kernel𝐾 computing a maximal matching

requires only |𝐸𝐾 | ≤ 2𝜇 (𝐾) · 𝑑 = 𝑂 (𝜇 (𝐺) · 𝑑) time. The following result of [41] implies that

essentially the same amount of time is needed to compute a near-maximum-weight matching in 𝐾 .

Proposition 5.3. Let 𝐺 = (𝑉 , 𝐸,𝑤) be a weighted graph. There exist a deterministic algorithm for
computing a (1 + 𝜖)-approximate maximum weight matching of 𝐺 in time 𝑂𝜖 (|𝐸 |).

We now explain how to find large matchings in a kernel 𝐾 that allow us to obtain an AMM of

𝐺 . For this, we will need to upper bound the number of high-degree nodes in 𝐾 . Specifically, for

an (𝜖, 𝑑)-kernel 𝐾 of graph 𝐺 , we denote by 𝐻𝐾 := {𝑣 | 𝑑𝐾 (𝑣) ≥ 𝑑 (1 − 𝜖)} the set of high-degree
nodes in 𝐾 . We will wish to argue that a removal of few high-degree nodes in the kernel yields

a subgraph in which our matching is maximal. We therefore need to prove that the number of

high-degree nodes is itself small in terms of 𝜇 (𝐺).

Lemma 5.4. Let 𝐾 = (𝑉 , 𝐸𝐾) be an (𝜖, 𝑑)-kernel 𝐾 of 𝐺 with 𝜖 ≤ 1/4. Then |𝐻𝐾 | ≤ 4𝜇 (𝐺).

Proof. We consider the fractional matching 𝑥 ∈ R𝐸 where 𝑥𝑒 = 1[𝑒 ∈ 𝐸𝐾]/𝑑 . By the degree

bound of 𝐾 , this is a feasible fractional matching in𝐺 . Using this fractional matching, we can show

that

1

2

· (1 − 𝜖) · |𝐻𝐾 | ≤
∑︁
𝑣∈𝐻𝐾

∑︁
𝑒∋𝑣

𝑥𝑒 ≤
∑︁
𝑒

𝑥𝑒 ≤
3

2

· 𝜇 (𝐺),

where the first inequality follows from the definition of 𝐻𝐾 and possible double counting of edges,

and the last inequality follows from the integrality gap of
3

2
of the factional matching polytope.

Simplifying the above and using 𝜖 ≤ 1/4, we have that indeed |𝐻𝐾 | ≤ (3/(1−𝜖)) ·𝜇 (𝐺) ≤ 4𝜇 (𝐺). □

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:17

We now show that it is sufficient to match the (1 − Θ𝜖 (1))-fraction of vertices of 𝐻𝐾 in order to

find an 𝐴𝑀𝑀 in 𝐺 through Lemma 5.5. Lemma 5.6 then proves that there exists a static algorithm

with running time 𝑂̃𝜖 (𝑘 · 𝜇 (𝐺)) for computing an 𝐴𝑀𝑀 of 𝐺 given access to kernel 𝐾 .

Lemma 5.5. Let 𝐾 = (𝑉 , 𝐸𝐾) be an (𝜖, 𝑑)-kernel of 𝐺 = (𝑉 , 𝐸), for 𝜖 ∈ (0, 1/4) and 𝑑 ≥ 1

𝜖
. Then,

a maximal matching 𝑀 in 𝐾 that matches at least a (1 − 𝑐 · 𝜖)-fraction of 𝐻𝐾 is a 4𝑐𝜖-AMM in 𝐺 .
Moreover, such a matching exists for 𝑐 = 2.

Proof. First, we argue that such a matching𝑀 , if it exists, is indeed a 4𝑐𝜖-AMM in 𝐺 . We recall

that every edge in 𝐸 \ 𝐸𝐾 has a high-degree endpoint in 𝐾 . Therefore, if we remove the 𝑐𝜖 fraction

of high-degree nodes 𝐻𝐾 unmatched by 𝑀 , each edge in 𝐸 \ 𝐸𝐾 in the resulting graph 𝐺 ′ has at
least one endpoint matched in𝑀 . On the other hand, every edge in 𝐸𝐾 has an endpoint matched in

𝑀 , by maximality of 𝑀 in 𝐾 . We conclude that after removing 𝑐𝜖 · |𝐻𝐾 | ≤ 4𝑐𝜖 · 𝜇 (𝐺) nodes in 𝐺
(with the inequality relying on Lemma 5.4), we obtain a graph 𝐺 ′ where𝑀 is maximal. That is,𝑀

is a 4𝑐𝜖-AMM.

We now argue the existence of such a matching𝑀 for 𝑐 = 2. Since 𝐻 has maximum degree 𝑑 ≥ 1

𝜖
,

by Vizing’s theorem [81] it can be (𝑑 + 1)-edge-colored, i.e., decomposed into (𝑑 + 1) matchings.

A randomly-chosen color in this edge coloring is a matching 𝑀 ′ that matches each edge with

probability
1

𝑑+1 , and thus it matches each high-degree vertex 𝑣 with probability at least

Pr[𝑣 matched] ≥ 𝑑 (1 − 𝜖)/(𝑑 + 1) ≥ (1 − 𝜖)/(1 + 𝜖) ≥ 1 − 2𝜖.
Finally, extending this matching𝑀 ′ to also be maximal in 𝐾 by adding edges of 𝐾 greedily then

proves the existence of the desired 8𝜖-AMM contained in the kernel 𝐾 . □

We now turn to making the above proof of existence constructive.

Lemma 5.6. Given an (𝜖, 𝑑)-kernel 𝐾 = (𝑉 , 𝐸𝐾) of 𝐺 = (𝑉 , 𝐸), one can compute an 𝜖-AMM in 𝐺 in
deterministic time 𝑂𝜖 (𝑑 · 𝜇 (𝐺)).
Proof. Let 𝜖′ = 𝜖/12. By Fact 5.2, the number of edges in 𝐾 is at most |𝐸𝐾 | = 𝑂 (𝑑 · 𝜇 (𝐺)). We

then compute a (1 + 𝜖′)-max weight matching𝑀 ′ in the graph 𝐺 with edge weights equaling the

number of high-degree nodes incident on them,𝑤𝑒 =
∑
𝑣∈𝑒 1[𝑣 ∈ 𝐻𝐾] ∈ {0, 1, 2}. By Proposition 5.3,

this can be done in deterministic time 𝑂𝜖 (𝑑 · 𝜇 (𝐺)). By Lemma 5.5, this guarantees that at least a

(1 − 2𝜖′)/(1 + 𝜖′) ≥ (1 − 3𝜖′) fraction of high-degree nodes in 𝐾 are unmatched by this dynamic

subroutine. We then extend𝑀 ′ to also be maximal in 𝐾 , by scanning over the |𝐸𝐾 | = 𝑂 (𝑑 · 𝜇 (𝐺))
edges of 𝐾 (in the same deterministic time) and adding them to𝑀 ′ where possible. By Lemma 5.5,

this results in a 12𝜖′-AMM, i.e., an 𝜖-AMM, after a total of 𝑂𝜖 (𝑑 · 𝜇 (𝐺)) deterministic time. □

So far, we have provided a static AMM algorithmwith deterministic time𝑂𝜖 (𝑑 ·𝜇 (𝐺)), provided we
have access to a kernel. To dynamize the above, we first show how to maintain a kernel dynamically

through periodic recomputation.

5.2 Periodic kernels and AMMs
In [82], Wajc provided a method for rounding dynamic fractional matchings to matching sparsifiers,

and from these (by methods underlying Algorithm 3), we can obtain integral matchings. Crucially

for our needs, his framework was robust, and allowed for worst-case update times. Unfortunately

for us, the lemma statements in his work do not immediately imply a robust dynamic kernel

maintenance. However, they do allow for kernel queries, with running time 𝑂̃ (𝑑 · 𝜇 (𝐺)).
Lemma 5.7. Let 𝜖 ∈ (0, 1) and 𝑑 = 𝑂̃𝜖 (1) be sufficiently large. Then, there exists a robust algorithm
with worst-case update time 𝑡𝑢 = 𝑂̃𝜖 (1) allowing for (𝜖, 𝑑)-kernel and 𝜖-AMM queries in worst-case
query time 𝑡𝑞 = 𝑂̃𝜖 (𝑑 · 𝜇 (𝐺)). The query’s outputs are a kernel and an 𝜖-AMM w.h.p.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

111:18 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Given the ability to query a kernel, the ability to query an AMM then follows directly from

Lemma 5.6. As the proof and presentation of an algorithm allowing for kernel queries essentially

requires repeating verbatim numerous lemmas in [82], we defer its proof to Appendix D.

We now turn to designing a robust dynamic algorithm that always maintains an AMM.

5.3 Robust dynamic AMMs
So far, we have provided a method to answer AMM queries in a dynamic setting. Lemma 5.8 proves

that once an AMM is computed it remains an 𝐴𝑀𝑀 for ∼ 𝜖 · 𝜇 (𝐺) updates.
Lemma 5.8. Let 𝜖 ∈ (0, 1/2). If𝑀 is an 𝜖-AMM in 𝐺 , then the non-deleted edges of𝑀 during any
sequence of at most 𝜖 · 𝜇 (𝐺) updates constitute a 6𝜖-AMM in 𝐺 (during the updates).

Proof. Let𝐺,𝑀 and𝐺 ′, 𝑀 ′ be the graph and matching before and after the updates, respectively.

Since each update can decrease the size of the maximum matching size by at most one, we have

1

2

· 𝜇 (𝐺) ≤ (1 − 𝜖) · 𝜇 (𝐺) ≤ 𝜇 (𝐺 ′).

Now, recall that for some set of vertices 𝑈 ⊆ 𝑉 of size at most |𝑈 | ≤ 𝜖 · 𝜇 (𝐺) nodes from 𝐺 , the

matching𝑀 is maximal in 𝐺 [𝑉 \𝑈]. Now, after these 𝜖 · 𝜇 (𝐺) updates, it might be that 2𝜖 · 𝜇 (𝐺)
edges in 𝐺 ′ are now not incident on edges in𝑀 ′. (The factor of two arises due to edges of𝑀 that

are deleted leaving two uncovered edges, addressable by removing two more nodes). That is, after

removing a node set𝑈 ′ ⊆ 𝑉 of size at most |𝑈 ′ | ≤ 3𝜖 · 𝜇 (𝐺) ≤ 6𝜖 · 𝜇 (𝐺 ′) nodes from𝐺 ′, we obtain
a graph 𝐺 ′ [𝑉 \𝑈 ′] where𝑀 ′ is maximal. That is,𝑀 ′ is an 𝑂 (𝜖)-AMM in 𝐺 ′. □

This “stability” of AMMs again lends itself to the periodic re-computation framework of [57],

which, together with our algorithms for querying AMMs, allow us to maintain AMMs (always).

