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A B S T R A C T

Niessner and Hassnaizadeh (2008) proposed a set of governing equations to model multiphase
flow in porous media based on first principles that includes fluid/fluid specific interfacial area
as a state variable. Herein, we shed light on the lesser-discussed aspects of their proposed
model, referred to as the extended model. Firstly, we show how the extended model facilitates
real-time tracking of specific interfacial area. Secondly, we compare numerical solutions of
the extended model to that of the traditional multiphase flow model with capillary dispersion
and the analytical Buckley–Leverett solution. Thirdly, we provide a sensitivity analysis for the
additional unknown parameters of the extended model - specific interfacial permeability and
specific interfacial area generation. Lastly, a stability analysis is performed for the numerical
solutions. As an auxiliary outcome, we provide an approach to solve the non-linear partial
differential equations of the extended model by using torch.autograd as the automatic
differentiation engine of PyTorch. Our results demonstrate that the extended model can provide
saturation profiles similar to those generated by traditional models, but with the added benefit
of real-time tracking of specific interfacial area. The generated specific interfacial area profiles
were comparable to expected trends from previous numerical and experimental studies and
highlighted the importance of the capillary pressure relationship and specific interfacial area
generation term. The results also demonstrate an important balance between the permeability of
the porous media and the interfacial permeability that must be maintained; otherwise, generated
profiles become physically unrealistic. Overall, the extended model explains the evolution of
specific interfacial area during multiphase flow at the cost of additional non-linearity and
unknown parameters.

1. Introduction

The study of immiscible multiphase flow in porous media is a critical research area with a wide range of applications in fields such
s carbon capture and storage [1,2], geothermal energy production [3], unconventional resources management [4], underground
oal gasification [5], and enhanced oil recovery [6]. To achieve significant advancements in these highlighted fields, a thorough
nderstanding of how immiscible fluids interact during flow in porous media is essential [7]. Accordingly, numerical simulation
s considered a powerful tool that not only provides researchers with insights into the underlying physical mechanisms but also
nables them to analyze complex problems [8].
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Capillary pressure (𝑝𝑐) is a key parameter in the numerical simulation of immiscible multiphase flow in porous media [9]. It is
defined as the pressure difference between two immiscible fluids in a porous medium [10]. At the continuum-scale, 𝑝𝑐 is traditionally
calculated as a function of wetting phase saturation, 𝑝𝑐 = 𝑓 (𝑆𝑤) [11]. Even though this is an oversimplified model that cannot
logically describe the hysteresis phenomena (non-uniqueness solution for 𝑝𝑐) [12,13], it remains widely used in numerical models.
This is due to its simple nature that only depends on one unknown (𝑆𝑤) in the continuum-scale modeling of multiphase flow in
porous media [14].

Regarding the 𝑝𝑐 hysteresis phenomenon, significant efforts have been made to address the associated ambiguity [15–17]. The
pioneering thermodynamic approach developed by Hassnaizadeh and Gray in early 1990s suggests that including interfacial area
can resolve the non-uniqueness issue in the case of capillary pressure models [18–21]. This theory is based on developing a model
that explicitly accounts for the effects of interfaces in a multiphase system. As a result, the classic 𝑝𝑐 relationship is modified to
𝑝𝑐 = 𝑓 (𝑆𝑤, 𝑎𝑤𝑛), where 𝑎𝑤𝑛 represents the specific fluid/fluid interfacial area [22,23]. The theory proposes a surface that represents
all possible combinations of 𝑝𝑐 , 𝑆𝑤 and 𝑎𝑤𝑛 [24], which can be mathematically described by bi-quadratic functions [25], or even
physical-based range models [26]. In essence, the classic 𝑝𝑐 = 𝑓 (𝑆𝑤) relationship can be viewed as an artifact of projecting the 3D
surface of 𝑝𝑐 − 𝑆𝑤 − 𝑎𝑤𝑛 onto the 𝑝𝑐 − 𝑆𝑤 plane [27,28].

Previous studies indicate that incorporating 𝑎𝑤𝑛 into a 𝑝𝑐 model can almost remove the hysteresis effect [27,29–32]. Continuing
from a geometric standpoint, the 𝑝𝑐 − 𝑆𝑤 − 𝑎𝑤𝑛 surface provides a reasonable description of the fluid configuration in a porous
medium; however, its accuracy may not be optimal as previous studies have revealed that hysteresis can still occur under specific
conditions [33–35]. More recent research has shown that by considering a fluid in a porous medium as a 3D connected body in
space, its configuration can be achieved by a hyperobject of 𝑝𝑐 − 𝑆𝑤 − 𝑎𝑤𝑛 − 𝜒 [36], where 𝜒 stands for the Euler characteristic
and defined as the average measure for the connectivity of the fluid body [37]. To put it simply, it can be stated that 𝑝𝑐 is unique
defined by 𝑓 (𝑆𝑤, 𝑎𝑤𝑛, 𝜒) [38,39].

While developing new capillary pressure relationships based on additional geometrical terms is academically interesting, a key
question remains in regards to the incorporation of such a relationship into a multiphase flow model [35,40]. The governing
equations of the classical multiphase flow model neither describe the evolution of 𝑎𝑤𝑛 [41] nor accounts for 𝜒 [42], it is therefore
impossible to use 𝑝𝑐 = 𝑓 (𝑆𝑤, 𝑎𝑤𝑛, 𝜒) or 𝑝𝑐 = 𝑓 (𝑆𝑤, 𝑎𝑤𝑛). The reason behind this is that the classic multiphase flow model (referred
to as the classic model from hereon) does not explicitly account for the effects of interfaces [18], and the geometric description
of the system [43]. However, based on previous theoretical works and certain simplifying assumptions, the classic model can be
extended with an additional governing equation for the evolution of 𝑎𝑤𝑛 [44–46]. This makes it possible to use 𝑝𝑐 = 𝑓 (𝑆𝑤, 𝑎𝑤𝑛) as
a constitutive model with almost zero hysteresis.

While the model proposed by Niessner and Hassanizadeh [44] (referred to as the extended model from hereon) incorporates the
𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface, it is not entirely clear how the parameters of the additional governing equation affect the model results.
Furthermore, the extended model is highly nonlinear and dealing with this nonlinearity to find an appropriate solution strategy
remains uncertain. Therefore, our aim is to investigate the extended model to gain a better understanding of it. In this regard,
Section 2 briefly reviews the mathematical aspects of the classic and extended models. Moreover, the section provides details on how
to solve the extended model and manage its nonlinearity using torch.autograd function of torch library in Python. Next, a
physical model representing a typical porous media is described. Section 3 first presents and discusses the generated results. Then,
a sensitivity analysis is performed to determine the importance of the parameters of the new governing equation in the extended
model. Lastly, the run-time and relative errors are analyzed as useful indices for evaluating and optimizing the computational cost.
In conclusion, Section 4 highlights the importance of the extended model, and the possible challenges.

2. Methodology

Before delving into the mathematical background of the classic and extended models, it is necessary to consider the assumptions
that are considered by previous researchers and relevant to the work presented herein [10,45,47]. The following assumptions apply:

• One-dimensional immiscible flow occurs for two incompressible fluids.
• Flow is horizontal, and the effect of gravity is not taken into account.
• Viscosities are constant.
• Homogeneous and isotropic porous medium rock.
• Porosity remains constant over time.
• The porous medium is perfectly wettable by the wetting phase.
• The interfacial mass density is assumed to be constant.
• Only wetting phase is injected from the inlet face.
• The considered physical system is isothermal.
• The only driving force for the flow of phases is the pressure gradient; further, the driving force for the interfaces is the gradient
of 𝑎𝑤𝑛. The standard Darcy’s law is assumed to hold.

Based on these assumptions, it is possible to compare the classic model and extended model.
2
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2.1. Classic model

Using the mass conservation law and applying Darcy’s law, the system of equations for the classic model can be expressed as
follows [48].

