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Abstract

We introduce the concept of low-step multi-commodity flow emulators for any undirected,
capacitated graph. At a high level, these emulators contain approximate multi-commodity flows
whose paths contain a small number of edges, shattering the infamous flow decomposition barrier
for multi-commodity flow.

We prove the existence of low-step multi-commodity flow emulators and develop efficient
algorithms to compute them. We then apply them to solve constant-approximate k-commodity
flow in O((m + k)'*€) time. To bypass the O(mk) flow decomposition barrier, we represent
our output multi-commodity flow implicitly; prior to our work, even the existence of implicit
constant-approximate multi-commodity flows of size o(mk) was unknown.

Our results generalize to the minimum cost setting, where each edge has an associated cost
and the multi-commodity flow must satisfy a cost budget. Our algorithms are also parallel.

*Partially funded by the European Union’s Horizon 2020 ERC grant 949272.
fSupported by NSF grant CCF-2238138.


http://arxiv.org/abs/2406.14384v1

Contents

1 Introduction
1.1 Our Results . . . . . .

1.2 Our Techniques . . . . . . . . . . .

Overview

Preliminaries

3.1 Length-Constrained Expanders . . . . ... ... ... ..
3.2 Length-Constrained Expander Decomposition . . . . . . .
3.3 Routers . . ... . . ...
3.4 Length-Constrained Expansion Witness . . . . .. .. ..
3.5 Length-Constrained Witnessed Expander Decomposition .

Length-Constrained Low-Step Emulators: Existence
4.1 Construction and Analysis . . . . .. ... .. ... ....
4.2 Proof of Lemma 4.5: Forward Mapping . . ... ... ..

4.3 Reduction to Witnessed Expander Decomposition . . . . .

Bootstrapping Length-Constrained Low-Step Emulators
5.1 Construction and Analysis . . . . . ... ... ... ....

5.2  Proof of Lemma
5.3 Proof of Lemma

4: Backward Mapping . . . . . . .. ..

ot Ot

.5: Forward Mapping . . . ... .. ..
Low-Step Emulators

Routing on an Expansion Witness

7.1 Section Preliminaries . . . . . . ... ... .. ... ....
7.2 Algorithm for Routing on a Router . . . . . . .. ... ..
7.3 Analysis of the Algorithm . . . . ... ... ... .....
7.4 Routing on a Witness . . . . .. .. ... ... ......

Low-Step Multi-commodity Flow
8.1 Weak Cutmatch for Many Commodities . . . ... .. ..
8.2 Maximum Length-Constrained Non-Concurrent Flow . . .

8.3 Low-Step Total-Length-Constrained Non-Concurrent Flow

Flow Boosting
9.1 Flow Boosting Template . . . . . .. ... ... ... ...

12
12
14
16

17
19
21
22

23

25
26
27
29
34

34
35
37
41

44



9.2 Flow Boosting: Thresholded Instantiation . . . . . . . ..

10 Constant-Approximate Multi-commodity Flow

10.1 Oracle for Flow Boosting . . . . ... ... ... .....

10.2 Constant-Approximate Min Cost Multi-Commodity Flow

10.3 Constant-Approximate Concurrent/Non-Concurrent Flow

A Derivation of Lemma 7.5

50
50
o1
o3

55



1 Introduction

In the maximum flow problem, we are given an edge-capacitated graph G = (V, E') and two vertices
s,t € V with the aim to send as much flow as possible from s to t. Maximum flow is a fundamental
problem in combinatorial optimization with a long history, from the classic Ford-Fulkerson algo-
rithm [CLRS22] to the recent breakthrough almost-linear time algorithm of Chen et al. [CKL*22].
The maximum flow problem also exhibits rich structural properties, most notably in the maz-flow
min-cut theorem, which states that the value of the maximum flow between s and ¢ is equal to the
size of the minimum edge cut separating s and ¢.

A well-studied generalization of the maximum flow problem is the maximum multi-commodity
flow problem. Here, we are given k > 1 pairs (si,ti)ie[k} of vertices and wish to maximize the
amount of flow sent between each pair. On the algorithmic side, this problem can be solved in
polynomial time by a linear program, and there has been exciting recent progress towards obtaining
faster algorithms, both exact [vdBZ23] and (14 €)-approximate [Shel7]. However, these algorithms
output the flow for each commodity explicitly and, hence, must take at least Q(mk) time because
there exists a graph such that the total size of flow representation overall & commodities of any
a-approximate solution has size at least Q(mk/a). Designing multi-commodity flow algorithms is
further complicated by the loss of structure exhibited in the single-commodity setting. Specifically,
the max-flow min-cut equality no longer holds in the multi-commodity case, and the flow-cut gap
(i.e. the multiplicative difference between the max-flow and min-cut) is known to be ©(logn) for
undirected graphs [LR99] and Q(n'/7) for directed graphs [CK09)].

The algorithmic and structural issues above suggest that outputting a (near) optimal multi-
commodity flow in time less than O(mk) may be impossible. Even for the problem of efficiently
approximating the value of the optimal multi-commodity flow in undirected graphs, current tech-
niques (e.g. [Rac02, RST14]) fail to produce approximations below the multi-commodity flow-cut
gap, i.e., no o(log n)-approximations running in o(mk) time are known.

1.1 Owur Results

In this paper, we break the O(mk)-time barrier by giving (m + k)'**-time algorithms with O(1)-
approximations to the value of the maximum k-commodity flow on undirected graphs for any
constant € > 0.

We consider both concurrent and non-concurrent flow problems. In the concurrent flow problem,
given a capacitated graph and a demand function, the goal is to find a maximum-value capacity-
respecting flow routing a multiple of the demand. In the non-concurrent flow problem, given a
capacitated graph and a set of vertex pairs, the goal is to find a maximum-value capacity-respecting
flow routing flow only between vertex pairs in the given set.

Our results can be informally summarized as follows:
Theorem 1.1 (Constant-Approximate Concurrent/Non-Concurrent Flow (informal)). For every
constant € € (0,1), there exists a (m + k)'TPW() time O(27V/¢)-approzimate algorithm for the

concurrent and non-concurrent multicommodity flow value problems, where k is the number of
demand pairs. The algorithms work in parallel with depth (m + k:)p‘ﬂY(E).

The key to the above result is a powerful new tool we introduce called low-step (multi-commodity)
flow emulators. Informally, a low-step flow emulator of an undirected graph is another graph which



contains approximate multi-commodity flows whose flow paths contain a small number of edges.
Because they are not based on cuts, such emulators face no Q(logn) flow-cut barriers, unlike the
above-mentioned cut sparsifiers. It is instructive to view low-step flow emulators as a generalization
of hopsets, which are graphs that contain approximate shortest paths of low step-length (but do
not respect capacities). We additionally give efficient algorithms to construct these objects, and
generalize them to achieve two additional important properties:

e Cost-Constrained / Length-Constrained: Our emulators generalize to various min-cost
multi-commodity flow problems, where each edge has an associated length or cost (indepen-
dent of its capacity) and any flow path must not exceed a given bound on the length or
cost.

e Implicit Mappings: Our flow emulators also support implicit flow mappings from the
emulator back to the original graph. In other words, we can even maintain an implicit solution
to a constant-approximate multi-commodity flow, and Theorem 1.1 can be modified to output
such an implicit representation for a flow of the approximated value. (Recall that implicit
solutions are required to obtain any o(mk) running time.) With this implicit solution, we can
answer the following queries in O((m + k)'*€) time: given any subset of the k commodities,
return the union of the flows of each of these commodities. As this is a single-commodity
flow, it is representable explicitly within the allotted time.

The combination of the two generalizations will allow us to apply flow boosting in the spirit of
Garg-Konemann [GKO07] to obtain the above algorithms, and further allows us to obtain the above
multi-commodity flow result subject to a cost constraint.

1.2 Our Techniques

At a high-level, our approach is as follows. First, we compute low-step emulators by building on
recent advances in length-constrained expander decompositions. Next, we use our low-step emula-
tors to compute (implicit) flows on the original graph with potentially large congestion. Lastly, we
use “boosting” to reduce this congestion down to a constant to get our final flow approximation.