Lemma 2.5. For any 𝜖 ∈ (0, 1/2), there exists a robust dynamic algorithm that w.h.p. maintains an
𝜖-AMM in worst-case update time 𝑂̃𝜖 (1).

Proof. We will run the dynamic AMM query algorithm A of Lemma 5.7, whose update fits

within our update time budget. We will periodically query A, and spread this computation over

these periods to guarantee low worst-case update time. Specifically, we will divide the update

sequence into epochs, where if the graph 𝐺 at the start of epoch 𝑖 is 𝐺𝑖 , then the epoch has length

ℓ𝑖 ∈ [𝜖 · 𝜇 (𝐺)/3, 𝜖 · 𝜇 (𝐺𝑖)]. In order to determine the length of the epochs, we run the deterministic

dynamic (2 + 𝜖)-approximate fractional matching algorithm of [27], which in particular gives us

a 2 + 𝜖 ≤ 3-approximation of 𝜇 (𝐺𝑖) in worst-case update time 𝑂̃𝜖 (1), again fitting within our

time budgets. Now, during phase 𝑖 , we spend the time 𝑡𝑞 for the 𝜖-AMM query subroutine of

A, so as to finish computing 𝑀𝑖 . The amount of time spent per update to achieve this goal is at

most
𝑂̃𝜖 (𝜇 (𝐺𝑖))
⌊𝜖 ·𝜇 (𝐺𝑖)/10⌋ = 𝑂̃𝜖 (1), again fitting within our time updates. We now describe and analyze the

matchings maintained by this algorithm (these are not always𝑀𝑖).

By Lemma 5.8, we need to provide a matching𝑀 ′𝑖+1 at the start of each phase 𝑖 + 1 which is an

𝑂 (𝜖)-AMM in 𝐺𝑖+1, thus guaranteeing that the non-deleted edges of𝑀 ′𝑖+1 remain an 𝑂 (𝜖)-AMM.

Reparameterizing appropriately will then yield the desired result. It remains to define our matchings

𝑀 ′𝑖 . Using our estimate of 𝜇 (𝐺) obtained by the dynamic fractional matching, we test whether

𝜇 (𝐺𝑖) ∈ [1/𝜖, 10/𝜖]. If this is the case, then𝑀 ′𝑖+1 is obtained by querying the AMM algorithm A at

the beginning of phase 𝑖 + 1, in time 𝑂𝜖 (1). (This relied on 𝜇 (𝐺𝑖+1) ≤ 𝜇 (𝐺𝑖) + ℓ𝑖 ≤ 𝜇 (𝐺𝑖) · (1 + 𝜖) =
𝑂̃𝜖 (1).) By the properties of A, the matching𝑀 ′𝑖+1 is an 𝜖-AMM in 𝐺𝑖+1 w.h.p. Now, if conversely
𝜇 (𝐺𝑖) ≥ 10/𝜖 , then we have that

1

2

· 𝜇 (𝐺𝑖) ≤ (1 − 𝜖) · 𝜇 (𝐺𝑖) ≤ 𝜇 (𝐺𝑖) − ℓ𝑖 ≤ 𝜇 (𝐺𝑖+1).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:19

Now, 𝑀𝑖 , is an 𝜖-AMM in 𝐺𝑖 , which is obtained from 𝐺𝑖+1 by at most 𝜖 · 𝜇 (𝐺𝑖) ≤ 2𝜖 · 𝜇 (𝐺𝑖+1)
updates. Therefore, by Lemma 5.8 𝑀𝑖 is a 12𝜖-AMM in 𝐺𝑖+1. We therefore take 𝑀 ′𝑖+1 to be 𝑀𝑖 .

Reparameterizing 𝜖 appropriately, the lemma follows. □

6 CONCLUSION AND FUTURE DIRECTIONS
We presented the first dynamic matching (size estimation) algorithm breaking the approximation

barrier of 2 in polylogarithmic update time. While this presents a major advance in our understand-

ing of the dynamic matching problem, many questions remain. We mention a few such questions

which we find particularly intriguing, and some progress on these following the publication of this

paper’s conference version.

Explicit fast matching. In our work we show how to maintain a better-than-two approximate

estimate of the maximum matching size. Can one also maintain an explicit matching of similar

approximation ratio within the same time bounds? We note that unless all greater than 1.5 approxi-

mation ratios are possible for explicit matching in polylog time, then Theorem 1.2 would imply a

separation between the attainable time/approximate tradeoffs for explicit dynamic matching and

its size estimation counterpart.

Better approximation in 𝑜 (𝑛) update time? Known conditional impossibility results rule out an

exact algorithm with 𝑛1−Ω (1) update time [2, 40, 58], but the best approximation ratios currently

known are
3

2
+ 𝜖 [22, 23, 56, 62]. Can one do better in 𝑜 (𝑛) time? Following the publication of the

conference version of this paper, the sublinear+streaming connection to dynamic algorithms has

resulted in better time/approximation tradeoffs for the value version of the problem [10, 18, 29, 30].

Again, one may ask, can explicit matching algorithms with such improved guarantees be obtained?

In a similar vein, sub-logarithmic speedups were obtained for (1 + 𝑜 (1))-approximate matching [5].

Can one obtain stronger speedups for (1 + 𝜖)-approximate matching? On the flip side, can we show

any (conditional) hardness of approximate dynamic matching, for any approximation ratio?

Unconditional impossibility results.With this work we bring dynamic matching with better-

than-two approximation into the polylogarithmic update time regime—the range where uncondi-
tional impossibility are known for numerous data structures and dynamic algorithms. Can such

unconditional impossibility results be proven for (approximate) dynamic matching?

More applications of robust AMMs. A plethora of recent developments in fast (static) graph

algorithms rely on invocations of adversarially-robust dynamic algorithms (i.e., ones that work

against an adaptive adversary). Our work adds almost-maximal matchings to the list of algorithmic

subroutines useful for this approach. (Subsequently, [32] derandomized this result, though at the

cost of amortization.) Robust AMMs played a key role for dynamic problems, both here, in the follow-

up [10], and in the bounded-arboricity matching algorithms of [77]. What further applications

can our robust dynamic AMM algorithms for arbitrary graphs find for other (dynamic and static)

algorithmic problems?

Acknowledgements.We thank the anonymous SODA and J.ACM reviewers for helpful comments.

REFERENCES
[1] Amir Abboud and Søren Dahlgaard. 2016. Popular conjectures as a barrier for dynamic planar graph algorithms. In

Proceedings of the 57th Symposium on Foundations of Computer Science (FOCS). 477–486.
[2] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply strong lower bounds for dynamic

problems. In Proceedings of the 55th Symposium on Foundations of Computer Science (FOCS). 434–443.
[3] Kook Jin Ahn and Sudipto Guha. 2013. Linear programming in the semi-streaming model with application to the

maximum matching problem. Information and Computation 222 (2013), 59–79.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

[4] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. 2018. Dynamic Matching: Reducing Integral

Algorithms to Approximately-Maximal Fractional Algorithms. In Proceedings of the 45th International Colloquium on
Automata, Languages and Programming (ICALP). 79:1–79:16.

[5] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. 2023. On regularity lemma and barriers in streaming

and dynamic matching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). 131–144.
[6] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. 2022. Semi-Streaming Bipartite Matching

in Fewer Passes and Optimal Space. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 627–669.

[7] Sepehr Assadi and Sanjeev Khanna. 2024. Improved Bounds for Fully DynamicMatching via Ordered Ruzsa-Szemer\’edi
Graphs. arXiv preprint arXiv:2406.13573 (2024).

[8] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2019. The stochastic matching problem with (very) few queries. ACM
Transactions on Economics and Computation (TEAC) 7, 3 (2019), 1–19.

[9] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maximum matchings in dynamic graph

streams and the simultaneous communication model. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 1345–1364.

[10] Amir Azarmehr, Soheil Behnezhad, and Mohammad Roghani. 2024. Fully Dynamic Matching: (2−
√
2)-Approximation

in Polylog Update Time. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
3040–3061.

[11] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2015. Fully Dynamic Maximal Matching in𝑂 (log𝑛) Update Time.

SIAM Journal on Computing (SICOMP) 44, 1 (2015), 88–113.
[12] Soheil Behnezhad. 2022. Time-optimal sublinear algorithms for matching and vertex cover. In Proceedings of the 62nd

Symposium on Foundations of Computer Science (FOCS). 873–884.
[13] Soheil Behnezhad. 2023. Dynamic Algorithms forMaximumMatching Size. In Proceedings of the 34th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA). 129–162.
[14] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, andMadhu Sudan. 2019. Fully dynamic

maximal independent set with polylogarithmic update time. In Proceedings of the 60th Symposium on Foundations of
Computer Science (FOCS). 382–405.

[15] Soheil Behnezhad and Alma Ghafari. 2024. Fully Dynamic Matching and Ordered Ruzsa-Szemerédi Graphs. In

Proceedings of the 65th Symposium on Foundations of Computer Science (FOCS). To appear.

[16] Soheil Behnezhad and Sanjeev Khanna. 2022. New Trade-Offs for Fully Dynamic Matching via Hierarchical EDCS. In

Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 3529–3566.
[17] Soheil Behnezhad, Jakub Łącki, and Vahab Mirrokni. 2020. Fully Dynamic Matching: Beating 2-Approximation in Δ𝜖

Update Time. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2492–2508.
[18] Soheil Behnezhad, Mohammad Roghani, and Aviad Rubinstein. 2023. Sublinear time algorithms and complexity of

approximate maximum matching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC).
267–280.

[19] Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri Stemmer. 2022. Dynamic

algorithms against an adaptive adversary: Generic constructions and lower bounds. In Proceedings of the 54th Annual
ACM Symposium on Theory of Computing (STOC). 1671–1684.

[20] Aaron Bernstein, Aditi Dudeja, and Zachary Langley. 2021. A Framework for Dynamic Matching in Weighted Graphs.

In Proceedings of the 53rd Annual ACM Symposium on Theory of Computing (STOC). 668–681.
[21] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A deamortization approach for dynamic spanner

and dynamic maximal matching. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 1899–1918.

[22] Aaron Bernstein and Cliff Stein. 2015. Fully Dynamic Matching in Bipartite Graphs. In Proceedings of the 42nd
International Colloquium on Automata, Languages and Programming (ICALP). 167–179.