𝜙
𝜕𝑆𝑤
𝜕𝑡

+ 𝜕
𝜕𝑥

(

−
𝑘𝑟𝑤𝑘
𝜇𝑤

𝜕𝑝𝑤
𝜕𝑥

)

=
𝑞𝑤
𝑉𝑏

(1)

𝜙
𝜕𝑆𝑛
𝜕𝑡

+ 𝜕
𝜕𝑥

(

−
𝑘𝑟𝑛𝑘
𝜇𝑛

𝜕𝑝𝑛
𝜕𝑥

)

=
𝑞𝑛
𝑉𝑏

(2)

𝑆𝑤 + 𝑆𝑛 = 1 (3)

𝑝𝑐 = 𝑝𝑛 − 𝑝𝑤 (4)

where 𝜙 is porosity, 𝑘 is permeability (m2), 𝜇𝑤 and 𝜇𝑛 represents the viscosities of wetting and non-wetting phases (Pa s), 𝑘𝑟𝑤 and 𝑘𝑟𝑛
are the relative permeabilities of wetting and non-wetting phases, 𝑞𝑤 and 𝑞𝑛 indicate the injection rates of wetting and non-wetting
phases (m3 s−1), 𝑉𝑏 is the bulk volume of the control element (m3), 𝑆𝑛 is the non-wetting phase saturation,

𝜕𝑆𝑤
𝜕𝑡 and 𝜕𝑆𝑛

𝜕𝑡 stand for the
changes of wetting and non-wetting saturation with respect to time

(

s−1
)

, 𝑝𝑤 and 𝑝𝑛 are the pressures of wetting and non-wetting
phases (Pa), and finally 𝜕𝑝𝑤

𝜕𝑥 and 𝜕𝑝𝑛
𝜕𝑥 are the pressure gradients of wetting and non-wetting phases

(

Pa m−1).
The system includes two nonlinear second-order Partial Differential Equations (PDEs), one for each of the two phases. The reason

or the nonlinearity is the dependency of 𝑘𝑟𝑤∕𝑛
to 𝑆𝑤 which is changed by changes of 𝑝𝑤∕𝑛. Next, Eqs. (3) and (4) are employed

o couple Eqs. (1) and (2). As a result, 𝑆𝑤 and 𝑝𝑛 are considered as the primary unknowns, and 𝑆𝑛 and 𝑝𝑤 are the secondary
unknowns [14]. The reason for selecting 𝑆𝑤 and 𝑝𝑛 as the primary unknowns adheres to established conventions detailed in the
provided reference. Moreover, 𝑝𝑐 can be calculated with the help of a traditional 𝑝𝑐 model based on 𝑆𝑤 [49]. In this study, 𝑝𝑐 is
calculated based on the following model [50]:

𝑝𝑐 = 𝑝𝑡ℎ

(

𝑆𝑤 − 𝑆𝑤𝑖
1 − 𝑆𝑤𝑖

)− 1
𝜆

(5)

where 𝜆 is introduced as the pore size distribution index, 𝑝𝑡ℎ (Pa) is threshold pressure, and 𝑆𝑤𝑖 is the irreducible wetting phase
saturation. Also, 𝑘𝑟𝑛 and 𝑘𝑟𝑤 are given by [50]:

𝑘𝑟𝑛 = 𝑘𝑟𝑛𝑆𝑤𝑖

(

1 − 𝑆𝑤 − 𝑆𝑛𝑟
1 − 𝑆𝑤𝑖 − 𝑆𝑛𝑟

)𝑁𝑛
(6)

𝑘𝑟𝑤 = 𝑘𝑟𝑤𝑆𝑛𝑟

(

𝑆𝑤 − 𝑆𝑤𝑖
1 − 𝑆𝑤𝑖 − 𝑆𝑛𝑟

)𝑁𝑤
(7)

here, the residual non-wetting phase saturation is 𝑆𝑛𝑟. Also, 𝑁𝑤 and 𝑁𝑛 are known as Corey exponents. The end point at 𝑆𝑤𝑖 is
𝑘𝑟𝑛𝑆𝑤𝑖

, and at 𝑆𝑛𝑟 is 𝑘𝑟𝑤𝑆𝑛𝑟
.

The Initial Conditions (ICs) are a uniform pressure of the non-wetting phase throughout the physical model and the wetting-phase
saturation is equal to 𝑆𝑤𝑖.

𝑝𝑛(𝑥) = 𝑝𝑖 , ∀𝑥 ∈ [0, 𝐿) (8)
𝑆𝑤(𝑥) = 𝑆𝑤𝑖 , ∀𝑥 ∈ (0, 𝐿]

where 𝑝𝑖 is the initial pressure of the non-wetting phase, and 𝐿 is the length of the physical model (m). Furthermore, for imbibition,
the inlet face is subject to a constant-flow boundary (Neumann boundary condition) with a constant injection rate of the wetting
phase (𝑞𝑤𝑖𝑛𝑗

), where 𝑆𝑤 reaches its maximum possible value which is 1 − 𝑆𝑛𝑟. The outlet face has a constant pressure boundary
(Dirichlet boundary condition) with a constant back pressure (𝑝𝑏) [14,51]. These Boundary Conditions (BCs) can be expressed
mathematically as follows:

At the inlet face:

𝑞𝑤(𝑥=0)
= 𝑞𝑤𝑖𝑛𝑗

, (9)

𝑆𝑤(𝑥=0)
= 1 − 𝑆𝑛𝑟 .

At the outlet face:

𝑝𝑛(𝑥=𝐿) = 𝑝𝑏 . (10)

To numerically solve the coupled PDEs, Taylor series expansion can be utilized for the discretization of the coupled PDEs [52]. To
eliminate nonlinearity, the IMplicit Pressure Explicit Saturation (IMPES) method is used [53,54]. Additionally, the transmissibility
terms between adjacent gridblocks are determined using the Single-Point Upstream Weighting (SPUW) approach [55]. The result
is a system of linear simultaneous algebraic equations. More details about coupling, discretization, implementation of the IMPES
3
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Moreover, the advancement of the wetting phase in a porous medium can analytically be tracked based on the integration of
he Buckley–Leverett equation [56]. It is important to note that the Buckley–Leverett equation does not consider the effects of
𝑐 , assuming 𝑝𝑐 = 0. However, it provides an analytical solution of where the front should be. The Buckley–Leverett equation is
expressed as:

(𝑋)𝑆𝑤
=

𝑞𝑤𝑡
𝜙𝐴

(

d𝑓𝑤
d𝑆𝑤

)

𝑆𝑤

(11)

where (𝑋)𝑆𝑤
is the distance from the inlet face for any given 𝑆𝑤 (m), 𝑡 is time (s), 𝐴 is cross-sectional area (m2), and

(

𝑑𝑓𝑤
𝑑𝑆𝑤

)

𝑆𝑤
is

the slope of the 𝑓𝑤 versus 𝑆𝑤 curve at 𝑆𝑤, where 𝑓𝑤 for the displacement of non-wetting phase by wetting phase for a horizontal
isplacement and neglecting the capillary pressure gradient is:

𝑓𝑤 = 1
1 + 𝑘𝑟𝑛𝜇𝑤

𝑘𝑟𝑤𝜇𝑛

. (12)

2.2. Extended model

Based on the developed thermodynamic theory of two-phase flow in a porous medium [57] and considering the aforementioned
assumptions, the extension to the system of equations for the classic model are [44]:

𝜕𝑎𝑤𝑛
𝜕𝑡

+ 𝜕
𝜕𝑥

(

−𝜅𝑎𝑤𝑛
𝜕𝑎𝑤𝑛
𝜕𝑥

)

= 𝑒𝑤𝑛
𝜕𝑆𝑤
𝜕𝑡

, (13)

𝑎𝑤𝑛 = 𝑓 (𝑆𝑤, 𝑝𝑐 ) . (14)

here 𝑎𝑤𝑛 denotes the specific fluid/fluid interfacial area in units of (m−1), 𝜅 represents the interfacial permeability (m3 s−1), and
𝑤𝑛 (m−1) is the specific interfacial area generation term based on temporal changes in 𝑆𝑤. Eqs. (1), (2), (13), (3), (4), and (14)
orm the system of equations for the extended model. Eq. (13) is a second-order nonlinear PDE that governs the evolution of 𝑎𝑤𝑛.
The nonlinearity is caused by the fact that the term 𝑎𝑤𝑛