Step 1: Low-Step Emulators via Length-Constrained Expander Decompositions. Our
techniques build on recent developments in length-constrained expander decompositions [HRG22,
HHG22, HHS23, HHT23, HHT24]. At a high level, h-length expanders are graphs with edge lengths
and capacities for which any “reasonable” multi-commodity demand can be routed along (about) h-
length paths with low congestion (by capacity). Informally, a reasonable demand is one where each
demand pair (s;,t;) is within h by distance (so that sending flow from s; to ¢; along about-h-length
paths is actually possible), and each vertex does not belong to too many demand pairs (so that the
degree of the vertex is not an immediate bottleneck for congestion). Recent work [HRG22, HHT24]
has studied how to, in almost-linear time, compute length-constrained expander decompositions
which are length-increases—a.k.a. moving cuts—to the graph that make it an h-length expander.
One caveat, however, is that these algorithms run in time polynomial in the length parameter h of
the length-constrained expander decomposition.

In this paper, we remove this polynomial dependency of h by way of the above-mentioned low-
step emulators. Specifically, we “stack” low-step emulators on top of each other with geometrically



increasing lengths, similar to how hopsets are stacked in parallel algorithms [Coh00]. Each low-step
emulator is responsible for flow paths of its corresponding length, and the union of all low-step
emulators obeys all distance scales simultaneously.

Our construction of low-step emulators comes with an embedding of the emulator into the base
graph: each edge of the emulator maps to a small-length path in the base graph such that the set of
all embedded paths has low congestion. When emulators are stacked on top of each other, an edge
at the top level expands to a path at the previous level, each of whose edges expands to a path at
the previous level, and so on. This hierarchical structure allows us to provide the aforementioned
implicit representation of very long paths while keeping the total representation size small.

Step 2: Flows on Emulators. Our next contribution is a fast algorithm that computes a multi-
commodity flow on a low-step emulator, where an approximate flow with small representation size
is indeed possible (since flow paths now have low step-length). We explicitly compute such a flow,
and then (implicitly) map each flow path down the hierarchical structure to form our final implicit
flow on the input graph.

By setting parameters appropriately, we can guarantee a bicriteria approximation with constant-
approximate cost and n¢-approximate congestion for any constant € > 0. The n®approximate
congestion appears in both the multi-commodity flow algorithm on a low-step emulator, and the
hierarchical embeddings of the emulators into the base graph.

Step 3: Boosting Away Congestion. Finally, through Garg and Konemann’s approach [GK07]
based on multiplicative weight updates, we can boost the congestion approximation of n¢ down to
the cost approximation, which is constant. While Garg and Konemann’s algorithm requires a
near-linear number of calls to (approximate) shortest path, we only require roughly n¢ calls to
nf-approximate congestion, constant-approximate cost multi-commodity flow. Our final result is
a multi-commodity flow with constant-approximate cost and congestion which is implicitly repre-
sented by the hierarchical emulator embeddings. Given any subset of commodities, we can then
output the union of their flows by collecting the flow down the hierarchy of embeddings.

2 Overview

The rest of the paper is organized as follows. The first part of the paper, Sections 4 to 6, develops the
theory of low-step emulators. In Section 4, we study the h-length-constrained version of low-step
emulators. We provide an existential result and an algorithm with a running time that depends on
poly(h). These results are obtained by reducing to h-length-constrained expander decomposition.
To remove the dependency on poly(h) in the running time, in Section 5 we demonstrate how to
bootstrap the construction of h-length-constrained low-step emulators with small A to the large
ones without spending poly(h) in the running time. Finally, by combining h-length-constrained
low-step emulators from different A values, we obtain our low-step emulator in Section 6.

The next part of the paper, Sections 7 and 8, develops a fast k-commodity flow algorithm
designed for running on top of low-step emulators. The crucial property of this algorithm is that
its running time is independent of k. In Section 7, we first show a prerequisite subroutine called
“routing on an expansion witness” for efficiently routing a length-constrained flow. This subroutine
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Figure 1: Dependencies between sections in this paper.

assumes that the input graph is a length-constrained expander and also requires the expansion
witness of this expander. We then use this subroutine in Section 7 to develop an algorithm that
computes a t-step k-commodity flow (each flow path contains at most ¢ edges) with a running
time of m!*¢poly(t). The algorithms have an O(1)-approximation in step and total length, but
an nS-approximation in congestion. Note that the dependency on poly(t) in the running time is
inconsequential, as the algorithm will be run on a t-step emulator for constant ¢. The issue of the
large approximation factor in congestion will be addressed in the next part.

The final part of the paper, Sections 9 and 10, shows how we can combine the techniques from
the previous two parts to achieve an O(1)-approximate k-commodity flow in (m + k)'*¢ time.
To address the problem of the n-approximation in congestion, in Section 9, we give a boosting
algorithm that improves the congestion approximation to O(1). Finally, in Section 10, we combine
these tools together to obtain the final result.

The dependencies between sections are summarized in Figure 1.

3 Preliminaries

Let G = (V, E) be a graph. We denote the number of vertices of G by n := |V| and the number
of edges by m := |E|, respectively. Let ug : E — Rs( denote the edge capacity function of G.
The degree of a vertex v is degq(v) = Z(v,w)eE ug(v,w). Note that a self-loop (v,v) contributes
ug(v,v) to the degree of v. Let fg : E— R-( denote the edge length function of G.

In this paper, we will use the word “hop” and “length” interchangeably'. A path from vertex
v to vertex w is called a (v,w)-path. For any path P, the length g(P) = " . {a(e) of the path
equals the total length of its edges, and the step-length |P| of the path is simply the number of
edges in P. The distance between vertices v and w is distg (v, w) = minp,(y w)-path £c(P). A ball
of radius r around a vertex v is ballg(v,r) = {w | distg(v,w) < r}. The diameter diamg(S) :=
max, wes distg(v, w) of a vertex set S is the maximum distance between two vertices in the set.

'We sometimes use the term “hop” instead of “length” in this paper and even use k for parameters related to length
so that terminologies are consistent with previous literature [HRG22, HHT24, HHG22, HHT23] on length-constrained
expanders. In the previous papers, they used “hop” and h because edges usually have unit length.



We assume all graphs to have polynomially bounded integral edge capacities and lengths. This
assumption allows us to write log(max, ¢(e)), log(max, u(e)) = O(log N), which simplifies notation.

Assumption 3.1. The capacity and length of all edges in the input graphs are integral and at most
N = poly(n).

Although we will work with fractional capacities and lengths in the body of the paper, all these
values will always be a multiple of some integer reciprocal 1/poly(n) and are upper bounded by
poly(n); by scaling, we can always obtain integral polynomially-bounded capacities and lengths.

Multicommodity Flows. A (multicommodity) flow F in G is a function that assigns each
simple path P in G a flow value F'(P) > 0. We say P is a flow-path of F'if FI(P) > 0, and write
path(F) = supp(F) := {P : F(P) > 0} for the set of flow-paths, equivalently the support of F,
and occasionally abuse notation to write P € F to mean P € supp(F). |path(F)| is called the
path count of F', and the value of the flow F'is val(F) := >, F(P). P is a (v, w)-flow-path of F'
if P is both a (v, w)-path and a flow-path of F. The (v,w)-flow f(, ., of I is the flow for which
fww) (P) = F(P) if P is a (v,w)-path, otherwise f(, ,,(P) = 0.

The congestion of F' on an edge e is congr(e) = F(e)/ug(e) where F(e) = > p..cp F(P)
denotes the total flow value of all paths going through e. The congestion of F is congp =
maX.c g () congp(e). The length of I, denoted by lengp = max pegypp(r) £(FP), measures the maxi-
mum length of all flow-paths of F. The (mazimum) step-length of F is stepp = max pesupp(r) [Pl
which measures the maximum number of edges in all flow-paths of F'. Note that stepp is completely
independent from leng ;. We sometimes write congq p,lengq p, stepg p to emphasize that they are
with respect to G.

