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ETH Zürich

Thatchaphol Saranurak†

thsa@umich.edu

University of Michigan

Abstract

We introduce the concept of low-step multi-commodity flow emulators for any undirected,
capacitated graph. At a high level, these emulators contain approximate multi-commodity flows
whose paths contain a small number of edges, shattering the infamous flow decomposition barrier
for multi-commodity flow.

We prove the existence of low-step multi-commodity flow emulators and develop efficient
algorithms to compute them. We then apply them to solve constant-approximate k-commodity
flow in O((m + k)1+ǫ) time. To bypass the O(mk) flow decomposition barrier, we represent
our output multi-commodity flow implicitly; prior to our work, even the existence of implicit
constant-approximate multi-commodity flows of size o(mk) was unknown.

Our results generalize to the minimum cost setting, where each edge has an associated cost
and the multi-commodity flow must satisfy a cost budget. Our algorithms are also parallel.
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1 Introduction

In the maximum flow problem, we are given an edge-capacitated graph G = (V,E) and two vertices
s, t ∈ V with the aim to send as much flow as possible from s to t. Maximum flow is a fundamental
problem in combinatorial optimization with a long history, from the classic Ford-Fulkerson algo-
rithm [CLRS22] to the recent breakthrough almost-linear time algorithm of Chen et al. [CKL+22].
The maximum flow problem also exhibits rich structural properties, most notably in the max-flow
min-cut theorem, which states that the value of the maximum flow between s and t is equal to the
size of the minimum edge cut separating s and t.

A well-studied generalization of the maximum flow problem is the maximum multi-commodity
flow problem. Here, we are given k ≥ 1 pairs (si, ti)i∈[k] of vertices and wish to maximize the
amount of flow sent between each pair. On the algorithmic side, this problem can be solved in
polynomial time by a linear program, and there has been exciting recent progress towards obtaining
faster algorithms, both exact [vdBZ23] and (1+ ǫ)-approximate [She17]. However, these algorithms
output the flow for each commodity explicitly and, hence, must take at least Ω(mk) time because
there exists a graph such that the total size of flow representation overall k commodities of any
α-approximate solution has size at least Ω(mk/α). Designing multi-commodity flow algorithms is
further complicated by the loss of structure exhibited in the single-commodity setting. Specifically,
the max-flow min-cut equality no longer holds in the multi-commodity case, and the flow-cut gap
(i.e. the multiplicative difference between the max-flow and min-cut) is known to be Θ(log n) for
undirected graphs [LR99] and Ω(n1/7) for directed graphs [CK09].

The algorithmic and structural issues above suggest that outputting a (near) optimal multi-
commodity flow in time less than O(mk) may be impossible. Even for the problem of efficiently
approximating the value of the optimal multi-commodity flow in undirected graphs, current tech-
niques (e.g. [Rac02, RST14]) fail to produce approximations below the multi-commodity flow-cut
gap, i.e., no o(log n)-approximations running in o(mk) time are known.

1.1 Our Results

In this paper, we break the O(mk)-time barrier by giving (m + k)1+ǫ-time algorithms with O(1)-
approximations to the value of the maximum k-commodity flow on undirected graphs for any
constant ǫ > 0.

We consider both concurrent and non-concurrent flow problems. In the concurrent flow problem,
given a capacitated graph and a demand function, the goal is to find a maximum-value capacity-
respecting flow routing a multiple of the demand. In the non-concurrent flow problem, given a
capacitated graph and a set of vertex pairs, the goal is to find a maximum-value capacity-respecting
flow routing flow only between vertex pairs in the given set.

Our results can be informally summarized as follows:

Theorem 1.1 (Constant-Approximate Concurrent/Non-Concurrent Flow (informal)). For every
constant ǫ ∈ (0, 1), there exists a (m + k)1+poly(ǫ)-time O(2−1/ǫ)-approximate algorithm for the
concurrent and non-concurrent multicommodity flow value problems, where k is the number of
demand pairs. The algorithms work in parallel with depth (m+ k)poly(ǫ).

The key to the above result is a powerful new tool we introduce called low-step (multi-commodity)
flow emulators. Informally, a low-step flow emulator of an undirected graph is another graph which
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contains approximate multi-commodity flows whose flow paths contain a small number of edges.
Because they are not based on cuts, such emulators face no Ω(log n) flow-cut barriers, unlike the
above-mentioned cut sparsifiers. It is instructive to view low-step flow emulators as a generalization
of hopsets, which are graphs that contain approximate shortest paths of low step-length (but do
not respect capacities). We additionally give efficient algorithms to construct these objects, and
generalize them to achieve two additional important properties:

• Cost-Constrained / Length-Constrained: Our emulators generalize to various min-cost
multi-commodity flow problems, where each edge has an associated length or cost (indepen-
dent of its capacity) and any flow path must not exceed a given bound on the length or
cost.

• Implicit Mappings: Our flow emulators also support implicit flow mappings from the
emulator back to the original graph. In other words, we can even maintain an implicit solution
to a constant-approximate multi-commodity flow, and Theorem 1.1 can be modified to output
such an implicit representation for a flow of the approximated value. (Recall that implicit
solutions are required to obtain any o(mk) running time.) With this implicit solution, we can
answer the following queries in O((m+ k)1+ǫ) time: given any subset of the k commodities,
return the union of the flows of each of these commodities. As this is a single-commodity
flow, it is representable explicitly within the allotted time.

The combination of the two generalizations will allow us to apply flow boosting in the spirit of
Garg-Konemann [GK07] to obtain the above algorithms, and further allows us to obtain the above
multi-commodity flow result subject to a cost constraint.

1.2 Our Techniques

At a high-level, our approach is as follows. First, we compute low-step emulators by building on
recent advances in length-constrained expander decompositions. Next, we use our low-step emula-
tors to compute (implicit) flows on the original graph with potentially large congestion. Lastly, we
use “boosting” to reduce this congestion down to a constant to get our final flow approximation.

Step 1: Low-Step Emulators via Length-Constrained Expander Decompositions. Our
techniques build on recent developments in length-constrained expander decompositions [HRG22,
HHG22, HHS23, HHT23, HHT24]. At a high level, h-length expanders are graphs with edge lengths
and capacities for which any “reasonable” multi-commodity demand can be routed along (about) h-
length paths with low congestion (by capacity). Informally, a reasonable demand is one where each
demand pair (si, ti) is within h by distance (so that sending flow from si to ti along about-h-length
paths is actually possible), and each vertex does not belong to too many demand pairs (so that the
degree of the vertex is not an immediate bottleneck for congestion). Recent work [HRG22, HHT24]
has studied how to, in almost-linear time, compute length-constrained expander decompositions
which are length-increases—a.k.a. moving cuts—to the graph that make it an h-length expander.
One caveat, however, is that these algorithms run in time polynomial in the length parameter h of
the length-constrained expander decomposition.

In this paper, we remove this polynomial dependency of h by way of the above-mentioned low-
step emulators. Specifically, we “stack” low-step emulators on top of each other with geometrically
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increasing lengths, similar to how hopsets are stacked in parallel algorithms [Coh00]. Each low-step
emulator is responsible for flow paths of its corresponding length, and the union of all low-step
emulators obeys all distance scales simultaneously.

Our construction of low-step emulators comes with an embedding of the emulator into the base
graph: each edge of the emulator maps to a small-length path in the base graph such that the set of
all embedded paths has low congestion. When emulators are stacked on top of each other, an edge
at the top level expands to a path at the previous level, each of whose edges expands to a path at
the previous level, and so on. This hierarchical structure allows us to provide the aforementioned
implicit representation of very long paths while keeping the total representation size small.

Step 2: Flows on Emulators. Our next contribution is a fast algorithm that computes a multi-
commodity flow on a low-step emulator, where an approximate flow with small representation size
is indeed possible (since flow paths now have low step-length). We explicitly compute such a flow,
and then (implicitly) map each flow path down the hierarchical structure to form our final implicit
flow on the input graph.

By setting parameters appropriately, we can guarantee a bicriteria approximation with constant-
approximate cost and nǫ-approximate congestion for any constant ǫ > 0. The nǫ-approximate
congestion appears in both the multi-commodity flow algorithm on a low-step emulator, and the
hierarchical embeddings of the emulators into the base graph.

Step 3: Boosting Away Congestion. Finally, through Garg and Konemann’s approach [GK07]
based on multiplicative weight updates, we can boost the congestion approximation of nǫ down to
the cost approximation, which is constant. While Garg and Konemann’s algorithm requires a
near-linear number of calls to (approximate) shortest path, we only require roughly nǫ calls to
nǫ-approximate congestion, constant-approximate cost multi-commodity flow. Our final result is
a multi-commodity flow with constant-approximate cost and congestion which is implicitly repre-
sented by the hierarchical emulator embeddings. Given any subset of commodities, we can then
output the union of their flows by collecting the flow down the hierarchy of embeddings.

2 Overview

The rest of the paper is organized as follows. The first part of the paper, Sections 4 to 6, develops the
theory of low-step emulators. In Section 4, we study the h-length-constrained version of low-step
emulators. We provide an existential result and an algorithm with a running time that depends on
poly(h). These results are obtained by reducing to h-length-constrained expander decomposition.
To remove the dependency on poly(h) in the running time, in Section 5 we demonstrate how to
bootstrap the construction of h-length-constrained low-step emulators with small h to the large
ones without spending poly(h) in the running time. Finally, by combining h-length-constrained
low-step emulators from different h values, we obtain our low-step emulator in Section 6.

The next part of the paper, Sections 7 and 8, develops a fast k-commodity flow algorithm
designed for running on top of low-step emulators. The crucial property of this algorithm is that
its running time is independent of k. In Section 7, we first show a prerequisite subroutine called
”routing on an expansion witness” for efficiently routing a length-constrained flow. This subroutine
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Section 4
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Low-Step Emulator
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Bootstrapping LC
Low-Step Emulator
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Low-step Emulator
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Routing on an

Expansion Witness
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Section 10
O(1)-Approximate

Multi-Commodity Flow

Figure 1: Dependencies between sections in this paper.

assumes that the input graph is a length-constrained expander and also requires the expansion
witness of this expander. We then use this subroutine in Section 7 to develop an algorithm that
computes a t-step k-commodity flow (each flow path contains at most t edges) with a running
time of m1+ǫpoly(t). The algorithms have an O(1)-approximation in step and total length, but
an nǫ-approximation in congestion. Note that the dependency on poly(t) in the running time is
inconsequential, as the algorithm will be run on a t-step emulator for constant t. The issue of the
large approximation factor in congestion will be addressed in the next part.

The final part of the paper, Sections 9 and 10, shows how we can combine the techniques from
the previous two parts to achieve an O(1)-approximate k-commodity flow in (m + k)1+ǫ time.
To address the problem of the nǫ-approximation in congestion, in Section 9, we give a boosting
algorithm that improves the congestion approximation to O(1). Finally, in Section 10, we combine
these tools together to obtain the final result.

The dependencies between sections are summarized in Figure 1.

3 Preliminaries

Let G = (V,E) be a graph. We denote the number of vertices of G by n := |V | and the number
of edges by m := |E|, respectively. Let uG : E → R>0 denote the edge capacity function of G.
The degree of a vertex v is degG(v) =

∑
(v,w)∈E uG(v,w). Note that a self-loop (v, v) contributes

uG(v, v) to the degree of v. Let ℓG : E → R>0 denote the edge length function of G.

In this paper, we will use the word “hop” and “length” interchangeably1. A path from vertex
v to vertex w is called a (v,w)-path. For any path P , the length ℓG(P ) =

∑
e∈E ℓG(e) of the path

equals the total length of its edges, and the step-length |P | of the path is simply the number of
edges in P . The distance between vertices v and w is distG(v,w) = minP :(v,w)-path ℓG(P ). A ball
of radius r around a vertex v is ballG(v, r) = {w | distG(v,w) ≤ r}. The diameter diamG(S) :=
maxv,w∈S distG(v,w) of a vertex set S is the maximum distance between two vertices in the set.

1We sometimes use the term “hop” instead of “length” in this paper and even use h for parameters related to length
so that terminologies are consistent with previous literature [HRG22, HHT24, HHG22, HHT23] on length-constrained
expanders. In the previous papers, they used “hop” and h because edges usually have unit length.
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We assume all graphs to have polynomially bounded integral edge capacities and lengths. This
assumption allows us to write log(maxe ℓ(e)), log(maxe u(e)) = O(logN), which simplifies notation.

Assumption 3.1. The capacity and length of all edges in the input graphs are integral and at most
N = poly(n).

Although we will work with fractional capacities and lengths in the body of the paper, all these
values will always be a multiple of some integer reciprocal 1/poly(n) and are upper bounded by
poly(n); by scaling, we can always obtain integral polynomially-bounded capacities and lengths.

Multicommodity Flows. A (multicommodity) flow F in G is a function that assigns each
simple path P in G a flow value F (P ) ≥ 0. We say P is a flow-path of F if F (P ) > 0, and write
path(F ) = supp(F ) := {P : F (P ) > 0} for the set of flow-paths, equivalently the support of F ,
and occasionally abuse notation to write P ∈ F to mean P ∈ supp(F ). |path(F )| is called the
path count of F , and the value of the flow F is val(F ) :=

∑
P F (P ). P is a (v,w)-flow-path of F

if P is both a (v,w)-path and a flow-path of F . The (v,w)-flow f(v,w) of F is the flow for which
f(v,w)(P ) = F (P ) if P is a (v,w)-path, otherwise f(v,w)(P ) = 0.

The congestion of F on an edge e is congF (e) = F (e)/uG(e) where F (e) =
∑

P :e∈P F (P )
denotes the total flow value of all paths going through e. The congestion of F is congF =
maxe∈E(G) congF (e). The length of F , denoted by lengF = maxP∈supp(F ) ℓ(P ), measures the maxi-
mum length of all flow-paths of F . The (maximum) step-length of F is stepF = maxP∈supp(F ) |P |,
which measures the maximum number of edges in all flow-paths of F . Note that stepF is completely
independent from lengF . We sometimes write congG,F , lengG,F , stepG,F to emphasize that they are
with respect to G.

Edge Representation of Flows. When we want to emphasize an edge (v,w) is undirected,

we use the notation {v,w}. Let
←→
E (G) denote the set of bidirectional edges of G. That is, for

each edge e = {v,w} ∈ E(G), we have (v,w), (w, v) ∈
←→
E (G). The edge representation of F in

G is a function flowF :
←→
E (G) → R≥0 where, for each edge e = {v,w} ∈ E(G), let flowF (v,w)

and flowF (w, v) denote the total flow-value of F routed through e from v to w and from w to v,
respectively. We sometimes use F (v,w) = flowF (v,w) and F (w, v) = flowF (w, v) for convenience.
Note that F ({v,w}) = F ((v,w)) + F ((w, v)).

Demands. A demand D : V × V → R≥0 assigns a value D(v,w) ≥ 0 to each ordered pair of
vertices. Given a flow F , the demand routed/satisfied by F is denoted by DF where, for each
u, v ∈ V , DF (u, v) =

∑
P is a (u,v)-path F (P ) is the value of (u, v)-flow of F . We say that a demand

D is routable in G with congestion η, length h, and t steps if there exists a flow F in G where
DF = D, congF ≤ η, lengF ≤ h, and stepF ≤ t. The total demand size is |D| =

∑
u,v D(u, v). The

support of D is supp(D) = {(v,w) | D(v,w) > 0}.

A node-weighting A : V → R≥0 of G assigns a value A(v) to each vertex v. The size of A is
denoted by |A| =

∑
v A(v). For any two node-weightings A and B, we write A ≤ B if A(v) ≤ B(v)

for all v. We say D is A-respecting if both
∑

w D(v,w) ≤ A(v) and
∑

w D(w, v) ≤ A(v). We
say that D is degree-respecting if D is degG-respecting. Next, D is h-length-bounded (or simply
h-length for short) if it assigns positive values only to pairs that are within distance at most h, i.e.,

5



D(v,w) > 0 implies that distG(v,w) ≤ h. The load of a demand D is defined as the node weighting
load(D)(v) =

∑
w∈V D(v,w) +D(w, v).

3.1 Length-Constrained Expanders

Moving Cuts. An h-length moving cut C : E → {0, 1
h ,

2
h , . . . , 1} assigns a fractional which is a

multiple of 1
h between zero and one to each edge e. The size of C is defined as |C| =

∑
e u(e) ·C(e).

We denote with G− C the graph G with a new length function ℓG−C(e) = ℓG(e) + h · C(e) for all
e. We refer to G− C as the graph G after cutting C or after applying the moving cut C.

Given a h-length demand D, we usually work with a (hs)-length moving cut C where s > 1.
The total demand of D separated by C is then denoted by

sephs(C,D) =
∑

(v,w):distG−C(v,w)>hs

D(v,w),

which measures the total amount of demand between vertex pairs whose distance is increased (from
at most h, as D is h-length) to strictly greater than hs by applying the cut C. Note that an integral
moving cut (i.e. one for which C(e) ∈ {0, 1}) functions somewhat like a classic cut: the size |C| is
the total capacity as a classic cut, and sephs(C,D) =

∑
(v,w):all hs-length (v, w)-paths in G are cutD(v,w).

The sparsity of moving cut C with respect to a demand D, for a (hs)-length moving cut C and
a h-length demand D, denoted by

spars(h,s)(C,D) =
|C|

sephs(C,D)

is the ratio between the size of the cut C and the total demand of D separated by C. We say that
C is φ-sparse with respect to D is spars(C,D) < φ.

We are ready to define the key notion of length-constrained expanders.

Definition 3.2 (Cut Characterization of Length-Constrainted Expanders). The (h, s)-length con-
ductance of a graph G is

cond(h,s)(G) = min
D:h-length, degree-respecting

min
C:(hs)-moving cut

spars(h,s)(C,D).

If cond(h,s)(G) ≥ φ, we say that G is a (h, s)-length φ-expander. More generally, for any node-
weighting A, the (h, s)-length conductance of A is

cond(h,s)(A) = min
D:h-length A-respecting

min
C:(hs)-moving cut

spars(h,s)(C,D).

If cond(h,s)(A) ≥ φ, then we say that A is (h, s)-length φ-expanding in G and that G is a (h, s)-
length φ-expander for A.

Note that cond(h,s)(G) = cond(h,s)(degG). In words, if G is an (h, s)-length φ-expander, then
there is no φ-sparse (hs)-moving cut with respect to any h-length degree-respecting demand. The
following observation draws a connection between length-constrained expanders and normal ex-
panders.
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Proposition 3.3. When h → ∞, G is an (h, s)-length φ-expander if and only every connected
component of G is a φ-expander.

The theorem below shows that, similar to normal expanders, there is a flow characterization
of length-constrained expanders that is almost equivalent to its cut characterization within a loga-
rithmic factor.

Theorem 3.4 (Flow Characterization of Length-Constrainted Expanders (Lemma 3.16 of [HRG22])).
We have the following:

1. If A is (h, s)-length φ-expanding in G, then every h-length A-respecting demand can be routed
in G with congestion at most O(log(N)/φ) and length at most s · h.

2. If A is not (h, s)-length φ-expanding in G, then some h-length A-respecting demand cannot
be routed in G with congestion at most 1/2φ and length at most s

2 · h.

3.2 Length-Constrained Expander Decomposition

Expander decomposition are a powerful tool that allows algorithm designers to exploit the power
of expanders in an arbitrary graph. The hop-constrained version of them is stated below.

Definition 3.5 (Expander Decomposition). A (h, s)-length (φ, κ)-expander decomposition for a
node-weighting A in a graph G is a (hs)-moving cut C of size at most κφ|A| such that A is (h, s)-
length φ-expanding in G− C. C is also called a (h, s, φ, κ)-decomposition for A, for short.

We refer to the parameters s and κ as the length slack and congestion slack, respectively.

For any moving cut C, the degree with respect to C of a vertex v is defined as

degC(v) =
∑

e incident to v

u(e) · C(e).

By the definition, observe that degC(v) ≤ degG(v) for any moving cut C. As discovered in
[GRST21], expander decompositions become even more versatile when the vertices incident to
the cut-edges of the decomposition are more “well-linked”. The definition of a linked expander
decomposition is given below.

Definition 3.6 (Linked Expander Decomposition). A β-linked (h, s)-length (φ, κ)-expander de-
composition for a node-weighting A in a graph G is a (hs)-moving cut C of size at most κφ|A| such
that A+ β · degC is (h, s)-length φ-expanding in G− C.

Notice that an expander decomposition is simply a β-linked expander decomposition for β = 0.
Requiring A+β ·degC instead of just A to be expanding captures the intuition of requiring vertices
incident to C to be more “well-linked”.

Theorem 3.7 (implicit in [HRG22], explicit in Theorem 3 of [HHT23]). For any node-weighting A,
length bound h, length slack s ≥ 100, conductance bound φ > 0, congestion slack κ ≥ NO(1/s) logN ,
and linkedness β = O(1/(φκ)), there exists a β-linked (h, s)-length (φ, κ)-expander decomposition
for A.
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3.3 Routers

Next, we define the notion of routers.

Definition 3.8 (Routers). For any node-weighting A, we say that a unit-length capacitated graph
G is a t-step κ-router for A (or simply a router) if every A-respecting demand can be routed in
G with congestion κ and t steps. If G is a t-step κ-router for degG, then we simply say that G is
t-step κ-router.

By the flow characterization of length-constrained expanders (Theorem 3.4), observe that routers
are essentially the same object as length-constrained expanders when the graph has unit length
and bounded diameter.

Proposition 3.9. Let G be a graph with unit edge-length. Let A be a node-weighting where
diamG(supp(A)) ≤ h.