𝜕𝑎𝑤𝑛
𝜕𝑥 is a product of two dependent variables 𝑎𝑤𝑛 and its partial derivative

𝜕𝑎𝑤𝑛
𝜕𝑥 [58].
Regarding the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface, it can alternatively be re-interpreted as a single-value function as Eq. (14). To generate

the surface, the following procedure can be followed. Beginning with Eq. (5) and fixing 𝜆, 𝑝𝑡ℎ is varied to obtain three curves that
satisfy 𝑝𝐼𝑐 ≤ 𝑝𝑀𝑐 ≤ 𝑝𝐷𝑐 , representing Imbibition (I), Midway (M), and Drainage (D), respectively. Then, the following relationship is
used to compute 𝑎𝑤𝑛 for a given 𝑆𝑤 [59] as:

𝑎𝑤𝑛 = 𝛼𝑆𝑤
(

1 − 𝑆𝑤
)

+ 𝛽𝑆𝑤 (15)

where 𝛼 and 𝛽 are undetermined parameters. Next, 𝛽 is taken as a constant and 𝛼 is chosen such that 𝑎𝐼𝑤𝑛 ≤ 𝑎𝑀𝑤𝑛 ≤ 𝑎𝐷𝑤𝑛. Finally, a
bi-quadratic function is fit to the dataset that includes (𝑆𝑤, 𝑝𝐼𝑐 , 𝑎

𝐼
𝑤𝑛), (𝑆𝑤, 𝑝𝑀𝑐 , 𝑎𝑀𝑤𝑛), and (𝑆𝑤, 𝑝𝐷𝑐 , 𝑎

𝐷
𝑤𝑛) to build the 𝑎𝑤𝑛−𝑝𝑐−𝑆𝑤 surface.

The extended model has 5 unknowns: 𝑝𝑛, 𝑝𝑤, 𝑆𝑛, 𝑆𝑤, and 𝑝𝑐 . By coupling of Eqs. (1) and (2), 𝑝𝑛, 𝑆𝑤, and 𝑝𝑐 are the primary
unknowns, and the secondary ones are 𝑆𝑛, and 𝑝𝑤. Like the classic model, the extended model has the same ICs as mentioned in
Eq. (8), except for the fact that the initial values of 𝑝𝑐 need to be determined. Therefore, the ICs for the extended model can be stated
as:

𝑝𝑛(𝑥) = 𝑝𝑖 , ∀𝑥 ∈ [0, 𝐿) (16)
𝑆𝑤(𝑥) = 𝑆𝑤𝑖 , ∀𝑥 ∈ (0, 𝐿]

𝑝𝑐(𝑥) = 𝑝𝑐𝑖 . ∀𝑥 ∈ (0, 𝐿]

In addition to the BCs mentioned in Eq. (9) for an imbibition scenario, the 𝑝𝑐 at the inlet face should be determined as:

𝑞𝑤(𝑥=0)
= 𝑞𝑤𝑖𝑛𝑗

, (17)

𝑆𝑤(𝑥=0)
= 1 − 𝑆𝑛𝑟 ,

𝑝𝑐(𝑥=0) = 𝑝𝑐0 .

The BCs at the outlet face has the same conditions as Eq. (10).
It should be emphasized that the appropriate values for 𝑝𝑐𝑖 and 𝑝𝑐0 are challenging to determine. Specifically, 𝑒𝑤𝑛 and 𝜅 are

nonlinear functions of 𝑆𝑤 and 𝜕𝑆𝑤
𝜕𝑥 , and changes in 𝑆𝑤 can affect 𝑝𝑐 through the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface. As a result, 𝑒𝑤𝑛 and 𝜅 can

influence the values of 𝑝𝑐 , and conversely, the values of 𝑝𝑐 can affect 𝑒𝑤𝑛 and 𝜅. Furthermore, it is difficult to determine 𝑒𝑤𝑛 and 𝜅
although pore-scale studies can provide some basic models [44]. In this study, 𝑒𝑤𝑛 is considered constant to investigate its impact.
Similarly, due to a lack of information, 𝜅 is also assumed to be constant. The implemented numerical scheme to solve the extended
4

model is discussed in the following section.
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Table 1
Details of the porous medium and simulation scenarios for a typical Decane/Brine system in a
sandstone rock [66–68].
Property Value Property Value

𝐿 (m) 5 × 10−2 𝛥𝑥 (m) 2 × 10−3

𝑞𝑤𝑖𝑛𝑗
(m3 s−1) 1.39 × 10−9 𝛥𝑡 (s) 1.5

𝐴 (m2) 1 × 10−4 𝑝𝑖 (Pa) 1.3 × 104

𝜇𝑤 (Pa s) 1 × 10−4 𝑝𝑏 (Pa) 8 × 103

𝜇𝑛 (Pa s) 1 × 10−4 𝜆 3
𝑆𝑤𝑖 0.2 𝑝𝑡ℎ (Pa) 4 × 102

𝑆𝑛𝑟 0.3 𝑒𝑤𝑛 (m−1) 1.05 × 102

𝑁𝑛 3.2 𝜅 (m3 s−1) 1 × 10−13

𝑁𝑤 2.4 𝑝𝑐𝑖 (Pa) Eq. (5)|∀𝑥 ∈ (0,𝐿]
𝑆𝑤=𝑆𝑤𝑖

𝜙 0.2 𝑝𝑐0 (Pa) Eq. (5)|𝑥 = 0
𝑆𝑤=1−𝑆𝑛𝑟

𝑘 (m2) 9.869233 × 10−13 𝜖 10−12

2.3. Numerical scheme

The system of equations in the extended model can be solved numerically by discretization based on Taylor series expansion. With
egard to the coupled Eqs. (1) and (2), the 𝑘𝑟 terms are calculated based on the 𝑆𝑤 from the previous time step. It must be reminded
hat it is not applicable for 𝑝𝑐 because it is a primary unknown. By utilizing the SPUW approach, the first two algebraic equations
or each gridblock are generated. Next, Eq. (13) is treated with the same discretization approach to generate the third algebraic
quation for each gridblock. The resulting system of nonlinear simultaneous algebraic equations can be expressed mathematically
s:

𝐹 (𝑋) = 0 , (18)

where 𝐹 represents the system of nonlinear simultaneous algebraic equations. Further details on how to obtain the system of
nonlinear simultaneous algebraic equations for the extended model are explained in Appendix A.2.

The appropriate values of 𝑋 can be obtained by using a nonlinear solver like Newton’s method [60]. Newton’s method is
a powerful iterative method that refines a set of Initial Guesses using the inverse Jacobian matrix (𝐉), which is a matrix of
partial derivatives of the equations with respect to their variables [61]. The refined solution is repeated until the condition of
𝐹 (refined Initial Guesses) ≤ 𝜖 is satisfied. 𝜖 is a very small value such as 10−12 [62]. Newton’s method can be expressed as:

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 − 𝐉 −1(𝑋𝑜𝑙𝑑 )𝐹 (𝑋𝑜𝑙𝑑 ) , (19)

where 𝑋𝑜𝑙𝑑 represents old solution at the previous time step, and 𝑋𝑛𝑒𝑤 is the new solution at the current time step.
The bottleneck of using Newton’s method to solve Eq. (18) is the formation of 𝐉. Since 𝐉 is a dense matrix of partial derivatives, its

computation can be expensive. Furthermore, 𝐉may be singular (having a determinant of zero), which can prevent the use of Newton’s
method. Additionally, 𝐉 might be ill-conditioned, meaning that small changes in the input variables can result in large changes in the
output variable, potentially leading to numerical instability or divergence [63]. To minimize the risks associated with forming 𝐉, one
possible approach is to estimate 𝐉 by numerically approximating the partial derivatives of a given function with respect to its inputs
based on the finite difference method [64]. The current research uses the J=torch.autograd.functional.jacobian(F,
X) command from the PyTorch library in Python [65]. The implemented numerical scheme to solve the system of equations for
the extended model is illustrated in Fig. 1.