Edge Representation of Flows. When we want to emphasize an edge (v,w) is undirected,
we use the notation {v,w}. Let ?(G) denote the set of bidirectional edges of G. That is, for
each edge e = {v,w} € E(G), we have (v,w),(w,v) € ?(G) The edge representation of F' in
G is a function flowp : E (G) — R>( where, for each edge e = {v,w} € E(G), let flowp (v, w)
and flowp(w,v) denote the total flow-value of F' routed through e from v to w and from w to v,

respectively. We sometimes use F'(v,w) = flowp (v, w) and F(w,v) = flowp(w,v) for convenience.
Note that F({v,w}) = F((v,w)) + F((w,v)).

Demands. A demand D : V xV — R>( assigns a value D(v,w) > 0 to each ordered pair of
vertices. Given a flow F', the demand routed/satisfied by F is denoted by Dp where, for each
w,v €V, Dp(u,v) = 3 pis a (u)-path £ () is the value of (u,v)-flow of F'. We say that a demand
D is routable in G with congestion n, length h, and t steps if there exists a flow F' in G where
Dp = D, congp <, lengp < h, and stepyp < t. The total demand size is |[D| = 3_, , D(u,v). The
support of D is supp(D) = {(v,w) | D(v,w) > 0}.

A node-weighting A : V. — R of G assigns a value A(v) to each vertex v. The size of A is
denoted by |A| =), A(v). For any two node-weightings A and B, we write A < B if A(v) < B(v)
for all v. We say D is A-respecting if both > D(v,w) < A(v) and ), D(w,v) < A(v). We
say that D is degree-respecting if D is degg-respecting. Next, D is h-length-bounded (or simply
h-length for short) if it assigns positive values only to pairs that are within distance at most h, i.e.,



D(v,w) > 0 implies that distg (v, w) < h. The load of a demand D is defined as the node weighting
load(D)(v) = >, cy D(v,w) + D(w,v).

3.1 Length-Constrained Expanders

Moving Cuts. An h-length moving cut C : E — {0, %, %, ..., 1} assigns a fractional which is a
multiple of 3 between zero and one to each edge e. The size of C'is defined as |C| = Y u(e) - C(e).
We denote with G — C' the graph G with a new length function ¢g_c(e) = la(e) + h - C(e) for all
e. We refer to G — C' as the graph G after cutting C or after applying the moving cut C.

Given a h-length demand D, we usually work with a (hs)-length moving cut C' where s > 1.
The total demand of D separated by C' is then denoted by

Sephs(C7D) = Z D(v,w),

(v,w):distg_c (v,w)>hs

which measures the total amount of demand between vertex pairs whose distance is increased (from
at most h, as D is h-length) to strictly greater than hs by applying the cut C. Note that an integral
moving cut (i.e. one for which C'(e) € {0,1}) functions somewhat like a classic cut: the size |C] is
the total capacity as a classic cut, and sepy,,(C, D) = 32, 1):all hs-length (v, w) D(v,w).

The sparsity of moving cut C with respect to a demand D, for a (hs)-length moving cut C and
a h-length demand D, denoted by

-paths in G are cut

€l

SparS(h7s)(C,D) = W

is the ratio between the size of the cut C' and the total demand of D separated by C. We say that
C'is ¢-sparse with respect to D is spars(C, D) < ¢.

We are ready to define the key notion of length-constrained expanders.

Definition 3.2 (Cut Characterization of Length-Constrainted Expanders). The (h, s)-length con-
ductance of a graph G is

condy, ) (G) min min sparsy, ¢(C, D).

a D:h-length, degree-respecting C:(hs)-moving cut

If cond(p, (G) > ¢, we say that G is a (h,s)-length ¢-expander. More generally, for any node-
weighting A, the (h, s)-length conductance of A is

condp, 5)(A) min min sparsy, o) (C, D).

D:h-length A-respecting C:(hs)-moving cut

If cond(y, 5(A) > ¢, then we say that A is (h, s)-length ¢-expanding in G and that G is a (h, s)-
length ¢-expander for A.

Note that cond(y, ¢(G) = cond, 5)(degs). In words, if G is an (h, s)-length ¢-expander, then
there is no ¢-sparse (hs)-moving cut with respect to any h-length degree-respecting demand. The
following observation draws a connection between length-constrained expanders and normal ex-
panders.



Proposition 3.3. When h — oo, G is an (h,s)-length ¢-expander if and only every connected
component of G is a ¢-expander.

The theorem below shows that, similar to normal expanders, there is a flow characterization
of length-constrained expanders that is almost equivalent to its cut characterization within a loga-
rithmic factor.

Theorem 3.4 (Flow Characterization of Length-Constrainted Expanders (Lemma 3.16 of [HRG22])).
We have the following:

1. If A is (h, s)-length ¢-expanding in G, then every h-length A-respecting demand can be routed
in G with congestion at most O(log(N)/¢) and length at most s - h.

2. If A is not (h, s)-length ¢-expanding in G, then some h-length A-respecting demand cannot
be routed in G with congestion at most 1/2¢ and length at most 5 - h.

3.2 Length-Constrained Expander Decomposition

Expander decomposition are a powerful tool that allows algorithm designers to exploit the power
of expanders in an arbitrary graph. The hop-constrained version of them is stated below.

Definition 3.5 (Expander Decomposition). A (h, s)-length (¢, k)-expander decomposition for a
node-weighting A in a graph G is a (hs)-moving cut C of size at most kp|A| such that A is (h,s)-
length ¢-expanding in G — C. C' s also called a (h, s, ¢, k)-decomposition for A, for short.

We refer to the parameters s and k as the length slack and congestion slack, respectively.

For any moving cut C, the degree with respect to C' of a vertex v is defined as

dego(v)= 3 u(e)-Cle).

e incident to v

By the definition, observe that degs(v) < degg(v) for any moving cut C. As discovered in
[GRST21], expander decompositions become even more versatile when the vertices incident to
the cut-edges of the decomposition are more “well-linked”. The definition of a linked expander
decomposition is given below.

Definition 3.6 (Linked Expander Decomposition). A S-linked (h, s)-length (¢, k)-expander de-
composition for a node-weighting A in a graph G is a (hs)-moving cut C of size at most k¢|A| such
that A+ B - degq is (h, s)-length ¢-expanding in G — C.

Notice that an expander decomposition is simply a S-linked expander decomposition for 5 = 0.
Requiring A+ - deg instead of just A to be expanding captures the intuition of requiring vertices
incident to C' to be more “well-linked”.

Theorem 3.7 (implicit in [HRG22], explicit in Theorem 3 of [HHT23]). For any node-weighting A,
length bound h, length slack s > 100, conductance bound ¢ > 0, congestion slack k > N1/5) log N,
and linkedness 8 = O(1/(¢k)), there exists a [-linked (h,s)-length (¢, k)-expander decomposition
for A.



3.3 Routers
Next, we define the notion of routers.

Definition 3.8 (Routers). For any node-weighting A, we say that a unit-length capacitated graph
G is a t-step k-router for A (or simply a router) if every A-respecting demand can be routed in
G with congestion k and t steps. If G is a t-step k-router for degq, then we simply say that G is
t-step k-router.

By the flow characterization of length-constrained expanders (Theorem 3.4), observe that routers
are essentially the same object as length-constrained expanders when the graph has unit length
and bounded diameter.

Proposition 3.9. Let G be a graph with unit edge-length. Let A be a mode-weighting where
diamg (supp(A4)) < h.

1. If G is a (h, s)-length ¢-expander for A, then G is a (hs)-step O(l‘%TN)-router for A.

2. If G is not a (h, s)-length ¢-expander for A, then G is not a (%)—step ﬁ—muter for A.

Proof. Since diamg(supp(A4)) < h, the set of A-respecting demands and the set of h-length A-
respecting demands are identical. Also, as G is unit-length, every path has length equal to the
path’s step-length. Therefore, by Theorem 3.4, if G is a (h, s)-length ¢-expander for A, every A-
respecting demand can be routed in G with congestion O(log(N)/¢) and sh steps. Otherwise, some
A-respecting demand cannot be routed in G with congestion 1/2¢ and (sh)/2 steps. O

Although routers and length-constrained expanders are very similar, they focus on different
things. We bound the maximum step-length of flow on routers, and bound the length of flows on
length-constrained expanders. The clear distinction between the two is made to avoid confusion.

A simple example of a router is a star.

