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ARTICLE INFO ABSTRACT

Keywords: Niessner and Hassnaizadeh (2008) proposed a set of governing equations to model multiphase
Capillary pressure flow in porous media based on first principles that includes fluid/fluid specific interfacial area
Specific fluid/fluid interfacial area as a state variable. Herein, we shed light on the lesser-discussed aspects of their proposed

Continuum-scale simulation
Hysteresis

Multiphase flow

Porous media

model, referred to as the extended model. Firstly, we show how the extended model facilitates
real-time tracking of specific interfacial area. Secondly, we compare numerical solutions of
the extended model to that of the traditional multiphase flow model with capillary dispersion
and the analytical Buckley-Leverett solution. Thirdly, we provide a sensitivity analysis for the
additional unknown parameters of the extended model - specific interfacial permeability and
specific interfacial area generation. Lastly, a stability analysis is performed for the numerical
solutions. As an auxiliary outcome, we provide an approach to solve the non-linear partial
differential equations of the extended model by using torch.autograd as the automatic
differentiation engine of PyTorch. Our results demonstrate that the extended model can provide
saturation profiles similar to those generated by traditional models, but with the added benefit
of real-time tracking of specific interfacial area. The generated specific interfacial area profiles
were comparable to expected trends from previous numerical and experimental studies and
highlighted the importance of the capillary pressure relationship and specific interfacial area
generation term. The results also demonstrate an important balance between the permeability of
the porous media and the interfacial permeability that must be maintained; otherwise, generated
profiles become physically unrealistic. Overall, the extended model explains the evolution of
specific interfacial area during multiphase flow at the cost of additional non-linearity and
unknown parameters.

1. Introduction

The study of immiscible multiphase flow in porous media is a critical research area with a wide range of applications in fields such
as carbon capture and storage [1,2], geothermal energy production [3], unconventional resources management [4], underground
coal gasification [5], and enhanced oil recovery [6]. To achieve significant advancements in these highlighted fields, a thorough
understanding of how immiscible fluids interact during flow in porous media is essential [7]. Accordingly, numerical simulation
is considered a powerful tool that not only provides researchers with insights into the underlying physical mechanisms but also
enables them to analyze complex problems [8].
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Capillary pressure (p,) is a key parameter in the numerical simulation of immiscible multiphase flow in porous media [9]. It is
defined as the pressure difference between two immiscible fluids in a porous medium [10]. At the continuum-scale, p, is traditionally
calculated as a function of wetting phase saturation, p. = f(S,,) [11]. Even though this is an oversimplified model that cannot
logically describe the hysteresis phenomena (non-uniqueness solution for p.) [12,13], it remains widely used in numerical models.
This is due to its simple nature that only depends on one unknown (S, in the continuum-scale modeling of multiphase flow in
porous media [14].

Regarding the p, hysteresis phenomenon, significant efforts have been made to address the associated ambiguity [15-17]. The
pioneering thermodynamic approach developed by Hassnaizadeh and Gray in early 1990s suggests that including interfacial area
can resolve the non-uniqueness issue in the case of capillary pressure models [18-21]. This theory is based on developing a model
that explicitly accounts for the effects of interfaces in a multiphase system. As a result, the classic p, relationship is modified to
pe = f(Sya,,), where a,, represents the specific fluid/fluid interfacial area [22,23]. The theory proposes a surface that represents
all possible combinations of p,, S, and a,, [24], which can be mathematically described by bi-quadratic functions [25], or even
physical-based range models [26]. In essence, the classic p, = f(S,,) relationship can be viewed as an artifact of projecting the 3D
surface of p, — S, — a,,, onto the p, — S, plane [27,28].

Previous studies indicate that incorporating a,,, into a p, model can almost remove the hysteresis effect [27,29-32]. Continuing
from a geometric standpoint, the p, — S, — a,, surface provides a reasonable description of the fluid configuration in a porous
medium; however, its accuracy may not be optimal as previous studies have revealed that hysteresis can still occur under specific
conditions [33-35]. More recent research has shown that by considering a fluid in a porous medium as a 3D connected body in
space, its configuration can be achieved by a hyperobject of p. — S, — a,,, — ¥ [36], where y stands for the Euler characteristic
and defined as the average measure for the connectivity of the fluid body [37]. To put it simply, it can be stated that p, is unique
defined by f(S,,. a,. ¥) [38,391.

While developing new capillary pressure relationships based on additional geometrical terms is academically interesting, a key
question remains in regards to the incorporation of such a relationship into a multiphase flow model [35,40]. The governing
equations of the classical multiphase flow model neither describe the evolution of g, [41] nor accounts for y [42], it is therefore
impossible to use p, = f(Sy,, ayn, ¥) OF p. = f(Sy,a,,) The reason behind this is that the classic multiphase flow model (referred
to as the classic model from hereon) does not explicitly account for the effects of interfaces [18], and the geometric description
of the system [43]. However, based on previous theoretical works and certain simplifying assumptions, the classic model can be
extended with an additional governing equation for the evolution of a,, [44-46]. This makes it possible to use p, = f(S,,,a,,) as
a constitutive model with almost zero hysteresis.