2.4. Physical model

To compare the results of the extended model with those of the classic model, a homogeneous and isotropic porous medium based
on a typical Bentheimer core plug was used, see Table 1 [66–68]. Table 1 also includes details of the simulation scenarios used for
the classic model and extended model. For the sake of comparison, the 𝑝𝑐𝑖 and 𝑝𝑐0 as the BCs for the extended model, are assigned
values generated by the 𝑝𝑐 -model of the classic model for 𝑆𝑤𝑖 and 1 − 𝑆𝑛𝑟, respectively, as given by Eq. (5).

To acquire the desired saturation profiles for the classic model, it is necessary to have a 𝑝𝑐 -curve. This 𝑝𝑐 -curve for an imbibition
scenario based on Eq. (5) is shown in Fig. 2(a). Similarly, Fig. 2(b) shows the 𝑘𝑟-curves according to Eqs. (6) and (7). In order to use
Eq. (11) to analytically generate the saturation profiles for the classic model, it is required to generate the 𝑓𝑤-curve with respect to
Eq. (12). As shown in Fig. 2(c), it should be noted that the shock front of the system under study has a 𝑓𝑤 value of 0.85. Additionally,
it can be inferred that 𝑆𝑤 increases abruptly from 0.2 (𝑆𝑤𝑖) to 0.57 (𝑆𝑤𝑓 ), and the value of 𝑓 ′

𝑤 at 𝑆𝑤𝑓 , or
(

d𝑓𝑤
d𝑆𝑤

)

𝑆𝑤𝑓
= 2.78.

The main concept behind the extended model is based on the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface. As explained in Section 2.2, to satisfy the
ondition that 𝑝𝐼𝑐 ≤ 𝑝𝑀𝑐 ≤ 𝑝𝐷𝑐 , three values of 𝑝𝑡ℎ, namely 4×102 Pa (I), 6×102 Pa (M), and 8×102 Pa (D), are considered to generate
the necessary 𝑝𝑐 -curves as illustrated in Fig. 3(a). Next, Eq. (15) can be employed with three values of 𝛼 so that 𝑎𝐼𝑤𝑛 ≤ 𝑎𝑀𝑤𝑛 ≤ 𝑎𝐷𝑤𝑛,
5

see Fig. 3(b). Then, by using scipy.optimize.curve_fit [69] in Python, a bi-quadratic function is fitted to the obtained
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Fig. 1. The numerical scheme to calculate 𝑎𝑤𝑛 by solving to the system of equations for the extended model.

data, including (𝑆𝑊 , 𝑝𝐷𝑐 , 𝑎
𝐷
𝑤𝑛), (𝑆𝑊 , 𝑝𝑀𝑐 , 𝑎𝑀𝑤𝑛), and (𝑆𝑊 , 𝑝𝐼𝑐 , 𝑎

𝐼
𝑤𝑛). The resultant surface is demonstrated with the viridis colormap

in Fig. 3(c). The proposed model for 𝑆𝑤𝑖 ≤ 𝑆𝑤 ≤ 1 − 𝑆𝑛𝑟 (𝑅2 = 0.98) is:

𝑎𝑤𝑛
(

𝑆𝑤, 𝑝𝑐
)

= 1.39 × 103 × 𝑆𝑤 − 3.16 × 10−5 × 𝑝2𝑐
+ 6.11 × 10−1 × 𝑆𝑤 × 𝑝𝑐 − 1.36 × 103 × 𝑆2

𝑤
+ 8.51 × 10−2 × 𝑝𝑐 − 3.49 × 102 .

(20)

In the system of equations for the extended model, all the 𝑎𝑤𝑛 terms in Eq. (13) are replaced by Eq. (20).

3. Results and discussions

This section presents a comparison between the classic model and extended model, followed by an investigation of the significance
of 𝑒𝑤𝑛 and 𝜅 as the primary parameters of the extended model. Additionally, a sensitivity analysis with the number of gridblocks is
conducted to investigate the stability of the implemented numerical scheme.
6
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Fig. 2. Requirements to calculate saturation profiles for the classic model.

3.1. Simulation results

Based on the constitutive relationships shown in Fig. 2, the analytical and numerical 𝑆𝑤 profiles for the classic model are presented
in Fig. 4(a). The numerical 𝑆𝑤 profiles are based on Eqs. (1), (2), (3), and(4), and the analytical 𝑆𝑤 profiles are based on Eq. (11).
The inclusion of 𝑝𝑐 in the numerical solutions eliminates the shock fronts in the saturation profiles, resulting in a smooth dispersed
trend of increasing 𝑆𝑤.

Using a nonlinear solver such as Newton’s method, as described in Section 2.3, the system of equations for the extended model
an be solved numerically to produce the desired profiles of 𝑆𝑤 (Fig. 4(a)) and 𝑝𝑐 (Fig. 4(b)). Utilizing Eq. (20) and referring to
igs. 4(a) and 4(b), the extended model allows for real-time tracking of the 𝑎𝑤𝑛 profiles (Fig. 4(c)). For comparison purposes, all
rofiles are presented based on dimensionless length, defined as 𝑥𝐷 = 𝑥

𝐿 . As shown in Fig. 4(a), the numerically generated 𝑆𝑤
profiles for the extended model (labeled as Ex) exhibit a high level of consistency with those generated by the classic model (labeled
as Cl).

In Fig. 4(b), as the front of the wetting-phase advances in the porous medium, both the Cl and Ex 𝑝𝑐 profiles exhibit the
expected imbibition trends: an increase in 𝑆𝑤 at each gridblock leads to a reduction of 𝑝𝑐 in the same gridblock, Fig. 4(b). However,
in Fig. 4(b), the Cl 𝑝𝑐 profiles are based on 𝑆𝑤 data from the previous time step (IMPES implementation), and they are employed
to generate the Cl 𝑆𝑤 profiles in Fig. 4(a). Meanwhile, the Ex 𝑝𝑐 profiles in Fig. 4(b) are computed simultaneously with the Ex
𝑤 profiles in Fig. 4(a), based on numerical solution of the extended model, as described in Section 2.3. The main reason why both
ypes of Cl and Ex are very similar to each other is that the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface (Fig. 3) used in the extended model is based on
he same 𝑝𝑐 -curve used in the classic model.
In addition, as illustrated in Fig. 4(c), the extended model demonstrates the propagation and increase of 𝑎𝑤𝑛 as the Ex 𝑝𝑐 profiles

ecrease and the Ex 𝑆𝑤 profiles increase. This is expected because, by the advancement of the wetting phase in the porous medium,
he surface area between the two phases increases [23,26]. The distribution of the calculated 𝑎𝑤𝑛 profiles are in strong agreement
ith those already reported [44]. However, Nordhaug et al. reported 𝑎𝑤𝑛 profiles that were bell-shaped and advanced from the inlet

to outlet face [59]. In other words, in each gridblock, the 𝑎𝑤𝑛 approaches its maximum value and then decreases after the invading
phase becomes dominant. But, Fig. 4(c) does not show such a distribution.

To figure out the reason for the difference behind our reported behavior and that reported by Nordhaug et al. [59], it is necessary
7

to examine the trend of 𝑎𝑤𝑛 versus 𝑆𝑤, Fig. 5. According to the literature, the trend of 𝑎𝑤𝑛 versus 𝑆𝑤 typically follows a hump-shaped
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Fig. 3. The presented 𝑝𝑐 -curves in (a) are combined with 𝑎𝑤𝑛-curves in (b) to establish discrete data points of (𝑆𝑤 , 𝑝𝑐 , 𝑎𝑤𝑛). These data points are subsequently
tilized to fit a bi-quadratic function to form the desired surface as shown in (c)

urve, with a critical saturation where 𝑎𝑤𝑛 values increase up to that point and then decrease afterward [39,70]. The same behavior
an be observed in the contours of Fig. 5, which represent the 𝑎𝑤𝑛−𝑆𝑤 view of the 𝑎𝑤𝑛−𝑝𝑐−𝑆𝑤 surface defined by Eq. (20). However,
it is important to note that a large range of the 𝑆𝑤 considered in this study (from 𝑆𝑤𝑖 = 0.2 to 𝑆𝑤 = 1−𝑆𝑛𝑟 = 0.7) are lower than the
critical 𝑆𝑤 at which the corresponding 𝑎𝑤𝑛 reaches contour peak. This explains why the 𝑎𝑤𝑛 profiles consistently shows an increasing
trend throughout this study. Furthermore, as the saturation 𝑆𝑤 approaches its upper limit of 0.7, the relationship between 𝑎𝑤𝑛 and
𝑆𝑤 exhibits a subtle shift in the trajectory on the 𝑎𝑤𝑛 − 𝑝𝑐 −𝑆𝑤 surface. This adjustment results in a change in the path followed by
𝑎𝑤𝑛 as it moves towards lower values, potentially forming a bell-shaped trend for 𝑎𝑤𝑛 profile. However, it is important to note that
the limitations of the simulation scenario prevent the reflection of such behavior.
8
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Fig. 4. classic model versus extended model based on injected Pore Volume (PV) and 𝑥𝐷 .