1. If G is a (h, s)-length φ-expander for A, then G is a (hs)-step O( logNφ )-router for A.

2. If G is not a (h, s)-length φ-expander for A, then G is not a (hs2 )-step
1
2φ -router for A.

Proof. Since diamG(supp(A)) ≤ h, the set of A-respecting demands and the set of h-length A-
respecting demands are identical. Also, as G is unit-length, every path has length equal to the
path’s step-length. Therefore, by Theorem 3.4, if G is a (h, s)-length φ-expander for A, every A-
respecting demand can be routed in G with congestion O(log(N)/φ) and sh steps. Otherwise, some
A-respecting demand cannot be routed in G with congestion 1/2φ and (sh)/2 steps.

Although routers and length-constrained expanders are very similar, they focus on different
things. We bound the maximum step-length of flow on routers, and bound the length of flows on
length-constrained expanders. The clear distinction between the two is made to avoid confusion.

A simple example of a router is a star.

Proposition 3.10. For any node-weighting A, let H be a star rooted at r /∈ supp(A) with leaf set
supp(A), each star-edge (r, v) ∈ E(H) having capacity A(v). Then, H is a 2-step 1-router for A.

While the above router has great quality, it requires an additional vertex r /∈ supp(A).

A strong router without steiner vertices (one for which V (H) ⊆ supp(A)) can be constructed
using constant-degree expanders. The parameter in the construction below can likely be improved,
but we choose to present a simple construction.

Lemma 3.11. For any node-weighting A and positive integer parameter t, there exists a t-step
1-router H = router(A, t) for A such that

• degH ≤ ∆ · A

• |E(H)| ≤ ∆ · |supp(A)|

where ∆ = tnO(1/t) log2 N .
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Proof. First, suppose that the node-weighting A is uniform, i.e., A(v) = 1 for all v. Let H0 be a
O(1)-degree expander of constant conductance on the vertex set |supp(A)|. It is well-known that

such a H0 is a t′ := O(log n)-step O(log n)-router. Moreover, for k =
⌈
t′

t

⌉
, the power graph Hk

0 is

a t-step O(t)-router for A. Each vertex in Hk
0 has degree ∆0 = O(1)k = nO(1/t). Define H = Hk

0 .
We have that degH ≤ ∆0 ·A and |E(H)| ≤ ∆0 · |supp(A)| as desired. If A(v) = c0 for all v for some
c0, then H can be constructed in the same way but we scale up the capacity by c0.

Now, we handle the general node-weighting A. By paying at most a factor of 2 in the congestion,
we assume that A(v) = 2i for some i ∈ [logN ] for every v. Let Vi = {v ∈ supp(A) | A(v) = 2i} and
Ai = A∩ Vi be the restriction of A to Vi. Let Hi be the t-step O(t)-router for Ai. The final router
H is contained by connecting these Hi together. For each i, j where i > j, we construct a bipartite
graph Hi,j where V (Hi,j) = Vi∪Vj such that every edge of Hi,j has capacity 2j , degHi,j

(v) ≤ 2i for

all v ∈ Vi, and degHi,j
(v) ≤ 2j for all v ∈ Vj . If 2i|Vi| ≤ 2j |Vj |, then degHi,j

(v) = 2i for all v ∈ Vi,

otherwise degHi,j
(v) = 2j for all v ∈ Vj. This can be done be greedily adding edges of capacity

2j between Vi and Vj in a natural way. We have |E(Hi,j)| ≤ max{|Vi|, |Vj |}. We define the final
router as H = (

⋃
iHi) ∪ (

⋃
i,j Hi,j). Observe that

|E(H)| ≤
∑

i

|E(Hi)|+
∑

i,j

|E(Hi,j)| ≤ ∆0|supp(A)| + logN |supp(A)|.

Similarly, degH ≤ (∆0 + logN) · A. We claim that H is a 2t-step O(t logN)-router. To see the
claim, given any demand D respecting A, we first route the demand from Vi to Vj through Hi,j

with congestion 1 for all i, j. The residual demand will respects logN · A and only need to route
inside each Hi, which can be routed using O(t logN) congestion.

Finally, to reduce the congestion to 1, we simply make O(t logN) parallel copies of each edge.
Scaling the parameters by an appropriate constant, this implies the lemma.

3.4 Length-Constrained Expansion Witness

We first recall two more standard notions.

Neighborhood Covers. Given a graph G with lengths, a clustering S in G is a collection of
mutually disjoint vertex sets S1, . . . , S|S|, called clusters. A neighborhood cover N with width ω
and covering radius h is a collection of ω many clusterings S1, . . . ,Sω such that for every node v
there exists a cluster S ∈ Si where ball(v, h) ⊆ S. We use S ∈ N to say that S is a cluster in some
clustering of N . We say that N has diameter hdiam if every cluster S ∈ N has (weak) diameter at
most hdiam, i.e., maxu,v∈S distG(u, v) ≤ hdiam. The following is a classic result.

Theorem 3.12 ([Pel00]). For any h, integer k ≥ 1, and graph G, there a deterministic parallel
algorithm that computes a neighborhood cover N with covering radius h, diameter hdiam ≤ (2k−1)·h
and width ω = NO(1/k) logN . The algorithm has O(|E(G)|hkω) work and O(hkω) depth.

Embedding. Next, we recall the notion of graph embedding. We view it as a flow as follows.

Definition 3.13 (Edge Demand and Embedding). Given graphs G and H where V (H) ⊆ V (G), the
edge-demand DE(H) of H on G is the demand where for all (v,w) ∈ E(H), DE(H)(v,w) = uH(v,w).
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The embedding ΠH→G of H into G is a multicommodity flow that routes DE(H) in G. We can
write ΠH→G =

∑
(v,w)∈E(H) f(v,w) where f(v,w) is a (v,w)-flow in G of value val(f(v,w)) = uH(v,w).

The embedding ΠH→G is said to have length slack s if lengfe ≤ s · ℓH(e) for all e ∈ E(H).

We use the same terminology as for flows for the embedding ΠH→G. For example, ΠH→G is
said to have length h and congestion κ if lengΠH→G

≤ h and congΠH→G
≤ κ.

Expansion Witness. Given the above definitions of neighborhood covers, routers, and embed-
dings, we can define a witness of length-constrained expansion.

Definition 3.14 (Expansion Witness). Let G be a graph and A a node weighting. A (h, tR, hΠ, κΠ)-
witness of A in G is a tuple (N ,R,ΠR→G).

• N is a neighborhood cover with covering radius h.

• R is a collection of routers. For each cluster S ∈ N , there exists a (tR, 1)-router RS ∈ R on
vertex set S for node-weighting S ∩ A.

• ΠR→G is an embedding of all routers in R to G. ΠR→G has length hΠ and congestion κΠ.

Below, we show that (1) an expansion witness indeed certifies the expansion, and moreover,
gives an explicit routing structure, and (2) an expansion witness exists for every expander.

Corollary 3.15 (ExpansionWitness Certifies Expansion). Suppose that there exists a (h, tR, tΠ, κΠ)-
witness (N ,R,ΠR→G) of A in G. Then, G is a (h, 2tRtΠ)-length (1/2κΠ)-expander for A. More-
over, given any A-respecting h-length-constrained demand D in G, there is a flow F routing D in
G where lengF ≤ hΠtR and congF ≤ κΠ. Moreover, F is “routed through” the embedding ΠR→G,
i.e., F =

∑
f∈ΠR→G

valf · f where valf ≥ 0.

Proof. It suffices to prove the “moreover” part by Theorem 3.4. For each (v,w) where D(v,w) > 0,
we have distG−C(v,w) ≤ h and so there exists S ∈ N where v,w ∈ S. Choose such cluster S
arbitrarily and assign the demand D(v,w) to S. For each cluster, let DS denote the demand
induced by this process. Note that DS ≤ D entry-wise and so DS respects S ∩ A. So DS can
be routed via a flow FS in RS with tR-step and 1-congestion. Let FR =

∑
S∈N FS be a flow on

R = ∪S∈NRS .

We define F from FR as follows. From the embedding ΠR→G =
∑

e∈E(R) uR(e) ·fe that embeds
R into G, define the flow F =

∑
e∈E(R) vfe · fe where fe ∈ ΠR→G and vfe = FR(e) denotes the

total flow of FR through e in R. Now, we bound the length and congestion of F . Since FR has at
most tR-step on R, we have lengF ≤ tR · lengΠR→G

≤ hΠtR. Since FR has congestion 1 on R, we
have vfe ≤ uR(e) for all e ∈ E(R) and so congF ≤ congΠR→G

= κΠ.

Corollary 3.16 (Expansion Witness Exists for Expanders). Let G be a (h, s)-length φ-expander for
a node-weighting A. There is an (h′, tR, hΠ, κΠ)-witness (N ,R,ΠR→G) for A in G where h′ = h/s,
tR = s, hΠ = hs, κΠ = sNO(1/s)poly(logN)/φ.

Proof. From Theorem 3.12, let N be a neighborhood cover on G with covering radius h′ = h/s,
diameter h, and width ω ≤ NO(1/s) logN . For each cluster S ∈ N , let RS ∈ R be a s-step 1-router
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for BS = S ∩ A where degRS ≤ ∆ · BS and |E(RS)| ≤ ∆ · |supp(BS)| and ∆ ≤ sNO(1/s) log2 N .
This follows from Lemma 3.11.

Let DR be the edge demand of ∪S∈NRS. First, observe that DR is h-length-constrained in G.
Indeed, for each edge (v,w) ∈ RS for any S ∈ N , we have distG(v,w) ≤ h as N has diameter h.
Second, observe that DR respects ∆ωA. Indeed, for each vertex v, we have

DR(v) ≤
∑

S∈N
degRS (v) ≤ ∆ ·

∑

S∈N
BS(v) ≤ ∆ω ·A(v)

where the last inequality is because there are most ω many clusters S ∈ N containing v.

Since A is (h, s)-length φ-expanding in G, by Theorem 3.4, we have that DR can be routed in
G with length hs = hΠ and congestion κΠ = O(∆ω logN/φ). Let ΠR→G be such flow that routes
DR in G.

3.5 Length-Constrained Witnessed Expander Decomposition

By combining the existence of the expander decomposition and the expansion witness, we obtain
the following.

Corollary 3.17 (Existential Witnessed Expander Decomposition). Let G be a graph with edge
lengths with node-weighting A. Given parameters (h, φ, β, s) where β ≤ 1/(φ logN) and s ≥ 100,
there exists a hC-moving cut C and a (h, tR, hΠ, κΠ)-witness (N ,R,ΠR→G) of A+βdegC in G−C
with the following guarantees:

• |C| ≤ φ|A|.

• The total number of edges in all routers is |E(R)| ≤ nNO(1/s)poly(logN).

• tR = s, hC , hΠ = hs2, κΠ = NO(1/s)poly(logN)/φ.

Proof. From Theorem 3.7, there exists a hs2-moving cut C of size at most φ|A| such that A+βdegC
is (hs, s)-length (φ/κ)-expanding in G− C where κ = NO(1/s) logN . By Corollary 3.16, there is a
(h′, tR, hΠ, κΠ)-witness (N ,R,ΠR→G) for A+ βdegC in G−C where h′ = hs/s, tR = s, sΠ = hs2,
κΠ = κ

φsN
O(1/s)poly logN .

The key subroutine that this paper relies on as a blackbox is an efficient parallel algorithm
for computing a length-constrained expander decomposition C for A, together with the expansion
witness for A in G−C.

Theorem 3.18 (Algorithmic Witnessed Expander Decomposition from Theorem 1.1 of [HHT24]).
Let G be a graph with edge lengths with node-weighting A. Given parameters (h, φ, β, s) where
β ≤ 1/(φ logN) and s ≤ logcN for some sufficiently small constant c, let ǫ = 1/s. There exists
an algorithm that computes an hC-moving cut C and a (h, tR, hΠ, κΠ)-witness (N ,R,ΠR→G) of
A+ βdegC in G− C with the following guarantees:

• |C| ≤ φ|A|.

• The total number of edges in all routers is |E(R)| ≤ |E(G)|Npolyǫ. Moreover, ΠR→G is an
integral embedding with path count at most |E(G)|Npolyǫ.
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• tR = s, hC , hΠ ≤ h · exp(poly(1/ǫ)), and κΠ = Npolyǫ/φ.

The algorithm takes |E(G)|poly(h)Npolyǫ work and has depth poly(h)Npolyǫ.

4 Length-Constrained Low-Step Emulators: Existence

The goal of this section is to show that, given any graph G, there is another graph G′ such that any
length-constrained multi-commodity flow in G can be routed in G′ with approximately the same
congestion and length, and moreover such flow in G′ can be routed via paths containing few edges.
The definition below formalize this idea.

Definition 4.1 (Length-Constrained Low-Step Emulators). Given a graph G and a node-weighting
A in G, we say that G′ is an h-length-constrained t-step emulator of A with length slack s and
congestion slack κ if

1. Edges in G′ have uniform length of h′ = sh.

2. Given a flow F in G routing an A-respecting demand and lengF ≤ h, there is a flow F ′ in G′

routing the same demand where congF ′ ≤ κ·congF and stepF ′ ≤ t (equivalently, lengF ′ ≤ t·sh
by Item 1).

3. G′ can be embedded into G with congestion 1 and length slack 1.

The condition requiring that edges in G′ have uniform length is crucial. This will allow us
to bootstrap the construction for h-length-constrained t-step emulator for large h using based on
the ones for small h. Our main technical contribution of this section is showing the existence of
length-constrained low-step emulators.

Theorem 4.2 (Existential). Given any graph G with n vertices, a node-weighting A of G, and pa-
rameters h and t, there exists an h-length-constrained O(t2)-step emulator G′ for A in G with length
slack O(t2) and congestion slack poly(t logN)NO(1/t). The emulator contains nNO(1/t)poly(t logN)
edges.

We also give a parallel algorithm for constructing an emulator with a worse trade-off.

Theorem 4.3 (Algorithmic). There exists a parallel algorithm that, given any graph G with m
edges, a node-weighting A of G, and parameters h and ǫ ∈ (log−cN, 1) for some sufficiently
small constant c, computes an h-length-constrained O(t2)-step emulator G′ for A in G where
t = exp(poly1/ǫ) with length slack O(t2) and congestion slack Npolyǫ. The emulator contains
mNpolyǫ edges and the embedding ΠG′→G has path count mNpolyǫ.

The algorithm has m · poly(h)Npolyǫ work and poly(h)Npolyǫ depth.

4.1 Construction and Analysis

In this section, we show a construction of h-length-constrained t-step emulator.

Let us start with basic technical observations on Algorithm 1.
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Algorithm 1 Emulator(G, t, h)

Initialize A0 ← A, hcov ← 4h, sdcp ← t, β ← t2, and φ ← 1/2βN1/t. (The choice of β is so that
β = hC/h).

1. For 1 ≤ i ≤ 2t:

(a) Given node-weighing Ai−1, compute a witnessed expander decomposition Ci and
(Ni,Ri,ΠRi→G) with parameters (hcov, φ, β, sdcp) using Corollary 3.17.

i. Ci is a hC-moving cut, and

ii. (Ni,Ri,ΠRi→G) is a (hcov, tR, hΠ, κΠ)-witness of Ai−1 + βdegCi
in G− Ci.

(b) Set Bi ← Ai−1 + βdegCi
and Ai ← βdegCi

.

(c) Set E′
i ← E(Ri) :=

⋃
S∈Ni

RS scaled the capacity down by tκΠ.

2. Return G′ where E(G′) = ∪iE
′
i and ℓG′(e) = hΠ for all e ∈ E(G′).

Proposition 4.4. We have the following:

1. For all i and v, Ai(v) and Bi(v) are non-negative multiples of 1
h .

2. For all i ≥ 0, we have |Ai| ≤ |A|/N i/t. In particular, |A2t| = 0.

3. |E(G′)| ≤ 2t · sizeR where sizeR upper bounds the total number of edges in the routers.

Proof. (1): We assume that A0 is integral. For i ≥ 1, Ci(e) is a non-negative multiple of 1
hC

for all

e as Ci is a hC-moving cut. By induction, Ai(v) and Bi(v) are non-negative multiples of β
hC

= 1
h .

(2): For i = 0, this holds by the assumption. For i ≥ 1, we have that |Ci| ≤ φ|Ai−1| by
Corollary 3.17 and so

|Ai| ≤ β|degCi
| = 2β|Ci| ≤ 2βφ|Ai−1| = |Ai−1|/N

1/t ≤ |A|/N i/t.

by the choice of φ and by induction hypothesis. Since we have |A2t| ≤ N1−2t/t < 1
h , it follows that

|A2t| = 0 by (1).

(3): This is because there are at most 2t levels.

We show that any demand in G can be routed in G′ with small congestion, length, and steps.
This is the key technical lemma and we defer the proof to Section 4.2.

Lemma 4.5 (Forward Mapping). Let F be a flow in G where DF respects A such that congF = 1
and lengF ≤ h. There is a flow F ′ routing DF in G′ with congF ′ ≤ tκΠ = NO(1/t)poly(t logN) and
stepF ′ ≤ O(t · tR) = O(t2).

Next, we show an embedding from G′ into G.

Lemma 4.6 (Backward Mapping). There exists an embedding ΠG′→G from G′ into G with length
slack 1 and congestion 1.
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Proof. For each level i, there is an embedding ΠRi→G from Ri into G with congestion κΠ and
length hΠ. Recall that E(G′) = ∪2t

i=1E(Ri) where the capacity is scaled down by tκΠ. Define the
embedding ΠG′→G =

∑
iΠRi→G/(κΠt) scaled down by tκΠ.

The length slack of ΠG′→G is 1 because the length of ΠRi→G is hΠ for every i but we have
ℓG′(e) = hΠ for all e ∈ E(G′). The congestion of ΠG′→G is 1 because the congestion of

∑
i ΠRi→G

is at most κΠt but we scaled down by the flow by κΠt.

Now, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2.

Proof. Let G′ = Emulator(G, t, h) be the output of Algorithm 1. By Lemma 4.5 and Lemma 4.6
immediately implies that G′ is an h-length-constrained O(t2)-step emulator for G with congestion
tκΠ = poly(t logN)NO(1/t)/φ = poly(t logN)NO(1/t) because φ−1 = 2βN1/t = Õ(t2NO(1/t)). The
length slack is s = t2 because edges in G′ have length hΠ = t2h by construction. The bound on
|E(G′)| follows Proposition 4.4 (Item 3 and Corollary 3.17.

4.2 Proof of Lemma 4.5: Forward Mapping

Strategy. Our strategy is to construct the flow F ′ that routes DF in G′ incrementally. More
concretely, let D0 = DF . For each i ≥ 1, we will construct a flow F ′

i that partially routes Di−1 in
G′ using only edges from E′

i so that the remaining demand is Di. After i > 2t, we have Di = 0,
i.e., there is no remaining demand. By combining and concatenating these flows F ′

i for all i ≥ 1,
we will obtain F ′ routing DF in G′ with the desired properties.

We will maintain the following invariant, for all i ≥ 0,

1. Di is Ai-respecting, and

2. Di is routable in G with congestion 1 and length h.

Let us check that the invariant holds for i = 0. First, D0 respects A0 because DF respects A by
assumption. Second, D0 is routable in G with congestion 1 and length h because congF = 1 and
lengF ≤ h by assumption. For i ≥ 1, assuming that the invariant holds for i− 1, we will construct
the flow F ′

i that partially routes Di−1 so that the invariant holds for i. We will then argue why the
invariant for all i implies that our final flow F ′ has the desired properties.

Construct F ′
i . The high-level idea is that we try to send a packet from v to w for each demand

pair (v,w) of Di−1. If distG−Ci(v,w) ≤ hcov, then we will successfully route this packet via some
router and be done with it. Otherwise, distG−Ci(v,w) > hcov. In this case, for each (v,w)-flow path
P , we will carefully identify a set of vertices Xv,P and fractionally route the packet from v to Xv,P .
Similarly, from another end, the packet w is routed to a set Xw,P that we carefully define. We think
of v “forward” the packet to Xv,P and w “forward” the packet to Xw,P . The demand between Xv,P

and Xw,P will induce the demand Di in the next level. Below, we explain this high-level idea in
detail.

For each demand pair (v,w) of Di−1 where distG−Ci(v,w) ≤ hcov, there must exist a cluster
S ∈ cluster(Ni) where v,w ∈ S. We assign the pair (v,w) to such arbitrary cluster S. For each
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cluster S ∈ cluster(Ni), we route in G′ all demands Di−1(v,w) for all pairs (v,w) assigned to S
using the edges of router RS for Bi,S. Let F

done
S denote the flow in G′ between vertices in S induced

by the above routing. Let Ddone
S be the demand routed by F done

S .

Now, we take care of the remaining demand pair (v,w) of Di−1 where distG−Ci(v,w) > hcov =
4h. Let Fi−1 be a flow routing Di−1 in G with congestion 1 and length h, whose existence is
guaranteed by the invariant. Consider any (v,w)-flow-path P of Fi−1. Since distG−Ci(v,w) > 4h
but ℓG(P ) ≤ lengFi−1

≤ h, Ci must increase the length P by least 3h.

Let Ev,P the minimal edge set in P closest to v such that the total length increase by Ci is at
least h, i.e.,

∑
e∈Ev,P

Ci(e)hC ≥ h. Next, we define the vertex set Xv,P ⊆ P as follows. For each

(x, y) ∈ Ev,P where x is closer to v, if Ci(x, y) > 0, we include x into set Xv,P . Let us denote
ex = (x, y) ∈ Ev,P as the edge corresponding to x ∈ Xv,P . Observe that, for any x ∈ Xv,P ,

distG−Ci(v, x) ≤ ℓG(P ) + h ≤ 2h ≤ hcov

That is, Xv,P ⊆ ballG−Ci(v, hcov) and so there exists a cluster S ∈ cluster(Ni) containing both v
and Xv,P . For each x ∈ Xv,P , we route flow in G′ from v to x of value at most

Fi−1(P ) ·
Ci(ex)hC

h

via router RS . Note that v, x ∈ RS which is a router for S ∩ (Ai−1 + βdegCi
) because Ai−1(v) > 0

and degCi
(x) > 0. Since

∑
x∈Xv,P

Ci(ex)hC ≥ h by definition, we can route flow from v to Xv,P of

total value Fi−1(P ). Symmetrically, we define Ew,P and Xw,P . Observe that Xv,P and Xw,P are
disjoint because they are defined based on vertices closest to v and w, respectively. We route flow
in G′ from w to Xw,P of total value Fi−1(P ) via RS where S ∈ cluster(Ni) is a cluster containing
both w and Xw,P

For each cluster S ∈ cluster(Ni), let F
forward
S be the flow in G′ induced by the routing described

above, which routes from vertices positive demand in Di−1 to the vertices incident to the cut Ci.
Let Dforward

S be the demand routed by F forward
S .