While the model proposed by Niessner and Hassanizadeh [44] (referred to as the extended model from hereon) incorporates the
ayn — Pe — S, surface, it is not entirely clear how the parameters of the additional governing equation affect the model results.
Furthermore, the extended model is highly nonlinear and dealing with this nonlinearity to find an appropriate solution strategy
remains uncertain. Therefore, our aim is to investigate the extended model to gain a better understanding of it. In this regard,
Section 2 briefly reviews the mathematical aspects of the classic and extended models. Moreover, the section provides details on how
to solve the extended model and manage its nonlinearity using torch.autograd function of torch library in Python. Next, a
physical model representing a typical porous media is described. Section 3 first presents and discusses the generated results. Then,
a sensitivity analysis is performed to determine the importance of the parameters of the new governing equation in the extended
model. Lastly, the run-time and relative errors are analyzed as useful indices for evaluating and optimizing the computational cost.
In conclusion, Section 4 highlights the importance of the extended model, and the possible challenges.

2. Methodology

Before delving into the mathematical background of the classic and extended models, it is necessary to consider the assumptions
that are considered by previous researchers and relevant to the work presented herein [10,45,47]. The following assumptions apply:

One-dimensional immiscible flow occurs for two incompressible fluids.
Flow is horizontal, and the effect of gravity is not taken into account.
Viscosities are constant.

Homogeneous and isotropic porous medium rock.

Porosity remains constant over time.

The porous medium is perfectly wettable by the wetting phase.

The interfacial mass density is assumed to be constant.

Only wetting phase is injected from the inlet face.

The considered physical system is isothermal.

The only driving force for the flow of phases is the pressure gradient; further, the driving force for the interfaces is the gradient
of a,,. The standard Darcy’s law is assumed to hold.

Based on these assumptions, it is possible to compare the classic model and extended model.
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2.1. Classic model

Using the mass conservation law and applying Darcy’s law, the system of equations for the classic model can be expressed as
follows [48].

¢ﬂ + 9 _M % = o (€))
ot ax My 0X Vs

250, 0 (ko) g @
ot 0x H, O0x Vy

S,+S,=1 3)

Pe =Pn = Pu (4

where ¢ is porosity, k is permeability (m?), u,, and u, represents the viscosities of wetting and non-wetting phases (Pa s), k,,, and ,,
are the relative permeabilities of wetting and non-wetting phases, g,, and g, indicate the injection rates of wetting and non-wetting
phases (m? s™1), ¥, is the bulk volume of the control element (m?3), .S, is the non-wetting phase saturation, % and % stand for the
changes of wetting and non-wetting saturation with respect to time (s7!), p,, and p, are the pressures of wetting and non-wetting
phases (Pa), and finally % and %” are the pressure gradients of wetting and non-wetting phases (Pam™!).

The system includes two nonlinear second-order Partial Differential Equations (PDEs), one for each of the two phases. The reason
for the nonlinearity is the dependency of k, 5 0 S,, which is changed by changes of p,,/,. Next, Eqs. (3) and (4) are employed
to couple Egs. (1) and (2). As a result, S,, and p, are considered as the primary unknowns, and .S, and p,, are the secondary
unknowns [14]. The reason for selecting S, and p, as the primary unknowns adheres to established conventions detailed in the
provided reference. Moreover, p. can be calculated with the help of a traditional p. model based on .S, [49]. In this study, p, is
calculated based on the following model [50]:

Sy =S\~
pc=p,h(;) ®)

l=

1- Swi
where 1 is introduced as the pore size distribution index, p,, (Pa) is threshold pressure, and .S, is the irreducible wetting phase
saturation. Also, k,, and k,,, are given by [50]:
1- Sw - Snr N
Krn = Krng, (m ®

nr

Sw = Suwi N
krw = Krug,, (m )

here, the residual non-wetting phase saturation is .S,,. Also, N,, and N, are known as Corey exponents. The end point at .S, is
kpng,,» and at S, is k., .
The Initial Conditions (ICs) are a uniform pressure of the non-wetting phase throughout the physical model and the wetting-phase

saturation is equal to .S,,;.

wi

pn(x)=p; . vx €0, L) 8
S,p(X) =S, . Vx € (0, L]

where p; is the initial pressure of the non-wetting phase, and L is the length of the physical model (m). Furthermore, for imbibition,
the inlet face is subject to a constant-flow boundary (Neumann boundary condition) with a constant injection rate of the wetting
phase (qw,-,.,)’ where S, reaches its maximum possible value which is 1 —.5,,. The outlet face has a constant pressure boundary
(Dirichlet boundary condition) with a constant back pressure (p,) [14,51]. These Boundary Conditions (BCs) can be expressed
mathematically as follows:

At the inlet face:

Quegy = Gy > 9)
Sy = 1= S -

At the outlet face:
Pnyeyy = Pb - (10)

To numerically solve the coupled PDEs, Taylor series expansion can be utilized for the discretization of the coupled PDEs [52]. To
eliminate nonlinearity, the IMplicit Pressure Explicit Saturation (IMPES) method is used [53,54]. Additionally, the transmissibility
terms between adjacent gridblocks are determined using the Single-Point Upstream Weighting (SPUW) approach [55]. The result
is a system of linear simultaneous algebraic equations. More details about coupling, discretization, implementation of the IMPES
method, the SPUW approach, and the applied solver are described in Appendix A.1.
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Moreover, the advancement of the wetting phase in a porous medium can analytically be tracked based on the integration of
the Buckley-Leverett equation [56]. It is important to note that the Buckley-Leverett equation does not consider the effects of
p., assuming p, = 0. However, it provides an analytical solution of where the front should be. The Buckley-Leverett equation is
expressed as:

t (d
X)sg = ! ﬂ an
v gA\dS, )
where (X) S is the distance from the inlet face for any given S, (m), ¢ is time (s), A is cross-sectional area (m?), and (%)S is

the slope of the f,, versus S, curve at .S,,, where f,, for the displacement of non-wetting phase by wetting phase for a horizontal
displacement and neglecting the capillary pressure gradient is:
1
Jw=