Proposition 3.10. For any node-weighting A, let H be a star rooted at r ¢ supp(A) with leaf set
supp(A), each star-edge (r,v) € E(H) having capacity A(v). Then, H is a 2-step 1-router for A.

While the above router has great quality, it requires an additional vertex r ¢ supp(A).

A strong router without steiner vertices (one for which V(H) C supp(A)) can be constructed
using constant-degree expanders. The parameter in the construction below can likely be improved,
but we choose to present a simple construction.

Lemma 3.11. For any node-weighting A and positive integer parameter t, there exists a t-step
1-router H = router(A,t) for A such that

o degy <A-A
o |[E(H)| < A-|supp(4)|

where A = tn®1/t) Jog? N



Proof. First, suppose that the node-weighting A is uniform, i.e., A(v) = 1 for all v. Let Hy be a
O(1)-degree expander of constant conductance on the vertex set |[supp(A)|. It is well-known that
such a Hy is a t' := O(log n)-step O(logn)-router. Moreover, for k = Pﬂ, the power graph HE is
a t-step O(t)-router for A. Each vertex in HF has degree Ag = O(1)F = n@0/%). Define H = Hf.
We have that degy; < Ag- A and |E(H)| < Ag-|supp(A)| as desired. If A(v) = ¢ for all v for some
co, then H can be constructed in the same way but we scale up the capacity by cy.

Now, we handle the general node-weighting A. By paying at most a factor of 2 in the congestion,
we assume that A(v) = 2! for some i € [log N] for every v. Let V; = {v € supp(A) | A(v) = 2¢} and
A; = ANV, be the restriction of A to V;. Let H; be the t-step O(t)-router for A;. The final router
H is contained by connecting these H; together. For each 7, 7 where i > j, we construct a bipartite
graph H; j where V(H; j) = V; UV} such that every edge of H; ; has capacity 27, degy, ,(v) < 2¢ for
all v € V;, and degy, (v) < 20 for all v € V. If 2'|V;| < 27|V}, then degy, ,(v) = 2t for all v € V;,
otherwise deg Hi, (v) = 2/ for all v € V;. This can be done be greedily adding edges of capacity
2J between V; and V; in a natural way. We have |E(H; ;)| < max{|V;|,|V;|}. We define the final
router as H = (U, H;) U (U, ; Hi ;). Observe that

|E(H)| <Y |E(H)| + Y |E(H;j)| < Aofsupp(A)| + log N|supp(A)|.
i ij

Similarly, degy < (Ap +1log N) - A. We claim that H is a 2t-step O(tlog N)-router. To see the

claim, given any demand D respecting A, we first route the demand from V; to V; through H; ;

with congestion 1 for all ¢,j. The residual demand will respects log N - A and only need to route

inside each H;, which can be routed using O(tlog N) congestion.

Finally, to reduce the congestion to 1, we simply make O(tlog N) parallel copies of each edge.
Scaling the parameters by an appropriate constant, this implies the lemma. O

3.4 Length-Constrained Expansion Witness

We first recall two more standard notions.

Neighborhood Covers. Given a graph G with lengths, a clustering S in G is a collection of
mutually disjoint vertex sets Si,...,S|s|, called clusters. A neighborhood cover N with width w
and covering radius h is a collection of w many clusterings Sy, ..., S, such that for every node v
there exists a cluster S € S; where ball(v,h) C S. We use S € N to say that S is a cluster in some
clustering of A/. We say that N has diameter hgjan, if every cluster S € A/ has (weak) diameter at
most Adiam, 1-€., Maxy, yes distq (4, v) < hgiam. The following is a classic result.

Theorem 3.12 ([Pel00]). For any h, integer k > 1, and graph G, there a deterministic parallel
algorithm that computes a neighborhood cover N with covering radius h, diameter hgiam < (2k—1)-h
and width w = NO/®) log N. The algorithm has O(|E(G)|hkw) work and O(hkw) depth.

Embedding. Next, we recall the notion of graph embedding. We view it as a flow as follows.

Definition 3.13 (Edge Demand and Embedding). Given graphs G and H where V(H) C V(QG), the
edge-demand Dg gy of H on G is the demand where for all (v,w) € E(H), Dy (v, w) = ug (v, w).
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The embedding Il of H into G is a multicommodity flow that routes Dggy in G. We can
write g _.g = Z(U’w)eE(H) fwwy where f, ) s a (v, w)-flow in G of value val(f(, ) = um (v, ).
The embedding Iy is said to have length slack s if leng; < s-/{y(e) for alle € E(H).

We use the same terminology as for flows for the embedding I1y 5. For example, Iy g is
said to have length h and congestion « if lengpy, . < h and congyy,  , < k.

Expansion Witness. Given the above definitions of neighborhood covers, routers, and embed-
dings, we can define a witness of length-constrained expansion.

Definition 3.14 (Expansion Witness). Let G be a graph and A a node weighting. A (h,tgr, hi, k11)-
witness of A in G is a tuple (N, R,lIgr_q).

e N is a neighborhood cover with covering radius h.

e R is a collection of routers. For each cluster S € N, there exists a (tr,1)-router RS € R on
vertex set S for node-weighting S N A.

o llp g is an embedding of all routers in R to G. llgr_g has length hiy and congestion K.

Below, we show that (1) an expansion witness indeed certifies the expansion, and moreover,
gives an explicit routing structure, and (2) an expansion witness exists for every expander.

Corollary 3.15 (Expansion Witness Certifies Expansion). Suppose that there exists a (h,tg,tm, k11)-
witness (N, R,Ilgx—q) of A in G. Then, G is a (h,2trtn)-length (1/2km)-expander for A. More-

over, given any A-respecting h-length-constrained demand D in G, there is a flow F routing D in

G where lengp < hitr and congp < k1. Moreover, F' is “routed through” the embedding llg_,q,

ie, F'=3 ren, . valy - f where valy > 0.

Proof. Tt suffices to prove the “moreover” part by Theorem 3.4. For each (v, w) where D(v,w) > 0,
we have distg_c(v,w) < h and so there exists S € N where v,w € S. Choose such cluster S
arbitrarily and assign the demand D(v,w) to S. For each cluster, let Dg denote the demand
induced by this process. Note that Dg < D entry-wise and so Dg respects S N A. So Dg can
be routed via a flow Fg in R° with tg-step and 1-congestion. Let Fr = > sen Fs be a flow on
R = Uge NRS.

We define F' from F as follows. From the embedding Ilg ¢ = > . E(R) ur(e)- fe that embeds
R into G, define the flow F' = ZeeE(R) vy, - fe where f, € Ilg_,q and vy, = Fr(e) denotes the
total flow of Fr through e in R. Now, we bound the length and congestion of F'. Since Fr has at
most tr-step on R, we have lengp <t - lengHRH e S htgr. Since Fr has congestion 1 on R, we
have vy, < ug(e) for all e € E(R) and so congp < congyy, . = KiI- O

Corollary 3.16 (Expansion Witness Exists for Expanders). Let G be a (h, s)-length ¢-expander for
a node-weighting A. There is an (W, tg, hi, k1 )-witness (N, R, lgr_q) for A in G where k' = h/s,
tr = s, hit = hs, ki1 = sN?/*)poly(log N)/¢.

Proof. From Theorem 3.12, let A be a neighborhood cover on G with covering radius b’ = h/s,
diameter h, and width w < NO1/9) log N. For each cluster S € A, let RS € R be a s-step 1-router
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for Bg = SN A where degps < A - Bg and |E(R%)| < A - |supp(Bs)| and A < sN9(1/9) Jog? N
This follows from Lemma 3.11.

Let D be the edge demand of Ugea RS, First, observe that Dg is h-length-constrained in G.
Indeed, for each edge (v,w) € R for any S € N, we have distg(v,w) < h as N has diameter h.
Second, observe that Dp respects AwA. Indeed, for each vertex v, we have

Dr(v) <> degps(v) <A ) Bs(v) < Aw- A(v)
SeN SeN

where the last inequality is because there are most w many clusters S € N containing v.

Since A is (h, s)-length ¢-expanding in G, by Theorem 3.4, we have that Dg can be routed in
G with length hs = hyy and congestion ki = O(Awlog N/¢). Let IIgx_,¢ be such flow that routes
DR in G. O

3.5 Length-Constrained Witnessed Expander Decomposition

By combining the existence of the expander decomposition and the expansion witness, we obtain
the following.