Finally, we define the flow F ′
i =

∑
S∈cluster(Ni)

F done
S + F forward

S in G′ that routes Ddone
S and

Dforward
S for all S ∈ cluster(Ni) in the manner described above.

Ddone
S and Dforward

S are Bi,S-respecting. Here, we argue that both Ddone
S and Dforward

S are Bi,S-
respecting. This is useful because, by Lemma 3.11, it means that both Ddone

S and Dforward
S can be

routed in RS ⊆ G′ using tR steps and congestion 1.

It suffices to show that Ddone
S and Dforward

S are Bi-respecting because their supports are only on
the pairs of vertices inside S. This is easy to argue for Ddone

S . We have Ddone
S ≤ Di−1 (entry-wise),

Di−1 is Ai−1-respecting, and Ai−1 ≤ Bi (entry-wise). So Ddone
S is Bi-respecting. Next, we analyze

Dforward
S . On one hand, the total demand that each vertex v may send out is

∑
xD

forward
S (v, x) ≤∑

xDi−1(v, x) ≤ Ai−1(v) because Di−1 is Ai−1-respecting by the invariant. On the other hand,
we claim that the total demand that each vertex x may receive is

∑
v D

forward
S (v, x) ≤ βdegCi

(x).
Since Bi = Ai−1 + βdegCi

, we also have Dforward
S is Bi-respecting.

Now, we prove the claim. The key observation is
∑

v D
forward
S (v, x) is at most

∑

e:incident to x

Fi−1(e)
Ci(e)hC

h
.
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This is because, by construction of the flow F forward
S , x may only receive the demand of quantity at

most Fi−1(P )Ci(e)hC

h whenever x ∈ P and e ∈ P is incident to x. But we have

∑

e:incident to x

Fi−1(e)Ci(e)
hC
h

≤
∑

e:incident to x

uG(e)Ci(e)β = βdegCi
(x)

because Fi−1 has congestion 1 in G and so Fi−1(e) ≤ uG(e). Also, β = hC
h by definition. This

finishes the claim.

Define Di and Prove the Invariant. We define Di as the remaining demand after routing
F ′
i . Observe that the remaining demand is as follows. For each demand pair (v,w) of Di−1 where

distG−Ci(v,w) > hcov and each (v,w)-flow-path P of Fi−1, we need route flow of value from Xv,P

to Xw,P of total value Fi−1(P ). Then, Di sums up these demand.

Now, we argue that Di satisfies the invariant. Consider the congestion and length required for
routing Di in G. Observe that Di can be routed through subpaths of the flow-paths of Fi−1 and
Fi−1 is routable with congestion 1 and length h in G. Therefore, Di is routable in G with the same
congestion and length bound.

Next, we show that Di is Ai-respecting. For x ∈ supp(Ai), observe that the total demand that
x sends out in Di is the same as the total demand x receives in

∑
S Dforward

S . But we showed that

this is at most
∑

e:incident to x Fi−1(e)
Ci(e)hC

h ≤ βdegCi
(x) = Ai(x) by the definition of Ai. This

completes the proof why the invariant holds.

Construct F ′ and Bound its Quality. The flow F ′ is obtained by combining and concatenating
the flows that route Ddone

S and Dforward
S overall S ∈ cluster(Ni) for all level i in a natural way so

that F ′ routes DF . That is, in level i, each demand of Di−1 is routed either successfully routed
in G′ via some router in tR steps, or forwards to a new demand in Di by routing in G′ via some
router in tR steps as well. As i ≤ 2t, the maximum step of F ′ is O(t · tR).

Now, we bound the congestion on G′. F ′ simultaneously routes, for all i, Ddone
S and Dforward

S for
each S ∈ cluster(Ni) on RS. SinceDdone

S andDforward
S are Bi,S-respecting, the congestion for routing

both Ddone
S and Dforward

S on RS is at most 1. But each router is edge-disjoint from each other, so
the congestion for routing F ′ on ∪iE(Ri) = ∪i ∪S∈Ni R

S is at most 1. Since E(G′) = ∪iE(Ri)
scaled down the capacity by tκΠ, the congestion for routing F ′ in G′ is then tκΠ.

To summarize, we have successfully constructed a flow F ′ routing DF in G′ with congF ′ ≤ tκΠ
and stepF ′ ≤ O(t · tR) as desired.

4.3 Reduction to Witnessed Expander Decomposition

Observe that we can state Algorithm 1 as a reduction from length-constrained low-step emulators
to witnessed expander decomposition, since the algorithm simply compute witnessed expander
decomposition O(t) times. This can be formalized as follows.

Corollary 4.7. Suppose there is an algorithm A that, given an arbitrary node-weighting Ai−1

of graph G, computes a witnessed expander decomposition Ci and (N ,R,ΠR→G) with parameters
(hcov, φ, β, sdcp) such that
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• Ci is a hC-moving cut

• (Ni,Ri,ΠRi→G) is a (hcov, tR, hΠ, κΠ)-witness of Ai−1 + βdegCi
in G− Ci.

• Ri has total number of edges at most sizeR and the embedding ΠRi→G has path count at most
pathΠ.

• hcov ← 4h, sdcp ← t, φ ← 1/2βN1/t, and β is chosen such that β = hC/h.

Then, there is an algorithm for computing an h-length-constrained O(t · tR)-step emulator G′ for
G with length slack O(t · tR) and congestion slack tκΠ. The emulator contains 2t · sizeR edges and
the embedding ΠG′→G has path count 2t · pathΠ.

The algorithm makes O(t) calls to A and spend additional work of O(|E(G′)|) and depth
O(log n).

Theorem 4.2 is then obtained simply by plugging the existential result of witnessed expander
decomposition with parameters (hcov, φ, β, sdcp). From Corollary 3.17, we need to set β = t2 so
that β = hC/h. Thus, we get

tR = t

κΠ = Õ(NO(1/t)/φ) = NO(1/t)poly(logN)

sizeR = n ·NO(1/t)poly(logN),

which implies Theorem 4.2 by Corollary 4.7.

From this reduction, we also immediately obtain an algorithmic result (Theorem 4.3) by plug-
ging in the algorithmic witnessed expander decomposition from Theorem 3.18 with parameters
(hcov, φ, β, sdcp) into Corollary 4.7. Define t = 1/ǫ. We need to set β = exp(poly(1/ǫ)) so that
β = hC/h. Thus, we get

tR = t

κΠ = Npolyǫ/φ = Npolyǫ

pathΠ, sizeR = m ·NO(1/t)poly(logN),

which implies Theorem 4.3.

5 Bootstrapping Length-Constrained Low-Step Emulators

In this section, we establish efficient algorithms and representations for length-constrained low-step
emulators. At a high level, this requires overcoming two barriers, the first technical and the second
conceptual.

1. Efficiency: The (h, s)-length (φ, κ)-expander decomposition algorithm has a polynomial-in-h
dependency in the running time. Even in unit-length graphs, h can be as large as n, which
is prohibitively slow. Nevertheless, this is a purely technical issue, as a fast decomposition
algorithm for any h can still exist. In fact, we could obtain such an algorithm using the
techniques developed in our paper.
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2. Representation size: Even if there was a fast (h, s)-length (φ, κ)-expander decomposition
algorithm for any value of h, the additional embedding |ΠR→G| may have size at least hn,
since we need to embed at least a linear number of paths as per Theorem 3.18, and each path
of length h can consist of h many edges. Conceptually, this barrier appears unavoidable with
explicit embeddings as required by ΠR→G. In this section, we bypass this issue by stacking
emulators on top of each other in a hierarchical fashion. More precisely, each emulator may
embed not only into the original graph, but into previously computed emulators. This way,
an h-length path can be implicitly represented across multiple levels of stacking: an edge can
embed into an emulator at a previous level, whose path in this emulator contains edges that
embed further into previous emulators, and so on.

Theorem 5.1 (Bootstrapping). Let h, d, t be given parameters. Suppose there exists α > 1 and an
algorithm A that, given an m-edge n-vertex graph G and h′ ≤ (2t + 3)h, computes an h′-length-
constrained t-step emulator G′ of G with length slack s, congestion slack κ, number of edges at most
|E(G′)| ≤ α|E(G)|, and path count of the embedding |path(ΠG′→G)| ≤ α|E(G)|.

Then, there is an algorithm that, given graph G and (h, d, t, h0) as parameters where h0 ≤ h,
computes graphs G′

0, G
′
1, G

′
2, . . . , G

′
d such that for each index i,

1. G′
i is an h0h

i-length-constrained t-step emulator of G with length slack si+1(2t + 3)i and
congestion slack (2κ)i+1.

2. G′
i has at most (2α)i+1m edges.

3. There is an embedding ΠG′
i→G∪G′

i−1
that embeds G′

i into G∪G′
i−1 with length slack 1, conges-

tion 1, path count (2α)i+1m, and maximum step at most (2st+3s)h.2 Moreover, ΠG′
i→G∪G′

i−1

only routes through edges of G with length in the range (h0h
i−1, h0h

i].

The algorithm calls A on d many graphs, each with at most O(d(2α)dm) edges, and, outside these
calls, runs in O(d(2α)dm) work and Õ(d) depth.

Before proving Theorem 5.1, we explain why Item 3 is important; it is crucial in the lemma
below.

Lemma 5.2. For any i ∈ [d], for any flow F ′ in G′
i, there is a flow F in G routing the same

demand where congF ≤ congF ′ and lengF ≤ lengF ′. Given the edge representation flowF ′ of F ′, we
can compute the edge representation flowF of F in O(hst · (2α)i+1m) work and Õ(i) depth.

Proof. By scaling, we can assume that F ′ has congestion and length 1 in G′
i. We will construct

the edge representation flowF of F with congestion and length 1. Although the existence of F
follows immediately because G′

i embeds into G with congestion 1 and length slack 1, below we will
how to construct the flow F inductively level by level for the efficiency on constructing the edge
representation flowF of F .

Define F ′
i ← F ′. Let flowF ′

i
← flowF ′ be the edge representation of F ′

i . We construct a flow F̂i

in G ∪G′
i−1 as follows: for each directed edge (v,w) ∈

←→
E (G′

i), F̂i routes flowF ′
i
(v,w) units of flow

through the (v,w)-flow-paths of ΠG′
i→G∪G′

i−1
. By Theorem 5.1(3), we have |path(ΠG′

i→G∪G′
i−1

)| ≤

2We define G
′
−1 = ∅.

18



(2α)i+1m and stepΠG′
i
→G∪G′

i−1

≤ (2st+3s)h. Thus, we can explicitly compute the path decomposi-

tion of F̂i as well as the its edge representation of flow
F̂i

in O(hst · (2α)i+1m) work and Õ(1) depth
by explicitly summing the flow values overall flow paths of ΠG′

i→G∪G′
i−1

.

Given F̂i, we now define Fi and F ′
i−1 as the flow F̂i restricted to edges G and G′

i−1, respectively.

More precisely, for each directed edge (v,w) ∈
←→
E (G) where F̂i((v,w)) > 0, Fi routes flowF̂i

(v,w)

units of flows through a single edge (v,w). Similarly, for each directed edge (v,w) ∈
←→
E (G′

i−1)

where F̂i((v,w)) > 0, F ′
i−1 routes flow

F̂i
(v,w) units of flows through (v,w). Since each flow path

of Fi and F ′
i−1 routes through a single (directed) edge, the edge representations flowFi and flowF ′

i−1

can be trivially computed in linear work and Õ(1) depth.

Next, we repeat the same argument on the edge representation flowF ′
i−1

of F ′
i−1 and until

i = 0. Finally, we obtain the edge representations flowFi ,flowFi−1 , . . . ,flowF0 of Fi, Fi−1, . . . , F0 in
G, respectively, such that, after concatenating the flow paths of Fi, Fi−1, . . . , F0, we can obtain the
flow F that routes exactly the same demand as F ′. We also have that the edge representation
of flowF = flowFi + flowFi−1 + · · · + flowF0 . The total cost for constructing flowF is then O(hst ·

(2α)i+1m) work and Õ(i) depth as desired.

Note that we have lengF ≤ 1 because ΠG′
i→G∪G′

i−1
has length slack 1 for all i. Moreover,

congF ≤ 1 because ΠG′
i→G∪G′

i−1
has congestion 1 and each Fi only route through edges of G with

length in the range (h0h
i−1, h0h

i] by Theorem 5.1(3).

By plugging the algorithm from Theorem 4.3 into Theorem 5.1 and Lemma 5.2, we obtain
immediately the following, which will be used in the next section.

Corollary 5.3. For any ǫ ∈ (log−c, 1) for some small enough constant c, there are parameters
t = exp(poly1/ǫ) and γ = Npolyǫ such that there is a parallel algorithm that, given a m-edge graph
G, and (h, d, ǫ, h0) as parameters where h0 ≤ h, computes graphs G′

0, G
′
1, G

′
2, . . . , G

′
d such that for

each index i ≤ d, G′
i is an (h0h

i)-length-constrained t-step emulator of G containing mγi edges with
length slack O(t2)i and congestion slack γi. The algorithm has mγdpoly(h) work and Õ(d ·poly(h))
depth.

For any i, given an edge representation of F ′ in G′
i, one can compute the edge representation

flowF of F in G that routes the same demand where congF ≤ congF ′ and lengF ≤ lengF ′ in mγdh
work and Õ(d) depth.

The rest of this section is for proving Theorem 5.1.

5.1 Construction and Analysis

In this subsection, we prove three properties of Theorem 5.1 by induction on i ≥ 0.

The base case i = 0 is straightforward. Let G≤h0 denote the graph containing only edges in G of
length at most h0. By the guarantee of A, G′

0 is an h0-length-constrained t-step emulator of G≤h0

with length slack s and congestion slack κ. By definition, G′
0 is also an h0-length-constrained t-step

emulator of G with the same ganrantees, because any flow F in G of length at most h0 may route
through only edges of length at most h0. Moreover, |E(G′

0)| ≤ αm and ΠG′
0→G has length slack 1,

congestion 1, and path count αm ≤ 2α2m. The maximum step ΠG′
0→G is stepΠG′

0
→G

≤ lengΠG′
0
→G
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Algorithm 2 EmulatorWithBootstrapping(G,h, d, t)

1. Let G′
0 be an h0-length-constrained t-step emulator obtained by calling algorithm A on G≤h0 ,

i.e., the graph containing only edges in G of length at most h0.

2. For 1 ≤ i ≤ d:

(a) Let Hi be the unit-length graph constructed as follows:

i. For each edge e in G′
i−1, add a corresponding unit-length edge e in Hi.

ii. For each edge e in G with length in the range (h0h
i−1, h0h

i], add an edge in Hi of
length ⌈ℓG(e)/(h0h

i−1)⌉.

(b) Let H ′
i be a (2t+ 3)h-length-constrained t-step emulator obtained by calling algorithm

A on Hi.

(c) Let G′
i be the graph H ′

i with all edges modified to have length h0h
i · si+1(2t+ 3)i.

because the edge length of G is integral. We have lengΠG′
0
→G

≤ sh0 ≤ (2st + 3s)h because the

length of edges in G′
0 is h0s and ΠG′

0→G has length slack 1. So stepΠG′
0→G

≤ (2st+ 3s)h. Finally,

ΠG′
0→G only routes through edges of G with length at most h0, by definition of G≤h0 .

For the rest of the proof, assume that the three properties hold for iteration i − 1. The two
lemmas below establish the analogues of Lemmas 4.5 and 4.6 from Section 4. We defer their proofs
to Sections 5.2 and 5.3.

Lemma 5.4 (Backward Mapping). The graph G′
i has at most (2α)i+1m edges and there is an embed-

ding ΠG′
i→G∪G′

i−1
with congestion 1, length slack 1, path count at most (2α)i+1m, and stepΠG′

i
→G∪G′

i−1

≤

(2st+ 3s)h. Also, there is an embedding ΠG′
i→G with congestion 1 and length slack 1.

Lemma 5.5 (Forward Mapping). Let F be a flow in G with lengF ≤ h0h
i. There is a flow F ′

routing DF in G′
i with congF ′ ≤ (2κ)i+1 · congF and stepF ′ ≤ t.

Lemma 5.4 immediately implies properties (2) and (3) of Theorem 5.1 for iteration i. To see
that property (1) is satisfied, we check each requirement in Definition 4.1:

1. By construction, edges in G′
i have the same length h0h

i · si+1(2t+ 3)i.

2. Given a flow F in G where lengF ≤ h0h
i, Lemma 5.5 guarantees a flow F ′ in G′ routing the

same demand where congF ′ ≤ (2κ)i · congF and stepF ′ ≤ t.

3. By Lemma 5.4, G′
i can be embedded into G with congestion 1 and length slack 1.

Finally, we show that the algorithm calls A on d many graphs, each with at most O((2α)dm) edges,
and runs in O((2α)dm) work and Õ(1) depth outside these calls. On each iteration 1 ≤ i ≤ d, we
call A on the graph Hi which consists of edges from G′

i−1 and G (with their lengths modified),
which is at most O((2α)dm) edges in total. Outside of this call, the algorithm clearly runs in time
linear in G′

i−1 and G, which is O((2α)dm) time. Over the d iterations, the total work outside calls

to A is O(d(2α)dm) and the total depth is Õ(d).
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5.2 Proof of Lemma 5.4: Backward Mapping

First, we show that the number of edges in G′
i is at most (2α)i+1m. This is because |E(G′

i)| =
|E(H ′

i)| ≤ α|E(Hi)| by the guarantee of A, and |E(Hi)| ≤ |E(G′
i−1)| + |E(G)| ≤ (2α)im +m. So

|E(G′
i)| ≤ α((2α)i + 1)m ≤ (2α)i+1m. Our next goal is to construct the embedding ΠG′

i→G∪G′
i−1

and ΠG′
i→G with desired properties. To do this, we will show the following embedding: ΠG′

i→H′
i
,

ΠH′
i→Hi

, ΠHi→G∪G′
i−1

, and ΠHi→G. We will obtain the goal by composing them. Recall that all G′
i

have length h0h
i · si+1(2t+ 3)i including the case when i = 0.

1. From G′
i to H ′

i: Since G′
i is the graph H ′

i with all edge lengths scaled up by factor
h0h

i−1si(2t+ 3)i−1, there is a trivial embedding ΠG′
i→H′

i
with congestion 1 and length slack

1/(h0h
i−1si(2t+ 3)i−1).

2. From H ′
i to Hi: By the guarantee of algorithm A, it returns an embedding ΠH′

i→Hi
with

congestion 1, length slack 1. The path count |path(ΠH′
i→Hi

)| is at most α|E(Hi)| ≤ (2α)i+1m.
Next, we bound stepΠH′

i
→Hi

. We have stepΠH′
i
→Hi

≤ lengΠH′
i
→Hi

because the edge length of Hi

is integral. Also, flow path of ΠH′
i→Hi

has length lengΠH′
i
→Hi

≤ (2t+ 3)hs because each edge

in H ′
i has length (2t+3)hs and the length slack of ΠH′

i→Hi
is 1. So stepΠH′

i
→Hi

≤ (2t+3)hs.

3. From Hi to G∪G′
i−1: Since Hi is the graph G′

i−1 scaled down by factor h0h
i−1si(2t+3)i−1,

together with edges in G with length in the range (h0h
i−1, h0h

i] scaled down by factor at
most h0h

i−1. So there is a trivial embedding ΠHi→G∪G′
i−1

with congestion 1 and length slack

max{h0h
i−1si(2t+ 3)i−1, h0h

i−1} = h0h
i−1si(2t+ 3)i−1.

4. From Hi to G: We embed Hi further to G as follows. We split the trivial embedding
ΠHi→G∪G′

i−1
into an embedding Π1 from Hi to G′

i−1 and another embedding Π2 from Hi to G

that only congests edges of length more than h0h
i−1, each with congestion 1 and length slack

at most h0h
i−1si(2t + 3)i−1. By induction, G′

i−1 can be embedded into G with congestion
1 and length slack 1. Actually, we claim the stronger property that G′

i−1 can be embedded
with congestion 1 and length slack 1 into the subgraph of G consisting of all edges of length
at most h0h

i. This is because the edges in G of length greater than hi are ignored in the first
i−1 levels of the construction. So the same inductive statement must hold on the graph with
these edges taken out. Let ΠG′

i−1→G be this strengthened embedding. We compose Π1 with
ΠG′

i−1→G and then combine it with Π2, we obtain an embedding ΠHi→G with congestion 1

and length slack h0h
i−1si(2t+ 3)i−1.

By composing the embedding ΠG′
i→H′

i
, ΠH′

i→Hi
, ΠHi→G∪G′

i−1
, we obtain ΠG′

i→G∪G′
i−1

with con-

gestion 1 and length slack 1/(h0h
i−1si(2t + 3)i−1) × 1 × h0h

i−1si(2t + 3)i−1 = 1. Since both
ΠG′

i→H′
i
and ΠHi→G∪G′

i−1
are trivial embedding, we have |path(ΠG′

i→G∪G′
i−1

)| ≤ (2α)i+1m and

stepΠG′
i
→G∪G′

i−1

≤ (2t+3)hs, inheriting the properties of ΠH′
i→Hi

. By the definition of Hi, we have

ΠG′
i→G∪G′

i−1
only routes through edges of G with length in the range (h0h

i−1, h0h
i].