- Kpntty
I+ 2

12)

rwhn

2.2. Extended model

Based on the developed thermodynamic theory of two-phase flow in a porous medium [57] and considering the aforementioned
assumptions, the extension to the system of equations for the classic model are [44]:

da,, 9 9a,,\ _ oS,
a tox <_K”“’" ox ) ey (13
oy = f(Sy»Pe) - (14

where a,,, denotes the specific fluid/fluid interfacial area in units of (m™1), k represents the interfacial permeability (m? s~!), and
Cuon (m~1) is the specific interfacial area generation term based on temporal changes in S, Egs. (1), (2), (13), (3), (4), and (14)
form the system of equations for the extended model. Eq. (13) is a second-order nonlinear PDE that governs the evolution of q,,,.
The nonlinearity is caused by the fact that the term q,,, agf" is a product of two dependent variables a,,, and its partial derivative
Lun (58],

Regarding the q,, — p. — S, surface, it can alternatively be re-interpreted as a single-value function as Eq. (14). To generate
the surface, the following procedure can be followed. Beginning with Eq. (5) and fixing 4, p,, is varied to obtain three curves that
satisfy p! < pM < pP, representing Imbibition (I), Midway (M), and Drainage (D), respectively. Then, the following relationship is
used to compute q,,, for a given S, [59] as:

Ay = Sy, (1= 8,) +BS, (15)

where « and # are undetermined parameters. Next, g is taken as a constant and « is chosen such that a/ < aM < 4P . Finally, a
bi-quadratic function is fit to the dataset that includes (S, p!,a’ ), (S,,,pM,aM), and (S, p?,a® ) to build the a,,, - p, - S,, surface.

The extended model has 5 unknowns: p,, p,,, S,, S,, and p.. By coupling of Egs. (1) and (2), p,, S,,, and p, are the primary
unknowns, and the secondary ones are S,, and p,. Like the classic model, the extended model has the same ICs as mentioned in
Eq. (8), except for the fact that the initial values of p, need to be determined. Therefore, the ICs for the extended model can be stated

as:

pa(X)=p; ., Vx €[0,L) (16)
S,,(0) =S, Vx € (0, L]
Pe(X) =pe; - Vx € (0, L]

In addition to the BCs mentioned in Eq. (9) for an imbibition scenario, the p, at the inlet face should be determined as:

Qwgemgy = Gy 0 an
Sw(xzo) =1- Snr >
pC(x:O) =Pco -

The BCs at the outlet face has the same conditions as Eq. (10).

It should be emphasized that the appropriate values for p,; and p,, are challenging to determine. Specifically, e,, and k are
nonlinear functions of S,, and %, and changes in S, can affect p, through the a,, — p. — S, surface. As a result, ¢,, and x can
influence the values of p,, and conversely, the values of p, can affect e,, and . Furthermore, it is difficult to determine e,, and x
although pore-scale studies can provide some basic models [44]. In this study, e, is considered constant to investigate its impact.
Similarly, due to a lack of information, « is also assumed to be constant. The implemented numerical scheme to solve the extended

model is discussed in the following section.
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Table 1
Details of the porous medium and simulation scenarios for a typical Decane/Brine system in a
sandstone rock [66-68].

Property Value Property Value

L (m) 5% 1072 Ax (m) 2x1073

4y, (M’ s7) 1.39x 107 At (s) 1.5

A (m?) 1x 1074 p; (Pa) 1.3x 10*

u, (Pa s) I1x107* p, (Pa) 8x 10°

u, (Pa s) 1x10™* A 3

Siui 0.2 py (Pa) 4% 10

S, 0.3 ey (m™1) 1.05 x 10

N, 3.2 k (m? s1) 1x10713

N, 2.4 p.; (Pa) Eq. (5)[y S0
¢ 0.2 Peo (Pa) Eq. (5)|:§“:=01—S",
k (m?) 9.869233 x 10713 € 10712

2.3. Numerical scheme

The system of equations in the extended model can be solved numerically by discretization based on Taylor series expansion. With
regard to the coupled Egs. (1) and (2), the k, terms are calculated based on the .S, from the previous time step. It must be reminded
that it is not applicable for p, because it is a primary unknown. By utilizing the SPUW approach, the first two algebraic equations
for each gridblock are generated. Next, Eq. (13) is treated with the same discretization approach to generate the third algebraic
equation for each gridblock. The resulting system of nonlinear simultaneous algebraic equations can be expressed mathematically
as:

F(X)=0, (18)

where F represents the system of nonlinear simultaneous algebraic equations. Further details on how to obtain the system of
nonlinear simultaneous algebraic equations for the extended model are explained in Appendix A.2.