.2. Sensitivity analyses

Considering the generation term of 𝑎𝑤𝑛 based on temporal changes in 𝑆𝑤, it is expected that an increase in 𝑒𝑤𝑛 would lead to a
orresponding increase in 𝑎𝑤𝑛, while a decrease in 𝑒𝑤𝑛 would result in a decrease in 𝑎𝑤𝑛. These trends are depicted in Fig. 6(a). It
is worth noting that generated trends of 𝑎𝑤𝑛 exhibit a point of non-differentiability when varying 𝑒𝑤𝑛. However, Eq. (13) includes
he term 𝜕𝑎𝑤𝑛

𝜕𝑥 , which implies that 𝑎𝑤𝑛 should be differentiable throughout the entire domain. The main reason for this discrepancy
is the assumption of 𝑒𝑤𝑛 as constant, despite its dependence on 𝑆𝑤 and 𝜕𝑆𝑤

𝜕𝑥 , as already discussed in Section 2.2. In more detail, the
𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface suggests that changes in 𝑆𝑤 result in a new value of 𝑎𝑤𝑛 based on its generation term or 𝑒𝑤𝑛. Consequently,
lterations in 𝑆𝑤 lead to simultaneous variations in both 𝑎𝑤𝑛 and 𝑒𝑤𝑛. However, maintaining a constant value for 𝑒𝑤𝑛 prevents a
ully-dynamic interaction between 𝑎𝑤𝑛 and 𝑒𝑤𝑛 in response to changes in 𝑆𝑤. As a result, Fig. 6(a) illustrates that the expected trends
have been generated according to the changes in 𝑒𝑤𝑛 although these changes have not been appropriately reflected in a smooth and
differentiable manner.

Moreover, as evident from Figs. 6(b) and 6(c), the magnitude of changes in 𝑝𝑐 is greater than that for changes in 𝑆𝑤. To gain a
better understanding, it is necessary to examine the 𝑝𝑐 − 𝑆𝑤 view of the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface, as shown in Fig. 6(d). The contours
derived from Eq. (20) indicate that changes in 𝑎𝑤𝑛 result in changes of 𝑝𝑐 that are two to three orders of magnitude larger than the
orresponding changes in 𝑆 . Hence, variations in 𝑒 had a more pronounced impact on 𝑝 compared to 𝑆 .
9

𝑤 𝑤𝑛 𝑐 𝑤



Computer Methods in Applied Mechanics and Engineering 418 (2024) 116594M. Ebadi et al.
Fig. 5. Comparison of the implemented simulation scenario versus the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface.

Fig. 6. The effects of 𝑒𝑤𝑛 on the results of the extended model for 𝜅 = 1 × 10−13 m3 s−1 and 𝑃𝑉 = 0.11.

Furthermore, the sharp increase followed by a tendency to stabilize in the 𝑎𝑤𝑛 profiles (Fig. 6(a)) can also be explained by
examining the 𝑝𝑐 -curves in Fig. 6(d). When 𝑆𝑤 increases, there is a significant reduction in 𝑝𝑐 , causing the 𝑝𝑐 -curves to intersect a
larger number of contours, resulting in a sharp increase in 𝑎𝑤𝑛. However, as 𝑆𝑤 surpasses 0.40, the reduction in 𝑝𝑐 becomes less
pronounced, leading to a smaller number of contour intersections and a slower increase in 𝑎 .
10
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Fig. 7. The effects of 𝜅 on the results of the extended model for 𝑒𝑤𝑛 = 1.05 × 102 m−1 and 𝑃𝑉 = 0.11.

Similarly, the effect of 𝜅 can be studied by keeping 𝑒𝑤𝑛 constant. In terms of analogy, 𝜅 plays the same role in Eq. (13) as 𝑘 does
in Eqs. (1) and (2). It means that 𝑘 controls the advancement of 𝑆𝑤 front, and 𝜅 controls the advancement of 𝑎𝑤𝑛 front. Although
is assumed as a constant in this study, it is generally assumed to be a function of 𝑆𝑤 and 𝜕𝑆𝑤

𝜕𝑥 . Also, 𝑆𝑤 can effect 𝑎𝑤𝑛 through
𝑎𝑤𝑛 − 𝑝𝑐 −𝑆𝑤 surface. Therefore, it can be stated that because of the 𝑎𝑤𝑛 − 𝑝𝑐 −𝑆𝑤 surface, 𝑝𝑐 reflects the balance between 𝑘 and 𝜅.

From Figs. 7(a) and 7(c), it is evident that a decrease in 𝜅 does not disrupt the balance between the 𝑆𝑤 and 𝑎𝑤𝑛 profiles. The
advancements in both profiles remain aligned, indicating that there are no changes in the 𝑝𝑐 profiles when 𝜅 is reduced from
1 × 10−13 m3 s−1 to 1 × 10−17 m3 s−1, Fig. 7(b). However, increasing 𝜅 from 1 × 10−13 m3 s−1 to 1 × 10−9 m3 s−1 disrupts the balance,
ausing the 𝑎𝑤𝑛 front to advance faster than the 𝑆𝑤 front. This imbalance is evident in Figs. 7(a) and 7(c), where the profiles are no
onger synchronized. The imbalance between 𝑘 and 𝜅 is illustrated by the unusual trend of the 𝑝𝑐 profile for 𝜅 = 1 × 10−9 m3 s−1 in
11

ig. 7(b). The faster movement of the 𝑎𝑤𝑛 profile can only be supported by the 𝑝𝑐 profile decreasing. This concept is further depicted
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in Fig. 7(d), where the larger value of 𝜅 causes the 𝑎𝑤𝑛 − 𝑆𝑤 plot to overlap with contours of the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface that have
higher 𝑝𝑐 values, Fig. 7(b). Next, After the peak, where 𝑆𝑤 remains unchanged, the advancement of the 𝑎𝑤𝑛 front is only possible
through a reduction in 𝑝𝑐 . However, due to the geometry of the 𝑎𝑤𝑛−𝑝𝑐 −𝑆𝑤 surface, this reduction in 𝑝𝑐 leads to 𝑎𝑤𝑛 values smaller
than the initial condition, as shown in Fig. 7(e).

From a physical perspective, the rearrangement of fluids without changing 𝑆𝑤 is possible due to capillary rearrangement.
However, as simulated in the presented results, rearrangement of fluids far ahead of the saturation front where 𝑆𝑤 = 𝑆𝑤𝑖 is impossible
because the wetting phase is immobile. Therefore, it can be concluded that although the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface can mathematically
handle the imbalance between 𝑘 and 𝜅, it can lack physical significance under specific conditions. Thus, the design of the 𝑎𝑤𝑛−𝑝𝑐−𝑆𝑤
surface should incorporate the physical effects of this imbalance in order to accurately represent the system.