[23] Aaron Bernstein and Cliff Stein. 2016. Faster fully dynamic matchings with small approximation ratios. In Proceedings
of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 692–711.

[24] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2020. Deterministic dynamic matching in𝑂 (1)
update time. Algorithmica 82, 4 (2020), 1057–1080.

[25] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2018. Deterministic fully dynamic data structures

for vertex cover and matching. SIAM Journal on Computing (SICOMP) 47, 3 (2018), 859–887.
[26] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New deterministic approximation algorithms

for fully dynamic matching. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC).
398–411.

[27] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully Dynamic Approximate Maximum

Matching and Minimum Vertex Cover in 𝑂 (log3 𝑛) Worst Case Update Time. In Proceedings of the 28th Annual

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:21

ACM-SIAM Symposium on Discrete Algorithms (SODA). 470–489.
[28] Sayan Bhattacharya and Peter Kiss. 2021. Deterministic Rounding of Dynamic Fractional Matchings. In Proceedings of

the 48th International Colloquium on Automata, Languages and Programming (ICALP). 27:1–27:14.
[29] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2023. Sublinear Algorithms for (1.5+ 𝜖)-Approximate

Matching. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). 254–266.
[30] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2024. Dynamic (1 + 𝜖)-Approximate Matching Size

in Truly Sublinear Update Time. In Proceedings of the 56th Symposium on Foundations of Computer Science (FOCS).
1563–1588.

[31] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. 2023. Dynamic matching with better-than-2

approximation in polylogarithmic update time. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 100–128.

[32] Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. 2024. Near-Optimal Dynamic Rounding of Fractional

Matchings in Bipartite Graphs. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing (STOC).
59–70.

[33] Sayan Bhattacharya and Janardhan Kulkarni. 2019. Deterministically Maintaining a (2 + 𝜖)-Approximate Minimum

Vertex Cover in𝑂 (1/𝜖2) Amortized Update Time. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 1872–1885.

[34] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. 2019. Dynamic matrix inverse: Improved

algorithms and matching conditional lower bounds. In Proceedings of the 60th Symposium on Foundations of Computer
Science (FOCS). 456–480.

[35] Moses Charikar and Shay Solomon. 2018. Fully Dynamic Almost-Maximal Matching: Breaking the Polynomial

Barrier for Worst-Case Time Bounds. In Proceedings of the 45th International Colloquium on Automata, Languages and
Programming (ICALP). 33:1–33:14.

[36] Shiri Chechik and Tianyi Zhang. 2019. Fully dynamic maximal independent set in expected poly-log update time. In

Proceedings of the 60th Symposium on Foundations of Computer Science (FOCS). 370–381.
[37] Jiale Chen, Aaron Sidford, and Ta-Wei Tu. 2023. Entropy Regularization and Faster Decremental Matching in General

Graphs. arXiv preprint arXiv:2312.09077 (2023).

[38] Julia Chuzhoy and Sanjeev Khanna. 2019. A new algorithm for decremental single-source shortest paths with

applications to vertex-capacitated flow and cut problems. In Proceedings of the 51st Annual ACM Symposium on Theory
of Computing (STOC). 389–400.

[39] Michael Crouch and Daniel M Stubbs. 2014. Improved Streaming Algorithms for Weighted Matching, via Unweighted

Matching. In Proceedings of the 17th International Conference on Approximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX). 96.

[40] Søren Dahlgaard. 2016. On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter. In

Proceedings of the 43rd International Colloquium on Automata, Languages and Programming (ICALP). 48:1–48:14.
[41] Ran Duan and Seth Pettie. 2014. Linear-time approximation for maximum weight matching. Journal of the ACM

(JACM) 61, 1 (2014), 1.
[42] Devdatt P. Dubhashi and Desh Ranjan. 1998. Balls and bins: A study in negative dependence. Random Struct. Algorithms

13, 2 (1998), 99–124.

[43] Aditi Dudeja. 2024. A Note on Rounding Matchings in General Graphs. arXiv preprint arXiv:2402.03068 (2024).
[44] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research of the National

Bureau of Standards B 69, 125-130 (1965), 55–56.

[45] Jack Edmonds. 1965. Paths, trees, and flowers. Canadian Journal of mathematics 17, 3 (1965), 449–467.
[46] Sebastian Eggert, Lasse Kliemann, and Anand Srivastav. 2009. Bipartite graph matchings in the semi-streaming model.

In Proceedings of the 16th Annual European Symposium on Algorithms (ESA). 492–503.
[47] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. 2013. Improved Bounds for Online Preemptive Matching.

In Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Science (STACS). 389.
[48] Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. 2016. Finding large matchings in

semi-streaming. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). 608–614.
[49] Matthew Fahrbach, Gary L Miller, Richard Peng, Saurabh Sawlani, Junxing Wang, and Shen Chen Xu. 2018. Graph

sketching against adaptive adversaries applied to the minimum degree algorithm. In Proceedings of the 59th Symposium
on Foundations of Computer Science (FOCS). 101–112.

[50] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. 2005. On graph problems in a

semi-streaming model. Theoretical Computer Science (TCS) 348, 2-3 (2005), 207–216.
[51] Moran Feldman and Ariel Szarf. 2022. Maximum Matching sans Maximal Matching: A New Approach for Finding

Maximum Matchings in the Data Stream Model. In Proceedings of the 25th International Conference on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX). 33:1–33:24.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

111:22 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

[52] Manuela Fischer, Slobodan Mitrović, and Jara Uitto. 2022. Deterministic (1 + 𝜖)-approximate maximum matching

with poly (1/𝜖) passes in the semi-streaming model and beyond. In Proceedings of the 54th Annual ACM Symposium
on Theory of Computing (STOC). 248–260.

[53] Mohsen Ghaffari and David Wajc. 2019. Simplified and Space-Optimal Semi-Streaming (2 +𝜖)-Approximate Matching.

In Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA). 13:1–13:8.
[54] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication and streaming complexity of

maximum bipartite matching. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
468–485.

[55] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2013. Perfect Matchings in𝑂 (𝑛 log𝑛) Time in Regular Bipartite

Graphs. SIAM Journal on Computing (SICOMP) 42, 3 (2013), 1392–1404.
[56] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. 2022. Maintaining an EDCS in General

Graphs: Simpler, Density-Sensitive and with Worst-Case Time Bounds. Proceedings of the 5th Symposium on Simplicity
in Algorithms (SOSA) (2022), 12–23.

[57] Manoj Gupta and Richard Peng. 2013. Fully dynamic (1 + 𝜖)-approximate matchings. In Proceedings of the 54th
Symposium on Foundations of Computer Science (FOCS). 548–557.

[58] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. 2015. Unifying and

strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of
the 47th Annual ACM Symposium on Theory of Computing (STOC). 21–30.

[59] Sagar Kale and Sumedh Tirodkar. 2017. Maximum Matching in Two, Three, and a Few More Passes Over Graph

Streams. In Proceedings of the 20th International Conference on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX). 15:1–15:21.

[60] Michael Kapralov. 2013. Better bounds for matchings in the streaming model. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 1679–1697.

[61] Michael Kapralov. 2021. Space lower bounds for approximating maximum matching in the edge arrival model. In

Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1874–1893.
[62] Peter Kiss. 2022. Improving update times of dynamic matching algorithms from amortized to worst case. Proceedings

of the 13th Innovations in Theoretical Computer Science Conference (ITCS) (2022), 94:1–94:21.
[63] Christian Konrad. 2018. A simple augmentation method for matchings with applications to streaming algorithms. In

Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS). 74:1–74:16.
[64] Christian Konrad, Frédéric Magniez, and Claire Mathieu. 2012. Maximum matching in semi-streaming with few

passes. In Proceedings of the 15th International Conference on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX). 231–242.

[65] Christian Konrad and Kheeran K Naidu. 2021. On Two-Pass Streaming Algorithms for Maximum Bipartite Matching. In

Proceedings of the 24th International Conference on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX). 19:1–19:18.

[66] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher lower bounds from the 3SUM conjecture. In Proceedings of
the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1272–1287.

[67] Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval research logistics quarterly 2, 1-2

(1955), 83–97.

[68] Hung Le, Lazar Milenković, Shay Solomon, and Virginia Vassilevska Williams. 2022. Dynamic Matching Algorithms

Under Vertex Updates. In Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS).
96:1–96:24.

[69] Yang P Liu. 2024. On approximate fully-dynamic matching and online matrix-vector multiplication. In Proceedings of
the 65th Symposium on Foundations of Computer Science (FOCS). To appear.

[70] Andrew McGregor. 2005. Finding graph matchings in data streams. In Proceedings of the 8th International Conference
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX). 170–181.

[71] Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning forest with worst-case update time:

adaptive, Las Vegas, and𝑂 (𝑛1/2−𝜀)-time. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC). 1122–1129.

[72] Huy N Nguyen and Krzysztof Onak. 2008. Constant-time approximation algorithms via local improvements. In

Proceedings of the 49th Symposium on Foundations of Computer Science (FOCS). 327–336.
[73] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. 2012. A near-optimal sublinear-time algorithm for

approximating the minimum vertex cover size. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 1123–1131.

[74] Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and a small vertex cover. In Proceedings of
the 42nd Annual ACM Symposium on Theory of Computing (STOC). 457–464.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:23

[75] Michal Parnas and Dana Ron. 2007. Approximating the minimum vertex cover in sublinear time and a connection to

distributed algorithms. Theoretical Computer Science (TCS) 381, 1-3 (2007), 183–196.
[76] Ami Paz and Gregory Schwartzman. 2018. A (2 + 𝜖)-Approximation for Maximum Weight Matching in the Semi-

streaming Model. ACM Transactions on Algorithms (TALG) 15, 2 (2018), 18.
[77] David Peleg and Shay Solomon. 2016. Dynamic (1 + 𝜖)-approximate matchings: a density-sensitive approach. In

Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 712–729.
[78] Mohammad Roghani, Amin Saberi, and David Wajc. 2022. Beating the Folklore Algorithm for Dynamic Matching. In

Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS). 111:1–111:23.
[79] Piotr Sankowski. 2007. Faster dynamic matchings and vertex connectivity. In Proceedings of the 18th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA). 118–126.
[80] Shay Solomon. 2016. Fully dynamic maximal matching in constant update time. In Proceedings of the 57th Symposium

on Foundations of Computer Science (FOCS). 325–334.
[81] Vadim G Vizing. 1964. On an estimate of the chromatic class of a p-graph. Diskret analiz 3 (1964), 25–30.
[82] David Wajc. 2020. Rounding dynamic matchings against an adaptive adversary. In Proceedings of the 52nd Annual

ACM Symposium on Theory of Computing (STOC). 194–207.
[83] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. 2012. Improved constant-time approximation algorithms for maximum

matchings and other optimization problems. SIAM Journal on Computing (SICOMP) 41, 4 (2012), 1074–1093.