The appropriate values of X can be obtained by using a nonlinear solver like Newton’s method [60]. Newton’s method is
a powerful iterative method that refines a set of Initial Guesses using the inverse Jacobian matrix (J), which is a matrix of
partial derivatives of the equations with respect to their variables [61]. The refined solution is repeated until the condition of
F(refined Initial Guesses) < e is satisfied. ¢ is a very small value such as 10712 [62]. Newton’s method can be expressed as:

Xnew = Xold -J _I(Xold)F(Xold) > 19

where X, represents old solution at the previous time step, and X, is the new solution at the current time step.

The bottleneck of using Newton’s method to solve Eq. (18) is the formation of J. Since J is a dense matrix of partial derivatives, its
computation can be expensive. Furthermore, J may be singular (having a determinant of zero), which can prevent the use of Newton’s
method. Additionally, J might be ill-conditioned, meaning that small changes in the input variables can result in large changes in the
output variable, potentially leading to numerical instability or divergence [63]. To minimize the risks associated with forming J, one
possible approach is to estimate J by numerically approximating the partial derivatives of a given function with respect to its inputs
based on the finite difference method [64]. The current research uses the J=torch.autograd.functional. jacobian(F,
X) command from the PyTorch library in Python [65]. The implemented numerical scheme to solve the system of equations for
the extended model is illustrated in Fig. 1.

2.4. Physical model

To compare the results of the extended model with those of the classic model, a homogeneous and isotropic porous medium based
on a typical Bentheimer core plug was used, see Table 1 [66-68]. Table 1 also includes details of the simulation scenarios used for
the classic model and extended model. For the sake of comparison, the p,; and p., as the BCs for the extended model, are assigned
values generated by the p.-model of the classic model for S,; and 1 — .S, respectively, as given by Eq. (5).

To acquire the desired saturation profiles for the classic model, it is necessary to have a p.-curve. This p,.-curve for an imbibition
scenario based on Eq. (5) is shown in Fig. 2(a). Similarly, Fig. 2(b) shows the k,-curves according to Egs. (6) and (7). In order to use
Eq. (11) to analytically generate the saturation profiles for the classic model, it is required to generate the f,-curve with respect to
Eq. (12). As shown in Fig. 2(c), it should be noted that the shock front of the system under study has a f,, value of 0.85. Additionally,

it can be inferred that S,, increases abruptly from 0.2 (S,,;) to 0.57 (S,, s and the value of f ;, at Sy, or (:/S‘ w )5 =2.78.

The main concept behind the extended model is based on the a,, — p, — S,, surface. As explained in Section 2.2, to satisfy the
condition that p! < pM < p?, three values of p,,, namely 4x 10? Pa (I), 6x 10? Pa (M), and 8 x 10? Pa (D), are considered to generate
the necessary p,-curves as illustrated in Fig. 3(a). Next, Eq. (15) can be employed with three values of « so that a! < aM <aP

see Fig. 3(b). Then, by using scipy.optimize.curve_fit [69] in Python, a bi-quadratic function is fitted to the obtained
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Fig. 1. The numerical scheme to calculate a,, by solving to the system of equations for the extended model.

wn

data, including (Sy,.pP.a> ), (Sy,.pM,a¥), and (Sy,.p!,al,). The resultant surface is demonstrated with the viridis colormap
in Fig. 3(c). The proposed model for S,; < S, < 1—.S,, (R*> = 0.98) is:

wi

A (Sope) = 139x10°x S, - 316x1075 % p?
+ 611X107' xS, xp, — 1.36x10°%xS52 (20)
+ 851x1072xp, - 3.49x%10%.

In the system of equations for the extended model, all the g, terms in Eq. (13) are replaced by Eq. (20).

3. Results and discussions

This section presents a comparison between the classic model and extended model, followed by an investigation of the significance
of e, and k as the primary parameters of the extended model. Additionally, a sensitivity analysis with the number of gridblocks is
conducted to investigate the stability of the implemented numerical scheme.
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Fig. 2. Requirements to calculate saturation profiles for the classic model.

3.1. Simulation results

Based on the constitutive relationships shown in Fig. 2, the analytical and numerical .S,, profiles for the classic model are presented
in Fig. 4(a). The numerical §,, profiles are based on Egs. (1), (2), (3), and(4), and the analytical .S,, profiles are based on Eq. (11).
The inclusion of p, in the numerical solutions eliminates the shock fronts in the saturation profiles, resulting in a smooth dispersed
trend of increasing .S,,,.

Using a nonlinear solver such as Newton’s method, as described in Section 2.3, the system of equations for the extended model
can be solved numerically to produce the desired profiles of S,, (Fig. 4(a)) and p, (Fig. 4(b)). Utilizing Eq. (20) and referring to
Figs. 4(a) and 4(b), the extended model allows for real-time tracking of the a,, profiles (Fig. 4(c)). For comparison purposes, all
profiles are presented based on dimensionless length, defined as x;, = *. As shown in Fig. 4(a), the numerically generated S,
profiles for the extended model (labeled as Ex) exhibit a high level of consistency with those generated by the classic model (labeled
as C1).

In Fig. 4(b), as the front of the wetting-phase advances in the porous medium, both the C1 and Ex p, profiles exhibit the
expected imbibition trends: an increase in .S,, at each gridblock leads to a reduction of p, in the same gridblock, Fig. 4(b). However,
in Fig. 4(b), the C1 p, profiles are based on S,, data from the previous time step (IMPES implementation), and they are employed
to generate the C1 S, profiles in Fig. 4(a). Meanwhile, the Ex p. profiles in Fig. 4(b) are computed simultaneously with the Ex
S,, profiles in Fig. 4(a), based on numerical solution of the extended model, as described in Section 2.3. The main reason why both
types of C1 and Ex are very similar to each other is that the 4, — p, — S,, surface (Fig. 3) used in the extended model is based on
the same p,-curve used in the classic model.