Corollary 3.17 (Existential Witnessed Expander Decomposition). Let G be a graph with edge
lengths with node-weighting A. Given parameters (h, ¢, 3,s) where B < 1/(¢log N) and s > 100,
there exists a ho-moving cut C and a (h,tr, hir, k1 )-witness (N, R, g q) of A+ Bdegy in G—C
with the following guarantees:

o [C] < 9|A|
e The total number of edges in all routers is |E(R)| < nNP/*)poly(log N).
o tr =s, he,hi = hs?, ki = N9U/*poly(log N)/¢.

Proof. From Theorem 3.7, there exists a hs?>-moving cut C of size at most ¢|A| such that A+ Sdegq
is (hs, s)-length (¢/k)-expanding in G — C where k = N(/9) log N. By Corollary 3.16, there is a
(W, tRr, h11, k11 )-witness (N, R, g _q) for A+ Bdegy in G — C where b/ = hs/s, tr = s, sp = hs?,
K1 = gsNo(l/S)poly log V. O

The key subroutine that this paper relies on as a blackbox is an efficient parallel algorithm
for computing a length-constrained expander decomposition C' for A, together with the expansion
witness for A in G — C.

Theorem 3.18 (Algorithmic Witnessed Expander Decomposition from Theorem 1.1 of [HHT24]).
Let G be a graph with edge lengths with node-weighting A. Given parameters (h,¢,[3,s) where
B < 1/(¢logN) and s < log¢ N for some sufficiently small constant ¢, let € = 1/s. There exists
an algorithm that computes an ho-moving cut C and a (h,tg, hi, £n)-witness (N, R, llgr_q) of
A+ Bdegq in G — C with the following guarantees:

o |C] < ¢|A|.

o The total number of edges in all routers is |E(R)| < |E(G)|NPY€. Moreover, llr_,q is an
integral embedding with path count at most |E(G)|NPOWYe.
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o tr =5, ho,hp < h-exp(poly(1/e)), and ki = NP/ 4.

The algorithm takes |E(G)|poly (h)NPY€ work and has depth poly(h)NPoWe,

4 Length-Constrained Low-Step Emulators: Existence

The goal of this section is to show that, given any graph G, there is another graph G’ such that any
length-constrained multi-commodity flow in G can be routed in G’ with approximately the same
congestion and length, and moreover such flow in G’ can be routed via paths containing few edges.
The definition below formalize this idea.

Definition 4.1 (Length-Constrained Low-Step Emulators). Given a graph G and a node-weighting
A in G, we say that G’ is an h-length-constrained t-step emulator of A with length slack s and
congestion slack x if

1. Edges in G' have uniform length of h' = sh.

2. Giwen a flow F in G routing an A-respecting demand and lengp < h, there is a flow F' in G’
routing the same demand where congp, < k-congp and stepp < t (equivalently, lengp, < t-sh
by Item 1).

3. G’ can be embedded into G with congestion 1 and length slack 1.

The condition requiring that edges in G’ have uniform length is crucial. This will allow us
to bootstrap the construction for h-length-constrained ¢-step emulator for large h using based on
the ones for small h. Our main technical contribution of this section is showing the existence of
length-constrained low-step emulators.

Theorem 4.2 (Existential). Given any graph G with n vertices, a node-weighting A of G, and pa-
rameters h and t, there exists an h-length-constrained O(t?)-step emulator G’ for A in G with length
slack O(t?) and congestion slack poly(tlog NYNOW/Y | The emulator contains nN®1/Dpoly(tlog N)
edges.

We also give a parallel algorithm for constructing an emulator with a worse trade-off.

Theorem 4.3 (Algorithmic). There exists a parallel algorithm that, given any graph G with m
edges, a node-weighting A of G, and parameters h and € € (log”“N,1) for some sufficiently
small constant ¢, computes an h-length-constrained O(t?)-step emulator G' for A in G where
t = exp(polyl/e) with length slack O(t?) and congestion slack NP°Y¢. The emulator contains
mNPYe edges and the embedding Icv_, has path count mNPOWYe,

The algorithm has m - poly (h) NPV work and poly(h)NPY€ depth.

4.1 Construction and Analysis

In this section, we show a construction of h-length-constrained t-step emulator.

Let us start with basic technical observations on Algorithm 1.
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Algorithm 1 EMULATOR(G, t, h)
Initialize Ag < A, heoy < 4h, Sacp < t, B < %, and ¢ « 1/28N'/t. (The choice of 8 is so that
B =hc/h).

1. For 1 <7 < 2t:

(a) Given node-weighing A;_;, compute a witnessed expander decomposition C; and
(Ni, Ri, IIg, ) with parameters (heov, @, 5, Sdcp) using Corollary 3.17.

i. C; is a he-moving cut, and

ii. (N, Ri, IIg,5q) is a (heov, tr, hir, k11 )-witness of A;_1 + fdegq. in G — Ci.
(b) Set B; < A;_1 + Bdeg, and A; < Bdegc,.
(c) Set E} « E(R;) == Ugen; R scaled the capacity down by tr1y.

2. Return G’ where E(G’) = U;E! and ¢/ (e) = hyy for all e € E(G').

Proposition 4.4. We have the following:

1. For all'i and v, A;(v) and B;(v) are non-negative multiples of +.

2. For all i > 0, we have |A;| < |A|/N¥*. In particular, |Ag| = 0.

3. |E(G")| < 2t - sizeg where sizer upper bounds the total number of edges in the routers.
Proof. (1): We assume that Ay is integral. For i > 1, C;(e) is a non-negative multiple of % for all

e as (; is a hg-moving cut. By induction, A;(v) and B;(v) are non-negative multiples of % =

1
E.
(2): For i = 0, this holds by the assumption. For ¢ > 1, we have that |C;| < ¢|A;_1| by
Corollary 3.17 and so

|Ail < Bldege,| = 28ICi| < 28¢|Ai1| = |Ai1| /N < |A|/NV/Y.

by the choice of ¢ and by induction hypothesis. Since we have |Ag| < N 12/t < %, it follows that
|[A2¢e| = 0 by (1).

(3): This is because there are at most 2t levels. O

We show that any demand in G can be routed in G’ with small congestion, length, and steps.
This is the key technical lemma and we defer the proof to Section 4.2.

Lemma 4.5 (Forward Mapping). Let F' be a flow in G where D respects A such that congp = 1
and lengp < h. There is a flow F' routing Dp in G’ with congp < tky = No(l/t)poly(t log N) and
stepp < O(t - tr) = O(?).

Next, we show an embedding from G’ into G.

Lemma 4.6 (Backward Mapping). There exists an embedding e from G into G with length
slack 1 and congestion 1.
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Proof. For each level ¢, there is an embedding Ilz, ¢ from R; into G with congestion ki and
length hyy. Recall that E(G’) = U, E(R;) where the capacity is scaled down by txp. Define the
embedding I/, = >, g, »q/(knt) scaled down by tky.

The length slack of Ilg_,g is 1 because the length of Ilg, g is hi for every i but we have
lcr(e) = hiy for all e € E(G'). The congestion of Ilg/_,¢ is 1 because the congestion of ). g, ¢
is at most xt but we scaled down by the flow by krt. O

Now, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2.

Proof. Let G' = EMULATOR(G, t, h) be the output of Algorithm 1. By Lemma 4.5 and Lemma 4.6
immediately implies that G’ is an h-length-constrained O(t?)-step emulator for G with congestion
tk = poly(tlog N)YNOU/Y /¢ = poly(tlog N)NO/D because ¢p~! = 26Nt = O(t2NC0/). The
length slack is s = % because edges in G’ have length h;; = t2h by construction. The bound on
|E(G")| follows Proposition 4.4 (Item 3 and Corollary 3.17. O

4.2 Proof of Lemma 4.5: Forward Mapping

Strategy. Our strategy is to construct the flow F’ that routes Dp in G’ incrementally. More
concretely, let Dy = Dp. For each ¢ > 1, we will construct a flow F! that partially routes D;_; in
G’ using only edges from E! so that the remaining demand is D;. After i > 2¢, we have D; = 0,
i.e., there is no remaining demand. By combining and concatenating these flows F/ for all i > 1,
we will obtain F’ routing Dr in G’ with the desired properties.