APPENDIX
A PROOFS OF BASIC BUILDING BLOCKS
Here we substantiate some key propositions implied by prior work. We stress that we provide

proofs mostly for completeness, due to our propositions being slight variants or being differently

organized than their previous counterparts. That is, we do not claim novelty of the underlying

ideas of this section.

A.1 Proof of Proposition 2.1
A key component of Proposition 2.1 is the following vertex sparsification technique for dynamic

settings by Kiss [62], adapted from such a vertex sparsification of Assadi et al. [9] in the context of

stochastic matching.

Proposition A.1. There exists a randomized algorithm which for each update to𝐺 makes an update
to 𝑂

(
log

2 𝑛

𝜖3

)
contracted subgraphs, such that w.h.p. throughout any (possibly adaptively generated)

update sequence, one subgraph 𝐺 ′ has a matching of cardinality 𝜇 (𝐺) · (1 −𝑂 (𝜖)) and nodeset of
size 𝑛′ ≤ 𝜇 (𝐺)/𝜖 . Moreover, any matching 𝑀 ′ in 𝐺 ′ can be transformed into a matching in 𝐺 of
cardinality |𝑀 ′ | in time 𝑂 (|𝑀 ′ |). For any matching 𝑀 ′ in any 𝐺 ′ undergoing edge updates we can
maintain a matching of cardinality |𝑀 ′ | in 𝐺 with 𝑂 (1) worst-case update time.

Proof. Consider a random graph𝐺 ′ obtained by hashing each node into one of 𝑘/𝜖 buckets, for
some integer 𝑘 , and contracting all nodes that are hashed into the same bin. That is, two contracted

nodes neighbor in𝐺 ′ if their corresponding bins contain neighboring nodes in𝐺 . By storing for each
edge 𝑒 in𝐺 ′ a list of edges inducing 𝑒 , we can easily transform a matching𝑀 ′ in𝐺 ′ to a matching in

𝐺 of the same cardinality in time 𝑂 (|𝑀 ′ |). The majority of this proof is thus dedicated to showing

that 𝑂

(
log𝑛

𝜖2

)
such contractions for each value 𝑘 = ⌈(1 + 𝜖)𝑖⌉ with 𝑖 ∈ [log

1+𝜖 (𝑛)] ⊆
[
𝑂

(
log𝑛

𝜖

)]
suffice to guarantee that one of these 𝐺 ′ contains a matching of cardinality at least 𝜇 (𝐺) · (1 − 3𝜖).
Fix an integer 𝑖 and 𝑘 = ⌈(1 + 𝜖)𝑖⌉ ≤ 𝑛. Fix a matching 𝑀 in 𝐺 of cardinality |𝑀 | ≤ 𝑘 . The

probability that a vertex 𝑣 incident on some edge of𝑀 is contracted into a separate bin than the

other 2|𝑀 | − 1 endpoints can be expressed as follows:

(1 − 1/(𝑘/𝜖 − 1))2 |𝑀 |−1 ≥
(
1 − 2 · 𝜖

𝑘

)
2·𝑘
≥ (1 − 5 · 𝜖).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

111:24 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Thus, by linearity, the number𝑋 of such endpoints of edges of𝑀 satisfy that E[𝑋] ≥ (1−5𝜖) · 2|𝑀 |.
Observe that 𝑋 is the sum of negatively associated random variables, by [42], since the hashing of

vertices is equivalent to the folklore balls and bins experiment, so by standard Chernoff Bounds,

Pr[𝑋 ≤ 2 · |𝑀 | · (1 − 6𝜖)] ≤ exp

(
−Θ(𝜖2 |𝑀 |)

)
.

If at least 2|𝑀 | · (1−6·𝜖) endpoints of𝑀 are hashed to unique vertices then at least |𝑀 |−2|𝑀 | ·6𝜖 ≥
|𝑀 | · (1 − 12𝜖) edges of𝑀 had both of their endpoints assigned to unique vertices in 𝐺 ′ hence are
present in 𝐺 ′.
We say that the contraction is bad if for somematching𝑀 of cardinality in the range [𝑘, 𝑘 (1+𝜖)+1]

if the number of edges of 𝑀 that are not present in 𝐺 ′ is lesser than |𝑀 | · (1 − 12𝜖). Otherwise,
it is good. Now, there are

∑𝑘 (1+𝜖)+1
𝑖=𝑘

(
𝑛
𝑖

)
≤ 𝑘𝜖 · 𝑛𝑘 (1+𝜖)+1 ≤ 𝑛𝑘 (1+𝜖)+2 possible matchings of size

|𝑀 | ∈ [𝑘, 𝑘 (1 + 𝜖)]. Therefore, by randomly contracting the graph for range [𝑘, 𝑘 (1 + 𝜖) + 1] some

𝐶 log𝑛

𝜖2
many times, for a sufficiently large 𝐶 , we have that the probability that all contractions for

range [𝑘, 𝑘 (1 + 𝜖) + 1] are bad is

Pr[all contractions are bad] ≤ 𝑛𝑘 (1+𝜖)+2 · exp
(
−Θ(𝜖2𝑘) · 𝐶 log𝑛

𝜖2

)
≤ 𝑛−3.

Therefore, taking union bound over the log
1+𝜖 (𝑛) possible value of 𝑘 , we find that with high

probability, each range [𝑘, 𝑘 (1 + 𝜖) + 1] has some good contraction.

We conclude that, w.h.p., among the𝑂

(
log

2 𝑛

𝜖3

)
contracted graphs, there exists a good contraction

for every 𝑘 = ⌈(1+ 𝜖)𝑖⌉, and in particular for 𝑘 ≤ 𝜇 (𝐺) ≤ 𝑘 (1+ 𝜖) + 1. That is, one of the contracted
graphs contains a large matching, 𝜇 (𝐺 ′) ≥ 𝜇 (𝐺) · (1− 12𝜖), and has few nodes, 𝑛′ ≤ 𝑘/𝜖 ≤ 𝜇 (𝐺)/𝜖 ,
as desired. □

We now proceed towards proving Proposition 2.1, restated below for ease of reference.

Proposition 2.1. Let 𝜖 ∈ (0, 1) and 𝛼 ≥ 1. Suppose there exists an algorithm A on a dynamic
𝑛-node graph 𝐺 with update time 𝑡𝑢 , that, provided 𝜇 (𝐺) ≥ 𝜖 · 𝑛, supports 𝑡𝑞-time 𝛼-approximate
size estimate queries w.h.p. Then, there is another algorithm A′ on 𝐺 that always maintains an
(𝛼 +𝑂 (𝜖))-approximate estimate 𝜈 ′ in 𝑂̃𝜖 (𝑡𝑢 + 𝑡𝑞/𝑛) update time. Moreover if the update time ofA is
worst-case, so is that of A′, and if A works against an adaptive adversary, then so does A′.

Proof. Let 𝜖′ = 𝛼 ′ · 𝜖 · 2 (here 𝛼 ′ is some 𝑂 (1) factor). Using the algorithm described by

Proposition A.1 we can generate 𝑇 = 𝑂̃𝜖 (1) graphs 𝐺𝑖 : 𝑖 ∈ [𝑇] with the following properties: A)

𝜇 (𝐺𝑖) ≤ 𝜇 (𝐺) for all 𝑖 ∈ [𝑇], B) There is an 𝑖 ∈ [𝑇] satisfying that 𝜇 (𝐺𝑖) ≥ (1 − 𝜖′) · 𝜇 (𝐺) and
𝜇 (𝐺𝑖) ≥ 𝑛 · 𝜖′, C) All sub-graphs 𝐺𝑖 undergo a single update when 𝐺 undergoes an update.

Our algorithm proceeds as follows: on all 𝑇 generated sub-graphs we run algorithm A at all

times. Furthermore, on each sub-graph we maintain an 𝑂 (1) = 𝛼 ′-approximate estimate on the

maximum matching size 𝜇𝑖 using algorithms from literature (randomized against an adaptive

adversary) in 𝑂̃𝜖 (1) worst-case time. For all sub-graphs we monitor the relationship of 𝜇𝑖 and |𝑉𝑖 |.
If 𝜇𝑖 increases above the threshold of |𝑉𝑖 | · 𝜖 we start a run of the query algorithm on 𝐺𝑖 returning

us an 𝛼-approximate estimate of 𝜇 (𝐺𝑖) which will define 𝜈 ′𝑖 . We distribute the work of this query

over |𝑉𝑖 | · (𝜖)2 updates and re-initiate the query every |𝑉𝑖 | · (𝜖)2 updates. The matching size queries

of 𝐺𝑖 always run on the state of 𝐺𝑖 at the start of the query (even though 𝐺𝑖 undergoes updates

during it’s run). If 𝜇̃𝑖 decreases bellow the threshold of |𝑉𝑖 | · 𝜖 we stop the querying process and set

𝜈 ′𝑖 = 0. Note that at initialization we just set 𝜈 ′𝑖 = 𝜇 (𝐺𝑖) for all 𝑖 ∈ [𝑇] statically.
At all times we maintain the output max𝑖∈𝑅 𝜈 ′𝑖 , the maximum of our matching size estimates.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:25

Algorithm 3 Vertex set sparsification

1: Initialize 𝜈 ′𝑖 = 𝜇 (𝐺𝑖)
2: Maintain contracted sub-graphs 𝐺𝑖 and 𝛼

′
-approximate matching size estimates 𝜇̃𝑖

3: Run algorithm A on every 𝐺𝑖
4: for 𝑖 ∈ [𝑇] do
5: if 𝜇̃𝑖 becomes at least |𝑉𝑖 | · 𝜖 then
6: Initiate a matching size query of 𝐺𝑖 in 𝑂 (𝑡𝑞) time on the current state of 𝐺𝑖
7: Distribute the work over the next |𝑉𝑖 | · 𝜖2 updates
8: Repeatedly recompute distributed over every |𝑉𝑖 | · 𝜖2 updates
9: Let 𝜈 ′𝑖 be the latest finished estimate

10: if 𝜇̃𝑖 reduces below |𝑉𝑖 | · 𝜖 then
11: Terminate the querying process of 𝜇 (𝐺𝑖)
12: Set 𝜈 ′𝑖 ← 0

13: At all times return max𝑖∈[𝑇] 𝜈
′
𝑖

We first discuss the update time of Algorithm 3. The maintenance of the𝑇 contracted sub-graphs

andmatching size estimates 𝜇̃𝑖 takes 𝑂̃𝜖 (1) w.c. time. Running algorithmA on each of the contracted

sub-graphs takes update time 𝑂̃𝜖 (𝑡𝑢) (and is worst case ifA has worst-case update time). Amatching

size query will only be initiated and run on contracted sub-graph𝐺𝑖 if 𝜇̃𝑖 ≥ 𝜇 (𝐺𝑖)/𝛼 ′ ≥ |𝑉𝑖 | · 𝜖 , that
is if 𝜇 (𝐺𝑖) ≥ |𝑉𝑖 | · 𝜖/2. Each re-computation of the estimate 𝜈 ′𝑖 will be distributed over some |𝑉𝑖 | · 𝜖2
updates, that is, it will take 𝑂 (𝑡𝑞/(|𝑉𝑖 | · 𝜖2) = 𝑂𝜖 (𝑡𝑞/|𝑉𝑖 |) worst-case time. Finding and returning

the maximum matching size estimate 𝜈 ′𝑖 takes 𝑂̃𝜖 (1) = 𝑂 (𝑇) time. Therefore, the total update time

of the algorithm is 𝑂̃𝜖 (𝑡𝑢 + 𝑡𝑞 · 𝛽/𝑛) and is worst-case ifA has worst-case update time. Furthermore,

all components of the algorithm but A are randomized against an adaptive adversary..