The embedding ΠG′
i→G with congestion 1 and length slack 1 is obtained by composing ΠG′

i→H′
i
,

ΠH′
i→Hi

, and ΠHi→G.
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5.3 Proof of Lemma 5.5: Forward Mapping

Let F be a flow in G with lengF ≤ h0h
i from the lemma statement. Our goal is to show a flow F ′

routing DF in G′
i with congF ′ ≤ (2κ)i · congF and stepF ′ ≤ t.

Construct flow F ∗ on Hi. We first construct a flow F ∗ that routes DF in Hi with lengF ∗ ≤
(2t+3)h and congF ∗ ≤ ((2κ)i+1) ·congF . We start by decomposing the flow-paths in F as follows.

For each flow-path P in F , we first break down the path into at most 2h segments P1, P2, . . .
such that each path Pi either has length at most h0h

i−1 or consists of a single edge. To do so,
initialize P ′ ← P and i ← 1, and while P ′ is non-empty, let path Pi be the longest prefix of P ′

of length at most h0h
i−1, or the first edge of P ′ if its length is already greater than h0h

i−1; then,
remove the edges of Pi from P ′ and increment i by 1. If Pi is the longest prefix of P ′ of length at
most h0h

i−1, and if there is an edge e after Pi in P ′, then the combined length of Pi and e is greater
than h0h

i−1, and furthermore, e must be removed on the next iteration. It follows that every two
iterations decreases the length of P ′ by at least h0h

i−1, and since P has length at most h0h
i, there

are at most 2h many paths.

For each path Pi of length at most h0h
i−1, add it to a new flow F1, and for the remaining paths

Pi (consisting of single edges of length greater than h0h
i−1), add it to a new flow F2. Let F1 and F2

be the final flows after repeating this procedure for all flow-paths P in F . By construction, we have
F = F1 + F2, congF1

≤ congF , congF2
≤ congF , lengF1

≤ h0h
i−1, and stepF2

= 1, and moreover,
each flow-path P in F decomposes into at most 2h flow-paths in F1 and F2.

By induction, property (1) guarantees that G′
i−1 is an h0h

i−1-length-constrained t-step emulator
for G with congestion slack (2κ)i. Since lengF1

≤ h0h
i−1, there exists a flow F ′

1 in G′
i−1 routing

demand DF1 where congF ′
1
≤ (2κ)i · congF1

≤ (2κ)i · congF and stepF ′
1
≤ t. Since edges Hi have

unit length, there is a corresponding flow F ∗
1 in Hi where congF ∗

1
≤ (2κ)i · congF and lengF ∗

1
≤ t.

By construction, each path in F2 is a single edge e of length ℓG(e) ∈ (h0h
i−1, h0h

i], so there
is a corresponding edge in Hi of length ⌈ℓG(e)/h0h

i−1⌉ ≤ ℓG(x)/(h0h
i−1) + 1. Let F ∗

2 be the flow
in Hi that routes each single edge in F2 through its corresponding edge in Hi. By construction,
congF ∗

2
= congF2

≤ congF .

Finally, we concatenate flows F ∗
1 and F ∗

2 in Hi as follows. For each flow-path P in F , consider
the decomposition into at most 2h segments P1, P2, . . .. For each path Pi of length at most h0h

i−1,
take a corresponding flow in F ∗

1 of length at most t, and for each single-edge path Pi of length greater
than h0h

i−1, take the flow in F ∗
2 along its corresponding edge inHi. In both cases, the flow inHi has

length at most max{t, ℓG(Pi)/(h0h
i−1)+1}. Concatenating these flows over all i produces a flow for

path P of length at most
∑

imax{t, ℓG(Pi)/(h0h
i−1)+1} ≤ 2ht+h0h

i/h0h
i−1+2h = (2t+3)h. Over

all flow-paths P , the final flow F ∗ inHi satisfies lengF ∗ ≤ (2t+3)h and congF ∗ ≤ congF ∗
1
+congF ∗

2
≤

((2κ)i + 1) · congF .

Use emulator H ′
i. SinceH ′

i is a (2t+3)h-length-constrained t-step emulator ofHi with congestion
slack κ, there is a flow F † inH ′

i routingDF ∗ = DF with congF † ≤ κ·congF ∗ ≤ κ·((2κ)i+1)·congF ≤
(2κ)i+1 · congF and stepF † ≤ t. Finally, since G′

i is simply H ′
i with edge length increased, the flow

F † in H ′
i translates to a flow F ′ in G′

i with congF ′ ≤ (2κ)i · congF and stepF ′ ≤ t as promised.
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6 Low-Step Emulators

In this section, we define and construct emulators similar to the length-constrained low-step emu-
lators, but they preserve information about general flows instead of length-constrained flows.

To do this, we need a notion of path-mapping between flows. For any two flows F in G and F ′

in G′ routing the same demand, observe that there exist path-decomposition of F and F ′ denoted
by P and P ′, respectively, and a bijection π : P → P ′ such that for every P ∈ P and P ′ = π(P ), we
have val(F ′(P ′)) = val(F (P )). We call π a path-mapping from F to F ′. We say that π has length
slack s if ℓG′(π(P )) ≤ s · ℓG(P ).

Intuitively, if F can be mapped to F ′ via a path-mapping of length slack s, then F ′ is “as short
as” F up to a factor of s. Now we are ready to define our main object.

Definition 6.1 (Low-Step Emulators). Given a graph G and a node-weighting A in G, we say that
G′ is a t-step emulator of A with length slack s and congestion slack κ if

1. Given a flow F in G routing an A-respecting demand, there is a flow F ′ in G′ routing the
same demand where congF ′ ≤ κ·congF and stepF ′ ≤ t. Moreover, there exists a path-mapping
from F to F ′ with length slack s.

2. G′ can be embedded into G with congestion 1 and length slack 1.

Remark 6.2. Let G′ is a t-step emulator of A in G. Then, G′ is simultaneous an h-length-
constrained t-step emulator of A in G for all h, except that G′ does not satisfies Condition 1 on
length uniformity.

The main theorems of this section are the construction of low-step emulators.

Theorem 6.3 (Existential). Given any graph G, a node weighing A and parameter t, there exists

a t-step emulator G′ for A in G with length slack O(t), congestion slack poly(t logN)NO(1/
√
t), and

|E(G′)| ≤ n ·NO(1/
√
t)poly(logN).

Next, we show an algorithmic version of the above theorem when A = degG and the number of
emulator edges is close to m, instead of n.

Theorem 6.4 (Algorithmic). Given any m-edge graph G and ǫ ∈ (log−cN, 1) for some sufficiently
small constant c, let t = exp(poly(1/ǫ)). There is a parallel algorithm LowStepEmu(G, ǫ) that
constructs a t-step emulator G′ for A in G with length slack exp(poly(1/ǫ)), congestion slack Npolyǫ,
and |E(G′)| ≤ mNpolyǫ.

The algorithms takes mNpolyǫ work and Npolyǫ depth. Given an edge representation flowF ′ of
flow F ′ in G′, there is an algorithm FlowMap(G′,flowF ′) that computes an edge representation
flowF of flow F in G routing the same demand where congF ≤ congF ′ and lengF ≤ lengF ′ using
mNpolyǫ work and Õ(1/polyǫ) depth.

It is a natural question to ask if we can obtain above emulator for general A whose number of
edges is close to |supp(A)|. We believe this to be possible, but leave this for future work.

In the rest of this section, we prove Theorem 6.3 and Theorem 6.4. We will use the following
basic lemma showing how to construct a t-step emulator given 2i-length-constrained t-step emulator
for each i.
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Lemma 6.5. Let A be a a node-weighting of G. For i ∈ {1, . . . , d = logN}, let G′
i be a 2i-length-

constrained t-step emulator of A with length slack s and congestion slack κ. Let G′ =
⊎

iG
′
i with

capacity scaled down by d. Then G′ is a t-step emulator of A with length slack 2st and congestion
κd.

Proof. We will argue the following:

1. Given a flow F in G routing an A-respecting demand with congestion 1, there is a flow F ′

in G′ routing DF where congF ′ ≤ κd and stepF ′ ≤ t. Moreover, there exist a path-mapping
between F and F ′ with length slack 2st.

2. G′ can be embedded into G with congestion 1 and length slack 1.

For the first point, given F , we decompose F = F1 + · · ·+ Fd so that Fi contains all flow paths P
of F where 2i−1 ≤ ℓ(P ) < 2i for i ≥ 1. For each flow Fi in G, by Definition 4.1, there is a flow F ′

i

routing DFi in G′
i with congF ′

i
≤ κ, stepF ′

i
≤ t, and lengF ′

i
≤ st · 2i. Define F ′ = F ′

1 + · · · + F ′
d as

a flow in G′. We now bound the congestion, step, and length slack of F ′, respectively. We have
congG′,F ′ ≤ d · maxi congG′

i,F
′
i
≤ κd because G′ is a disjoint union of G′

i after scaling down the
capacity by d. Also, we have stepF ′ ≤ t as stepF ′

i
≤ t for all i. To bound the length slack, since Fi

and F ′
i route the same demand, there exists a path mapping πi from Fi to F ′

i . Since all flow paths
of Fi and F ′

i have length at least 2i−1 and less than st · 2i respectively, the length slack of πi is at
most 2st. From π1, . . . , πd, there exists a natural path-mapping π from F to F ′ with length slack
2st. This completes the proof of the first point.

For the second point, for each i, let ΠG′
i→G be the embedding from G′

i into G with congestion

1 and length slack 1. Observe that ΠG′→G = 1
d

⊎
iΠG′

i→G is an embedding of G′ (which is
⊎

iG
′
i

after scaling down the capacity by d) into G with congestion d/d = 1 and length slack 1.

Existential Emulators: Proof of Theorem 6.3. From Theorem 4.2, for any i, there exists a
2i-length-constrained t-step emulator G′

i for A in G with with length slack s = O(t) and congestion

slack κ = poly(t logN)NO(1/
√
t) where |E(G′

i)| ≤ nNO(1/
√
t)poly(logN).

By plugging G′
1, . . . , G

′
logN into Lemma 6.5, we obtain a t-step emulator G′ for A in G with

length slack 2st = O(t2) and congestion slack κd = poly(t logN)NO(1/
√
t). Since G′ =

⊎
iG

′
i with

capacity scaled down, the bound of |E(G′
i)| follow.

Algorithmic Emulators: Proof of Theorem 6.4. Given ǫ ∈ (log−c, 1) for some small enough
constant c, let t = exp(poly(1/ǫ)) and γ = N ǫc0 be the parameters from Corollary 5.3 for some
constant c0 > 0. Set ǫ′ ← ǫc0/2 and h ← N ǫ′ as the stacking parameter. We round up h so that
it is a power of 2. For every h0 = 2j where h0 ≤ h, we do the following. Let d′ = loghN = 1/ǫ′.
Therefore, γd

′
≤ N (ǫc0)/ǫc0/2 = N ǫc0/2 = Npolyǫ. We will exploit this inequality.

Construct G′
j,0, G

′
j,1, . . . , G

′
j,d′ via Corollary 5.3 such that for each index k, G′

j,k is an (h0h
k)-

length-constrained t-step emulator of G. Each emulator G′
j,k contains |E(G′

j,k)| ≤ mγd
′
= m·Npolyǫ

edges and has with length slack at most O(t2)d
′
= exp(poly(1/ǫ) · (1/ǫ′)) = exp(poly(1/ǫ)) and

congestion slack κ ≤ γd
′
≤ Npolyǫ.
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Therefore, we obtained 2i-length-constrained t-step emulator G′
i of G containing m · Npolyǫ

edges with length slack s = exp(poly(1/ǫ)) and congestion slack κ = Npolyǫ for all i ≤ logN . By
plugging these emulators G′

i into Lemma 6.5, we obtain a t-step emulator G′ of G with length slack
2st = exp(poly(1/ǫ)) and congestion slack κ logN = Npolyǫ where G′ =

⊎
iG

′
i with capacity scaled

down by logN . Clearly, we have |E(G′)| ≤ m ·Npolyǫ.

Let us analyze the construction time of G′. We call Corollary 5.3 O(log h) = O(1/polyǫ) times,
each of which takes mγd

′
poly(h) = mNpolyǫ work and Õ(d · poly(h)) = Npolyǫ depth.

Finally, given an edge representation flowF ′ of flow F ′ in G′, we show how to compute the edge

representation of the corresponding flow F in G. Given flowF ′ :
←→
E (G′) → R≥0, we define flowF ′

i

as flowF ′ restricted to
←→
E (G′

i) that represents a flow F ′
i in G′

i where lengF ′
i
≤ lengF ′ and congF ′

i
≤

congF ′/ logN (because G′ =
⊎

i G
′
i with capacity scaled down by logN). By Corollary 5.3, we

can compute the edge representation flowFi of flow Fi in G where DFi = DF ′
i
, lengFi

≤ lengF ′ and

congFi
≤ congF ′/ logN inmγd

′
h = mNpolyǫ work and Õ(d) = Õ(1/polyǫ) depth. By concatenating

all Fi, we get the flow F in G where DF = DF ′ , lengF ≤ lengF ′ and congF ≤
∑

i congFi
/ logN ≤ 1.

The edge representation flowF of F can be defined as flowF =
∑

i flowFi . Thus, we can return
flowF in mNpolyǫ work and Õ(1/polyǫ) depth.

7 Routing on an Expansion Witness

In this section, we prove the following.

Theorem 7.1 (Routing on a Router). Given a t-step γ-router R for a node weighting A, an A-
respecting demand D and ǫ ∈ (log−cN, 1) for some sufficiently small constant c, for parameters
λrr(ǫ) = exp(poly(1/ǫ)) and κrr(ǫ) = Npoly(ǫ), one can compute a flow F routing D with

• congestion γκrr(ǫ) and length tλrr(ǫ), and

• support size |supp(F )| ≤ (|E(R)| + |supp(D)|)Npolyǫ,

with (|E(R)| + |supp(D)|) · poly(t)Npolyǫ work and poly(t)Npolyǫ depth.

Since an expansion witness covers neighbourhoods with routers, the above result for routing on
a router gives as a corollary the following result for routing on a witness.

Corollary 7.2 (Routing on a Witness). Given a (h, tR, tΠ, κΠ)-witness (N ,R,ΠR→G) of A in G,
an A-respecting demand D such that for all (a, b) ∈ supp(D) there exists S ∈ S ∈ N such that
a, b ∈ S, and ǫ ∈ (log−cN, 1) for some sufficiently small constant c, one can compute a flow F
routing D with

• length hΠtRλrr(ǫ)) and congestion κΠκrr(ǫ), and

• support size |supp(F )| ≤ (|path(ΠR→G)|+ |supp(D)|)Npolyǫ,

with (|supp(D)|+ |path(ΠR→G)|) · poly(tR)Npoly(ǫ) work and poly(tR)Npoly(ǫ) depth.
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7.1 Section Preliminaries

Our algorithm is based on the cut-matching game, especially in the low hop-length regime developed
in [HHG22].

Cut-Matching Game. For a node weighting A, a cut-matching game with r rounds produces
a sequence of capacitated unit-length graphs G(0), . . . , G(r) on supp(A), where G(0) is the empty
graph. In round i, the cut-player selects based on G(0), G(1), . . . , G(i) a pair of node weightings
(A(i), B(i)), where A(i) and B(i) are A-respecting, have disjoint support, and have equal size (i.e.
|A(i)| = |B(i)|). The matching player then produces a capacitated unit-length matching graph G̃(i),
with edges between the supports of A(i) and B(i), and capacities such that deg

G̃(i) = A(i) + B(i).

The produced graphs are then added to the current graph: G(i+1) := G(i) + G̃(i).

Matching Strategy. For a node weighting A, a (r, t, η,∆)-cut strategy for the cut matching
game with r rounds produces, regardless of the matching player, a graph G(r) which is a t-step
η-congestion router for A with degG(r) ≺ ∆A.

We use the following cut-matching strategy of [HHG22].

Theorem 7.3 (Good Cut Strategy, Theorem 4.2 of [HHG22]). For every node weighting A and
every t ≤ logN , there exists a (r, t, η,∆)-cut strategy with r, η,∆ ≤ Npoly(1/t). Suppose that each
graph G(i) produced by the matching player contains at most m′ edges. Then, such a cut strategy
can be computed in time Õ(poly(t) · (T (m′) +m′)), where T (m′) is the time needed for computing
an (h, 2t)-length (φ,Npoly(1/t))-expander decomposition on a capacitated unit-length m′-edge graph.

Using the expander decomposition algorithm of Theorem 3.18 with ǫ = 1/t (and disregarding
linkedness), we immediately obtain the following.

Corollary 7.4. For every node weighting A and every ǫ ∈ (log−cN, 1) for some sufficiently small
constant c, we can compute a (r, t, η,∆)-cut strategy with t = 1/ǫ and r, η,∆ ≤ Npolyǫ in depth
Õ(1) · poly(t)Npolyǫ and work Õ(m′ + |supp(A)|) · poly(t)Npolyǫ, where m′ is the maximum number
of edges in any graph produced by the matching player.

Note that what we use here has two differences to the result stated in [HHG22]:

• The cut matching game is on a node weighting, instead of a vertex set.

• The matching player can return arbitrary complete flows between the two vertex sets, instead
of being restricted to return a perfect matching.

Obtaining the first generalization is simple: first, round down the node weighting A into powers
of two, and bucket equal powers of two, forming node weightings A1, . . . , Ab (for b ≤ logN) such
that Ai(v) ∈ {0, 2i}, exactly one of Ai(v) is nonzero for any v, and A/2 ≤

∑
i Ai ≤ A. Then, the

node weighting Ai of maximum value |Ai| satisfies |Ai| ≥
1
b

∑
i′ |Ai′ |. Next, we run a cut matching

game on vertex set |supp(Ai)|, with step bound t − 2. Finally, the remaining vertices need to be
connected to the router constructed on |supp(Ai)|. This can be done through b − 1 cuts, each of
which has Aj, j 6= i as one side, and a subdemand A′

i ≤ Ai of size |A′
i| = |Aj | as the other side.

Now, any demand can be routed with congestion b times higher (which can be absorbed into the
Npolyǫ-factor) through paths of length (t− 2) + 2 = t.

The second generalization is possible with a capacitated length-bounded expander decomposi-
tion algorithm. The algorithm or potential analysis of the cut-matching game needs no changes.
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Length-Constrained Multicommodity Flow. We will use the following lemma for h-length
k-commodity flow, obtained by applying a result of [HHT24] to the specific case of routers. Note
that the additive k in support size (as opposed to multiplicative k as in the algorithms of [HHS23])
is critical for our application. For derivation of Lemma 7.5, see Appendix A.

Lemma 7.5. Let G = (V,E) be a t-step γ-router for node weighting A, and {(Aj , A
′
j)}j∈[k] node

weighting pairs such that
∑

j Aj + A′
j is A-respecting and |Aj | = |A′

j | for all j. Then, one can
compute a flow F =

∑
j Fj where Fj is a complete Aj to A′

j -flow for each j ∈ [k] with

• length 2t and congestion Õ(γ), and

• support size |supp(F )| ≤ Õ(|E(G)| + k +
∑

j |supp(Aj +A′
j)|),

with Õ((|E(G)| +
∑

j |supp(Aj +A′
j)|) · k · poly(t)) work and Õ(k · poly(t)) depth.

7.2 Algorithm for Routing on a Router

In this section, we present Algorithm 3, which routes a flow on a router. The correctness of the
algorithm is proven in Section 7.3. The simple extension to routing on a witness is performed in
Section 7.4.

In addition to the length-bounded cut-matching game strategy and flow algorithm presented in
the section preliminaries, Algorithm 3 needs two simple functions SplitFlow and ConcatFlow for
manipulating flows.

SplitFlow splits a complete flow F from a node weighting A =
∑

i∈k Ai to A′ into complete
flows Fi from node weightings Ai to A′

i for
∑

i Fi = F and
∑

iA
′
i = A′:

Lemma 7.6. Let G be a graph, A =
∑

i∈k Ai and A′ be node weightings, and F be a complete flow
from A to A′. Then, there is a deterministic algorithm SplitFlow(F, {Ai}i∈k) that returns (flow,
node weighting) pairs {(Fi, A

′
i)} such that

•

∑
i Fi = F and

∑
iA

′
i = A′,

• Fi is a complete flow from Ai to A′
i, and

•

∑
i |supp(A

′
i)| ≤

∑
i |supp(Fi)| ≤

∑
i |supp(Ai)|+ |supp(F )|

The algorithm has work Õ(|supp(F )|) and depth Õ(1).

Proof. For every vertex v ∈ supp(A), let I := {i : Ai(v) > 0} be the set of node weightings with
nonzero weight on v and a = |I|, and let P1, . . . , Pb ∈ supp(F ) be the flow paths from v. Fix an
arbitrary order of the a node weightings and b paths. Then, form a + b − 1 pairs (i, j), where a
pair is formed if the prefix sums from node weighting i − 1 to i and paths j − 1 to j overlap. For
every pair, add flow path Pj to flow Fi with value equal to the overlap. As sorting can be done
with depth Õ(1), this can be done with depth Õ(1).

ConcatFlow concatenates a complete flow F from node weighting A to node weighting A′ with
a complete flow F ′ from node weighting A′ to node weighting A′′, forming a complete flow F res

from A to A′′.
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Lemma 7.7. Let G be a graph, A,A′ and A′′ be node weightings with |A| = |A′| = |A′′|, F a
complete A-to-A′-flow, and F ′ a complete A′-to-A′′-flow. Then, there is a deterministic algorithm
ConcatFlow(F,F ′) that returns a complete A-to-A′′-flow F res such that

• Each flow path in F res is a concatenation of a flow path in F with a flow path in F ′, and the
total flow value of flow paths using a path P ∈ F or P ′ ∈ F ′ is F (P ) or F (P ′) respectively.