3.3. Computational costs

The system of equations governing the extended model is nonlinear. Discretizing the PDEs in that system generates a set of
nonlinear algebraic equations that must be solved simultaneously. To optimize the computational cost and run-time of the solver, it
is crucial to determine the optimal number of gridblocks. This number is directly related to the number of gridblocks (Appendix A.2)
used in the discretization process. Fig. 8(a) illustrates the recorded run-time of solving the extended model based on the number of
gridblocks ranging from 10 to 40. The run-time axis shows the average, minimum, and maximum run-time recorded for solving the
extended model with 10 repetitions for 100 timesteps (Table 1). Also, the run-times have been determined using the Intel Xeon
Gold 6230R processor operating at a clock speed of 2.10GHz. As expected, increasing the number of gridblocks results in longer
run-time. Taking the results obtained for 40 gridblocks as the reference, it is possible to check the quality of the numerical solutions
obtained for less gridblocks by computing the average relative error for each one of the primary unknowns. It can be inferred that
when the number of gridblocks is 25 (as in this study), the averaged relative error for all the three unknowns is less than 2% in
comparison with 40 gridblocks. But, the recorded averaged run-time is 2.2 times faster than the recorded averaged run-time for 40
gridblocks.

It is important to emphasize that the extended model can be readily tested with more than 40 gridblocks. However, it is not
possible to compare the classic model with the extended model due to the numerical instability experienced by the classic model
when the number of gridblocks exceeds 40 or when 𝛥𝑥 is less than 1.25 × 10−3 m, if 𝛥𝑡 = 1.5 s. For instance, Figs. 8(b) shows that
when there are 41 gridblocks, the generated 𝑆𝑤 profiles by the classic model are not numerically stable. The instability is due to
the fact that using IMPES as the linearization in the classic model gives rise to a conditional stability, which is technically defined
as the Courant–Friedrichs–Lewy (𝐶𝐹𝐿) limit [71,72]. Regarding the implemented uniform discretization, the 𝐶𝐹𝐿 states that the
classic model produces numerically stable results if 𝐶𝐹𝐿 =

(

(𝑞𝛥𝑡) ⋅ (2𝐴𝛥𝑥)−1
)

< 𝐶𝐹𝐿𝑚𝑎𝑥. 𝐶𝐹𝐿𝑚𝑎𝑥 is a user-defined value that can be
obtained by running the simulation until the instability appears [73]. Or, it can be said that 𝐶𝐹𝐿𝑚𝑎𝑥 is the largest 𝐶𝐹𝐿 in which
classic model still performs numerically stable. Based on Table 1 and 𝛥𝑥 = 1.25 × 10−3 m, 𝐶𝐹𝐿𝑚𝑎𝑥 is 0.0083.

In the context of nonlinear solutions obtained using Newton’s method, there is not a specific index similar to the CFL condition.
The absence of a CFL-like condition for nonlinear systems is due to the fact that the stability analysis and convergence behavior of
Newton’s method are more complex and problem-dependent [74]. Instead, it is possible to observe the general trends of solutions
based on the extended model by adjusting 𝛥𝑥 or 𝛥𝑡 based on the specific conditions given in Table 1, see Fig. 8(c). Based on the
given 𝛥𝑥 or 𝛥𝑡, if the computed results are meaningful, Convergence is achieved. If Newton’s method generates results, but they
are not physically possible, it can be inferred as numerical Instability, and if Newton’s method cannot make any progress and fails
to converge to a solution, it is considered as Divergence. Based on Table 1 and the 𝑎𝑤𝑛 − 𝑝𝑐 − 𝑆𝑤 surface (Eq. (20)), the results
of the extended model for 𝛥𝑥 < 6.66 × 10−4 m when 𝛥𝑡 = 1.5 s are not reliable. Likewise, it can be understood that stable results by
the extended model are obtained when 𝛥𝑡 ≤ 5 s if 𝛥𝑥 = 2 × 10−3 m. It can be understood that if 𝛥𝑥 = 2 × 10−3 , the largest 𝛥𝑡 that
the extended model can have (5 s). It must be mentioned that the results for the effects of chosen 𝛥𝑡 or 𝛥𝑥 are based on running the
simulation for 150 s.

4. Conclusions

Traditionally, 𝑝𝑐 is represented using an oversimplified model as 𝑝𝑐 = 𝑓 (𝑆𝑤). By considering the effects of 𝑎𝑤𝑛 on 𝑝𝑐 , a 𝑎𝑤𝑛−𝑝𝑐−𝑆𝑤
surface can be developed. The supposed surface can be interpreted as 𝑝𝑐 = 𝑓 (𝑆𝑤, 𝑎𝑤𝑛) which exhibits minimal hysteresis [23,26,28].
However, the classic model lacks the capability to incorporate this enhanced 𝑝𝑐 model, whereas the extended model does possess
this capability. By running numerical simulation scenarios based on the system of equations for the extended model, the following
conclusions can be made:

1. Both the extended model and classic model provide nearly the same 𝑆𝑤 profiles given a specific set of parameters while the
extended model provides details on specific interfacial area that are consistent with those presented in the literature [39,44,70].

2. The automatic differentiation using J=torch.autograd.functional.jacobian of PyTorch provides an approxi-
mate J for solving the nonlinear system of equations in the extended model.

3. The shape of the calculated 𝑎𝑤𝑛 profile strongly depends on the shape of the 𝑝𝑐 −𝑆𝑤 −𝑎𝑤𝑛 surface and the specific simulation
scenario. By adjusting 𝑆𝑤𝑖 and 𝑆𝑛𝑟, it is possible to control the shape of the 𝑎𝑤𝑛 profile to be either piston-like [44] or
12

bell-shaped [59].
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Fig. 8. Analyzing the computational cost and the numerical stability of extended model.

4. As a source term of 𝑎𝑤𝑛, increasing or decreasing 𝑒𝑤𝑛 directly impacts the values of 𝑎𝑤𝑛. Regarding the developed 𝑝𝑐−𝑆𝑤−𝑎𝑤𝑛,
changes in 𝑒𝑤𝑛 had a more significant effect on 𝑝𝑐 values compared to 𝑆𝑤 values.

5. The 𝑘 controls the propagation of the 𝑆𝑤 profile, and 𝜅 controls the propagation of the 𝑎𝑤𝑛 profile. If 𝜅 is too large, the 𝑎𝑤𝑛

profile advances faster than the 𝑆𝑤 profile in the porous media. However, this is only possible if 𝑝𝑐 changes, resulting in the
generation of 𝑝𝑐 profiles with unusual trends. Theoretically, 𝜅 is a function of 𝑆𝑤 and

𝜕𝑆𝑤
𝜕𝑥 . Therefore, 𝑘 and 𝜅 can be coupled,
13

and the balance between them is nonlinear.
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Overall, the extended model not only offers 𝑆𝑤 profiles like the classic model but also incorporates an enhanced 𝑝𝑐 model,
enabling real-time tracking of 𝑎𝑤𝑛 profiles in porous media. Therefore, using the extended model provides an opportunity to compare
the results of continuum-scale simulations with those obtained from pore-scale simulations. Future research can focus on modifying
the extended model with representative parameters that can also be obtained from pore-scale simulations. This approach will help to
bridge the gap between continuum-scale and pore-scale simulations, resulting in a more comprehensive understanding of immiscible
multiphase flow in porous media.
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Appendix. Details of numerical solutions

A.1. Classic model

Eqs. (1) and (2) can be coupled using Eqs. (3) and (4) as follows.