We will maintain the following invariant, for all ¢ > 0,
1. D; is A;-respecting, and
2. D; is routable in G with congestion 1 and length h.

Let us check that the invariant holds for ¢ = 0. First, Dg respects Ay because Dp respects A by
assumption. Second, Dy is routable in G' with congestion 1 and length A because congp = 1 and
lengr < h by assumption. For ¢ > 1, assuming that the invariant holds for i — 1, we will construct
the flow F] that partially routes D;_; so that the invariant holds for i. We will then argue why the
invariant for all 4 implies that our final low I’ has the desired properties.

Construct F]/. The high-level idea is that we try to send a packet from v to w for each demand
pair (v,w) of D;_1. If distg_c; (v,w) < heoy, then we will successfully route this packet via some
router and be done with it. Otherwise, distg_c, (v, w) > heoy. In this case, for each (v, w)-flow path
P, we will carefully identify a set of vertices X, p and fractionally route the packet from v to X, p.
Similarly, from another end, the packet w is routed to a set X, p that we carefully define. We think
of v “forward” the packet to X, p and w “forward” the packet to X, p. The demand between X, p
and X, p will induce the demand D; in the next level. Below, we explain this high-level idea in
detail.

For each demand pair (v,w) of D;_; where distg_c; (v, w) < heoy, there must exist a cluster
S € cluster(N;) where v,w € S. We assign the pair (v, w) to such arbitrary cluster S. For each
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cluster S € cluster(N;), we route in G’ all demands D;_;(v,w) for all pairs (v, w) assigned to S
using the edges of router R for B;s. Let F gone denote the flow in G’ between vertices in S induced
by the above routing. Let Dg‘mo be the demand routed by F gone.

Now, we take care of the remaining demand pair (v,w) of D;_; where distg_c;, (v, w) > heoy =
4h. Let F;_q1 be a flow routing D; 1 in G with congestion 1 and length A, whose existence is
guaranteed by the invariant. Consider any (v,w)-flow-path P of F;_;. Since distg_c, (v, w) > 4h
but £g(P) <lengg,_, < h, C; must increase the length P by least 3h.

Let E, p the minimal edge set in P closest to v such that the total length increase by C; is at
least h, i.e., > .cp , Ci(e)hc > h. Next, we define the vertex set X, p C P as follows. For each
(z,y) € Eyp where z is closer to v, if Cj(x,y) > 0, we include = into set X, p. Let us denote
e; = (x,y) € E, p as the edge corresponding to z € X,, p. Observe that, for any =z € X, p,

distg_c, (v, ) < Lg(P) + h < 2h < heoy

That is, X, p C ballg_c, (v, heov) and so there exists a cluster S € cluster(N;) containing both v
and X, p. For each = € X, p, we route flow in G’ from v to z of value at most

Ci(ez)he
h

via router R®. Note that v,z € R® which is a router for SN (4;—1 + Bdegc,) because A;_1(v) > 0
and deg, (x) > 0. Since > Ci(ex)hc > h by definition, we can route flow from v to X, p of

Fi1(P)-

total value F;_;(P). Symmetrically, we define E,, p and X,, p . Observe that X, p and X,, p are
disjoint because they are defined based on vertices closest to v and w, respectively. We route flow
in G from w to X, p of total value F;_;(P) via RS where S € cluster(Nj) is a cluster containing
both w and X, p

For each cluster S € cluster(N;), let Fi™"ard be the flow in G’ induced by the routing described

above, which routes from vertices positive demand in D;_; to the vertices incident to the cut C;.
Let Dg‘”ward be the demand routed by F é"r“’ard.

Finally, we define the flow F = 3" gc juster(vy) £ done  plorward iy G’ that routes D" and
Digrward for all S € cluster(N;) in the manner described above.

Dgone and Dg‘”ward are B; s-respecting. Here, we argue that both Dgone and Dg‘”ward are B; g-
respecting. This is useful because, by Lemma 3.11, it means that both Dcslone and Dg’r“’ard can be
routed in R° C G’ using tx steps and congestion 1.

It suffices to show that Dgf’ne and ngrward are B;-respecting because their supports are only on
the pairs of vertices inside S. This is easy to argue for Dds‘me. We have Dg"no < D;_; (entry-wise),
D;_ is A;_q-respecting, and A;_; < B; (entry-wise). So Dgf’ne is B;-respecting. Next, we analyze
Dfsorward. On one hand, the total demand that each vertex v may send out is >, Dg‘”ward(v, x) <
YooDici(v,xz) < A;j_1(v) because D;_; is A;_j-respecting by the invariant. On the other hand,
we claim that the total demand that each vertex = may receive is Y, D™ d(y, z) < Bdeg, ().
Since B; = A;—1 + Bdegc,, we also have Dg?rward is Bj;-respecting.

Now, we prove the claim. The key observation is ), D?r“’ard(v, x) is at most

Z Fi—1(€)%-

e:incident to =
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This is because, by construction of the flow F éorward, x may only receive the demand of quantity at

most Fi_l(P)%h)hc whenever x € P and e € P is incident to z. But we have

Y Fa@GO < Y usle)Cie)s = fderc, (a)

e:incident to = e:incident to =

because F;_1 has congestion 1 in G and so F;_1(e) < ug(e). Also, 5 = th by definition. This
finishes the claim.

Define D; and Prove the Invariant. We define D; as the remaining demand after routing
F!. Observe that the remaining demand is as follows. For each demand pair (v,w) of D;_1 where
distg_c, (v, w) > heoy and each (v, w)-flow-path P of F;_;, we need route flow of value from X, p
to Xy, p of total value F;_;(P). Then, D; sums up these demand.

Now, we argue that D; satisfies the invariant. Consider the congestion and length required for
routing D; in G. Observe that D; can be routed through subpaths of the flow-paths of F;_; and
F;_1 is routable with congestion 1 and length h in G. Therefore, D; is routable in G with the same
congestion and length bound.

Next, we show that D; is A;-respecting. For x € supp(4;), observe that the total demand that
z sends out in D; is the same as the total demand z receives in Y ¢ D™Vard, But we showed that
this is at most D, cident to xﬂ_l(e)% < Bdegq, () = Ai(z) by the definition of A;. This
completes the proof why the invariant holds.

Construct I’ and Bound its Quality. The flow F’ is obtained by combining and concatenating
the flows that route D°"® and D¥™ard gyerall S € cluster(N;) for all level i in a natural way so
that F’ routes Dp. That is, in level 7, each demand of D;_; is routed either successfully routed
in G’ via some router in tg steps, or forwards to a new demand in D; by routing in G’ via some
router in tg steps as well. As i < 2¢, the maximum step of F” is O(t - tg).

Now, we bound the congestion on G’. F’ simultaneously routes, for all i, Dgone and DfsOrward for
each S € cluster(N;) on RS. Since Dgf’ne and Dg’r“’ard are B; s-respecting, the congestion for routing
both Dg"no and DfsOrward on R is at most 1. But each router is edge-disjoint from each other, so
the congestion for routing F’ on U;E(R;) = U; Usen; R is at most 1. Since E(G') = U;E(R;)
scaled down the capacity by txr, the congestion for routing F’ in G’ is then tk1y.

To summarize, we have successfully constructed a flow F’ routing Dp in G’ with congp <tk
and stepp < O(t - tr) as desired.

4.3 Reduction to Witnessed Expander Decomposition

Observe that we can state Algorithm 1 as a reduction from length-constrained low-step emulators
to witnessed expander decomposition, since the algorithm simply compute witnessed expander
decomposition O(t) times. This can be formalized as follows.

Corollary 4.7. Suppose there is an algorithm A that, given an arbitrary node-weighting A;_1
of graph G, computes a witnessed expander decomposition C; and (N, R,lr_¢) with parameters
(hcovy b, B, Sdcp) such that
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e C; is a ho-moving cut
o (Ni,Ri,lIg,5c) is a (heov, tr, hix, km)-witness of A;_1 + fdegc, in G — C;.

® R; has total number of edges at most sizer and the embedding Il _.c has path count at most
pathyy.