• |supp(F res)| ≤ |supp(F )|+ |supp(F ′)|.

The algorithm has work Õ(|supp(F )|+ |supp(F ′)|) and depth Õ(1).

Proof. For every vertex v ∈ supp(A′), let P1, . . . , Pa ∈ supp(F ) be the flow paths of F to v, and
P ′
1, . . . , P

′
b the flow paths of F ′ from v. We have

∑
i F (Pi) =

∑
j F

′(Pj) as F is a complete flow to
A′ and F ′ is a complete flow from A′.

Now, as with Lemma 7.6, pair paths Pi with paths Pj if the prefix sums of flow value overlap,
to form a + b − 1 pairs (i, j). For every such pair, add a path P that consists of Pi concatenated
with Pj of value equal to the overlap.

Brief overview of Algorithm 3. The algorithm is recursive, with the goal of splitting the
instance into k smaller instances of roughly the same total size (where the ”size” of an instance
equals the number of edges in the router plus the number of pairs in the demand). Suppose the
graph contains more than one vertex (otherwise, we are in a trivial base case). Then, the algorithm
performs the following steps:

1. Split the vertex set of the router into k equal size vertex subsets.

2. Embed a router in each of the vertex subsets, by running a cut-matching game in each subset
in parallel.

3. Compute flows sending demand from each vertex subset to the correct vertex subset, so that
it only remains to route flow within each vertex subset.

4. Recursively route the resulting demand within each vertex subset using the embedded router.

Each recursive instance will be on a vertex set that is a factor k smaller than the current one, for
a recursion depth of logk |V (R)|. Thus, if the total size of the recursive instances is at most N ǫ

times the size of the current instance, the total size of the instances at the bottommost level of the
recursion is N ǫ·logk |V (R)| times the initial size – for k = |V (R)|ǫ, this is Npolyǫ. Notably, we must
ensure that the total size of the recursive instances is not k times the size of the current instance.

In step 2, the routers we recurse on are constructed through parallel cut-matching games: we
run an independent cut-matching game in each of the k vertex subsets. Each round i, we receive

from each game j ∈ [k] a partition (A
(i)
j , B

(i)
j ) of the node weighting of its vertex subset. To

construct the matching, we call Lemma 7.5 once, with k commodities, one for each pair (A
(i)
j , B

(i)
j ).

Thus, the number of flow paths produced is Õ(|E(G)|+k+
∑

j |supp(A
(i)
j +B

(i)
j )|) ≤ Õ(|E(G)|+k)

instead of Õ(k · |E(G)|); as each flow path will correspond to an edge in the constructed routers,
this avoids multiplying the total size of the recursive instances by k. The cut-matching games need
to run for Npolyǫ rounds, but this is an acceptable blowup in instance size.
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For step 3, we want to route the part of the demand that starts and ends at different vertex
subsets (say, Aj and Aj′) from Aj to Aj′ , so that it only remains to route flow within each subset.
To do this, we create a k2-commodity flow instance, where each commodity corresponds to a pair
of source-vertex-subset, destination-vertex-subset, with the node weightings equal to the amount of
flow each vertex of the subsets needs to send or receive from the other subset. We call Lemma 7.5
once to solve this flow instance; again, the additive k2 in support size is critical, as this goes to the
total support size of the demands in the recursive instance.

Step 4 is then simple. It remains to route flow within each vertex subset, which we can do using
the routers embedded in step 2. After computing these flows, we map them back to the original
graph using the embeddings of the routers, and concatenate the flows of step 3 with those produced
recursively.

For notational simplicity, the algorithm represents the demands with node weightings: the
demand is a set of node weightings {Sw}w∈V , with the correspondence Sw(v) = D(v,w).

7.3 Analysis of the Algorithm

Proof of correctness of Algorithm 3 is split into multiple simple lemmas. Lemma 7.8 certifies the
validity of the recursive instance and bounds its size, Lemma 7.9 bounds the work and depth of a
single call, excluding recursive calls, and Lemma 7.10 bounds the congestion, length and support
size of the produced flow. After proving the lemmas, we combine them for the proof of Theorem 7.1.

Lemma 7.8. For each recursive call made by Algorithm 3,

• Gj′ is a t′-step η-router for Aj′ , and

•

∑
w∈Vj′

S′
w and |S′

w| (restricted to Vj′) are Aj′-respecting,

and the total size of recursive instances satisfies

∑

j′


|E(Gj′)|+

∑

w∈Vj′

|supp(S′
w)|


 ≤ Õ

(
k2 + |E(G)| +

∑

w∈V
|supp(Sw)|

)
Npolyǫ.

Proof. For the first claim, the graphs Gj′ are produced through a (r, t′, η,∆)-cut strategy for the
node weightings Aj′ , and are thus t′-step η-routers for Aj′ .

For the second claim, for all j, j′, the sum
∑

w∈Vj′
S′
w,j is Bj,j′-respecting, as F

match
j,j′ is a complete

Aj,j′, Bj,j′-flow, and Lemma 7.6 partitions the destination node weighting. We have Bj,j′(w) :=
|Sw,j| for w ∈ Vj′ , thus

∑
j Bj,j′(w) = |Sw| for w ∈ Vj′ . Since |Sw| is A-respecting and Aj′ is A

restricted to Vj′ , |Sw| is Aj′-respecting for w ∈ Vj′ . Finally, by Lemma 7.6, |S′
w| = |Sw|.

It remains to bound the total size of the recursive instances. We show the following two bounds,
which combine to the desired bound:

•

∑
w |supp(S′

w)| ≤ Õ(k2 + E(G) +
∑

w |supp(Sw)|).

•

∑
j′ |E(Gj′)| ≤ Õ(|E(G)| + k)Npolyǫ.

For the first bound,
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Algorithm 3 Router Routing Algorithm RouteRouter(G, t, γ, ǫ, A, {Sw}w∈V , k)
Input: t-step γ-router G = (V,E) for a node weighting A with edge capacities u, demand node
weightings Sw (D(v,w) = Sw(v)) such that

∑
w∈V Sw and |Sw| are A-respecting, and a recursion

parameter k ≥ 1.
Output: Multicommodity flow F =

∑
w Fw satisfying the demand (i.e. val((Fw)(v,w)) = Sw(v)).

0. Base case: If |V | = 1, output the empty flow as there is no demand to satisfy.

1. Partition vertices into k parts: let V1, . . . , Vk be a partition of V such that
∣∣|Vj | − |Vj′ |

∣∣ ≤ 1
for all j, j′ ∈ [k], and let Aj , Sw,j be the node weightings A, Sw restricted to Vj .

2. Construct routers Gj for each Aj with embeddings Πj: run k cut-matching games in parallel,
one on each Aj, using a (r, t′, η,∆)-cut strategy of Corollary 7.4 with parameters t′ = 1/ǫ and
r, η,∆ ≤ Npolyǫ:

(a) For each round i = 1, 2, . . . , r sequentially:

i. For each j ∈ [k], let A
(i)
j , B

(i)
j ≤ Aj be the ith node weightings produced by the cut

strategy on Aj .

ii. Let F (i) =
∑

j F
(i)
j be a k-commodity flow for node weighting pairs {(A

(i)
j , B

(i)
j )}j∈[k]

computed using Lemma 7.5.

iii. For each flow-path P ∈ F
(i)
j with endpoints v,w, add an edge e = (v,w) of capacity

F
(i)
j (P ) to the matching graph G̃

(i)
j , with embedding Πj(e) = P .

(b) For each j ∈ [k], let Gj = G
(r)
j be the constructed router and Πj its embedding.

3. Compute flows between pairs Vj , Vj′ :

(a) For each j, j′ ∈ [k], let Aj,j′(v) :=
∑

w∈Vj′
Sw,j(v) and Bj,j′(w) := |Sw,j|I[w ∈ Vj′ ].

(b) Let Fmatch =
∑

j,j′ F
match
j,j′ be a k2-commodity flow for node weighting pairs

{(Aj,j′ , Bj,j′)}j,j′∈[k] computed using Lemma 7.5.

(c) For all j, j′ ∈ [k], let {(Fmatch
w,j , S′

w,j)}w∈Vj′
:= SplitFlow(Fmatch

j,j′ , {Sw,j}w∈Vj′
).

(d) Let S′
w :=

∑
j∈[k] S

′
w,j.

4. Recurse to route {S′
w}w∈Vj′

inside each Gj′ :

(a) For all j′ ∈ [k],

i. Let F rec
j′ :=

∑
w∈Vj′

F rec
w := RouteRouter(Gj′ , t

′, η, ǫ, Aj′ , {S
′
w}w∈Vj′

, k).

ii. Let F tail
w := Πj′(F

rec
w ) for w ∈ Vj′ .

iii. Let {(F tail
w,j , ·)}j∈[k] := SplitFlow(F tail

w , {S′
w,j}j∈[k])) for w ∈ Vj′ .

(b) Return F =
∑

w Fw =
∑

j,w ConcatFlow(Fmatch
w,j , F tail

w,j )
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• By Lemma 7.6,
∑

w |supp(S′
w)| ≤

∑
w,j |supp(S

′
w,j)| ≤

∑
w |supp(Sw)|+ |path(Fmatch)|.

• By Lemma 7.5, |supp(Fmatch)| ≤ Õ(k2 +E(G)+
∑

j,j′ |supp(Aj,j′ +Bj,j′)|) = Õ(E(G)+ k2 +∑
w |supp(Sw)|).

• Thus,
∑

w |supp(S′
w)| ≤ Õ(k2 + E(G) +

∑
w |supp(Sw)|).

For the second bound,

• By Lemma 7.5,
∑

j |supp(F
(i)
j )| = |supp(F (i))| ≤ Õ(E(G) + k +

∑
j |supp(A

(i)
j + B

(i)
j )|) =

Õ(E(G) + k).

• The cut strategy (Corollary 7.4) used has r ≤ Npolyǫ rounds, thus
∑

j |E(Gj)| ≤ Õ(|E(G)|+

k)Npolyǫ.

Lemma 7.9. In a call to Algorithm 3, excluding the recursive calls, the work done is Õ((|E(G)|+∑
w |supp(Sw)|) · k

2 ·Npolyǫ · poly(t)) and the depth is Õ(k2 ·Npolyǫ · poly(t)).

Proof. Excluding the recursive calls, work done outside calls to Lemma 7.5 or Corollary 7.4 is
negligble. For those two,

• the cut-strategy of Corollary 7.4 can be computed with work Õ(|E(G)| + k) · poly(t)Npolyǫ

and depth Õ(1) · poly(t)Npolyǫ, as the maximum number of edges m′ in a matching graph
produced is m′ = Õ(|E(G)| + k). The total number of cut-strategies computed is k.

• computing the flows for the cut-matching games takes Õ(|E(G)| · k · poly(t)) work and Õ(k ·
poly(t)) depth, and is done r = Npolyǫ times. Computing the flows for matching vertex sets
Vj , V

′
j takes Õ((|E(G)|+

∑
w |supp(Sw)|) · k

2 · poly(t)) work and Õ(k2 · poly(t)) depth, and is
done once.

Thus, the total work excluding recursive calls is Õ((|E(G)|+
∑

w |supp(Sw)|) · k
2 ·Npolyǫ · poly(t)),

and the depth is Õ(k2 ·Npolyǫ · poly(t)).

Lemma 7.10. Suppose that each flow F rec
j′ :=

∑
w∈Vj′

F rec
w returned by the recursive calls from a

call to Algorithm 3 satisfies the demand {S′
w}w∈Vj′

(i.e. val((F rec
w )v,w) = S′

w(v)), with

• length at most trec,

• congestion at most κrec, and

• support size at most srec · (|E(Gj′)|+
∑

w∈Vj′
|supp(S′

w)|).

Then, the flow F =
∑

w Fw returned satisfies the demand {Sw}w∈V with

• length at most trec ·O(t),

• congestion at most κrec · Õ(γNpolyǫ), and
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• support size at most
(
srec · Õ(Npolyǫ)

)
· (|E(G)| +

∑
w |supp(Sw)|) + Õ(k2).

Proof. First, consider the flows F tail
w := Πj′(F

rec
w ). The length of any path in this flow is at most

2t · trec, as the length of each flow path computed by Lemma 7.5 is at most 2t, and each edge in
Gj′ maps to one such flow path. For this reason, we also have |supp(F tail

w )| = |supp(F rec
w )|.

For congestion, consider some edge e of E(G). The total capacity of edges in the graphs Gj′

that map to a flow path containing e is at most the number of rounds r of the cut strategy times
the maximum congestion of a flow produced by Lemma 7.5, which is Õ(γ), and the maximum
congestion of an edge e′ ∈ E(Gj′) is the edge’s capacity times κrec, thus the congestion of

∑
w F tail

w

is at most r · Õ(γ) · κrec = Õ(γ · κrec) ·Npolyǫ.

Next, consider the flows F tail
w,j . The total congestion and dilation of these flows follows from∑

w,j F
tail
w,j =

∑
w F tail

w . For support size, by Lemma 7.6, we have

∑

w,j

|supp(F tail
w,j )| ≤

∑

w

(
∑

j

|supp(S′
w,j)|+ |supp(F tail

w )|) ≤
∑

w,j

|supp(S′
w,j)|+

∑

w

|supp(F rec
w )|.

and, using the bound
∑

w,j |supp(S
′
w,j)| ≤ Õ(k2 + E(G) +

∑
w |supp(Sw)|) from the proof of

Lemma 7.8 and the assumption from the lemma,

∑

w,j

|supp(F tail
w,j )| ≤

(
srec · Õ(Npolyǫ)

)
· (|E(G)| +

∑

w

|supp(Sw)|) + Õ(k2).

Now, consider the flows Fmatch
j,j′ . As they are computed by a single call to Lemma 7.5, the

congestion of
∑

j,j′ F
match
j,j′ is at most Õ(γ), the length of each flow path is at most 2t, and

∑

j,j′

|supp(Fmatch
j,j′ )| ≤ Õ(k2 + E(G) +

∑

j,j′

|supp(Aj,j′ +Bj,j′)|) = Õ(k2 + E(G) +
∑

w

|supp(Sw)|)

as argued in the proof of Lemma 7.8. As before, after splitting, the flow
∑

w,j F
match
w,j retains the

same congestion bound Õ(γ), the length bound 2t and has the same support size: Õ(k2 +E(G) +∑
w |supp(Sw)|) +

∑
w,j |supp(Sw,j)| = Õ(k2 + E(G) +

∑
w |supp(Sw)|).

The returned flow is the concatenation of the flows Fmatch
w,j with the flows F tail

w,j . Thus, by
Lemma 7.7, the congestion is at most the sum of the two congestions, the length the sum of the
two lengths, and the support size the sum of the two support sizes. In each case, the quantity of
F tail
w,j is larger, giving the desired bounds.

It remains to show the flow satisfies the demand {Sw}w∈V . This is simple: as the flow Fmatch
w,j

is a complete Sw,j-to-S
′
w,j-flow, and F tail

w,j is a complete S′
w,j-to-w-flow, their concatenation is a

complete Sw,j-to-w-flow. The sum of such flows over j is a complete Sw-to-w-flow, as desired.

We are ready to prove Theorem 7.1.

Theorem 7.1 (Routing on a Router). Given a t-step γ-router R for a node weighting A, an A-
respecting demand D and ǫ ∈ (log−cN, 1) for some sufficiently small constant c, for parameters
λrr(ǫ) = exp(poly(1/ǫ)) and κrr(ǫ) = Npoly(ǫ), one can compute a flow F routing D with
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• congestion γκrr(ǫ) and length tλrr(ǫ), and

• support size |supp(F )| ≤ (|E(R)| + |supp(D)|)Npolyǫ,

with (|E(R)| + |supp(D)|) · poly(t)Npolyǫ work and poly(t)Npolyǫ depth.

Proof. We produce a flow with the properties claimed by the theorem by calling Algorithm 3 with
the graph R and node weighting A (which is a t-step γ-router), {Sw}w∈V defined by Sw(v) =
D(v,w), k = |V (R)|ǫ (which results in recursion depth d := ⌈logk |V (R)|⌉ = ⌈1/ǫ⌉, and error
parameter ǫ′ = ǫ1/c

′
for a sufficiently large constant c′, such that

• Õ(Npolyǫ′)d ≤ Npolyǫ, and

• O(1/ǫ′)d ≤ exp(poly(1/ǫ)).

Note that this is possible as ǫ ≥ log−cN , thus Õ(Npolyǫ′) = Npolyǫ′ for a different polynomial.

Now, having set the parameters, consider the jth level of recursion, for 0 ≤ j ≤ d. As the
recursion always splits into k instances, there are kj recursive instances at this level. Let sizj
denote the total size (sum of |E(G′)| +

∑
w |supp(S′

w)|) of instances at the jth level of recursion
(with siz0 = |E(R)|+

∑
w |supp(Sw)|. We have

sizj+1 ≤
(
sizj + kj · k2

)
Õ(Npolyǫ′),

thus sizj ≤ (siz0 + kj+1) · Õ(Npolyǫ′)j .

At every recursion level except the topmost, the graph G′ is a t′-step η-router for t′ = 1/ǫ′ and
η ≤ Npolyǫ′ . Let trecj be the maximum length of a flow returned from the jth recursion level and
κrecj the maximum congestion, as in Lemma 7.10. Then, we have

• trecj−1 ≤ trecj · O(1/ǫ′), and

• κrecj−1 ≤ κrecj · Õ(Npolyǫ′).

For support size, the total support size of the flows returned from the second-bottommost level is
at most sizd−1 · Õ(Npolyǫ′) + kd−1 · Õ(k2). Thus, the final returned flow has

• length at most t ·O(1/ǫ′)d ≤ t · exp(poly(1/ǫ)),

• congestion at most γ · Õ(Npolyǫ′)d ≤ γ ·Npolyǫ, and

• support size at most
(
sizd−1 + kd+1

)
· Õ(Npolyǫ′)d ≤ (|E(R)|+ |supp(D)|)Npolyǫ.

Finally, we analyze the work and depth. By Lemma 7.9, the total work of the algorithm is

sizd · poly(t) = (siz0 + kd+1) · Õ(Npolyǫ′)d · poly(t) ≤ (|E(R)| + |supp(D)|) ·Npolyǫ · poly(t)

and its depth is Õ(k3 ·Npolyǫ′ · poly(t)) ≤ Npolyǫ · poly(t) (as the size of the recursive instance does
not affect its depth, and the recursion depth is k).
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7.4 Routing on a Witness

Recall the definition of an expansion witness:

Definition 3.14 (Expansion Witness). Let G be a graph and A a node weighting. A (h, tR, hΠ, κΠ)-
witness of A in G is a tuple (N ,R,ΠR→G).

• N is a neighborhood cover with covering radius h.

• R is a collection of routers. For each cluster S ∈ N , there exists a (tR, 1)-router RS ∈ R on
vertex set S for node-weighting S ∩ A.

• ΠR→G is an embedding of all routers in R to G. ΠR→G has length hΠ and congestion κΠ.

Our algorithm satisfying Corollary 7.2 is simple: for every demand pair, choose an arbitrary
neighbourhood cover cluster containing both vertices of the pair. Then, call routing in a router
within the embedded router of each cluster to route that cluster’s demand.

Corollary 7.2 (Routing on a Witness). Given a (h, tR, tΠ, κΠ)-witness (N ,R,ΠR→G) of A in G,
an A-respecting demand D such that for all (a, b) ∈ supp(D) there exists S ∈ S ∈ N such that
a, b ∈ S, and ǫ ∈ (log−cN, 1) for some sufficiently small constant c, one can compute a flow F
routing D with

• length hΠtRλrr(ǫ)) and congestion κΠκrr(ǫ), and

• support size |supp(F )| ≤ (|path(ΠR→G)|+ |supp(D)|)Npolyǫ,

with (|supp(D)|+ |path(ΠR→G)|) · poly(tR)Npoly(ǫ) work and poly(tR)Npoly(ǫ) depth.

Proof. First, to simplify the algorithm, for every edge e in a router RS of a cluster S ∈ S ∈ R, we
split the edge into multiple edges, each of which ΠR→G maps to a path, not a flow. After this, the
total size of the routers is |path(ΠR→G)|.

Now, let DS , S ∈ S ∈ N be demands such that DS is restricted to cluster S, DS(a, b) ∈ D(a, b),
and

∑
S DS = D. For each cluster S, let F router

S be a flow routing DS on RS computed by
Theorem 7.1 with error parameter ǫ. Then, F router

S has length tR · λrr(ǫ), congestion 1 · κrr(ǫ) and
support size (|E(RS)|+ |supp(DS)|) ·N

polyǫ. This takes (|E(RS)|+ |supp(DS)|) ·N
polyǫ · poly(tR)

work and has depth Npolyǫ · poly(tR); over all the clusters S, the total support size is (|supp(D)|+
|path(ΠR→G)|) ·N

polyǫ and the work is (|supp(D)|+ |path(ΠR→G)|) ·N
polyǫ · poly(tR).

Next, we map the flows back to the original graph using ΠR→G. Let FS := ΠR→G(F
router
S )

be the flow on the router mapped into G by the embedding of the expansion witness, and F =∑
S FS . Then, F has length hΠ · tR · λrr(ǫ), congestion κrr(ǫ) · κΠ and support size |supp(F )| =∑
S∈S∈R |F router

S |, as desired. The work and depth of this stage of the algorithm are negligible.

8 Low-Step Multi-commodity Flow

In this section, we give O(t)-step k-commodity flow algorithms whose the running time are |E| ·
poly(t)Npolyǫ. We emphasize that the running time is independent from k, in contrast the algo-
rithms from [HHS23]. Later in Section 10, we will further remove the poly(t) dependency.
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Below, a flow F is said to partially route a demand D if DF ≤ D (pointwise), where DF is the
demand routed by the flow F . The definition of the total length and average length of a flow are
defined as follows:

totlen(F ) :=
∑

P

F (P )ℓ(P ) =
∑

e

F (e)ℓ(e),

avglen(F ) :=
totlen(F )

val(F )
.