It remains to argue that the algorithm maintains 𝜈 ′ such that 𝜈 ′ ≤ 𝜇 (𝐺) ≤ 𝜈 ′ · (𝛼 +𝑂 (𝜖)) at all
times. Say that𝐺𝑖 is a ’successful’ contraction if𝐺𝑖 satisfies property B). By Proposition A.1, w.h.p.,

there is a successful contraction at all times, at time point 𝜏1 let that contraction be 𝐺𝑖 . We will

separate two instances:

i) Throughout the run of the algorithm at all times it held that 𝜇̃𝑖 ≥ |𝑉𝑖 | · 𝜖: The algorithm has

ran the matching size query sub-routine on𝐺𝑖 after every |𝑉𝑖 | · 𝜖2 edge updates. Let𝐺𝜏0𝑖 be the past

state of the graph 𝐺𝑖 when the algorithm started calculating the current estimate (𝜈𝜏1
𝑖
)′. By the

scheduling of this calculation we know that 𝜏0 ≥ 𝜏1 − 𝜖2 · |𝑉𝑖 |. Hence, 𝜇 (𝐺𝜏0𝑖) ≥ 𝜇 (𝐺
𝜏1
𝑖
) − 𝜖2 · |𝑉𝑖 |,

where 𝜇 (𝐺𝜏1
𝑖
) ≥ 𝜇 (𝐺) · (1 − 𝜖′) and 𝜇 (𝐺𝜏1

𝑖
) ≥ |𝑉 |𝑖 · 𝜖′. Hence, (𝜈𝜏1𝑖)′ · 𝛼 · (1 +𝑂 (𝜖)) ≥ 𝜇 (𝐺).

ii) At time 𝜏1 𝐺𝑖 is a successful contraction but at some prior point during the run of the algorithm

𝜇̃𝑖 became less than |𝑉𝑖 | · 𝜖 : we know that at some point 𝜏0 prior to 𝜏1 𝜇̃𝑖 must have increased above

|𝑉𝑖 | · 𝜖 . Define the state of 𝐺𝑖 at the two time points as 𝐺
𝜏0
𝑖
and 𝐺

𝜏1
𝑖

respectively. As at 𝜏1 𝐺
𝜏1
𝑖

is

a successful contraction we know that 𝜇 (𝐺𝜏1
𝑖
) ≥ |𝑉𝑖 | · 𝜖′. When 𝜇̃𝑖 crossed the threshold at 𝜏0 it

held that 𝜇̃𝑖 = |𝑉𝑖 | · 𝜖 that is 𝜇 (𝐺𝜏0𝑖)𝑖 ≤ |𝑉𝑖 | · 𝜖 · 𝛼 . As per each update the maximum matching size

may only change by 1 we have that 𝜏1 − 𝜏0 ≥ |𝑉𝑖 | · 𝜖 · 𝛼 . Hence, by time 𝜏1 the algorithm already

had an updated estimate of 𝜈 ′𝑖 (that is one calculated in the previous 𝜖2 · |𝑉𝑖 | updates such that

𝜇 (𝐺𝑖) ≥ |𝑉𝑖 | · 𝜖 during these updates). Here we can refer back to the previous case (pretending the

algorithm initialized at 𝜏0). □

A.2 Proof of Proposition 2.6
We now give a proof extending standard arguments that small maximal matchings contain many

length-three augmenting paths to showing that small 𝜖-AMM likewise contain many such paths.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

111:26 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Proposition 2.6. Let 𝜖 > 0 and 𝑐 ∈ R and let𝑀 be an 𝜖-AMM in 𝐺 such that |𝑀 | ≤
(
1

2
+ 𝑐

)
· 𝜇 (𝐺).

Then𝑀 admits a collection of at least
(
1

2
− 3𝑐 − 7𝜖

2

)
· 𝜇 (𝐺) node-disjoint 3-augmenting paths.

Proof. The above bound for 𝜖 = 0 is well-known (see, e.g., [64]). We reduce to this case by

removing the at most 𝜖 · 𝜇 (𝐺) nodes in 𝑉 \𝑉 (𝑀) needed to make𝑀 maximal. This yields a graph

𝐺 ′ with 𝜇 (𝐺 ′) ≥ 𝜇 (𝐺) · (1 − 𝜖), and therefore

|𝑀 | ≤
(
1

2

+ 𝑐
)
· 𝜇 (𝐺) ≤

1

2
+ 𝑐

1 − 𝜖 · 𝜇 (𝐺
′) ≤

(
1

2

+ 𝑐 + 𝜖
)
· 𝜇 (𝐺 ′),

Consequently, by the special case of this proposition with 𝜖 = 0, we have that the maximum number

of disjoint 3-augmenting paths that𝑀 admits in 𝐺 ′ (and hence also in 𝐺) is at least(
1

2

− 3(𝑐 + 𝜖)
)
· 𝜇 (𝐺 ′) ≥

(
1

2

− 3(𝑐 + 𝜖)
)
(1 − 𝜖) · 𝜇 (𝐺) ≥

(
1

2

− 3(𝑐 + 𝜖) − 𝜖
2

)
· 𝜇 (𝐺),

as claimed. □

B PROOF OF LEMMA 4.6
In this section we prove Lemma 4.6 which we re-state for convenience.

Lemma 4.6. Consider a graph 𝐺 ′ = (𝑉 ′, 𝐸′) with |𝑉 ′ | = 𝑛′, and a matching 𝑀 with 𝑉 (𝑀) ⊆ 𝑉 ′
that is not necessarily part of 𝐺 ′ (i.e., we might have 𝑀 ⊈ 𝐸′). For any matching 𝑀 ′ in 𝐺 ′, let 𝑘𝑀 ′
denote the number of edges in𝑀 both of whose endpoints are matched in𝑀 ′. There is an algorithm
which, given adjacency matrix query access to the edges of𝐺 ′, w.h.p. runs in 𝑂̃𝜖 (𝑛′) time and returns
an estimate 𝜅 ∈ [𝑘𝑀 ′ − 𝜖2𝑛′, 𝑘𝑀 ′] for some maximal matching𝑀 ′ in 𝐺 ′.

Our proof of this lemma is a minor modification of the argument from [12, Section 5]. We claim

no novelty for this proof. To make our notations consistent with the ones used by [12], we will focus

on an 𝑛-node graph 𝐺 = (𝑉 , 𝐸) (different from our dynamic input graph). Let 𝜋 be a permutation

of the edges of graph 𝐺 = (𝑉 , 𝐸). Let 𝐺𝑀𝑀 (𝐺, 𝜋) stand for the output of the greedy maximum

matching algorithm when run on graph 𝐺 with edge ordering 𝜋 .

B.1 Building blocks
Lemma B.1 is explicitly concluded by [12], whereas Lemma B.2 is a slight modification of a con-

struction appearing in Section 5 of [12] we need to fit our arguments.

Lemma B.1. There is a randomized algorithm that in 𝑂̃ (|𝐸 |/|𝑉 |) expected time returns the matched
status of a random 𝑣 under𝐺𝑀𝑀 (𝐺, 𝜋), for random 𝜋 . This algorithm relies on list access to the edges
of 𝐺 .

In order to prove Lemma 4.6 we have to work with adjacency matrix queries. Based on a slight

modification of Section 5 of [12] we can derive the following tool for this purpose.

Lemma B.2. Let 𝛿 ∈ (0, 1/2). For a given 𝑛-node graph 𝐺 = (𝑉 , 𝐸) there exists a supergraph
𝐻 = (𝑉𝐻 , 𝐸𝐻) of 𝐺 (i.e., 𝑉𝐻 ⊇ 𝑉 and 𝐸𝐻 ⊇ 𝐸) satisfying the following:

• |𝐸𝐻 | = Θ𝛿 (𝑛2).
• |𝑉𝐻 | = Θ𝛿 (𝑛2).
• At most 𝛿 · 𝑛 nodes of 𝑉 are matched to nodes in 𝑉𝐻 \𝑉 by 𝐺𝑀𝑀 (𝐻, 𝜋), w.h.p. over 𝜋 .
• 𝐺𝑀𝑀 (𝐻, 𝜋) ∩ 𝐸 is a maximal matching in 𝐺 [𝑉 \𝑉𝑠𝑙𝑎𝑐𝑘], where 𝑉𝑠𝑙𝑎𝑐𝑘 ⊆ 𝑉 are nodes in 𝑉
that are matched to nodes in 𝑉 \𝑉𝐻 .
• Any adjacency list query to 𝐸𝐻 (querying the 𝑖-th neighbour of a vertex according to some

ordering of neighbours) can be implemented using one adjacency matrix query to 𝐸 (querying
the existence of any edge (𝑢, 𝑣)).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:27

Informally, the main change in our construction compared to that of [12] is that our construction

will allow us to argue that the random matching in the constructed graph 𝐻 is, w.h.p., a maximal

matching after ignoring a small set of nodes. In contrast, the construction in [12] resulted in an

“expected” version of this guarantee. As the high-probability bounds will simplify our discussion

later, we modify this construction below. The second change we make is in externalizing the fact

that the matching computed this way is maximal, rather than 2-approximate, as stated in [12]. We

now turn to proving the above lemma.