® heoy < 4h, Sqcp < t, ¢ 1/28NYt, and B is chosen such that 8 = hc/h.

Then, there is an algorithm for computing an h-length-constrained O(t - tr)-step emulator G’ for
G with length slack O(t - tr) and congestion slack tkr. The emulator contains 2t - sizer edges and
the embedding . has path count 2t - pathy.

The algorithm makes O(t) calls to A and spend additional work of O(|E(G")|) and depth
O(logn).

Theorem 4.2 is then obtained simply by plugging the existential result of witnessed expander
decomposition with parameters (hcov, @, 3, Sdep). From Corollary 3.17, we need to set § = t? so
that 8 = ho/h. Thus, we get

tr =1
ki = O(NPU/9) /) = NOU/Dpoly(log N)
sizer = n - N9/ D poly(log N),

which implies Theorem 4.2 by Corollary 4.7.

From this reduction, we also immediately obtain an algorithmic result (Theorem 4.3) by plug-
ging in the algorithmic witnessed expander decomposition from Theorem 3.18 with parameters
(hcovs @, B, Sdep) into Corollary 4.7. Define ¢t = 1/e. We need to set § = exp(poly(1/e)) so that
B = ho/h. Thus, we get

o
Ki = Npolye/qb — Npolye
pathyy, sizeg = m - No(l/t)poly(log N),

which implies Theorem 4.3.

5 Bootstrapping Length-Constrained Low-Step Emulators

In this section, we establish efficient algorithms and representations for length-constrained low-step
emulators. At a high level, this requires overcoming two barriers, the first technical and the second
conceptual.

1. Efficiency: The (h,s)-length (¢, k)-expander decomposition algorithm has a polynomial-in-h
dependency in the running time. Even in unit-length graphs, A can be as large as n, which
is prohibitively slow. Nevertheless, this is a purely technical issue, as a fast decomposition
algorithm for any h can still exist. In fact, we could obtain such an algorithm using the
techniques developed in our paper.
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2. Representation size: Even if there was a fast (h,s)-length (¢, x)-expander decomposition
algorithm for any value of h, the additional embedding |IIg .| may have size at least hn,
since we need to embed at least a linear number of paths as per Theorem 3.18, and each path
of length h can consist of h many edges. Conceptually, this barrier appears unavoidable with
explicit embeddings as required by IIz_,¢. In this section, we bypass this issue by stacking
emulators on top of each other in a hierarchical fashion. More precisely, each emulator may
embed not only into the original graph, but into previously computed emulators. This way,
an h-length path can be implicitly represented across multiple levels of stacking: an edge can
embed into an emulator at a previous level, whose path in this emulator contains edges that
embed further into previous emulators, and so on.

Theorem 5.1 (Bootstrapping). Let h,d,t be given parameters. Suppose there exists « > 1 and an
algorithm A that, given an m-edge n-vertex graph G and h' < (2t 4+ 3)h, computes an h'-length-
constrained t-step emulator G' of G with length slack s, congestion slack k, number of edges at most
|E(G")| < o|E(G)|, and path count of the embedding |path(Ilgr—q)| < a|E(G)|.

Then, there is an algorithm that, given graph G and (h,d,t,ho) as parameters where hg < h,
computes graphs Gy, G, G5, ..., Gl such that for each index 1,

1. G is an hoh'-length-constrained t-step emulator of G with length slack s*1(2t + 3)' and
congestion slack (2k)7+1,

2. G has at most (2a)"1m edges.

3. There is an embedding He s aua | that embeds G, into GUG,_, with length slack 1, conges-

tion 1, path count (2a)"*'m, and maximum step at most (2st+3s)h.> Moreover, e seue:

i—1

only routes through edges of G with length in the range (hoh'~!, hoh?].

The algorithm calls A on d many graphs, each with at most O(d(20)*m) edges, and, outside these
calls, runs in O(d(2a)%m) work and O(d) depth.

Before proving Theorem 5.1, we explain why Item 3 is important; it is crucial in the lemma
below.

Lemma 5.2. For any i € [d], for any flow F' in G;, there is a flow F in G routing the same
demand where congp < congpr and lengp < lengp,. Given the edge representation flow pr of F', we
can compute the edge representation flowp of F in O(hst - (2a)™ 'm) work and O(i) depth.

Proof. By scaling, we can assume that F’ has congestion and length 1 in G}. We will construct
the edge representation flowp of F' with congestion and length 1. Although the existence of F
follows immediately because G embeds into G with congestion 1 and length slack 1, below we will
how to construct the flow F' inductively level by level for the efficiency on constructing the edge
representation flowp of F.

Define F < F'. Let flowps < flow be the edge representation of F}. We construct a flow E,

in GUG,_, as follows: for each directed edge (v,w) € ?(G;), F} routes flow (v, w) units of flow
through the (v, w)-flow-paths of Ilg/ ,qug;_ . By Theorem 5.1(3), we have [path(Ilg; cue )| <

2We define G"_; = 0.
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(2a)"1m and stepry,, < (2st+3s)h. Thus, we can explicitly compute the path decomposi-

—GUG!_,
tion of F; as well as the its edge representation of flow s in O(hst - (2a)"*'m) work and O(1) depth
by explicitly summing the flow values overall flow paths of SICTANCTI

Given E, we now define F; and F}_; as the flow ﬁ, restricted to edges G and G,_, respectively.

More precisely, for each directed edge (v,w) € <ﬁ(G) where Fy((v,w)) > 0, F; routes flow (v, w)
units of flows through a single edge (v, w). Similarly, for each directed edge (v,w) € ?(Gg_l)

where ﬁi((v,w)) > 0, F;_; routes flow (v, w) units of flows through (v, w). Since each flow path
of F; and F]_, routes through a single (directed) edge, the edge representations flowr, and flow Fl_,

can be trivially computed in linear work and O(1) depth.

Next, we repeat the same argument on the edge representation flow Fl of F! | and until
¢ = 0. Finally, we obtain the edge representations flowr,,flowr, |,... ,flowg, of Fj, F;_1,...,Fp in
G, respectively, such that, after concatenating the flow paths of F;, F;_1,..., Fy, we can obtain the
flow F' that routes exactly the same demand as F’. We also have that the edge representation
of flowp = flowg, + flowg, |, + --- + flowp,. The total cost for constructing flowr is then O(hst -

(2a)"1m) work and O(i) depth as desired.

Note that we have lengr < 1 because Ilg gy, , has length slack 1 for all 7. Moreover,
congr < 1 because e aua_, has congestion 1 and each F; only route through edges of G with

length in the range (hoh'~!, hoh?] by Theorem 5.1(3). O

By plugging the algorithm from Theorem 4.3 into Theorem 5.1 and Lemma 5.2, we obtain
immediately the following, which will be used in the next section.

Corollary 5.3. For any € € (log™¢, 1) for some small enough constant c, there are parameters
t = exp(polyl/e) and v = NPY¢ such that there is a parallel algorithm that, given a m-edge graph
G, and (h,d, €, ho) as parameters where hy < h, computes graphs G, G, GY, ..., G such that for
each index i < d, G} is an (hoh?)-length-constrained t-step emulator of G containing m~* edges with
length slack O(t2)" and congestion slack +'. The algorithm has m~y*poly(h) work and O(d-poly(h))
depth.

For any i, given an edge representation of F’' in G;, one can compute the edge representation

flowp of F' in G that routes the same demand where congp < congps and lengp < lengp, in m~yeh
work and O(d) depth.

The rest of this section is for proving Theorem 5.1.

5.1 Construction and Analysis

In this subsection, we prove three properties of Theorem 5.1 by induction on ¢ > 0.

The base case @ = 0 is straightforward. Let G<j, denote the graph containing only edges in G of
length at most hg. By the guarantee of A, Gy, is an hg-length-constrained ¢-step emulator of G<p,
with length slack s and congestion slack k. By definition, Gj, is also an ho-length-constrained ¢-step
emulator of G with the same ganrantees, because any flow F' in G of length at most hy may route
through only edges of length at most hg. Moreover, |E(Gp)| < am and g, ¢ has length slack 1,

congestion 1, and path count am < 2a?m. The maximum step ¢ _,¢ is stepy , <lengp ,
0 GOAG GOAG
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Algorithm 2 EMULATORWITHBOOTSTRAPPING(G, h,d,t)

1. Let G{) be an hy-length-constrained t-step emulator obtained by calling algorithm A on G<p,,
i.e., the graph containing only edges in G of length at most hg.