The following is the main result of this section. We can control both the maximum step t and total
length bound T of the flow. The bound of the total length is very useful, as we will see in Section 9,
as it us to “boost” the congestion slack κ to match the length slack s ≪ κ.

Theorem 8.1 (Low-step Non-concurrent Flow). Let G be a graph with integral edge lengths
ℓ ≥ 1 and capacities u ≥ 1, D an integral demand, t ≥ 1 a step bound, T ≥ 1 a total length
bound, and ǫ ∈ (log−cN, 1) for some sufficiently small constant c a tradeoff parameter. Then,
LowStepNonConcFlow(G,D, t, T, ǫ) (Algorithm 6) returns a multicommodity flow F partially
routing D, such that

1. F has maximum step length ts, total length Ts and congestion κ for step slack s = exp(poly1/ǫ)
and congestion slack κ = Npoly(ǫ). The support size of F is (|E|+ supp(D))Npolyǫ.

2. Let F ∗ be the maximum-value multicommodity flow partially routing D of step length t, total
length T and congestion 1. Then, val(F ) ≥ val(F ∗).

The algorithm has depth poly(t)Npoly(ǫ) and work (|E| + supp(D)) · poly(t)Npoly(ǫ).

The organization of this section is as follows. In Section 8.1, we first give a weak cutmatch al-
gorithm, which we need later. In Section 8.2, we give an algorithm for computing multi-commodity
flows with bounded maximum length. We will use this key subroutine to prove Theorem 8.1 in
Section 8.3.

8.1 Weak Cutmatch for Many Commodities

For the flow algorithms, we will need a weak cutmatch algorithm WeakCutmatch. It has a similar
guarantee as the cutmatch algorithm from [HHS23], but, in contrast to [HHS23], our running time
is independent of the number of commodities. This comes at the cost of slack in both length and
congestion and a weaker bound on the size |C| of the cut: the cut has size at most a φ-fraction of
the size of the total demand, instead of just the un-routed part of the demand.

Lemma 8.2. Let G be a graph with integral edge lengths ℓ ≥ 1 and capacities u ≥ 1, D an integral
demand, h ≥ 1 a maximum length bound, φ a sparsity parameter and ǫ ∈ (1/ logN, 1) a tradeoff
parameter. Then, WeakCutmatch(G,D, h, φ, ǫ) returns a multicommodity flow, h-length moving
cut pair (F,C) such that

1. F partially routes D. Moreover, val(F(a,b)) ∈ {0,D(a, b)}. That is, for every vertex pair,
either none of the demand or all of the demand is routed by F .
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Algorithm 4 Weak Cutmatch: WeakCutmatch(G,D, h, φ, ǫ)

Input: Graph G with integral edge lengths ℓ ≥ 1 and capacities u ≥ 1, integral demand D,
maximum length bound h ≥ 1, sparsity parameter φ, tradeoff parameter ǫ.
Output: A pair (F,C) of a multicommodity flow partially routing D and a h-length moving cut.
It is guaranteed that F has length hs and congestion κ

φ for s = exp(poly(1/ǫ)) and κ = Npoly(ǫ),
that |C| ≤ φ · |D|, and that the demand between any vertices h-close in G− C is routed by F .

1. Let s′ := exp(poly(1/ǫ)) and κ′ := Npoly(ǫ), with appropriate asymptotics.

2. Let C and (N ,R,ΠR→G) be a pair of a h-length moving cut of size φ|D| and a
(h, ⌈1/ǫ⌉, hs′ , 2κ′/φ) expansion witness for G − C, computed by Theorem 3.18 on G and
node weighting load(D) with parameters (h, φ/2, 0, ⌈1/ǫ⌉).

3. Let D′(a, b) = D(a, b)I[∃S ∈ S ∈ N : a, b ∈ S].

4. Let F be an flow routing D′ of length hs′3, congestion κ′2 and support size (|E| +
|D′|)Npolyǫ computed by Corollary 7.2 on graph G − C, node weighting load(D) and wit-
ness (N ,R,ΠR→G).

5. Return (F,C), with length slack s = s′3 and congestion slack κ = 2κ′2.

2. F has length hs and congestion κ
φ for length slack s = exp(poly(1/ǫ)) and congestion slack

κ = Npoly(ǫ). The support size of F is (|E|+ supp(D))Npolyǫ.

3. For any (a, b), if distG−C(a, b) ≤ h, then val(F(a,b)) = D(a, b). That is, F routes all the
demand between any vertex pair not h-separated by the cut C.

4. C has size at most φ · |D|.

The algorithm has depth poly(h)Npoly(ǫ) and work (|E|+ |supp(D)|) · poly(h)Npoly(ǫ).

The algorithm for Lemma 8.2 is simple. We first compute a witnessed length-constrained φ-
expander decomposition C for load(D) of size |C| ≤ φ|D|. Since G− C has an expansion witness,
all demand pairs (a, b) that appear together in some cluster S ∈ S ∈ N that are still close in G−C
can be fully routed using routing in a witnessed graph (Corollary 7.2) with a length-constrained
multicommodity flow of congestion ≈ 1/φ.

Proof of Lemma 8.2. We show each of the claims.

• Property 1. Corollary 7.2 guarantees the returned flow routes exactly D′. As D′(a, b) ∈
{0,D(a, b)}, for every vertex pair, either none of the demand or all of the demand is routed.

• Property 2. The flow has length hs = hs′3 and congestion κ/φ = 2κ′2/φ with appropriately
chosen s′ and κ′ as Corollary 7.2 produces a flow of length h · tRtΠλrr(ǫ) and congestion
κΠκrr(ǫ). For support size, Theorem 3.18 guarantees the embedding ΠR→G has path count
|E|Npoly(ǫ), thus the call to Corollary 7.2 produces a flow of support size (|E|Npoly(ǫ) +
|supp(D)|)Npoly(ǫ) = (|E|+ |supp(D)|)Npoly(ǫ).

36



• Property 4. If distG−C(a, b) ≤ h, then a, b ∈ S for some S ∈ S ∈ N as N is a neighbourhood
cover of G−C with covering radius h.

• Property 3. Theorem 3.18 guarantees that |C| ≤ (φ/2)|load(D)| = φ|D|.

• Work and depth. The algorithm’s work consists of a call to Theorem 3.18 and a call to
Corollary 7.2, both of which have depth at most poly(h)Npoly(ǫ) and work (|E|+ supp(D)) ·
poly(h)Npoly(ǫ), thus the algorithm has this work and depth.

8.2 Maximum Length-Constrained Non-Concurrent Flow

In this section, we give an algorithm for computing multi-commodity flows with bounded maximum
length. When we use later it as a subroutine, we the input demand will be 1

n2 -fractional. This is
why the statement handles 1

n2 -fractional demands instead of just integral demands.

Lemma 8.3. Let G be a graph with integral edge lengths ℓ ≥ 1 and capacities u ≥ 1, D a 1
n2 -

fractional demand, h ≥ 1 a maximum length bound, and ǫ ∈ (log−cN, 1) for some sufficiently small
constant c a tradeoff parameter. Then, MaxLenNonConcFlow(G,D, h, ǫ) (Algorithm 5) returns
a 1

n2 -fractional multicommodity flow F routing a subdemand D′ of D such that

1. F has maximum length hs and congestion κ for s = exp(poly1/ǫ) and κ = Npoly(ǫ). The
support size of F is (|E|+ supp(D))Npolyǫ.

2. Let F ∗ be the maximum-value multicommodity flow partially routing D of maximum length h
and congestion 1. Then, val(F ) ≥ val(F ∗).

The algorithm has depth poly(h)Npoly(ǫ) and work (|E|+ supp(D)) · poly(h)Npoly(ǫ).

Our high-level strategy is as follows. We try to repeatedly apply WeakCutmatch to send flow
as much as possible. We will set its sparsity parameter to be small enough so that the cuts from
WeakCutmatch have small total size. Since WeakCutmatch guarantees that the demands
pairs that are not cut, i.e., those still close after applying the cut, must have been fully routed, this
mean that we have send a lot of flow. The complete algorithm description of Lemma 8.3 to carry
out this strategy is shown in Algorithm 5.

Algorithm Explanation. We motivate the algorithm in more details here. First, we scale up the
demand and capacity of the input graph by γ = n2 from the beginning to allow us to solely work on
integral demands. Our returned flow Fres directly satisfies Property 1 as the sum of logarithmically
many flows returned from WeakCutmatch plus a tiny, short flow. However, showing the second
property, i.e. that val(Fres) ≥ val(F ∗), is non-trivial.

The algorithm has two main loops. For the outer for-loop, we will make progress as follows.
After the iteration i of the outer loop, let F ∗

i denote the max-value flow with small maximum length
and congestion partially routing remainingD′. We will route a flow F (and add it Fres) to with value
val(F ) ≥ val(F ∗

i )/2 as long as val(F ∗
i ) ≥ 2n2. This implies that, either either val(F ∗) − val(Fres)

halves, or we have val(F ∗)− val(Fres) ≤ 2n2 for every iteration. If the latter happens, then we will
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Algorithm 5 Length-Bounded NC Multicommodity Flow: MaxLenNonConcFlow(G,D, h, ǫ)

Input: Graph G with integral edge lengths ℓ ≥ 1 and capacities u ≥ 1, 1
n2 -fractional demand D,

maximum length bound h ≥ 1, tradeoff parameter ǫ.
Output: A multicommodity flow F of length hs and congestion κ routing a 1

n2 -fractional sub-

demand of D for length slack s = exp(poly1/ǫ) and congestion slack κ = Npoly(ǫ). For every
multicommodity flow F ∗ partially routing D of maximum length h and congestion 1, it is guaran-
teed that val(F ) ≥ val(F ∗).

1. Let γ := n2 and κ′ := 16γ · ⌈log γ|D|⌉.

2. Let Fres ← 0, D′ ← γD, and G′ be G with capacities γu.

3. For i ∈ {1, 2, . . . , ⌈log |D|⌉}:

(a) Let C ← 0, F ← 0 and Sclose ← supp(D′).

(b) For p ∈ {1, 2, . . . , ⌈log γ|D|⌉}:

i. Let D′
cap(a, b) := min(D′(a, b), 2p) · I[(a, b) ∈ Sclose].

ii. Let (C ′, F ′) = WeakCutmatch(G′ − C,D′
cap, 2h, 1/κ

′ , ǫ).

iii. Set C ← C + C ′ and F ← F + F ′.
iv. Set D′(a, b) ← D′(a, b)− val(F ′

(a,b)) for each (a, b) ∈ supp(D′).

v. Set Sclose ← Sclose ∩ {(a, b) : val(F ′
(a,b)) > 0}

(c) Fres ← Fres + F .

4. Let F ′
final = WeakCutmatch(G′ − C,D′, 2h, 1/N2, ǫ).

5. Let Ffinal be a subflow of F ′
final with integral DFfinal

of value val(Ffinal) = min(val(F ′
final), 2n

2)
routing a subdemand of D′.

6. Let Fres ← Fres + Ffinal.

7. Return 1
γFres.

add Ffinal to Fres at the end of value min(val(F ∗)−val(Fres), 2n
2). Note that Ffinal can be computed

trivially as we do not need to worry about the congestion as we have scaled up the capacity of the
graph by n2 from the beginning.

The inner for-loop tries to construct F where val(F ) ≥ val(F ∗
i )/2 assuming val(F ∗

i ) ≥ 2n2. Our
strategy is to maintain a subdemand D′

cap of D′ such that |D′
cap| ≤ 2val(F ∗

i ). Our definition of
D′

cap satisfies this when p = 1 since val(F ∗
i ) ≥ 2n2. Also, |D′

cap| can grow by only a factor of 2 per
iteration of the inner loop.

We will use WeakCutmatch to cut or route D′
cap. The interesting case is when val(F ∗

i ) ≤
|D′

cap| ≤ 2val(F ∗
i ). If WeakCutmatch routes more than half of D′

cap, then we have routed at least
val(F ∗

i )/2 and we have achieved the goal. Otherwise, WeakCutmatch cuts/separates more than
half of D′

cap which reduces |D′
cap| in the next iteration and maintain the invariant |D′

cap| ≤ 2val(F ∗
i ).

The bound of |D′
cap| is useful because it means that each cut from WeakCutmatch has size
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bounded by φ|D′
cap| = O(φval(F ∗

i )) where φ is a parameter we can choose. So the total size size

after Õ(1) iterations is small compared to val(F ∗
i ). So all cuts found did not “separates” too many

demand pairs routed by F ∗
i . Since WeakCutmatch guarantees that the demand pairs that are

not separated must be are completely routed. This implies that the total flow we have routed
during the inner for loop is at least val(F ∗

i )/2 again.

For the proof of the theorem, we will use the following lemmas:

Lemma 8.4. Let G be a graph with edge capacities u and lengths ℓ. Let F be a h-length multi-
commodity flow and C a 2h-length moving cut. Let F ′ be the subflow of F that is 2h-separated in
G− C, i.e., for all paths P , F ′(P ) := F (P )I[lG−C (P ) > 2h]. Then,

val(F ′) ≤ 2|C| · congF .

Proof. Let L be the total length of the flow F in G. The total length of F in G − C is at
least L + h · val(F ′), as the length of the subflow F ′ has increased from at most h to at least
2h. On the other hand, the total length of F in G − C is at most L +

∑
e F (e) · 2h · C(e) ≤

L+ congF · 2h
∑

e u(e)C(e) = L+ congF · 2h|C|. This implies that gives

L+ h · val(F ′) ≤
∑

P

F (P )ℓG−C(P ) ≤ L+ 2h · |C| · congF .

Cancelling L and dividing by h gives val(F ′) ≤ 2|C| · congF , as desired.

Lemma 8.5. Let G′ be a n-vertex graph with edge capacities u ≥ n2 and lengths ℓ, h a maximum
length bound, γ ≥ 1 a congestion bound and D an integral demand. Then, there exists a flow F ∗

of maximum length h and congestion 2γ that routes an integral subdemand of D, such that any
flow F ∗∗ of maximum length h and congestion γ that routes a subdemand of D satisfies val(F ∗) ≥
val(F ∗∗).

Proof. Let F ∗∗ be the maximum-value flow of length h and congestion γ routing a subdemand of
D. Let F ∗ be the flow created by rounding up the flow value between every vertex pair up to the
next integer. This increases the total flow by at most n2, and thus the total flow over any edge
by at most |supp(D)| ≤ n2. Thus, as the capacity of every edge is at least n2, the congestion goes
up by at most 1 ≤ γ, while the flow value does not decrease. The routed demand still remains a
subdemand of D, as D is integral.

Lemma 8.6. At the end of each iteration of the for-loop on line 3, for every (a, b), either D′(a, b) =
0 (the flow fully satisfies the (a, b)-demand) or distG′−C(a, b) > 2h (the pair is 2h-separated).

Proof. Consider the iteration of the for-loop on line 3b where p = ⌈log γ|D|⌉. Then, 2p ≥ γ|D|,
and in particular D′(a, b) ≤ 2p holds for every vertex pair (a, b). There are four possible situations
before the updates to C,F,D′ and Sclose of the iteration:

• D′(a, b) = 0,

• (a, b) ∈ Sclose and val(F ′
(a,b)) = D′

cap(a, b),

• (a, b) ∈ Sclose and val(F ′
(a,b)) = 0, and
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• (a, b) 6∈ Sclose.

In the first case we are trivially done. In the second case, we are done as D′(a, b) = D′
cap(a, b). In

the third case, since the cutmatch algorithm guarantees that for (a, b) with distG′−C(a, b) ≤ 2h we
have val(F ′

(a,b)) = D′
cap(a, b), the pair must be 2h-separated. Similarly, for (a, b) to have left Sclose

in a previous iteration, their distance must have been greater than 2h. Thus, as distances cannot
decrease, their distance remains greater than 2h.

We are ready to prove Lemma 8.3.

Proof. The work and depth bounds are clear, as the algorithm’s work and depth are dominated by
Õ(1) calls to Algorithm 4.

Property 1. The cutmatch algorithm only produces integral flows, thus the returned flow is 1
n2 -

fractional. The flow Fres before adding Ffinal is the sum of Õ(1) flows, each produced by Algorithm 4
with maximum length bound 2h and sparsity parameter 1

κ′ = O(1/γ logN). Algorithm 4 thus

guarantees that the flow has length 2h · s′′ = h · exp(poly1/ǫ) and congestion κ′κ′′ = γNpoly(ǫ), for
s′′ = exp(poly1/ǫ) and κ′′ = Npoly(ǫ). The flow Ffinal has length 2h · s′′ and congestion at most its
value of 2γ, thus adding it to Fres does not change the asymptotic length and congestion, and the
returned flow has congestion Npoly(ǫ), as desired. Finally, the support size is (|E|+supp(D))Npolyǫ

as F is the sum of Õ(1) flows of support size (|E|+ supp(D))Npolyǫ.

Property 2. The algorithm starts by scaling up all capacities and demands by γ = n2. Then,
u ≥ n2, thus by Lemma 8.5, the maximum-value length-h congestion-2γ flow F ∗ routing an integral
subdemand of γD has value at least the value of any maximum-length-h congestion-γ flow routing
a possibly fractional subdemand of γD. It thus suffices to show that val(Fres) ≥ val(F ∗) at the end
of the algorithm.

Fix a iteration i of the outer for-loop on line 3. Let D′
i be the remaining demand D′ at

the start of iteration i. Let F ∗
i be the maximum-value length-h and congestion-2γ flow routing

an integral subdemand of D′
i. Consider the demand D∆

i = min{D′
i,DF ∗} where DF ∗ is routed

by F ∗. Since D∆
i is a subdemand of DF ∗, it is routable by a length-h congestion-2γ flow. So

val(F ∗
i ) ≥ |D∆

i | ≥ val(F ∗)− val(Fres) for Fres at the beginning of iteration i.

If val(F ∗
i ) ≥ 2n2, we will show that the flow F constructed at the end of iteration i satisfies

val(F ) ≥ val(F ∗
i )/2. Therefore, at the end of iteration i when we set Fres ← Fres + F , either

val(F ∗) − val(Fres) halves, or we have val(F ∗) − val(Fres) ≤ 2n2. As the difference is initially at
most γ|D| = n2|D| and at the end of the algorithm we add a flow Ffinal of value 2n

2 to the returned
flow, we have that after ⌈log |D|⌉ iterations and after line 6, we have val(Fres) ≥ val(F ∗).

Now, assume that val(F ∗
i ) ≥ 2n2. We show that the flow F constructed satisfies val(F ) ≥

val(F ∗
i )/2. To show this, by Lemma 8.6, we have that the produced cut C 2h-separates all of the

demand not routed by F . Thus, it is sufficient to show that at most half of F ∗
i is 2h-separated by

C.

By Lemma 8.4, any length-2h cut C 2h-separates at most 4γ|C| of F ∗
i , as F ∗

i has congestion
at most 2γ. Thus, as long as |C| ≤ val(F ∗

i )/8γ, C separates at most half of F ∗
i . The size of the
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length-2h cut C ′ produced on line 3(b)ii of the algorithm is at most

1

κ′
|D′

cap| =
1

8γ

1

⌈log γ|D|⌉
·

(
1

2
|D′

cap|

)
,

by the guarantee of WeakCutmatch from Lemma 8.2. Thus, assuming that |D′
cap| ≤ 2val(F ∗

i )
at every point during iteration i, we have that the size of the final length-2h cut C produced is at

most
val(F ∗

i )
8γ . So, at most half of F ∗

i can be 2h-separated by C, as desired.

Next, we prove the following result, which gives either |D′
cap| ≤ 2val(F ∗

i ) at every point during

iteration i or directly that val(F ) ≥ 1
2val(F

∗
i ), by induction: for every p ∈ {0, 1, . . . , ⌈log γ|D|⌉},

either val(F ) ≥ 1
2val(F

∗
i ), or |D

′
cap,p+1| ≤ 2val(F ∗

i ), where D
′
cap,p is the demand defined at line 3(b)i

in the iteration of the loop on line 3b for a particular p.

The base case follows from |D′
cap,p| ≤ 2p|supp(D′)| ≤ 2n2 ≤ 2val(F ∗

i ) when p = 1. Assume the

claim holds for p′ < p. If for the previous iteration val(F ) ≥ 1
2val(F

∗
i ), we are done, as the value of

F cannot decrease and the value of F ∗
i is invariant. Thus, we may assume that the other condition

holds.

Observe that |D′
cap,p+1| ≤ 2|D′

cap,p|. Thus, if |D′
cap,p| ≤ val(F ∗

i ), we are done. Assume the
contrary, and consider the pair (C ′, F ′) returned by WeakCutmatch. By Lemma 8.2, either
the moving cut C ′ drops pairs from Sclose contributing at least a 1

2 -fraction of |D′
cap,p| or the flow

F ′ has value val(F ′) ≥ 1
2 |D

′
cap,p|. In the latter case, we are done, as now val(F ) ≥ val(F ′) ≥

1
2 |D

′
cap,p| ≥

1
2val(F

∗
i ). In the former case, we are done, as the demand pairs dropped from Sclose

will not contribute to |D′
cap,p| the next iteration and all iterations after, and the demand value for

the other pairs is at most doubled, and thus |D′
cap,p+1| ≤ 2(12 |D

′
cap,p|) ≤ 2val(F ∗

i ).

8.3 Low-Step Total-Length-Constrained Non-Concurrent Flow

In this section, we prove Theorem 8.1. The algorithm needs to round edge lengths to go from a
step bound and a length bound to just a length bound. The following fact shows the correctness
of the approach:

Fact 8.7. Let G be a graph with positive edge lengths ℓ, h be a length bound, and t be a step bound.