Proof of Lemma B.2. The node-set of 𝐻 is 𝑉𝐻 := 𝑉 ∪𝑉 ∗ ∪ (𝑊1 . . . ,𝑊𝑛) ∪ (𝑈1, . . . ,𝑈𝑛), where
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} (note that𝐺 = (𝑉 , 𝐸𝐻 [𝑉])),𝑉 ∗ = {𝑣∗2, 𝑣∗2, . . . , 𝑣∗2},𝑊𝑖 = {𝑤1

𝑖 ,𝑤
2

𝑖 , . . .𝑤
𝑛
𝑖 }, and the

set 𝑈𝑖 = {𝑢1𝑖 , 𝑢2𝑖 , . . . , 𝑢𝑠𝑖 } is of size 𝑠 := 10𝑛/𝛿 for all 𝑖 ∈ [𝑛]. To specify the edge-set 𝐸𝐻 , we now

define the ordered adjacency list for every node 𝑣 ∈ 𝑉𝐻 .
• Every node 𝑣𝑖 ∈ 𝑉 has degree exactly 𝑛: For any 𝑗 ∈ [𝑛], if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 then the 𝑗𝑡ℎ neighbor

of 𝑣𝑖 is the node 𝑣 𝑗 ∈ 𝑉 , otherwise it is the node 𝑣∗𝑗 ∈ 𝑉 ∗.
• Every node 𝑣∗𝑖 ∈ 𝑉 ∗ has degree exactly 𝑛 + 𝑠: For any 𝑗 ∈ [𝑛], if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 then the 𝑗𝑡ℎ

neighbor of 𝑣∗𝑖 is the node 𝑤
𝑗

𝑖
∈𝑊𝑖 , otherwise it is the node 𝑣 𝑗 ∈ 𝑉 . Furthermore, for all

𝑗 ∈ [𝑠], the (𝑛 + 𝑗)𝑡ℎ neighbor of 𝑣∗𝑖 is the node 𝑢
𝑗

𝑖
∈ 𝑈𝑖 .

• Each node in𝑈 𝑗 , for any 𝑗 ∈ [𝑛], has only one neighbor (which is 𝑣∗𝑗).

• Node 𝑤
𝑗

𝑖
may have degree at most one: if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 then 𝑤

𝑗

𝑖
is a neighbour of 𝑣∗𝑖 ∈ 𝑉 ∗,

otherwise it is an isolated vertex of 𝐻 .

Note that |𝑉𝐻 | = 2𝑛 + 𝑛2 + 𝑛𝑠 = Θ(𝑛2/𝛿) and that similarly |𝐸𝐻 | = 𝑛2 + |𝐸 | + 𝑛𝑠 = Θ(𝑛2/𝛿).
Furthermore, from the above discussion it is immediate that an adjacency list query to 𝐸𝐻 (i.e.,

querying for the 𝑗-th neighbor of a vertex) can be implemented using at most one adjacency matrix

query to 𝐸. It remains to prove the remaining two properties of 𝐻 .

To this end, recall that 𝑉𝑠𝑙𝑎𝑐𝑘 denotes the set of vertices in 𝑉 matched to 𝑉 * nodes. Then,

by maximality of 𝐺𝑀𝑀 (𝐻, 𝜋), we have that 𝐺𝑀𝑀 (𝐻, 𝜋) ∩ 𝐸 is indeed maximal matching of

𝐺 [𝑉 \𝑉𝑠𝑙𝑎𝑐𝑘]. We now turn to bound |𝑉𝑠𝑙𝑎𝑐𝑘 |. To this end, we say a node 𝑣∗ ∈ 𝑉 ∗ is occupied if its

earliest edge in 𝜋 has its other endpoint in𝑊𝑖 or𝑈𝑖 . Trivially, such an occupied vertex 𝑣∗ ∈ 𝑉 ∗ is
matched to a vertex of𝑈𝑣∗ ∪𝑊𝑣∗ under𝐺𝑀𝑀 (𝐻, 𝜋). The following simple claim, which follows by

a Chernoff bound together with the simple observation that it is unlikely for a node in 𝑉 ∗ to be

matched in 𝑉 (and thus contribute to |𝑉𝑠𝑙𝑎𝑐𝑘 |).
Claim B.3. Let 𝜋 be a uniformly random permutation of 𝐸𝐻 . Let 𝑋𝑣∗ : 𝑣∗ ∈ 𝑉 ∗ represent the indicator
variable of 𝑣∗ being occupied and 𝑋𝑂 =

∑
𝑋𝑣∗ . Then 𝑋 ≥ 𝑛 · (1 − 𝛿) w.h.p.

Proof. Note that each 𝑣∗ ∈ 𝑉 ∗ has at most 𝑛 edges with vertices of 𝑉 ′ and has at least 10𝑛/𝛿
edges with vertices in𝑈𝑣∗ and𝑊𝑣∗ . Therefore,

E[𝑋𝑣∗] = Pr(𝑋𝑣∗ = 1) ≥ 𝑛 · 10/𝛿
𝑛 · (10/𝛿 + 1) = 1 − 1

10/𝛿 + 1 ≥ 1 − 𝛿/10.

On the other hand, the variables {𝑋𝑣∗ | 𝑣 ∈ 𝑉 } are independent binary variables. Therefore, by

Chernoff’s bound, we have that

Pr(𝑋𝑂 ≤ 𝑛 · (1 − 𝛿)) ≤ Pr

(
𝑋𝑂 ≤ 𝑛 · (1 − 𝛿/10) −

𝑛 · 𝛿
2

)
≤ Pr

(
𝑋𝑂 ≤ E[𝑋𝑂] − E[𝑋𝑂] ·

𝛿

2

)
(8)

≤ 2 · exp
(
− (𝛿/2)

2 · E[𝑋𝑂]
3

)
(9)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

111:28 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

≤ 𝑛−Θ(1) (10)

Inequality 8 follows from the fact that 𝑛 ≥ 𝐸 [𝑋𝑂] ≥ 𝑛 · (1 − 𝛿). Inequality 9 is an application of

Chernoff’s bound. Inequality 10 follows as long as 𝑛 · 𝛿2 ∈ Ω(log(𝑛)). □

The above claim completes the proof of the last requirement of Lemma B.2. □

B.2 The algorithm
We now introduce the algorithm that will build on the previous two lemmas and inform the proof

of Lemma 4.6, given in Algorithm 4. Recall that we wish to estimate the number of edges in some

input matching, which here, to avoid confusion, we denote by𝑀∗, that are both matched in some

maximal matching in 𝐺 .

Let 𝐻 = (𝑉𝐻 , 𝐸𝐻) be the supergraph of 𝐺 defined by Lemma B.2 of 𝐺 with 𝛿 = 𝜖2/8. For a
permutation 𝜋 of 𝐸𝐻 , define𝑀

′ (𝜋) := GMM(𝐻, 𝜋) ∩ (𝑉 ×𝑉) to be the set of edges in GMM(𝐻, 𝜋)
both of whose endpoints are in 𝑉 . Let 𝑀 (𝜋) be a maximal matching in 𝐺 that is obtained by

augmenting 𝑀 ′ (𝜋), i.e., we start with 𝑀 = 𝑀 ′ (𝜋), visit the edges 𝑒 ∈ 𝐸 in an arbitrarily fixed

order, and obtain the matching𝑀 (𝜋) by greedily adding as many edges to𝑀 as possible. Note that

𝑀 ′ (𝜋) ⊆ 𝑀 (𝜋) ⊆ 𝐸′. Note also that𝑀 (𝜋) will be the maximal matching that Lemma 4.6 refers to

as𝑀 ′. We now slightly overload our notations and let 𝑘𝑀 ′ (𝜋) denote the number of edges in𝑀∗

both of whose endpoints are matched in𝑀 ′ (𝜋).7

Algorithm 4 Extended Sub-Linear Algorithm

1: if |𝑀∗ | ≤ 𝜖2 · 𝑛 then
2: Return 𝜅 = 0

3: (Implicitly) construct 𝐻 = (𝑉𝐻 , 𝐸𝐻) as in Lemma B.2 with 𝛿 = 𝜖2/8
4: Sample a permutation 𝜋 of 𝐸𝐻 uniformly at random

5: 𝐿 ← 10
5 ·log(𝑛)
𝜖5

6: Sample 𝐿 edges 𝑒1, . . . , 𝑒𝐿 ∈ 𝑀∗ uniformly at random with replacement

7: Let 𝑋𝑖 be one if both endpoints of edge 𝑒𝑖 are matched by 𝐺𝑀𝑀 (𝐻, 𝜋) and 𝑋 =
∑
𝑖 𝑋𝑖

8: Return 𝜅 =
𝑋 · |𝑀 |
𝐿
− 𝑛·𝜖2

2

Claim B.4. Algorithm 4 can be implemented in time 𝑂̃𝜖 (𝑛) in expectation.

Proof. The construction of 𝐻 is implicit, and as such takes no time. Let 𝑇𝐻 (𝑣, 𝜋) stand for the

time it takes to calculate the matched status of vertex 𝑣 ∈ 𝑉𝐻 in 𝐺𝑀𝑀 (𝐻, 𝜋) using the algorithm
of [16]. By Lemma B.1 we have that E

𝑣∼𝑉𝐻
[𝑇𝐻 (𝑣, 𝜋)] = 𝑂̃𝜖 (|𝐸𝐻 |/|𝑉𝐻 |) = 𝑂̃𝜖 (1). Therefore, since

the endpoints of the sampled edges 𝑆 =
⋃𝐿
𝑖=1 𝑒𝑖 ⊆ 𝑉𝐻 are a subset of of vertices of cardinality

|𝑆 | ≥ 𝜖2 · 𝑛, and since |𝑉𝐻 | = Θ𝜖 (𝑛2) we have the expected time to calculate their matched status

(using adjacency matrix queries, using the construction of 𝐻) is

E𝐻
𝑣∼𝑆
[𝑇𝐻 (𝑣, 𝜋)] ≤ E

𝑣∼𝑉𝐻
[𝑇𝐻 (𝑣, 𝜋)] ·

|𝑉𝐻 |
|𝑆 | ≤ 𝑂̃𝜖 (𝑛)

□

We now argue that Algorithm 4 provides a good approximation of the number of nodes in𝑀∗

both of whose endpoints are matched by𝐺𝑀𝑀 (𝐻, 𝜋). But first, we recall the basic Chernoff bounds

that we will rely on here.

7
Recall that in the statement of Lemma 4.6 we defined the notation 𝑘𝑀 ′ only if𝑀 ′ is a matching in𝐺 ′, which is not the

case with𝑀 ′ (𝜋) . Nevertheless, for ease of exposition, we use the notation 𝑘𝑀 ′ (𝜋) .