In addition, as illustrated in Fig. 4(c), the extended model demonstrates the propagation and increase of q,,, as the Ex p, profiles
decrease and the Ex S,, profiles increase. This is expected because, by the advancement of the wetting phase in the porous medium,
the surface area between the two phases increases [23,26]. The distribution of the calculated a,,, profiles are in strong agreement
with those already reported [44]. However, Nordhaug et al. reported q,,, profiles that were bell-shaped and advanced from the inlet
to outlet face [59]. In other words, in each gridblock, the g, approaches its maximum value and then decreases after the invading
phase becomes dominant. But, Fig. 4(c) does not show such a distribution.

To figure out the reason for the difference behind our reported behavior and that reported by Nordhaug et al. [59], it is necessary
to examine the trend of g, versus S, Fig. 5. According to the literature, the trend of a,,, versus S, typically follows a hump-shaped
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Fig. 3. The presented p.-curves in (a) are combined with a,,-curves in (b) to establish discrete data points of (S, p..a,,). These data points are subsequently
utilized to fit a bi-quadratic function to form the desired surface as shown in (c)

curve, with a critical saturation where q,,, values increase up to that point and then decrease afterward [39,70]. The same behavior
can be observed in the contours of Fig. 5, which represent the a,,—S,, view of the a,,,—p.—S,, surface defined by Eq. (20). However,
it is important to note that a large range of the S, considered in this study (from S,; =02 to S, = 1-.,, = 0.7) are lower than the
critical .S, at which the corresponding a,,, reaches contour peak. This explains why the a,,, profiles consistently shows an increasing
trend throughout this study. Furthermore, as the saturation S,, approaches its upper limit of 0.7, the relationship between a,,, and
S,, exhibits a subtle shift in the trajectory on the g, — p. — S, surface. This adjustment results in a change in the path followed by
a,,, as it moves towards lower values, potentially forming a bell-shaped trend for g, profile. However, it is important to note that
the limitations of the simulation scenario prevent the reflection of such behavior.
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Fig. 4. classic model versus extended model based on injected Pore Volume (PV) and x,,.

3.2. Sensitivity analyses

Considering the generation term of q,,, based on temporal changes in S,,, it is expected that an increase in ¢,, would lead to a
corresponding increase in a,,, while a decrease in ¢,, would result in a decrease in a,,. These trends are depicted in Fig. 6(a). It
is worth noting that generated trends of g, exhibit a point of non-differentiability when varying e,,. However, Eq. (13) includes
the term 0;’;’” , which implies that a,,, should be differentiable throughout the entire domain. The main reason for this discrepancy
is the assumption of e, as constant, despite its dependence on .S, and (’iﬁ" , as already discussed in Section 2.2. In more detail, the

wn — Pe — S, surface suggests that changes in S, result in a new value of qg,, based on its generation term or ¢,,. Consequently,
alterations in .S, lead to simultaneous variations in both «,, and e,,. However, maintaining a constant value for e,, prevents a
fully-dynamic interaction between q,,, and ¢, in response to changes in S,,. As a result, Fig. 6(a) illustrates that the expected trends
have been generated according to the changes in ¢, although these changes have not been appropriately reflected in a smooth and
differentiable manner.

Moreover, as evident from Figs. 6(b) and 6(c), the magnitude of changes in p, is greater than that for changes in S,,. To gain a
better understanding, it is necessary to examine the p, — S,, view of the q,,, — p. — S,, surface, as shown in Fig. 6(d). The contours
derived from Eq. (20) indicate that changes in q,,, result in changes of p, that are two to three orders of magnitude larger than the
corresponding changes in S,,. Hence, variations in e,,, had a more pronounced impact on p. compared to .S,,.
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Fig. 6. The effects of ¢,, on the results of the extended model for x = 1x 107" m3 s~ and PV =0.11.

Furthermore, the sharp increase followed by a tendency to stabilize in the a,, profiles (Fig. 6(a)) can also be explained by
examining the p,-curves in Fig. 6(d). When S,, increases, there is a significant reduction in p,, causing the p-curves to intersect a
larger number of contours, resulting in a sharp increase in a,,,. However, as S,, surpasses 0.40, the reduction in p, becomes less
pronounced, leading to a smaller number of contour intersections and a slower increase in a,,,.
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Fig. 7. The effects of x on the results of the extended model for e,, = 1.05x 10> m~' and PV =0.11.

Similarly, the effect of k can be studied by keeping e, constant. In terms of analogy, k plays the same role in Eq. (13) as k does
in Egs. (1) and (2). It means that k controls the advancement of .S,, front, and x controls the advancement of a,,, front. Although
Kk is assumed as a constant in this study, it is generally assumed to be a function of S,, and "S:’. Also, S, can effect a,,, through
ayn — Pe — S, surface. Therefore, it can be stated that because of the q,,, — p. — S,, surface, p, reflects the balance between k and «.