Define the length function ℓ′(e) =
⌈
t·ℓ(e)
h

⌉
. Then, for any path p, we have

max

(
|p|,

t · ℓ(p)

h

)
≤ ℓ′(p) ≤ |p|+

t · ℓ(p)

h
.

In particular,

• if ℓ(p) ≤ h and |p| ≤ t, then ℓ′(p) ≤ 2t, and

• if ℓ′(p) ≤ 2t, then ℓ(p) ≤ 2h and |p| ≤ 2t.

Proof. We have ℓ′(p) =
∑

e∈p
⌈
t·ℓ(e)
h

⌉
. Clearly, max

(
|p|, t·ℓ(p)h

)
≤

∑
e∈p

⌈
t·ℓ(e)
h

⌉
≤ |p|+ t·ℓ(p)

h .

Now, we describe the algorithm of Theorem 8.1 in Algorithm 6.
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Algorithm 6 Low-Step Non-Concurrent Flow: LowStepNonConcFlow(G,D, t, T, ǫ)

Input: Graph G with integral edge lengths ℓ ≥ 1 and capacities u ≥ 1, integral demand D, step
bound t ≥ 1, total length bound T ≥ 1, tradeoff parameter ǫ.
Output: A multicommodity flow F partially routing D of step length ts, total length Ts and
congestion κ for s = exp(poly1/ǫ) and κ = Npoly(ǫ). For every multicommodity flow F ∗ partially
routing D of step length t, total length T and congestion 1, it is guaranteed that val(F ) ≥ val(F ∗).

1. Let s′ = exp(poly(1/ǫ)) be the length slack of Algorithm 5 on tradeoff parameter ǫ.

2. Let T ′ = 5s′T .

3. Let F ← 0 and D′ ← D.

4. For p ∈ {0, 1, . . . , ⌈log nN⌉}:

(a) Let h = 2p.

(b) Let ℓ′(e) =
⌈
t·ℓ(e)
h

⌉
and G′ be G with edge lengths ℓ′.

(c) Let F aug = MaxLenNonConcFlow(G′,D′, 2t, ǫ).

(d) Let λ be the maximum value in [0, 1] such that totlen(F + λF aug) ≤ T ′.

(e) Set F ← F + λF aug.

(f) If λ < 1, return F .

(g) For all (a, b) ∈ supp(D′), set D′(a, b) ← D′(a, b) − val(F aug
(a,b)).

5. Return F .

Proof. The work and depth are dominated by the calls to MaxLenNonConcFlow, of which there
are Õ(1)-many. Note that since flow returned by MaxLenNonConcFlow routes a 1

n2 -fractional
subdemand, D′ is always 1

n2 -fractional and is a valid input for MaxLenNonConcFlow. Now, we
prove the two properties of the returned flow F .

Property 1. Let s = exp(poly1/ǫ) and κ = Npoly(ǫ) be the length slack and congestion slack
respectively of MaxLenNonConcFlow from Lemma 8.3. By Fact 8.7, the step bound of F is at
most 2ts′ because F has maximum ℓ′-length at most 2ts′. The total length bound of F is at most
T ′ = 3s′b as explicitly enforced by line 4d. The flow F has congestion κ⌈log nN⌉ as there are at
most 1 + ⌈log nN⌉ iterations. The support size bound supp(F ) = (|E| + supp(D))Npolyǫ follows
directly from Lemma 8.3.

Property 2. Let F ∗ be the maximum-value multicommodity flow partially routing D using step
t, total length T and congestion 1. Our goal is to show that val(F ) ≥ val(F ∗).

For p ∈ {0, 1, . . . , ⌈log nN⌉}, let F ∗
p be the sub-flow of F ∗ with path lengths in ℓ at most 2p.

Note that F ∗ = F ∗
⌈log nN⌉ because simple paths have length at most nN as ℓ(e) ≤ N . Let D∗

p be the

demand routed by F ∗
p . Let F ∗aug

p be the flow that augment F ∗
p−1 to F ∗

p , i.e., F
∗
p = F ∗

p−1 + F ∗aug
p .

Let F aug
p be the flow produced by Algorithm 5 from Lemma 8.3 on line 4c when h = 2p. Let

Fp = Fp−1 + F aug
p where F−1 = 0. That is, F aug

p augments Fp−1 to Fp.
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First, we show that val(Fp) ≥ val(F ∗
p ) for all p. Consider D

′
p = D′ −DFp−1 . That is, D

′
p is the

remaining demand D′ at the start of the iteration of the loop when h = 2p. Consider the demand
D∆

p = min(D′
p,D

∗
p). By the definition of F ∗

p , there is a step-t ℓ-length-h congestion-1 flow routing

D∆
p . So, D∆

p can be routed by a flow with ℓ′-length 2t and congestion 1 by Fact 8.7. Therefore,
by the guarantee of MaxLenNonConcFlow from Lemma 8.3, the flow F aug

p produced on line 4c
has value at least |D∆

p | ≥ val(F ∗
p ) − val(Fp−1). Hence, we have val(Fp) = val(F aug

p ) + val(Fp−1) ≥
val(F ∗

p ).

Suppose F is returned on line 5. Then, F = F⌈log nN⌉ and so we have val(F ) = val(F⌈log nN⌉) ≥
val(F ∗

⌈log nN⌉) = val(F ∗).

From now, we assume that F is returned on line 4f at the iteration p. Observe that F =
Fp−1 + λF aug

p and totlen(F ) = T ′. The key claim is the following, which will be proved at the end.

Claim 8.8. For all p, there is a subflow F̂p of Fp such that val(F̂p) = val(F ∗
p ) and totlen(F̂p) ≤

4s′ · totlen(F ∗
p ).

We will use the above claim only for Fp−1. Now, suppose for contradiction that val(F ) <
val(F ∗). We will analyze totlen(F ∗) = totlen(F ∗ − F ∗

p−1) + totlen(F ∗
p−1). Let us analyze the two

term as follows. First, we have

totlen(F ∗ − F ∗
p−1) = avglen(F ∗ − F ∗

p−1)(val(F
∗)− val(F ∗

p−1))

≥
1

4s′
avglen(F − F̂p−1)(val(F

∗)− val(F ) + val(F )− val(F̂p−1))

=
1

4s′

(
avglen(F − F̂p)(val(F

∗)− val(F )) + totlen(F − F̂p−1)
)

>
1

4s′
totlen(F − F̂p−1)

where the first inequality follows from (1) the minimum ℓ-length of F ∗−F ∗
p is at least 2p−1, (2) the

maximum ℓ-length of F − F̂p−1 is at most 2p+1s′ because the maximum ℓ′-length of F is 2ts′ and
by Fact 8.7, and (3) val(F̂p−1) = val(F ∗

p−1) by Claim 8.8. The last inequality is by our assumption
that val(F ∗)− val(F ) > 0. Second, by Claim 8.8, we directly have

totlen(F ∗
p−1) ≥

1

4s′
· totlen(F̂p−1).

Combining the two inequalities, we get a contradiction because

T ≥ totlen(F ∗)

= totlen(F ∗ − F ∗
p ) + totlen(F ∗

p )

> totlen(F )/4s′

> T

where the last equality is because totlen(F ) = T ′ = 5s′T . This concludes the proof that val(F ) ≥
val(F ∗) when returned on line 4f.

Finally, we prove Claim 8.8.
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Proof of Claim 8.8. We prove by induction. The base case when p = −1 is trivial because val(F ∗
−1) =

0 as every edge has length at least 1 and F−1 = 0. Now, assume the claim holds for all p′ < p.

Since val(Fp) ≥ val(F ∗
p ) and val(F̂p−1) = val(F ∗

p−1) by induction, we have that val(Fp− F̂p−1) ≥

val(F ∗aug
p ).3 So, there exists γ ∈ [0, 1] such that γval(Fp − F̂p−1) = val(F ∗aug

p ). We define F̂ aug
p =

γ(Fp − F̂p−1) and set F̂p = F̂p−1 + F̂ aug
p .

Let us verify that F̂p satisfies the two properties. For the first property, we have

val(F̂p) = val(F̂p−1) + val(F̂ aug
p ) = val(F ∗

p−1) + val(F ∗aug
p ) = val(F ∗

p )

by induction and by the definition of F̂ aug
p . For the second property, observe that maximum ℓ′-

length of F̂ aug
p , which is a subflow of Fp, is at most 2ts′, and so the maximum ℓ-length of F̂ aug

p is at
most (2ts′) · h/t = 2p+1s′ by Fact 8.7. But the minimum ℓ-length of F ∗aug

p is at least 2p−1. Hence,

avglen(F̂ aug
p ) ≤ 4s′avglen(F ∗aug

p ) and so totlen(F̂ aug
p ) ≤ 4s′totlen(F ∗aug

p ) because the value of the
two flows are same. Thus, by induction, we get

totlen(F̂p) = totlen(F̂p−1)+ totlen(F̂ aug
p ) ≤ 4s′ · totlen(F ∗

p−1)+ 4s′ · totlen(F ∗aug
p ) = 4s′ · totlen(F ∗

p ).

This completes the inductive step of the claim.

9 Flow Boosting

In this section, we show how to boost a flow algorithm that achieves length slack s and congestion
slack κ to an algorithm that achieves length slack s and congestion slack (1+ ǫ)s with an additional
running time overhead of poly(κ/ǫ). Since we are primarily interested in the regime when s =
exp(poly(1/ǫ)) and κ = npolyǫ, boosting effectively reduces the congestion slack down to the length
slack.

In order to bypass the O(mk) flow-path decomposition barrier, our algorithms must output an
implicit flow, which we formalize as a flow oracle.

Definition 9.1 (Flow Oracle). A flow oracle OF for a multi-commodity flow F on a graph G is a
data structure supporting the following query:

• Given a subset S of pairs of vertices of G, return the edge representation flowFS
of FS , where

FS :=
∑

(a,b)∈S F(a,b) is the subflow of F between the vertex pairs (a, b) ∈ S.

The oracle has query work Qw and query depth Qd if every query S takes at most Qw work and
has depth at most Qd.

9.1 Flow Boosting Template

We begin with a generic flow boosting template that does not depend on the specifics of the flow
problem, and instead works for any convex set F of satisfying flows. For illustration, the reader
can imagine that F is the set of concurrent or non-concurrent flows for a given demand.

3Note that Fp − F̂p−1 is well-defined because F̂p−1 is a subflow of Fp−1 which is a subflow of Fp.
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Theorem 9.2 (Flow Boosting Template). Let G = (V,E, u, b) be a graph with capacity function u
and cost function b, and let B ≥ 0 be the cost budget. Let F be any convex set of flows in G con-
taining at least one capacity-respecting flow, and let ǫ, s, κ ≥ 0 be parameters. Suppose an algorithm
is given an oracle O that, given any integral edge length function ℓ : E → {1, 2, . . . , O(m1/ǫN/ǫ)},
computes the edge representation of a (not necessarily capacity-respecting) flow F ∈ F such that

• Length slack s:
∑

e∈E F (e) · ℓ(e) ≤ s ·
∑

e∈E F ∗(e) · ℓ(e) for any flow F ∗ ∈ F that is also
capacity-respecting, and

• Congestion slack κ: F (e) ≤ κu(e) for all e ∈ E, i.e., F (e)/κ is capacity-respecting.

Then, there is a deterministic algorithm that makes O(κǫ−2 log2 n) calls to oracle O and outputs
the edge representation of a flow F̄ ∈ F and scalar λ ≥ 0 such that

1. Feasibility: The flow λF̄ is capacity-respecting with cost at most B, and

2. Approximation factor ≈ s: Let λ∗ be the maximum value such that there exists flow F ∗ ∈ F
where λ∗F ∗ is capacity-respecting with cost at most B. Then, λ ≥ 1−O(ǫ)

s λ∗.

Moreover, the flow F̄ is a convex combination of the flows returned by oracle O, and this convex
combination can be output as well.

Furthermore, if the oracle O also outputs a flow oracle with query work Qw and query depth
Qd, then the algorithm can also output a flow oracle for F̄ with query work Õ(κǫ−2Qw) and query
depth Õ(Qd).

The algorithm takes Õ(κǫ−2m) work and Õ(κǫ−2) time outside of the oracle calls.

For the rest of this subsection, we prove Theorem 9.2. The proof closely follows Sections 5 and 6
of [GK07], so we claim no novelty here. We first impose the assumption that λ∗ ≥ 1 for λ∗ as defined
in Condition 2 of Theorem 9.2.

Let K be the set of capacity-respecting flows in G, and consider the following flow LP of the
graph G. We have a variable x(F ) ≥ 0 for each F ∈ F ∩ K indicating that we send flow F scaled
by x(F ). To avoid clutter, we also define b(F ) =

∑
e∈E F (e) · b(e) as the cost of the flow F .

max
∑

F∈F∩K
x(F )

s.t.
∑

F∈F∩K
F (e) · x(F ) ≤ u(e) ∀e ∈ E

∑

F∈F∩K
b(F ) · x(F ) ≤ B

x ≥ 0

Let β be the optimal value of this LP. Note that since F ∩K is convex, there is an optimal solution
with x(F ∗) = β for some F ∗ ∈ F and x(F ) = 0 elsewhere. It follows that β = λ∗.

The dual LP has a length ℓ(e) ≥ 0 for each edge e ∈ E as well as a length φ ≥ 0 of the cost
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constraint.

min
∑

e∈E
u(e) · ℓ(e) +B · φ =: D(ℓ, φ)

s.t.
∑

e∈E
F (e) · (ℓ(e) + b(e)φ) ≥ 1 ∀F ∈ F ∩ K

ℓ ≥ 0, φ ≥ 0

Let D(ℓ, φ) =
∑

e∈E u(e)ℓ(e) + B · φ be the objective value of the dual LP. Define α(ℓ, φ) as the
minimum length of a flow F ∈ F ∩ K under length function ℓ+ φb:

α(ℓ, φ) = min
F∈F∩K

∑

e∈E
F (e) · (ℓ(e) + b(e)φ).

Then by scaling, we can restate the dual LP as finding a length function ℓminimizingD(ℓ, φ)/α(ℓ, φ).
By LP duality, the minimum is β, the optimal value of the primal LP, which we recall also equals
λ∗ ≥ 1.

The algorithm initializes length functions ℓ(0)(e) = δ/u(e) and φ(0) = δ/B for parameter δ =
m−1/ǫ, and proceeds for a number of iterations. For each iteration i, the algorithm wishes to call
the oracle O on length function ℓ(i−1) + φ(i−1)b, but the length function ℓ(i−1) + φ(i−1)b is not
integral. However, we will ensure that they are always in the range [δ/N,O(1)]. So the algorithm
first multiplies each length by O(N/(δǫ)) = O(m1/ǫN/ǫ) and then rounds the weights to integers so
that each length is scaled by roughly the same factor up to (1 + ǫ). The algorithm calls the oracle
on these scaled, integral weights to obtain a flow F (i). On the original, unscaled graph, the flow
satisfies the following two properties:

1. Length slack (1 + ǫ)s:
∑

e∈E F (i)(e) · (ℓ(i−1)(e) + b(e)φ(i−1)) ≤ (1 + ǫ)s · α(ℓ(i−1), φ(i−1)), and

2. Congestion slack κ: F (e) ≤ κu(e) for all e ∈ E, i.e., F/κ ∈ K.

Define z(i) = min{1, B/b(F (i))} so that b(z(i)F (i)) ≤ B, i.e., the cost of the scaled flow z(i)F (i) is
within the budget B. The lengths are then modified as

ℓ(i)(e) = ℓ(i−1)(e)

(
1 +

ǫ

κ
·
z(i)F (i)(e)

u(e)

)
and φ(i) = φ(i−1)

(
1 +

ǫ

κ
·
b(z(i)F (i))

B

)
.

This concludes the description of a single iteration. The algorithm terminates upon reaching the
first iteration t for which D(t) ≥ 1 and outputs

F̄ =
z(1)F (1) + z(2)F (2) + · · ·+ z(t−1)F (t−1)

z(1) + z(2) + · · ·+ z(t−1)
and λ =

z(1) + z(2) + · · · + z(t−1)

κ log1+ǫ 1/δ
.

Analysis. We will analyze the values of D(ℓ(i), φ(i)) and α(ℓ(i), φ(i)) only for the lengths ℓ(i), φ(i).
To avoid clutter, we denote D(i) = D(ℓ(i), φ(i)) and α(i) = α(ℓ(i), φ(i)). For each iteration i, we
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have

D(i) =
∑

e∈E
u(e) · ℓ(i)(e) +B · φ(i)

=
∑

e∈E
u(e) · ℓ(i−1)(e)

(
1 +

ǫ

κ
·
z(i)F (i)(e)

u(e)

)
+B · φ(i−1)

(
1 +

ǫ

κ
·
b(z(i)F (i))

B

)

= D(i− 1) +
ǫ

κ
·
∑

e∈E
z(i)F (i)(e) · ℓ(i−1)(e) +

ǫ

κ
· z(i) · b(F (i)) · φ(i−1)

= D(i− 1) +
ǫ

κ
· z(i)

(∑

e∈E
F (i)(e) · (ℓ(i−1)(e) + b(e)φ(i−1))

)

≤ D(i− 1) +
ǫ

κ
· z(i) · (1 + ǫ)s · α(i− 1).

Since D(i− 1)/α(i − 1) ≥ β by definition of β, we have

D(i) ≤ D(i− 1) +
ǫ

κ
· z(i) · (1 + ǫ)s ·

D(i− 1)

β
.

Define ǫ′ = ǫ(1 + ǫ)s/κ so that

D(i) ≤

(
1 +

ǫ(1 + ǫ)sz(i)

κβ

)
D(i− 1) =

(
1 +

ǫ′z(i)

β

)
D(i− 1).

Since D(0) = mδ we have for i ≥ 1

D(i) ≤

(∏

j≤i

(1 + ǫ′z(j)/β)
)
mδ =

(
1 +

ǫ′z(i)

β

)
mδ

∏

j≤i−1

(
1 +

ǫ′z(j)

β

)

≤ (1 + ǫ′)mδ exp

(
ǫ′
∑

j≤i−1 z
(j)

β

)
,

where the last inequality uses our assumption that β ≥ 1 and the fact that z(j) ≤ 1 by definition.
To avoid clutter, define z(≤i) =

∑
j≤i z

(j) for all i.

The procedure stops at the first iteration t for which D(t) ≥ 1. Therefore,

1 ≤ D(t) ≤ (1 + ǫ′)mδ exp

(
ǫ′z(≤t−1)

β

)
,

which implies

β

z(≤t−1)
≤

ǫ′

ln 1
(1+ǫ′)mδ

. (1)

Claim 9.3. The scaled down flow 1
κ log1+ǫ 1/δ

(z(1)F (1) + z(2)F (2) + · · · + z(t−1)F (t−1)) is capacity-

respecting with cost at most B.
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Proof. To show it is capacity-respecting, consider an edge e. On each iteration, we route z(i)F (i)(e) ≤

κu(e) units of flow through e and increase its length by a factor (1 + ǫ
κ · z(i)F (i)(e)

u(e) ) ≤ 1 + ǫ. So for

every κu(e) units of flow routed through e over the iterations, we increase its length by at least a
factor 1 + ǫ. Initially, its length is δ/u(e), and after t− 1 iterations, since D(t− 1) < 1, the length
of e satisfies ℓ(t−1)(e) ≤ D(t − 1)/u(e) < 1/u(e). Therefore the total amount of flow through e in

the first t − 1 phases is strictly less than κ log1+ǫ
1/u(e)
δ/u(e) = κ log1+ǫ 1/δ times its capacity. Scaling

the flow down by κ log1+ǫ 1/δ, we obtain a capacity-respecting flow.

To show that the scaled down flow has cost at most B, similarly observe that on each iteration,

we route a flow of cost b(z(i)F (i)) ≤ B and increase the length φ(i) by a factor (1 + ǫ
κ · b(z(i)F (i))

B ) ≤

1 + ǫ/κ over the previous length φ(i−1). So for every B cost of flow routed, we increase the length
φ(i) by at least a factor 1 + ǫ/κ. And for every κB cost of flow routed, the length increases by at
least a factor (1+ ǫ/κ)κ ≥ 1+ ǫ. Initially, φ(0) = δ/B, and after t− 1 iterations, since D(t− 1) < 1,
the length satisfies φ(t−1) ≤ D(t − 1)/B < 1/B. Therefore the total cost of flow in the first t − 1

phases is strictly less than κB log1+ǫ
1/B
δ/B = κB log1+ǫ 1/δ. Scaling the flow down by κ log1+ǫ 1/δ,

we obtain a flow with cost at most B.

Recall that F̄ = z(1)F (1)+z(2)F (2)+···+z(t−1)F (t−1)

z(≤t−1) and λ = z(≤t−1)

κ log1+ǫ 1/δ
, so λF̄ is capacity-respecting

with cost at most B, fulfilling Condition 1. To establish Condition 2, we use Equation (1) and the
fact that δ = m1/ǫ to obtain

λ

λ∗ =
z(≤t−1)

κ log1+ǫ 1/δ
·
1

β
≥

ln 1
(1+ǫ′)mδ

ǫ′ · κ log1+ǫ 1/δ
=

ln 1
(1+ǫ′)mδ

ǫs log1+ǫ 1/δ
≥

1−O(ǫ)

s
.

Running time. Recall from above that λF̄ is capacity-respecting with cost at most B, so λ ≤ β.

Since λ = z(≤t−1)

κ log1+ǫ 1/δ
, we obtain z(≤t−1) ≤ βκ log1+ǫ 1/δ. On each iteration i ≤ t− 1, either z(i) = 1

or z(i) < 1, and the latter case implies that b(z(i)F (i)) = B, which means φ(i) = φ(i−1)(1 + ǫ/κ).
Initially, φ(0) = δ/B, and after t− 1 iterations, since D(t− 1) < 1, we have φ(t−1) ≤ D(t− 1)/B <
1/B. So the event φ(i) = φ(i−1)(1 + ǫ/κ) can happen at most log1+ǫ/κ 1/δ times. It follows that

z(i) < 1 for at most log1+ǫ/κ 1/δ values of i ≤ t− 1. Since z(≤t−1) ≤ βκ log1+ǫ 1/δ, we have z(i) = 1
for at most βκ log1+ǫ 1/δ many values of i ≤ t− 1. Therefore, the number of iterations t is at most

log1+ǫ/κ 1/δ + βκ log1+ǫ 1/δ + 1 = O(βκǫ−2 logm).