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:29

Lemma B.5. Chernoff bound: Let 𝑋 be the sum of independently distributed (or negatively associated)
random variables 𝑋1, . . . , 𝑋𝑚 with 𝑋𝑖 ∈ [0, 1] for each 𝑖 ∈ [𝑚]. Then for all 𝛿 ∈ (0, 1):

Pr(|𝑋 − 𝐸 [𝑋] | ≥ 𝛿 · 𝐸 [𝑋]) ≤ 2 · exp
(
−𝛿

2 · 𝐸 [𝑋]
3

)
.

Lemma B.6. W.h.p., The output 𝜅 of Algorithm 4 satisfies

𝜅𝑀 (𝜋) ≥ 𝜅 ≥ 𝜅𝑀 (𝜋) − 𝑛 · 𝜖2.

Proof. First, by Lemma B.2, we have that w.h.p., the set of nodes𝑉𝑠𝑙𝑎𝑐𝑘 ⊆ 𝑉 that are matched to

nodes in 𝑉𝐻 \𝑉 have cardinality at most |𝑉𝑠𝑙𝑎𝑐𝑘 | ≤ 𝑛𝜖2/8. Moreover,𝐺𝑀𝑀 (𝐻, 𝜋) ∩ 𝐸 is a maximal

matching in 𝐺 [𝑉 \𝑉𝑠𝑙𝑎𝑐𝑘].
Observe that whenever 𝜅 = 0 is returned by the algorithm due to |𝑀∗ | being small, the algorithm

returns a trivially correct solution. As𝑀 ′ (𝜋) is an 𝜖2/8-AMM, we conclude that:

|𝑀 ′ (𝜋) | ≤ |𝑀 (𝜋) | ≤ |𝑀 ′ (𝜋) | + 𝑛 · 𝜖
2

8

. (11)

Define 𝑀∗
𝐻

to be the set of edges of 𝑀∗ such that both of their endpoints are matched by

𝐺𝑀𝑀 (𝐻, 𝜋). By the guarantees of the construction of 𝐻 we know that there can be at most 𝑛 · 𝜖2/8
vertices of 𝑉 matched by an edge not in𝑀 ′ (𝜋). Therefore,

|𝑀∗𝐻 | ≥ 𝜅𝑀 ′ (𝜋) ≥ |𝑀∗𝐻 | −
𝑛 · 𝜖2
8

. (12)

Note that using the Algorithm 4 is sampling from edges of 𝑀∗ and determining if they are in

𝑀∗
𝐻
(hence approximating 𝜅𝑀∗

𝐻
). Specifically, by inequalities (11) and (12), we get the following.

𝜅𝑀∗
𝐻
∈

[
𝜅𝑀 ′ (𝜋) ± 𝑛·𝜖2

8

]
⊆

[
𝜅𝑀 (𝜋) ± 𝑛·𝜖2

8
± |𝑀 (𝜋) | − |𝑀 ′ (𝜋) |

]
⊆

[
𝜅𝑀 (𝜋) ± 𝑛·𝜖2

4

]
.

We will argue that with high probability
𝑋 · |𝑀 |
𝐿
∈

[
𝜅𝑀∗

𝐻
± 𝑛·𝜖2

8

]
, dependent on the randomization

of𝑀∗
𝐿
. Observe that 𝑋𝑖 are independently distributed random variables taking values in [0, 1] and

𝑋 is a binomial variable with parameters 𝑘, |𝜅𝑀∗
𝐻
|/|𝑀 |. We will consider two cases:

Case (A): 𝜅𝑀∗
𝐻
≤ 𝑛·𝜖3

8
. In this case, we derive that

Pr

(
𝑋 · |𝑀 |
𝐿

∉

[
𝜅𝑀∗

𝐻
± 𝑛 · 𝜖

2

8

])
= Pr

(
𝑋 · |𝑀 |
𝐿

≥ 𝜅𝑀∗
𝐻
+ 𝑛 · 𝜖

2

8

)
≤ Pr

(
𝑋 · |𝑀 |
𝐿

≥ 𝑛 · 𝜖
2

8

)
= Pr

(
𝐵(𝐿,𝜅𝑀∗

𝐻
/|𝑀 |) ≥ 𝑛 · 𝜖

2

8

)
(13)

≤ Pr

(
𝐵(𝐿, 𝜖) ≥ 𝑛 · 𝜖

2

8

)
(14)

≤ Pr (𝐵(𝐿, 𝜖) ≥ 2 · E[𝐵(𝐿, 𝜖)])

≤ 2 · exp
(
−E[𝐵(𝐿, 𝜖)]

3

)
(15)

≤ 𝑛−Θ(1) .

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

111:30 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

In the above derivation, (13) holds as 𝜅𝑀∗
𝐻
/|𝑀 | ≤ 𝜖 (as otherwise 𝜅 = 0would have been returned

by the algorithm), and (14) is true assuming 𝑛 · 𝜖2/8 ≥ 2 · 𝐿 · 𝜖 = 𝑂̃ (1). Finally, (15) follows from
Chernoff bound (Lemma B.5) on a binomial random variable.

Case (B): 𝜅𝑀∗
𝐻
≥ 𝑛 · 𝜖3

8
. In this case, we derive that

Pr

(
𝑋 · |𝑀 |
𝐿

∉

[
𝜅𝑀∗

𝐻
± 𝑛 · 𝜖

2

8

])
= Pr

(
|𝑋 − 𝐸 [𝑋] | ≥ 𝑛 · 𝜖

2

8

· 𝐿|𝑀 |

)
= Pr

(
|𝑋 − E[𝑋] | ≥ E[𝑋] · 𝑛 · 𝜖

2

8 · 𝜅𝑀∗
𝐻

)
≤ Pr

(
|𝑋 − E[𝑋] | ≥ E[𝑋] · 𝑛 · 𝜖

2

8 · 𝑛

)
≤ 2 · exp

(
−

(
𝜖2/8

)
2 · E[𝑋]
3

)
(16)

= exp

(
−
𝐿 · 𝜅𝑀∗

𝐻
· 𝜖4

|𝑀 | · 194

)
(17)

≤ 𝑛−Θ(1) .

In the above derivation, (16) follows from Chernoff bound (Lemma B.5), and (17) holds due to on our

assumptions on |𝑀 | and𝜅𝑀∗
𝐻
. Therefore, with high probability𝑋 · |𝑀 |/𝑘 ∈ [𝜅𝑀∗

𝐻
±𝜖2 ·𝑛/8] ∈ [𝜅𝑀 (𝜋)±

𝜖2 ·𝑛 · (1/8+1/4)] (recall that 𝜅𝑀 (𝜋) = 𝜅𝑀). This implies that 𝜅 ≤ 𝜅𝑀 +𝜖2 ·𝑛 · (1/8+1/4−1/2) ≤ 𝜅𝑀
and 𝜅 ≥ 𝜅𝑀 − 𝜖2 · 𝑛 · (1/8 + 1/4 − 1/2) ≥ 𝜅𝑀 − 𝜖2 · 𝑛. □

Having concluded that Algorithm 4 can be implement in low expected time, and is correct w.h.p.,

we are now ready to prove Lemma 4.6, restate below for ease of reference. (Note that here𝐺 = (𝑉 , 𝐸)
are renamed 𝐺 ′ = (𝑉 ′, 𝐸′), and 𝑛′ and 𝑘𝑀 ′ correspond respectively to 𝑛 and 𝜅𝑀 (𝜋) , whereas𝑀

∗
in

Algorithm 4 is renamed𝑀 .)

Lemma 4.6. Consider a graph 𝐺 ′ = (𝑉 ′, 𝐸′) with |𝑉 ′ | = 𝑛′, and a matching 𝑀 with 𝑉 (𝑀) ⊆ 𝑉 ′
that is not necessarily part of 𝐺 ′ (i.e., we might have 𝑀 ⊈ 𝐸′). For any matching 𝑀 ′ in 𝐺 ′, let 𝑘𝑀 ′
denote the number of edges in𝑀 both of whose endpoints are matched in𝑀 ′. There is an algorithm
which, given adjacency matrix query access to the edges of𝐺 ′, w.h.p. runs in 𝑂̃𝜖 (𝑛′) time and returns
an estimate 𝜅 ∈ [𝑘𝑀 ′ − 𝜖2𝑛′, 𝑘𝑀 ′] for some maximal matching𝑀 ′ in 𝐺 ′.

Proof. By Claim B.4, Algorithm 4 runs in expected 𝑂̃𝜖 (𝑛) time and returns a correct solution

with high probability. To improve its running time guarantee to a high probability bound we only

need to incur a blowup of 𝑂 (log(𝑛)) in running time: run the algorithm 𝑂 (log(𝑛)) time in parallel

and output the solution given by the first terminating copy. One of these algorithms will terminate

within at most twice the expected time, byMarkov’s inequality, and so w.h.p., one of these completes

after 𝑂̃𝜖 (𝑛) time. Finally, by union bound and Lemma B.6, all of the log𝑛 algorithms’ output satisfies

the desired bounds with probability 1 − 1/𝑝𝑜𝑙𝑦 (𝑛), and so w.h.p., we obtain a solution satisfying

the desired bounds after 𝑂̃𝜖 (𝑛) time. □

C OMITTED PROOFS FROM SECTION 4
Here we prove the tighter bound on the number of 𝑉 (𝑀1)-disjoint 3-augmenting paths in the

subgraph𝑀1 ∪𝑀2 as output by Algorithm 2, restated below.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update Time 111:31

Lemma 4.1. If |𝑀1 | =
(
1

2
+ 𝑐

)
· 𝜇 (𝐺), then 𝐺 [𝑀1 ∪ 𝑀2] contains a set P of 3-augmenting paths

w.r.t.𝑀1 that are disjoint in their 𝑉 (𝑀1) nodes, with expected cardinality at least

E[|P|] ≥
(
𝑏

𝑏 + 1

)
·
(
1

4

·
(
1

2

− 3𝑐
)
− 1

𝑏
·
(
1

2

+ 𝑐
)
− 7𝜖

8

)
· 𝜇 (𝐺).

Proof. Fix a maximum set of disjoint length-three augmenting paths w.r.t. 𝑀1 in 𝐺 , denoted

by P∗. By Proposition 2.6, we have |P∗ | ≥
(
1

2
− 3𝑐 − 7𝜖

2

)
· 𝜇 (𝐺). Next, let 𝑆 ⊆ P∗ be the paths

𝑢′ − 𝑢 − 𝑣 − 𝑣 ′ that “survive” the bipartition, in the sense that (𝑢,𝑢′), (𝑣, 𝑣 ′) ∈ 𝐸2. By construction,

each path in P∗ survives with probability exactly
1

4
. Therefore, E[|𝑆 |] ≥ 1

4
·
(
1

2
− 3𝑐 − 7𝜖

2

)
· 𝜇 (𝐺).