From Figs. 7(a) and 7(c), it is evident that a decrease in x does not disrupt the balance between the S,, and a,,, profiles. The
advancements in both profiles remain aligned, indicating that there are no changes in the p, profiles when « is reduced from
1x 1073 m3 s7! to 1 x 10717 m3 s~!, Fig. 7(b). However, increasing x from 1 x 10713 m? s7! to 1 x 10™® m? s~! disrupts the balance,
causing the a,,, front to advance faster than the S, front. This imbalance is evident in Figs. 7(a) and 7(c), where the profiles are no
longer synchronized. The imbalance between k and « is illustrated by the unusual trend of the p, profile for x = 1 x 107 m3 s~! in
Fig. 7(b). The faster movement of the g, profile can only be supported by the p, profile decreasing. This concept is further depicted

11
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in Fig. 7(d), where the larger value of x causes the a,, — S,, plot to overlap with contours of the a,, — p. — S, surface that have
higher p, values, Fig. 7(b). Next, After the peak, where S,, remains unchanged, the advancement of the a,,, front is only possible
through a reduction in p,. However, due to the geometry of the a,, —p, — S, surface, this reduction in p, leads to a,, values smaller
than the initial condition, as shown in Fig. 7(e).

From a physical perspective, the rearrangement of fluids without changing S,, is possible due to capillary rearrangement.
However, as simulated in the presented results, rearrangement of fluids far ahead of the saturation front where S,, = S,,; is impossible
because the wetting phase is immobile. Therefore, it can be concluded that although the a,, — p. — S, surface can mathematically
handle the imbalance between k and «, it can lack physical significance under specific conditions. Thus, the design of the a,,,—p.—.S,
surface should incorporate the physical effects of this imbalance in order to accurately represent the system.

w

3.3. Computational costs

The system of equations governing the extended model is nonlinear. Discretizing the PDEs in that system generates a set of
nonlinear algebraic equations that must be solved simultaneously. To optimize the computational cost and run-time of the solver, it
is crucial to determine the optimal number of gridblocks. This number is directly related to the number of gridblocks (Appendix A.2)
used in the discretization process. Fig. 8(a) illustrates the recorded run-time of solving the extended model based on the number of
gridblocks ranging from 10 to 40. The run-time axis shows the average, minimum, and maximum run-time recorded for solving the
extended model with 10 repetitions for 100 timesteps (Table 1). Also, the run-times have been determined using the Intel Xeon
Gold 6230R processor operating at a clock speed of 2. 10GHz. As expected, increasing the number of gridblocks results in longer
run-time. Taking the results obtained for 40 gridblocks as the reference, it is possible to check the quality of the numerical solutions
obtained for less gridblocks by computing the average relative error for each one of the primary unknowns. It can be inferred that
when the number of gridblocks is 25 (as in this study), the averaged relative error for all the three unknowns is less than 2% in
comparison with 40 gridblocks. But, the recorded averaged run-time is 2.2 times faster than the recorded averaged run-time for 40
gridblocks.

It is important to emphasize that the extended model can be readily tested with more than 40 gridblocks. However, it is not
possible to compare the classic model with the extended model due to the numerical instability experienced by the classic model
when the number of gridblocks exceeds 40 or when Ax is less than 1.25 x 103 m, if Ar = 1.5 s. For instance, Figs. 8(b) shows that
when there are 41 gridblocks, the generated S, profiles by the classic model are not numerically stable. The instability is due to
the fact that using IMPES as the linearization in the classic model gives rise to a conditional stability, which is technically defined
as the Courant-Friedrichs-Lewy (CFL) limit [71,72]. Regarding the implemented uniform discretization, the CFL states that the
classic model produces numerically stable results if CFL = ((qAf) - 2A4x)™") < CFL,,,.. CFL,,, is a user-defined value that can be
obtained by running the simulation until the instability appears [73]. Or, it can be said that CFL,,,, is the largest CFL in which
classic model still performs numerically stable. Based on Table 1 and Ax = 1.25x 1073 m, CFL,,,, is 0.0083.

In the context of nonlinear solutions obtained using Newton’s method, there is not a specific index similar to the CFL condition.
The absence of a CFL-like condition for nonlinear systems is due to the fact that the stability analysis and convergence behavior of
Newton’s method are more complex and problem-dependent [74]. Instead, it is possible to observe the general trends of solutions
based on the extended model by adjusting Ax or Ar based on the specific conditions given in Table 1, see Fig. 8(c). Based on the
given Ax or At, if the computed results are meaningful, Convergence is achieved. If Newton’s method generates results, but they
are not physically possible, it can be inferred as numerical Instability, and if Newton’s method cannot make any progress and fails
to converge to a solution, it is considered as Divergence. Based on Table 1 and the q,, — p, — S,, surface (Eq. (20)), the results
of the extended model for Ax < 6.66 x 10~ m when 4t = 1.5 s are not reliable. Likewise, it can be understood that stable results by
the extended model are obtained when At < 5 s if Ax = 2 x 1073 m. It can be understood that if Ax = 2 x 10~ , the largest At that
the extended model can have (5 s). It must be mentioned that the results for the effects of chosen 4t or Ax are based on running the
simulation for 150 s.

4. Conclusions

Traditionally, p, is represented using an oversimplified model as p, = f(S,,). By considering the effects of 4, on p., a a,,,—p.—S,,
surface can be developed. The supposed surface can be interpreted as p, = f(S,,. a,,,) Which exhibits minimal hysteresis [23,26,28].
However, the classic model lacks the capability to incorporate this enhanced p, model, whereas the extended model does possess
this capability. By running numerical simulation scenarios based on the system of equations for the extended model, the following
conclusions can be made:

1. Both the extended model and classic model provide nearly the same .S,, profiles given a specific set of parameters while the
extended model provides details on specific interfacial area that are consistent with those presented in the literature [39,44,70].