𝜙
𝜕𝑆𝑤
𝜕𝑡

+ 𝜕
𝜕𝑥

(

−
𝑘𝑟𝑤𝑘
𝜇𝑤

(

𝜕𝑝𝑛
𝜕𝑥

−
𝜕𝑝𝑐
𝜕𝑥

))

=
𝑞𝑤
𝑉𝑏

(A.1)

𝜙
𝜕
(

1 − 𝑆𝑤
)

𝜕𝑡
+ 𝜕

𝜕𝑥

(

−
𝑘𝑟𝑛𝑘
𝜇𝑛

𝜕𝑝𝑛
𝜕𝑥

)

=
𝑞𝑛
𝑉𝑏

(A.2)

Rearranging Eqs. (A.1) and (A.2) and expressing them on a per unit bulk volume basis yields [55]:

𝑘𝐴
𝜇𝑤

𝜕
𝜕𝑥

(

𝑘𝑟𝑤

(

𝜕𝑝𝑛
𝜕𝑥

−
𝜕𝑝𝑐
𝜕𝑥

))

𝛥𝑥 = 𝑉𝑏𝜙
𝜕𝑆𝑤
𝜕𝑡

− 𝑞𝑤 (A.3)

𝑘𝐴
𝜇𝑛

𝜕
𝜕𝑥

(

𝑘𝑟𝑛
𝜕𝑝𝑛
𝜕𝑥

)

𝛥𝑥 = 𝑉𝑏𝜙
𝜕
(

1 − 𝑆𝑤
)

𝜕𝑡
− 𝑞𝑛 (A.4)

where 𝛥𝑥 (𝑚) stands for the length of the control element. By applying the IMPES linearization and using the numerical
differentiation based on Taylor series expansion, Eqs. (A.3) and (A.4) can uniformly be discretized into a certain number (𝑁) of
lock-centered gridblocks each one has a volume of 𝑉𝑏, and transformed into a system of algebraic equations as shown below.

𝑘𝐴
𝜇𝑤

𝑘𝑚𝑟𝑤

(

𝑝𝑚+1𝑛𝑖+1
− 2𝑝𝑚+1𝑛𝑖

+ 𝑝𝑚+1𝑛𝑖−1
𝛥𝑥

−
𝑝𝑚𝑐𝑖+1 − 2𝑝𝑚𝑐𝑖 + 𝑝𝑚𝑐𝑖−1

𝛥𝑥

)

=

𝑉𝑏𝜙

(

𝑆𝑚+1
𝑤𝑖

− 𝑆𝑚
𝑤𝑖

𝛥𝑡

)

− 𝑞𝑤 (A.5)

𝑘𝐴
𝜇𝑛

𝑘𝑚𝑟𝑛

(

𝑝𝑚+1𝑛𝑖+1
− 2𝑝𝑚+1𝑛𝑖

+ 𝑝𝑚+1𝑛𝑖−1
𝛥𝑥

)

= 𝑉𝑏𝜙

(

𝑆𝑚
𝑤𝑖

− 𝑆𝑚+1
𝑤𝑖

𝛥𝑡

)

− 𝑞𝑛 (A.6)

where 𝛥𝑡 is the time step (𝑠). The second-order spatial derivatives are approximated using the central-difference method, and the
first-order temporal derivative is approximated using the backward-difference method. The IMPES linearization method is employed
to compute the saturation-dependent parameters based on the saturation values from the previous time step, and the pressures are
computed at the current time step. The superscripts 𝑚+1 and 𝑚 denote the current and previous time steps, respectively. Additionally,
in the case of three adjacent gridblocks arranged in one-dimension, the subscripts 𝑖− 1, 𝑖, and 𝑖+ 1 correspond to the indices of the
left-side, central, and right-side gridblocks, respectively.

Eqs. (A.5) and (A.6) can be written for each of the gridblocks. Excluding the first and last gridblocks and considering the
ssumption that only wetting phase is injected from the inlet face, Eqs. (A.5) and (A.6) can be written as:
For 1 < 𝑖 < 𝑁 :

𝑇𝑤𝑖,𝑖+1

(

𝑝𝑚+1𝑛𝑖+1
− 𝑝𝑚+1𝑛𝑖

)

+ 𝑇𝑤𝑖,𝑖−1

(

𝑝𝑚+1𝑛𝑖−1
− 𝑝𝑚+1𝑛𝑖

)

−𝑇𝑤𝑖,𝑖+1

(

𝑝𝑚𝑐𝑖+1 − 𝑝𝑚𝑐𝑖

)

− 𝑇𝑤𝑖,𝑖−1

(

𝑝𝑚𝑐𝑖−1 − 𝑝𝑚𝑐𝑖

)

𝑚+1 𝑚 0

(A.7)
14

−𝜁𝑤𝑖
𝑆𝑤𝑖

+ 𝜁𝑤𝑖
𝑆𝑤𝑖

+✚✚❃𝑞𝑤 = 0
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w
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A

f

𝑇𝑛𝑖,𝑖+1
(

𝑝𝑚+1𝑛𝑖+1
− 𝑝𝑚+1𝑛𝑖

)

+ 𝑇𝑛𝑖,𝑖−1
(

𝑝𝑚+1𝑛𝑖−1
− 𝑝𝑚+1𝑛𝑖

)

+𝜁𝑛𝑖𝑆
𝑚+1
𝑤𝑖

− 𝜁𝑛𝑖𝑆
𝑚
𝑤𝑖

+✚✚❃
0

𝑞𝑛 = 0

(A.8)

here 𝜁𝑤∕𝑛 as the accumulation coefficient (
m3

s ) is:

𝜁𝑤∕𝑛 =
𝑉𝑏𝜙
𝛥𝑡

(A.9)

The 𝑝𝑚𝑐 values in Eq. (A.7) is computed with the help of a capillary pressure model based on the corresponding 𝑆𝑚
𝑤 values like

Eq. (5). Taking the effects of uniform discretization and isotropic porous medium, 𝑇 as the transmissibility (𝑚3 𝑃𝑎−1 𝑠−1) between
neighboring gridblocks is defined based on SPUW approach as [55]:

𝑇𝑤∕𝑛𝑖,𝑖±1 = 1
𝜇𝑤∕𝑛

× 𝐴𝑘
𝛥𝑥 × 𝑘𝑟𝑤∕𝑛

(

𝑆𝑚
𝑤𝑗

)

𝑗=argmax
(

𝑝𝑚𝑤∕𝑛𝑥

)

𝑥∈{𝑖,𝑖±1}

(A.10)

in which 𝑘𝑟 data can be determined from Eqs. (6) and (7) based on 𝑆𝑚
𝑤. The first gridblock is assigned the conditions stated in Eq. (9)

due to the block-centered discretization. Therefore, 𝑆𝑤1
is already determined for all the time steps. As a result, the only primary

unknown for the first gridblock is 𝑝𝑛, which can be computed by writing Eqs. (A.5) for 𝑖 = 1 as follows:

𝑇𝑤1,2

(

𝑝𝑚+1𝑛2
− 𝑝𝑚+1𝑛1

)

− 𝑇𝑤1,2

(

𝑝𝑚𝑐2 − 𝑝𝑚𝑐1

)

−𝜁𝑤1
𝑆𝑚+1
𝑤1

+ 𝜁𝑤1
𝑆𝑚
𝑤1

+✚✚❃
𝑞𝑤𝑖𝑛𝑗

𝑞𝑤 = 0

(A.11)

This means that the constant injection rate 𝑞𝑤𝑖𝑛𝑗
can be treated as a source term in the first gridblock by using the reflection

technique [14] at the left boundary of the inlet face between the imaginary zeroth (𝑖 = 0) and first (𝑖 = 1) gridblocks. Its value is
then directly inserted into the equation instead of 𝑞𝑤.

Following the block-centered discretization, the last gridblock (𝑖 = 𝑁) is assigned the conditions stated in Eq. (10). As a result,
Eqs. (A.5) and (A.6) can be written as:

𝑇𝑤𝑁,𝑁−1

(

𝑝𝑚+1𝑛𝑁−1
− 𝑝𝑚+1𝑛𝑁

)

− 𝑇𝑤𝑁,𝑁−1

(

𝑝𝑚𝑐𝑁−1
− 𝑝𝑚𝑐𝑁

)

−𝜁𝑤𝑁
𝑆𝑚+1
𝑤𝑁

+ 𝜁𝑤𝑁
𝑆𝑚
𝑤𝑁

+✚✚❃
−2𝑇𝑤𝑁

(

𝑝𝑚+1𝑛𝑁
−𝑝𝑏

)

𝑞𝑤 = 0

(A.12)

𝑇𝑛𝑁,𝑁−1

(

𝑝𝑚+1𝑛𝑁−1
− 𝑝𝑚+1𝑛𝑁

)

+ 𝜁𝑛𝑁𝑆𝑚+1
𝑤𝑁

−𝜁𝑛𝑁𝑆𝑚
𝑤𝑁

+✚✚❃
−2𝑇𝑛𝑁

(

𝑝𝑚+1𝑛𝑁
−𝑝𝑏

)

𝑞𝑛 = 0

(A.13)

According to the reflection technique, the pressure boundary 𝑝𝑏 at the outlet face between the last actual gridblock (𝑁) and the
imaginary adjacent gridblock (𝑁 + 1) can be treated as a fictitious production term with a pressure of 𝑝𝑏. This term is located
in the last actual gridblock but acts at a distance of 𝛥𝑥

2 from the center of the gridblock. This causes the coefficient of 2 for the
transmissibility term, and the negative sign is due to its production mode [14].