Let 𝐷 := P∗ \ 𝑆 be the set of paths that did not survive this bipartition.

For 𝑖 ∈ {0, 1, 2}, let 𝑆𝑖 ⊆ 𝑆 and 𝐷𝑖 ⊆ 𝐷 be the sets of paths 𝑢′ −𝑢 − 𝑣 − 𝑣 ′ in 𝑆 and 𝐷 (respectively)

with 𝑖 of their𝑉 (𝑀1) nodes𝑢 and 𝑣 matched in𝑀2. Now, by our bipartition, if𝑢
′−𝑢−𝑣−𝑣 ′ ∈ 𝑆2∪𝐷2,

i.e., if𝑢 and 𝑣 are bothmatched in𝑀2, then they arematched to distinct nodes. Therefore,𝐺 [𝑀1∪𝑀2]
contains a set of augmenting paths P w.r.t.𝑀1 that are disjoint in their𝑉 (𝑀1) nodes, of cardinality
|P | = |𝑆2 | + |𝐷2 |. We now turn to lower bounding |𝑆2 | + |𝐷2 |.
To bound |𝑆2 | + |𝐷2 |, we will double count the edges of 𝑀2, once from their 𝑉 (𝑀1) endpoints,

and once from their 𝑉 (𝑀1) endpoints. First, by definition, since each edge in 𝑀2 has exactly

one endpoint in 𝑉 (𝑀1) and each node in 𝑉 (𝑀1) is matched at most once in 𝑀2, we have that

|𝑀2 | = 2|𝑆2 | + |𝑆1 | + 2|𝐷2 | + |𝐷1 | ≤ |𝑆2 | + |𝐷2 | + |𝑀1 |, where the inequality follows from |𝑀1 | ≥∑
2

𝑖=0 (|𝑆𝑖 | + |𝐷𝑖 |), by definition. On the other hand, for each of the |𝑆 | − |𝑆2 | = |𝑆0 | + |𝑆1 | survived
paths 𝑢′ − 𝑢 − 𝑣 − 𝑣 ′ ∈ 𝑆0 ∪ 𝑆1 that does not have both its internal nodes matched in 𝑀2, we

have by maximality of 𝑀2 that 𝑢
′
and/or 𝑣 ′ must contribute 𝑏 distinct edges to 𝑀2. Therefore,

|𝑀2 | ≥ 𝑏 · (|𝑆0 | + |𝑆1 |). Combining the above, we obtain

𝑏 · (|𝑆 | − |𝑆2 |) ≤ |𝑀2 | ≤ |𝑆2 | + |𝐷2 | + |𝑀1 |,

which after rearranging, yields

𝑏 · |𝑆 | − |𝑀1 | ≤ (𝑏 + 1) · |𝑆2 | + |𝐷2 | ≤ (𝑏 + 1) · (|𝑆2 | + |𝐷2 |).

Simplifying and combining with the lower bound on E[|𝑆 |], we obtain the claimed bound, as

follows.

E[|P|] = E[|𝑆2 | + |𝐷2 |] ≥
𝑏

𝑏 + 1 ·
(
E[|𝑆 |] − 1

𝑏
· |𝑀1 |

)
≥ 𝑏

𝑏 + 1 ·
(
1

4

·
(
1

2

− 3𝑐 − 7𝜖

2

)
− 1

𝑏
·
(
1

2

+ 𝑐
))
· 𝜇 (𝐺).

=
𝑏

𝑏 + 1 ·
(
1

4

·
(
1

2

− 3𝑐
)
− 1

𝑏
·
(
1

2

+ 𝑐
)
− 7𝜖

8

)
· 𝜇 (𝐺).

□

D OMITTED PROOFS OF SECTION 5
We stress that the following is essentially implied by the work of [82], from which we now repeat

significant amount of text essentially verbatim. The only difference here will be our final proof of

Lemma 5.7, allowing us to efficiently periodically compute an 𝜖-AMM, and the use of this lemma in

the subsequent section. Readers familiar with [82] are encourage to read ahead to that lemma.

Overview. Briefly, [82] identified an edge-coloring-based approach to compute, based on the

efficient maintenance of edge colorings and a particular fractional matching of [25], a kernel. (See

Algorithm 5.) We start by recalling the type of fractional matching needed here, due to [4].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

111:32 Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc

Definition D.1. For 𝑐 ≥ 1 and 𝑑 ≥ 1, a fractional matching ®𝑥 is (𝑐, 𝑑)-approximately-maximal

(𝑐, 𝑑)-AMfM if every edge 𝑒 ∈ 𝐸 either has fractional value 𝑥𝑒 > 1/𝑑 or it has one endpoint 𝑣 with∑
𝑒∋𝑣 𝑥𝑒 ≥ 1/𝑐 with all edges 𝑒′ incident on this 𝑣 having value 𝑥𝑒′ ≤ 1/𝑑 .

As proven in [4, Appendix A], the dynamic fractional matching of [27] is precisely such an

approximately-maximal matching.

Lemma D.2. For all 𝜖 ≤ 1

2
, there is a deterministic dynamic (1 + 2𝜖,max{54 log𝑛/𝜖3, (3/𝜖)21})-

AMfM algorithm with 𝑡𝑢 = 𝑂 (log3 𝑛/𝜖7) worst-case update time, changing at most𝑂 (log𝑛/𝜖2) edges’
fractions per update in the worst case.

Now, we turn to the sparsification procedure of [82], given in Algorithm 5. Briefly, this algorithm

decomposes the graph into a logarithmic number of subgraphs, based on grouped 𝑥-values, edge

colors these subgraphs using at most 𝛾 = 2 times their maximum degree, and then outputs the

union of these subgraphs.

Algorithm 5 Edge-Color and Sparsify [82]

1: for 𝑖 ∈ {1, 2, . . . , ⌈2 log
1+𝜖 (𝑛/𝜖)⌉} do

2: let 𝐸𝑖 ≜ {𝑒 | 𝑥𝑒 ∈ ((1 + 𝜖)−𝑖 , (1 + 𝜖)−𝑖+1]}.
3: compute a 2⌈(1 + 𝜖)𝑖⌉-edge-coloring 𝜒𝑖 of 𝐺𝑖 ≜ 𝐺 [𝐸𝑖]. ⊲ Note: Δ(𝐺𝑖) < (1 + 𝜖)𝑖
4: Let 𝑆𝑖 be a sample of min{2⌈𝑑 (1 + 𝜖)⌉, 2⌈(1 + 𝜖)𝑖⌉} colors without replacement in 𝜒𝑖 .

5: Return 𝐾 ≜ (𝑉 ,⋃𝑖

⋃
𝑀∈𝑆𝑖 𝑀).

The following lemma of [82] allows us to compute kernels from AMfMs using Algorithm 5.

Lemma D.3. Let 𝑐 ≥ 1, 𝜖 > 0 and 𝑑 ≥ 9𝑐 (1+𝜖)2 ·log𝑛
𝜖2

. If ®𝑥 is a (𝑐, 𝑑)-AMfM, then the subgraph 𝐾
output by Algorithm 5 when run on ®𝑥 with 𝜖 and 𝑑 is a (𝑐 (1 +𝑂 (𝜖), 𝑑 (1 +𝑂 (𝜖), 0)-kernel, w.h.p.

We are now ready to prove our (periodic) algorithmic kernel and AMM algorithm’s guarantees,

restated below for ease of reference.

Lemma 5.7. Let 𝜖 ∈ (0, 1) and 𝑑 = 𝑂̃𝜖 (1) be sufficiently large. Then, there exists a robust algorithm
with worst-case update time 𝑡𝑢 = 𝑂̃𝜖 (1) allowing for (𝜖, 𝑑)-kernel and 𝜖-AMM queries in worst-case
query time 𝑡𝑞 = 𝑂̃𝜖 (𝑑 · 𝜇 (𝐺)). The query’s outputs are a kernel and an 𝜖-AMM w.h.p.

Proof. Wemaintain the dynamic (1+2𝜖, 𝑂̃𝜖 (1))-AMfM of Lemma D.2, using 𝑂̃𝜖 (1) deterministic

w.c. update time and number of changes to edges per update. In addition, we maintain the subgraphs

𝐺𝑖 in Algorithm 5. In each such subgraph we maintain 2⌈(1 + 𝜖)𝑖⌉-color edge colorings in each

𝐺𝑖 in 𝑂 (log𝑛) deterministic w.c. time per change to ®𝑥 , using the logarithmic-time (2Δ − 1)-edge
coloring algorithm of [24]. This concludes the description of the updates, which by the above take

deterministic w.c. update time 𝑡𝑢 = 𝑂̃𝜖 (1).
Next, to compute a kernel, we run the sampling step of Algorithm 5. As this is bottlenecked by the

time towrite down the𝑂 (log2 𝑛) colors (matchings), each of size no greater than 𝜇 (𝐺) (by definition),
this query takes deterministic 𝑂̃ (𝜇 (𝐺)). Finally, this output graph 𝐾 is an (𝑂 (𝜖), 𝑑 (1+𝑂 (𝜖))-kernel
w.h.p., by Lemma D.3. Finally, to output an 𝜖-AMM, we appeal to the static algorithm Lemma 5.6,

which runs in deterministic time 𝑂̃𝜖 (𝑑 · 𝜇 (𝐺)) = 𝑂̃ (𝜇 (𝐺)) and outputs an 𝜖-AMM, provided 𝐾 is a

kernel, i.e., it also succeeds w.h.p. □

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Further Related Work

	2 Preliminaries
	2.1 Previous building blocks
	2.2 New algorithmic primitive: Robust Almost-Maximal Matchings

	3 Algorithms on Bipartite Graphs
	3.1 Two-Pass Streaming Algorithm
	3.2 Dynamic Algorithm

	4 Algorithms on General Graphs
	4.1 Two-Pass Streaming Algorithm
	4.2 Dynamic Algorithms

	5 AMMs against Adaptive Adversaries
	5.1 From kernels to AMMs
	5.2 Periodic kernels and AMMs
	5.3 Robust dynamic AMMs

	6 Conclusion and Future Directions
	References
	A Proofs of basic building blocks
	A.1 Proof of Proposition 2.1
	A.2 Proof of Proposition 2.6

	B Proof of Lemma 4.6
	B.1 Building blocks
	B.2 The algorithm

	C Omitted Proofs from Section 4
	D Omitted Proofs of Section 5