2. The automatic differentiation using J=torch.autograd.functional. jacobian of PyTorch provides an approxi-
mate J for solving the nonlinear system of equations in the extended model.

3. The shape of the calculated a,, profile strongly depends on the shape of the p, —.S,, — a,,, surface and the specific simulation
scenario. By adjusting S,; and S,,, it is possible to control the shape of the a,, profile to be either piston-like [44] or
bell-shaped [59].

wi
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4. As asource term of a,,,,,

increasing or decreasing e, directly impacts the values of a,,,. Regarding the developed p,—.S

w = Qwn>

changes in ¢,,, had a more significant effect on p, values compared to .S, values.

. The k controls the propagation of the .S, profile, and x controls the propagation of the a,,, profile. If « is too large, the a,,,

profile advances faster than the .S, profile in the porous media. However, this is only possible if p, changes, resulting in the
generation of p, profiles with unusual trends. Theoretically, « is a function of .S,, and %. Therefore, k and « can be coupled,

and the balance between them is nonlinear.
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Overall, the extended model not only offers .S, profiles like the classic model but also incorporates an enhanced p, model,
enabling real-time tracking of a,,,, profiles in porous media. Therefore, using the extended model provides an opportunity to compare
the results of continuum-scale simulations with those obtained from pore-scale simulations. Future research can focus on modifying
the extended model with representative parameters that can also be obtained from pore-scale simulations. This approach will help to
bridge the gap between continuum-scale and pore-scale simulations, resulting in a more comprehensive understanding of immiscible
multiphase flow in porous media.
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Appendix. Details of numerical solutions

A.1. Classic model

Egs. (1) and (2) can be coupled using Egs. (3) and (4) as follows.

¢6Su,~ 4O Kk (OPn _ OPc ) _ G (A1)
ot dx Hy 0x 0x v,
Ja(1-3S, k.,k 0
¢u+i<_Lﬂ> = (A.2)
ot ox H, 0x Vs
Rearranging Egs. (A.1) and (A.2) and expressing them on a per unit bulk volume basis yields [55]:
kA o 9p,  9p. 95,
—— |k —_— - Ax =V —q, A.3
Hyp OX ( " ( ox  0x x=Vod o (A.3)
kA 0 P, a(1-5,)
229 (k Ax =V, p——~ — A4
U, 0X ( ™ ox > x =V ot n @4

where Ax (m) stands for the length of the control element. By applying the IMPES linearization and using the numerical
differentiation based on Taylor series expansion, Egs. (A.3) and (A.4) can uniformly be discretized into a certain number (N) of
block-centered gridblocks each one has a volume of V,, and transformed into a system of algebraic equations as shown below.

m+1 _ m+1 m+1 mo_ m m
ﬁkm <p"i+l 2p”i +p"i—l _ p0i+1 2p5i +pCi—1 > =

Hy ™ Ax Ax
Sm+l —_sm
w; w;
Vo <—At ) —qy (A.5)
A, (T2 ) sz, S
— k" — )=V ———— | —¢ (A.6)
u, ™ Ax b At "
n

where At is the time step (s). The second-order spatial derivatives are approximated using the central-difference method, and the
first-order temporal derivative is approximated using the backward-difference method. The IMPES linearization method is employed
to compute the saturation-dependent parameters based on the saturation values from the previous time step, and the pressures are
computed at the current time step. The superscripts m+1 and m denote the current and previous time steps, respectively. Additionally,
in the case of three adjacent gridblocks arranged in one-dimension, the subscripts i — 1, i, and i + 1 correspond to the indices of the
left-side, central, and right-side gridblocks, respectively.

Egs. (A.5) and (A.6) can be written for each of the gridblocks. Excluding the first and last gridblocks and considering the
assumption that only wetting phase is injected from the inlet face, Egs. (A.5) and (A.6) can be written as:

For 1 <i< N:

T ( o pmu) +T,, ( Pt - p:lni+1>

Mit1

Ty, (p'" - ij) =T, (pg'jfl - pﬁ'?) A7)

Citl i

0
L, St + G, St 9 =0
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+1 +1 +1 +1
T”i<i+l (p’r'nm _p’r'ni ) +T"i,:—l (p’:,_l —p:’l >

(A.8)
0
+, St =8, St g7 =0
where {,/, as the accumulation coefficient ("%_3) is:
Vo
[ e (A.9)

The p!" values in Eq. (A.7) is computed with the help of a capillary pressure model based on the corresponding S’ values like
Eq. (5). Taking the effects of uniform discretization and isotropic porous medium, T as the transmissibility (m*> Pa~! s~!) between
neighboring gridblocks is defined based on SPUW approach as [55]:
Z L Ak m
Tw/"iv’il - Hw/n X Ax kr“’/” <Sw1 )j:a:gmax(p;”)/” ) (A.10)

xe(iixl}

in which k, data can be determined from Egs. (6) and (7) based on S, The first gridblock is assigned the conditions stated in Eq. (9)
due to the block-centered discretization. Therefore, S, is already determined for all the time steps. As a result, the only primary
unknown for the first gridblock is p,, which can be computed by writing Egs. (A.5) for i = 1 as follows:

Ty (o0 =0t ) =T, (o = 000

(A.11)

Qu:,

1 "
_Cw]SZZT +¢w]S$l +9{ =0
This means that the constant injection rate 4y, €an be treated as a source term in the first gridblock by using the reflection
technique [14] at the left boundary of the inlet face between the imaginary zeroth (i = 0) and first (i = 1) gridblocks. Its value is
then directly inserted into the equation instead of g,,,.