All in all, by writing Eqs. (A.7), (A.8), (A.11), (A.12), and (A.13) for 𝑁 gridblocks, a set of linear simultaneous algebraic equations
ncluding 2𝑁 − 1 equations can be created and represented as:

𝐴𝑋 = 𝐵 (A.14)

here 𝐴2𝑁−1×2𝑁−1 is the tridiagonal matrix of coefficients, 𝐵2𝑁−1×1 is the matrix of answers, and 𝑋2𝑁−1×1 is the matrix of unknowns.
To solve the linear system represented by Eq. (A.14), it is possible to use the X = numpy.linalg.solve(A,B) command

rom the numpy library in Python [75]. The results include 𝑁 values of 𝑝𝑛 and 𝑁 − 1 values of 𝑆𝑤 at time step 𝑚 + 1.

.2. Extended model

Eq. (13) can be rearranged as:

𝜕𝑎𝑤𝑛
𝜕𝑡

− 𝜅
𝜕𝑎𝑤𝑛
𝜕𝑥

×
𝜕𝑎𝑤𝑛
𝜕𝑥

− 𝜅𝑎𝑤𝑛
𝜕2𝑎𝑤𝑛

𝜕𝑥2
= 𝑒𝑤𝑛

𝜕𝑆𝑤
𝜕𝑡

(A.15)

Utilizing the numerical differentiation based on Taylor series expansion, and regarding the uniform discretization, the discretized
orm of Eq. (A.15) per unit bulk volume is:
15
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i
z

R

𝑉𝑏
𝑎𝑚+1𝑤𝑛𝑖

− 𝑎𝑚𝑤𝑛𝑖
𝛥𝑡

− 𝜅𝑉𝑏
𝑎𝑚+1𝑤𝑛𝑖+1

− 𝑎𝑚+1𝑤𝑛𝑖−1
2𝛥𝑥

×
𝑎𝑚+1𝑤𝑛𝑖+1

− 𝑎𝑚+1𝑤𝑛𝑖−1
2𝛥𝑥

−𝜅𝑉𝑏𝑎𝑚+1𝑤𝑛𝑖

𝑎𝑚+1𝑤𝑛𝑖+1
− 2𝑎𝑚+1𝑤𝑛𝑖

+ 𝑎𝑚+1𝑤𝑛𝑖−1

𝛥𝑥2
= 𝑒𝑤𝑛𝑉𝑏

𝑆𝑚+1
𝑤𝑖

− 𝑆𝑚
𝑤𝑖

𝛥𝑡
(A.16)

Eq. (A.16), along with Eqs. (A.5) and (A.6), represents the discretized versions of Eqs. (13), (1), and (2), respectively. These
quations constitute the main core of the system of equations for the extended model. It should be noted that Eqs. (A.5) needs to
e modified for the use in the extended model in order that all values of 𝑝𝑐 must be computed at the current time step with the
superscript of 𝑚 + 1, since 𝑝𝑐 is a primary unknown in the extended model. Furthermore, Eq. (A.16) can be written as:

𝜁
(

𝑎𝑚+1𝑤𝑛𝑖
− 𝑎𝑚𝑤𝑛𝑖

)

−𝑇𝑎𝑤𝑛

(

𝑎𝑚+12𝑤𝑛𝑖+1
− 2𝑎𝑚+1𝑤𝑛𝑖+1

𝑎𝑚+1𝑤𝑛𝑖−1
+ 𝑎𝑚+12𝑤𝑛𝑖−1

+4𝑎𝑚+1𝑤𝑛𝑖
𝑎𝑚+1𝑤𝑛𝑖+1

− 8𝑎𝑚+12𝑤𝑛𝑖
+ 4𝑎𝑚+1𝑤𝑛𝑖

𝑎𝑚+1𝑤𝑛𝑖−1

)

−𝜁𝑒𝑤𝑛

(

𝑆𝑚+1
𝑤𝑖

− 𝑆𝑚
𝑤𝑖

)

= 0

(A.17)

where

𝜁 =
𝑉𝑏
𝛥𝑡

(A.18)

and,

𝑇𝑎𝑤𝑛
= 𝜅𝐴

4𝛥𝑥
(A.19)

and,

𝜁𝑒𝑤𝑛
=

𝑒𝑤𝑛𝑉𝑏
𝛥𝑡

(A.20)

For all the middle gridblocks (1 < 𝑖 < 𝑁), Eqs. (A.17), (A.7) (with the modification of 𝑝𝑚+1𝑐 instead of 𝑝𝑚𝑐 ), and (A.8) are valid.
The system of equations for the extended model reveals that Eq. (A.5) calculates 𝑝𝑚+1𝑛 , Eq. (A.6) calculates 𝑆𝑚+1

𝑤 , and Eq. (A.16)
alculates 𝑝𝑚+1𝑐 . Following block-centered discretization, the boundary conditions outlined in Eq. (17) are applied to the first
ridblock, signifying that 𝑝𝑐1 and 𝑆𝑤1

are already determined for all time steps. It also means that 𝑎𝑚+1𝑤𝑛1
= 𝑎𝑚𝑤𝑛1

= 𝑎𝑤𝑛1 for all
ime steps. Therefore, Eq. (A.5) should be rewritten for the first gridblock in the extended model as:

𝑇𝑤1,2

(

𝑝𝑚+1𝑛2
− 𝑝𝑚+1𝑛1

)

− 𝑇𝑤1,2

(

𝑝𝑚+1𝑐2
−✚

✚❃
𝑝𝑐0

𝑝𝑚+1𝑐1

)

−𝜁𝑤1
𝑆𝑚+1
𝑤1

+ 𝜁𝑤1
𝑆𝑚
𝑤1

+✚✚❃
𝑞𝑤𝑖𝑛𝑗

𝑞𝑤 = 0

(A.21)

nd, Eq. (A.16) for the first gridblock is turned into:

− 𝑇𝑎𝑤𝑛

(

𝑎𝑚+1
2

𝑤𝑛2
+ 4𝑎𝑤𝑛1𝑎

𝑚+1
𝑤𝑛2

− 8𝑎2𝑤𝑛1

)

= 0 (A.22)

Based on the conditions described in Eq. (10), both Eq. (A.12) and (A.13) remain valid for the last gridblock in the extended
odel. By taking advantages of the reflection technique [14], Eq. (A.16) for the last gridblock can be expressed as:

𝜁
(

𝑎𝑚+1𝑁 − 𝑎𝑚𝑁
)

− 𝑇𝑎𝑤𝑛

(

𝑎𝑚+12𝑤𝑛𝑁−1
− 8𝑎𝑚+12𝑤𝑛𝑁

+ 4𝑎𝑚+1𝑤𝑛𝑁
𝑎𝑚+1𝑤𝑛𝑁−1

)

−𝜁𝑒𝑤𝑛

(

𝑆𝑚+1
𝑤𝑁

− 𝑆𝑚
𝑤𝑁

)

= 0
(A.23)

Overall, writing Eqs. (A.7), (A.8), (A.17), (A.21), (A.22), (A.12), (A.13), and (A.23) for 𝑁 gridblocks in the extended model results
n a set of 3𝑁 − 2 nonlinear simultaneous algebraic equations (𝐹 ) that for a proper set of 𝑝𝑛, 𝑆𝑤 and 𝑝𝑐 should generate 3𝑁 − 2
eros, or:

𝐹
(

𝑋𝑚+1
3𝑁−2

)

= [0]3𝑁−2 (A.24)
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