By scaling all edge capacities and costs by various powers of two, we can ensure that β ∈ [1, 2]
on at least one guess, so the number of iterations is O(κ log1+ǫ 1/δ) = O(κǫ−2 logm). Doing so
also ensures that λ∗ = β ≥ 1 as we had previously assumed. For incorrect guesses, we terminate
the algorithm above after O(κǫ−2 logm) iterations to not waste further computation. Among all
guesses, we take the one with maximum λ that satisfies feasibility (Condition 1). Since there are
O(log n) relevant powers of two, the running time picks up an overhead of O(log n).

Flow oracle. Finally, if oracleO outputs a flow oracle, then the algorithm can return the following
flow oracle for the output flow F : on input subset S of pairs of vertices of G, query the flow oracles
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of the flows F (1), F (2), . . . , F (t−1) to obtain flows F
(1)
S , F

(2)
S , . . . , F

(t−1)
S , respectively, and output

FS =
z(1)F

(1)
S + z(2)F

(2)
S + · · ·+ z(t−1)F

(t−1)
S

z(1) + z(2) + · · · + z(t−1)
.

Querying each flow oracle F
(i)
S takes work Qw and depth Qd and can be done in parallel. Since

there are t−1 ≤ O(κǫ−2 logm) many flow oracles, the total work is Õ(κǫ−2Qw) and the total depth
is Õ(Qd).

9.2 Flow Boosting: Thresholded Instantiation

By choosing an appropriate convex set F of flows, we directly obtain boosting theorems for com-
puting a flow of a given target value τ that partially routes a given flow demand D. Note that
this formulation includes both min-cost concurrent and non-concurrent multicommodity flow: for
concurrent we set τ = |D| forcing the flow to route the entire demand D, and for non-concurrent
we set τ = 1 which is less than or equal to the value of any nonzero demand pair (when the demand
is integral).

Theorem 9.4 (Thresholded Flow Boosting). Let G = (V,E, u, b) be a graph with capacity function
u and cost function b. Let B ≥ 0 be the cost budget. Let D : V × V → R≥0 be a flow demand,
and let ǫ, s, κ ≥ 0 be parameters. Let τ be the target flow value parameter such that there exists a
capacity-respecting flow partially routing D of value at least τ .

Suppose an algorithm is given an oracle O that, given any integral edge length function ℓ : E →
{1, 2, . . . , O(m1/ǫN/ǫ)}, computes the edge representation of a flow F of value val(F ) ≥ τ partially
routing D such that

• Length slack s:
∑

e∈E F (e) · ℓ(e) ≤ s ·
∑

e∈E F ∗(e) · ℓ(e) for any capacity-respecting flow F ∗

of value val(F ∗) ≥ τ partially routing D, and

• Congestion slack κ: F (e) ≤ κu(e) for all e ∈ E, i.e., F (e)/κ is capacity-respecting.

Then, there is a deterministic algorithm that makes O(κǫ−2 log2 n) calls to oracle O and outputs
the edge representation of a flow F̄ of value val(F̄ ) ≥ τ partially routing D and scalar λ ≥ 0 such
that

1. Feasibility: The flow λF̄ is capacity-respecting with cost at most B, and

2. Approximation factor ≈ s: Let λ∗ be the maximum value such that there exists a flow F ∗ of
value val(F ∗) ≥ τ partially routing D where λ∗F ∗ is capacity-respecting with cost at most B.

Then, λ ≥ 1−O(ǫ)
s λ∗.

Moreover, the flow F̄ is a convex combination of the flows returned by oracle O, and this convex
combination can be output as well.

Furthermore, if the oracle O also outputs a flow oracle with query work Qw and query depth
Qd, then the algorithm can also output a flow oracle for F̄ with query work Õ(κǫ−2Qw) work and
Õ(Qd) depth.

The algorithm takes Õ(κǫ−2m) work and Õ(κǫ−2) time outside of the oracle calls.

Proof. Let F be the set of flows of value at least τ partially routing D. Apply Theorem 9.2.
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10 Constant-Approximate Multi-commodity Flow

This section concludes with our constant-approximate algorithms for k-commodity flow in (m +
k)1+ǫ time. The main results are stated in Theorem 10.5. Below, we first implement the oracle
for flow boosting in Section 10.1 and then apply the oracle to the flow boosting framework in
Section 10.2 to obtain our results.

10.1 Oracle for Flow Boosting

In this subsection we construct the oracle required for Theorem 9.4.

Theorem 10.1 (Oracle for Flow-Boosting). Let G be a graph with integral edge lengths ℓ ≥ 1 and
capacities u ≥ 1, D an integral degG-respecting demand, τ an integral required flow amount such
that there exists a value-τ capacity-respecting flow partially routing D and ǫ ∈ (log−cN, 1) for a
small enough constant c a tradeoff parameter. Then, UnboostedFlow(G,D, τ, ǫ) (Algorithm 7)
returns a flow oracle OF for a flow F of value val(F ) ≥ τ partially routing D, with

1. Length slack s:
∑

e∈E F (e) · ℓ(e) ≤ s ·
∑

e∈E F ∗(e) · ℓ(e) for any capacity-respecting flow F ∗

of value val(F ∗) ≥ τ partially routing D, and

2. Congestion Slack κ: F (e) ≤ κu(e) for all e ∈ E, i.e., F (e)/κ is capacity-respecting,

for length slack s = exp(poly(1/ǫ)) and congestion slack κ = Npoly(ǫ).

The algorithm has depth and the flow oracle has query depth Npoly(ǫ), and the algorithm has
work and the flow oracle query work (|E|+ supp(D)) ·Npoly(ǫ). The produced flow has support size
(|E|+ supp(D))Npoly(ǫ).

Proof of Theorem 10.1. Let F ∗ be the capacity-respecting flow of value at least τ routing a subde-
mand of D on G of minimum total length T ∗. Theorem 6.4 guarantees that G′ is a t-step emulator
for degG with length slack s′ = exp(poly(1/ǫ)) and congestion slack κ′ = Npoly(ǫ). Since D is degG-
respecting, there is a flow F ∗′ on G′ routing the same demand as F ∗ of step-length t, congestion at
most κ′ and total length T ∗s′. As G′′ is simply G′ with capacities scaled up by κ′, the flow F ∗′ on
G′′ is a capacity-respecting flow partially routing D of step length t, total length T ∗s′, and value
at least τ .

Algorithm 6 guarantees that for input (G′′,D, t, T, ǫ), for every capacity-respecting flow F ∗

partially routing D of step length t and total length T , the returned flow F has value val(F ) ≥
val(F ∗). Thus, notably when T ≥ T ∗s′, the returned flow has value at least τ . Let T ′ be the
minimum value of T for which the returned flow Fres had value at least τ on line 5c. By the above
argument, T ′ ≤ ⌈T ∗s′⌉.

Algorithm 6 guarantees that Fres on G′′ is a congestion-κ′′ flow partially routingD of step length
ts′′, total length T ′s′′ and value at least τ for the congestion slack κ′′ = Npoly(ǫ) and length slack
s′′ = exp(poly(1/ǫ)) of the flow algorithm. The flow has the same step length, total length and
value, but congestion κ′κ′′ = κ = Npoly(ǫ) on G′. Since G′ can be embedded into G with congestion
1 and length slack 1, the flow F that is Fres mapped from G′ to G by the embedding is a congestion-
κ = κ′κ′′ flow partially routingD of value at least τ of total length T ∗s = ⌈T ∗s′⌉s′′ = T ′s′′ for length
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Algorithm 7 Fast Unboosted Flow: UnboostedFlow(G,D, τ, ǫ)

Input: Graph G with integral edge lengths ℓ ≥ 1 and capacities u ≥ 1, integral degG-respecting
demand D, integral required flow amount τ such that there exists a value-τ capacity-respecting
flow partially routing D, tradeoff parameter ǫ.
Output: A flow oracle OF for a flow F of value val(F ) ≥ τ partially routing D with length slack
s = exp(poly(1/ǫ)), congestion slack κ = Npoly(ǫ) and support size (|E| + supp(D))Npoly(ǫ).

1. Let t,G′ = LowStepEmu(G, ǫ).

2. Let κ′ be the congestion slack of G′, and let G′′ = κ′G′ be G′ with capacities scaled up by κ′.

3. Let Tlow = 0 and Thigh = N .

4. Let Fres = 0.

5. While Tlow ≤ Thigh:

(a) Let T =
⌊
Tlow+Thigh

2

⌋
.

(b) Let F ′ = LowStepNonConcFlow(G′′,D, t, T, ǫ).

(c) If val(F ′) ≥ τ ,

• Set Thigh = T − 1.

• Set Fres = F ′.

(d) Else, set Tlow = T + 1.

6. Return OF = (G′, Fres) with query function OF (S) = FlowMap(G′, F ′
S).

slack s = exp(poly(1/ǫ)) and congestion slack κ = Npoly(ǫ)4, as desired. As |E(G′)| = |E|Npoly(ǫ)

and the embedding from G′ to G maps edges to paths, thus not increasing the flow support size,
the flow support size is (|E| + supp(D)) ·Npoly(ǫ) as desired.

The algorithm consists of one call to LowStepEmu and Õ(1) calls to LowStepNonConcFlow

on a |E|Npoly(ǫ)-edge graph, thus its work and depth are (|E| + supp(D)) · Npoly(ǫ) and Npoly(ǫ)

respectively.

10.2 Constant-Approximate Min Cost Multi-Commodity Flow

The following theorem is a generalisation of concurrent and non-concurrent flow, which gives con-
current flow when τ = |D| and non-concurrent flow when τ = 1.

Theorem 10.2 (Constant-Approximate Multi-Commodity Flow). Let G = (V,E, u, b) be a con-
nected graph with edge capacities u ≥ 1 and costs b ≥ 0. Let B ≥ 0 be the cost budget. Let D :
V ×V → N be a integral flow demand, τ ∈ [|D|] a integral required flow amount and ǫ ∈ (log−cN, 1)
for some sufficiently small constant c be a tradeoff parameter. Then, MCMCFlow(G,B,D, τ, ǫ)
returns a flow oracle OF for a flow F of value val(F ) ≥ τ partially routing D and a value λ ≥ 0,

4Note that since τ is a integer and ℓ ≥ 1, T ∗ ≥ 1 and taking ceil does not affect the asymptotic congestion slack
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such that

• Feasibility: the flow λF is capacity-respecting with cost at most B, and

• Approximation factor 1/ exp(poly(1/ǫ)): let λ∗ be the maximum value such that there exists a
flow F ∗ of value val(F ∗) ≥ τ partially routing D where λ∗F ∗ is capacity-respecting with cost
at most B. Then, λ ≥ 1

exp(poly(1/ǫ))λ
∗.

The algorithm has work and the flow oracle query work (|E|+supp(D))Npoly(ǫ), and the algorithm
has depth and the flow oracle query depth Npoly(ǫ). The produced flow F has support size (|E| +
supp(D))Npoly(ǫ).

Algorithm 8 Constant-Approximate MCMC Flow: MCMCFlow(G,B,D, τ, ǫ)

Input: Connected graph G with edge capacities u ≥ 1 and costs b ≥ 0, integral demand D, integral
required flow amount τ , tradeoff parameter ǫ.
Output: A flow oracle OF for a flow F of value val(F ) ≥ τ partially routing D and a value λ ≥ 0,
such that λF is capacity-respecting with cost at most B, and λ ≥ (1/ exp(poly(1/ǫ)))λ∗ for the
optimal λ∗, F ∗ pair.

1. Let γ = |D|.

2. Let ǫ′ = O(1) be small enough that 1−O(ǫ′) ≥ 1
2 in Theorem 9.4.

3. Let OF , λ be the flow-scalar pair returned by Theorem 9.4 on graph G with capaci-
ties γu, costs b, total cost budget γB, demand D, required flow amount τ , parameters
(ǫ′, exp(poly(1/ǫ)), Npoly(ǫ)) and flow oracle UnboostedFlow(G,D, τ, ǫ).

4. Return OF , λ/γ.

Proof of Theorem 10.2. For a flow F , parameter λ and value γ ≥ 0, the following are equivalent:

• λF is capacity-respecting with capacities u and has cost at most B,

• (λγ)F is capacity-respecting with capacities γu and has cost at most γB,

but scaling all capacities and the cost bound by γ = |D| guarantees that there exists a capacity-
respecting flow partially routing D of value at least τ , which is required by Theorem 9.4.

UnboostedFlow(G,D, τ, ǫ) is a oracle function of the kind required for Theorem 9.4 for length
slack s = exp(poly(1/ǫ)) and congestion slack κ = Npoly(ǫ). Note that D is degG′-respecting for
graph G′ that is G with capacities γu as u ≥ 1.

The flow F returned as a flow oracle OF and value λ returned by Theorem 9.4 are guaranteed
to satisfy the required properties: F partially routes D and has value at least τ , λF is capacity-
respecting with cost at most B, and for the maximum value λ∗ such that there exists a flow F ∗

of value val(F ∗) ≥ τ partially routing D where λ∗F ∗ is capacity-respecting with cost at most B,

λ ≥ 1−O(ǫ′)
s λ∗ ≥ 1

2sλ
∗ = 1

exp(poly(1/ǫ))λ
∗.
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The flow support size is at most the product of the support size (|E| + |supp(D)|)Npoly(ǫ) of
flows returned by Theorem 10.1 and the number of oracle calls O(κǫ−2 log2 n) = Npoly(ǫ), giving
the desired bound of (|E| + |supp(D)|)Npoly(ǫ).

For work and depth, Theorem 9.4 makes O(κǫ′−2 log2 n) = Npoly(ǫ) calls to the oracle, which has
work (|E|+|supp(D)|)Npoly(ǫ) and depthNpoly(ǫ), and takes Õ(κǫ′−2m) = |E|·Npoly(ǫ) work and has
depth Õ(κǫ′−2) = Npoly(ǫ) outside the oracle calls. This gives total work (|E|+ |supp(D)|)Npoly(ǫ)

and depth Npoly(ǫ) as desired.

10.3 Constant-Approximate Concurrent/Non-Concurrent Flow

Finally, we prove a formal version of Theorem 1.1, first giving formal definitions for concurrent and
non-concurrent flow.

Definition 10.3 (Concurrent Flow Problem). Let G be a connected graph with edge capacities
u ≥ 1 and D : V × V 7→ N an integral demand. The concurrent flow problem asks to find a
capacity-respecting flow F routing λD for maximum λ. An algorithm is a C-approximation for
the concurrent flow problem if it always produces a capacity-respecting flow F routing λD, where
λ ≥ Cλ∗ and λ∗ is the maximum value for which there exists a capacity-respecting F ∗ routing λ∗D.

In the concurrent flow problem with costs, each edge has a cost b ≥ 0 and there is a total cost
budget B: the produced flow F must additionally have total cost

∑
P F (P )

∑
e∈P b(e) ≤ B. An

algorithm is a C-approximation for the concurrent flow problem with costs if it always produces
a capacity-respecting flow F of total cost at most B routing λD, where λ ≥ Cλ∗ and λ∗ is the
maximum value for which there exists a capacity-respecting F ∗ of total cost at most B routing λ∗D.

Definition 10.4 (Non-Concurrent Flow Problem). Let G be a connected graph with edge capacities
u ≥ 1 and S a set of vertex pairs. The non-concurrent flow problem asks to find a capacity-
respecting flow F routing flow between vertex pairs in S, i.e. supp(DF ) ⊆ S of maximum value.
An algorithm is a C-approximation for the non-concurrent flow problem if it always produces a
capacity-respecting flow F routing flow between vertex pairs in S of value val(F ) ≥ Cval(F ∗),
where F ∗ is the maximum-value capacity-respecting flow routing flow between vertex pairs in S.

In the non-concurrent flow problem with costs, each edge has a cost b ≥ 0 and there is a total
cost budget B: the produced flow F must additionally have total cost

∑
P F (P )

∑
e∈P b(e) ≤ B. An

algorithm is a C-approximation for the concurrent flow problem with costs if it always produces a
capacity-respecting flow F of total cost at most B routing flow between vertex pairs in S of value
val(F ) ≥ Cval(F ∗), where F ∗ is the maximum-value capacity-respecting flow of total cost at most
B routing flow between vertex pairs in S.

Theorem 10.5 (Constant Approximate Concurrent/Non-Concurrent Flow). For every tradeoff
parameter ǫ ∈ (log−cN, 1) for some sufficiently small constant c, for both concurrent and non-
concurrent multi-commodity flow with costs, there exists a (m+k)1+poly(ǫ)-work (m+k)poly(ǫ)-depth
O(2−1/ǫ)-approximate algorithm that returns a flow oracle OF for the flow F .

Proof. We can select ǫ′ = poly(ǫ) such that exp(poly(1/ǫ′))−1 = O(2−1/ǫ). Both the concurrent
flow and non-concurrent flow algorithm are direct consequences of applying Theorem 10.2 with this
ǫ′ and differing D, τ and returning λOF :

• Concurrent Flow: apply Theorem 10.2 with τ = |D|, return λOF .
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• Non-Concurrent Flow: apply Theorem 10.2 with D(a, b) = I[(a, b) ∈ S], τ = 1, return λOF .
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A Derivation of Lemma 7.5

In this appendix section, we give the derivation of Lemma 7.5 from Theorem A.1 (of [HHT24]), a
low-support-size version of the flow algorithms of [HHS23]. The theorem gives an algorithm for
efficiently computing a cutmatch, defined below.

Cutmatch. Given a graph G = (V,E) with length ℓ, an h-length φ-sparse cutmatch of con-
gestion γ between disjoint node weighting pairs {(Aj , Aj)}j∈[k] consists of, for each i, a partition of
the node-weightings Aj = Mj +Uj and A′

j = M ′
j +U ′

j where Mj ,M
′
j and Uj, U

′
j are the ”matched”

and ”unmatched” parts respectively and |Mj | = |M ′
j | and

• A h-length flow F =
∑

j Fj in G with lengths ℓ of congestion γ, such that, for each j ∈ [k],
Fj is a complete Mj to M ′

j -flow.

• A h-length moving cut C in G, such that for all j ∈ [k], supp(Uj) and supp(U ′
j) are at least

h-far in G− C, and C has size at most

|C| ≤ φ ·




∑

j

|Aj|


− val(F )




Theorem A.1 ([HHT24]). Let G = (V,E) be a graph on m edges with edge lengths ℓ ≥ 1 and
capacities u ≥ 1. Then, for any h ≥ 1, φ ≤ 1, there is an algorithm that, given node-weighting
pairs {(Aj , A

′
j)}j∈[k], outputs a multi-commodity h-length φ-sparse cutmatch (F,C) of congestion γ

where γ = Õ
(

1
φ

)
. This algorithm has depth Õ(k · poly(h)) and work Õ(|(E(G)| +

∑
j |supp(Aj +

A′
j)|) · k · poly(h)). Moreover, |supp(F )| ≤ Õ(|E(G)| + k +

∑
j |supp(Aj +A′

j)|).

To obtain Lemma 7.5, we use the fact that routers have no sparse cuts; selecting φ and h as
twice the router’s parameters, the multicommodity flow produced by the cutmatch must completely
satisfy the demand.
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Lemma 7.5. Let G = (V,E) be a t-step γ-router for node weighting A, and {(Aj , A
′
j)}j∈[k] node

weighting pairs such that
∑

j Aj + A′
j is A-respecting and |Aj | = |A′

j | for all j. Then, one can
compute a flow F =

∑
j Fj where Fj is a complete Aj to A′

j -flow for each j ∈ [k] with

• length 2t and congestion Õ(γ), and

• support size |supp(F )| ≤ Õ(|E(G)| + k +
∑

j |supp(Aj +A′
j)|),

with Õ((|E(G)| +
∑

j |supp(Aj +A′
j)|) · k · poly(t)) work and Õ(k · poly(t)) depth.

Proof. We may assume without loss of generality that the supports of Aj and A′
j are disjoint for

all j; if they are not, we can add a flow path of length 0 from that vertex to itself of value equal

to the minimum of the two. Now, let (F,C) be a 2t-length
(

1
2γ

)
-sparse cutmatch (F,C) between

{(Aj , A
′
j)}j∈[k]. Then, for each j ∈ [k], Fj is a complete Aj to A′

j -flow. Thus, calling Theorem A.1

with length 2t and sparsity
(

1
2γ

)
suffices.

We prove the claim. Assume the contrary; then,
∑

j |Uj | =
∑

j |U
′
j | > 0. For each j, let Dj be

an arbitrary demand such that load(Dj) = Uj +U ′
j, and let D =

∑
j Dj . Then, D is A-respecting,

and there exists a t-step γ-congestion flow on G satisfying D. Let F ∗ be that flow. We have

|C| =
∑

e∈G
C(e)u(e) ≤

(
1

2γ

)
|D|,

but

• for every path P ∈ F ∗,
∑

e∈P C(e) > 1
2 , as C is a length-2t cut and every flow-path had its

length increased by more than t, and

•
1
γ

∑
P∈F ∗:e∈P F ∗(P ) ≤ u(e), as F ∗ has congestion γ,

thus (
1

2γ

)
|D| ≥

∑

e∈G
C(e)u(e) ≥

1

γ

∑

P∈F ∗

F ∗(P )
∑

e∈P
C(e) >

1

2γ
|F ∗|,

a contradiction. Thus, the unmatched part of the cutmatch and the cut are empty.
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