Following the block-centered discretization, the last gridblock (i = N) is assigned the conditions stated in Eq. (10). As a result,

Egs. (A.5) and (A.6) can be written as:

m+1  _ om+1 ) _ m — pn
TwN,N—l (pnN,l pnN ) TwN,N—] <ch,1 ch)

(A.12)
2T, (Pt =y
1 —
L St + 8 Sta + a7’ =0
1 1 1

Ty (P =) + €y ST

(A.13)
2T, (p[,";r,l *l’b)
oy S+ a7 =0

According to the reflection technique, the pressure boundary p, at the outlet face between the last actual gridblock (N) and the
imaginary adjacent gridblock (N + 1) can be treated as a fictitious production term with a pressure of p,. This term is located
in the last actual gridblock but acts at a distance of AT" from the center of the gridblock. This causes the coefficient of 2 for the
transmissibility term, and the negative sign is due to its production mode [14].

All in all, by writing Egs. (A.7), (A.8), (A.11), (A.12), and (A.13) for N gridblocks, a set of linear simultaneous algebraic equations

including 2N — 1 equations can be created and represented as:
AX =B (A.14)

where A,y _;on—; 1S the tridiagonal matrix of coefficients, B,y _;y, is the matrix of answers, and X,y _;y, is the matrix of unknowns.
To solve the linear system represented by Eq. (A.14), it is possible to use the X = numpy.linalg.solve(A,B) command
from the numpy library in Python [75]. The results include N values of p, and N — 1 values of S,, at time step m + 1.

A.2. Extended model

Eq. (13) can be rearranged as:

0a,, 0, 0a,, 0zawn 98,
L P T Gen o Dw A.15
o “Tox T Tox MlenTo TleTy (A.15)
Utilizing the numerical differentiation based on Taylor series expansion, and regarding the uniform discretization, the discretized
form of Eq. (A.15) per unit bulk volume is:
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m+l _ m m+l  _  m+l m+1  _ m+l

wn; wn; v awn,-H awn,-,l awn,»ﬂ awn,-,l
-K
b A b 24x 24x

m+1 m+1 m+1 m+1 m

—2a S -8
w4 wn; wn;_y w, w;

—kVyamtt — : — =e,,V,— ! (A.16)
i Ax? At

Eq. (A.16), along with Egs. (A.5) and (A.6), represents the discretized versions of Egs. (13), (1), and (2), respectively. These
equations constitute the main core of the system of equations for the extended model. It should be noted that Egs. (A.5) needs to
be modified for the use in the extended model in order that all values of p, must be computed at the current time step with the
superscript of m + 1, since p, is a primary unknown in the extended model. Furthermore, Eq. (A.16) can be written as:

m+l _ m
¢ (amt—am,)

_ ( m+12 — m+1 m+1 m+12
wn \ T Wnig Wiy~ wni_y wn;_y
(A.17)
+4am+1am+1 _8am+12+4am+lam+l )
wn; “wnigy wn; wn; “wn;_)
&, (Spt = sm ) =0
where
Vs
= — A.18
¢ " ( )
and,
KA
T, =— A.19
Qun - 4Ax ( )
and,
ewnl/h
—_wn'b A.20
Ceun = 27 (A.20)

For all the middle gridblocks (1 <i < N), Egs. (A.17), (A.7) (with the modification of p;”“ instead of p), and (A.8) are valid.

The system of equations for the extended model reveals that Eq. (A.5) calculates p™*!, Eq. (A.6) calculates S”*!, and Eq. (A.16)
calculates p™*!. Following block-centered discretization, the boundary conditions outlined in Eq. (17) are applied to the first
gridblock, signifying that p, and S, are already determined for all time steps. It also means that a';jl'll =y, = Gy, for all
time steps. Therefore, Eq. (A.5) should be rewritten for the first gridblock in the extended model as:

P
Ty, (an2+1 —P,,’"]“) =Ty, (1’2’?1 _B?/ ) (A.21)

.

~Lu, Sﬁf“l + 8, Sgl +9{ =0
and, Eq. (A.16) for the first gridblock is turned into:

-T (a"’+12 +da, o™ —84 ) =0 (A.22)

Ayon wny wny| “wny wny

Based on the conditions described in Eq. (10), both Eq. (A.12) and (A.13) remain valid for the last gridblock in the extended
model. By taking advantages of the reflection technique [14], Eq. (A.16) for the last gridblock can be expressed as:
¢ (aN+1 —am) - T,.. (aw;’;,il - Saw"u + 4aw:[1, aw:,'[Ll )

(A.23)
Lo (S'"“ - S;’fN) =0

wy

Overall, writing Egs. (A.7), (A.8), (A.17), (A.21), (A.22), (A.12), (A.13), and (A.23) for N gridblocks in the extended model results
in a set of 3N — 2 nonlinear simultaneous algebraic equations (F) that for a proper set of p,, S,, and p. should generate 3N — 2
zZeros, or:

F(X78)) =105 (A.24)
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