2. For 1 <i¢<d:

(a) Let H; be the unit-length graph constructed as follows:

i. For each edge e in G)_,, add a corresponding unit-length edge e in H;.
ii. For each edge e in G with length in the range (hoh'~!, hoh'], add an edge in H; of
length [£g(e)/(hoh'")].
et H; be a (2t + -length-constrained ¢-step emulator obtained by calling algorithm
b) Let H! b 2t + 3)h-1 h ined 1 btained by calli lgorith
A on H;.

(c) Let G’ be the graph H] with all edges modified to have length hoh® - s"+1(2t + 3)'.

because the edge length of G is integral. We have lengHG, : S shy < (2st 4+ 3s)h because the
O*)

length of edges in Gy is hos and HG6—>G has length slack 1. So stepr,,, . < (2st + 3s)h. Finally,

HG6—>G only routes through edges of G with length at most hg, by definition of G<y,.

For the rest of the proof, assume that the three properties hold for iteration ¢ — 1. The two
lemmas below establish the analogues of Lemmas 4.5 and 4.6 from Section 4. We defer their proofs
to Sections 5.2 and 5.3.

Lemma 5.4 (Backward Mapping). The graph G’ has at most (2a)"1m edges and there is an embed-

ding e, quay_ | with congestion 1, length slack 1, path count at most (20)™* ' m, and stePr,, | .o
v " i i—1

(2st + 3s)h. Also, there is an embedding Hea with congestion 1 and length slack 1.

Lemma 5.5 (Forward Mapping). Let F be a flow in G with lengp < hoh'. There is a flow F'
routing D in G, with congg < (2k)"*! - congp and stepp < t.

Lemma 5.4 immediately implies properties (2) and (3) of Theorem 5.1 for iteration i. To see
that property (1) is satisfied, we check each requirement in Definition 4.1:

1. By construction, edges in G’ have the same length hoh® - s*1(2t + 3)°.

2. Given a flow F in G where lengp < hoh?, Lemma 5.5 guarantees a flow F’ in G’ routing the
same demand where congp < (2k)" - congp and stepp < t.

3. By Lemma 5.4, G can be embedded into G with congestion 1 and length slack 1.

Finally, we show that the algorithm calls A on d many graphs, each with at most O((2a)%m) edges,
and runs in O((2a)%m) work and O(1) depth outside these calls. On each iteration 1 < i < d, we
call A on the graph H; which consists of edges from G;_; and G (with their lengths modified),
which is at most O((2a)%m) edges in total. Outside of this call, the algorithm clearly runs in time
linear in G_; and G, which is O((2a)m) time. Over the d iterations, the total work outside calls
to A is O(d(2c)%m) and the total depth is O(d).
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5.2 Proof of Lemma 5.4: Backward Mapping

First, we show that the number of edges in G/ is at most (2a)*™'m. This is because |E(G})| =
|[E(H;)| < o|E(H;)| by the guarantee of A, and |E(H;)| < |E(Gi_,)| + |E(G)| < (2a)'m +m. So
|E(GY)] < a((2a)" + 1)m < (2a)"tm. Our next goal is to construct the embedding e eua,
and He e with desired properties. To do this, we will show the following embedding: Herm,

II H!—H;» Iy, ~GUG)_,» and Iy, . We will obtain the goal by composing them. Recall that all G
have length hoh® - s°71(2t + 3)¢ including the case when i = 0.

1. From G, to H[: Since G, is the graph H! with all edge lengths scaled up by factor
hohi='s?(2t + 3)"~1, there is a trivial embedding g, g with congestion 1 and length slack
1/(hohi=tst(2t + 3)71).

2. From H] to H;: By the guarantee of algorithm A, it returns an embedding Up:m, with
congestion 1, length slack 1. The path count [path(Ily_,,)| is at most o E(H;)| < (2a)Fim.
Next, we bound steprr,, . - We have steprr,,, . < lengHH{ﬁH_ because the edge length of H;
is integral. Also, flow [;ath of Iy, g7, has leﬁgth lengHH{ﬁ;I_ < (2t 4 3)hs because each edge

in H! has length (2t + 3)hs and the length slack of Mg p, is 1. Sostepyy, < (2t + 3)hs.

3. From H; to GUG!_,: Since H; is the graph G’_, scaled down by factor hoh?~1s!(2t+3)"~1,
together with edges in G with length in the range (hoh'~!, hoh!] scaled down by factor at
most hoh'~!. So there is a trivial embedding II H;—»Gua,_, With congestion 1 and length slack

max{hoh'~1s!(2t 4+ 3)"1, hohi~1} = hoh'~1s(2t + 3)~1.

4. From H; to G: We embed H; further to G as follows. We split the trivial embedding
Iy, cue,_, into an embedding IT; from H; to G_, and another embedding Il from H; to G

that only congests edges of length more than hoh'~!, each with congestion 1 and length slack
at most hoh'~'s’(2t 4+ 3)*~1. By induction, G;_; can be embedded into G with congestion
1 and length slack 1. Actually, we claim the stronger property that G;_; can be embedded
with congestion 1 and length slack 1 into the subgraph of G consisting of all edges of length
at most hoh®. This is because the edges in G of length greater than h’ are ignored in the first
1 — 1 levels of the construction. So the same inductive statement must hold on the graph with
these edges taken out. Let Ilg; . be this strengthened embedding. We compose II; with
g ¢ and then combine it with IIy, we obtain an embedding IIg, ¢ with congestion 1

and length slack hoh?~1s'(2t + 3)i~1.

By composing the embedding Uems Upismys My eua_ s we obtain e aua_, with con-
gestion 1 and length slack 1/(hoh®~1s!(2t + 3)"1) x 1 x hoh'~!s'(2t + 3)""! = 1. Since both
Hg: g and Iy, ,qug, | are trivial embedding, we have |path(Ilg ,cue; )l < (20)™1'm and
stepr,,

Her s euer_, only routes through edges of G with length in the range (hoh~!, hoh®].

< (2t 4+ 3)hs, inheriting the properties of II H—mn,;- By the definition of H;, we have

—GUG!
i—1

The embedding HG; _.¢ with congestion 1 and length slack 1 is obtained by composing HG; S HI
HH;—)HN and HHi_>G.
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5.3 Proof of Lemma 5.5: Forward Mapping

Let F be a flow in G with lengp < hoh® from the lemma statement. Our goal is to show a flow F”
routing D in G} with congp < (2k)" - congp and stepp < t.

Construct flow F* on H;. We first construct a flow F* that routes Dp in H; with lengp. <
(2t +3)h and congp+ < ((2k)+1)-congp. We start by decomposing the flow-paths in F' as follows.

For each flow-path P in F', we first break down the path into at most 2h segments Py, Ps, ...
such that each path P; either has length at most hgh'~! or consists of a single edge. To do so,
initialize P’ <~ P and ¢ < 1, and while P’ is non-empty, let path P; be the longest prefix of P’
of length at most hoh'™!, or the first edge of P’ if its length is already greater than hoh’~!'; then,
remove the edges of P; from P’ and increment i by 1. If P; is the longest prefix of P’ of length at
most hoh'~!, and if there is an edge e after P; in P’, then the combined length of P; and e is greater
than hoh'~!, and furthermore, e must be removed on the next iteration. It follows that every two
iterations decreases the length of P’ by at least hoh'~!, and since P has length at most hoh?, there
are at most 2h many paths.

For each path P; of length at most hoh'~!, add it to a new flow F}, and for the remaining paths
P; (consisting of single edges of length greater than hoh'~!), add it to a new flow F». Let Fy and I,
be the final flows after repeating this procedure for all flow-paths P in F. By construction, we have
F = Fy + F», congp, < congp, congp, < congp, lengp < hoh'~!, and stepp, = 1, and moreover,
each flow-path P in I’ decomposes into at most 2h flow-paths in F; and F5.

By induction, property (1) guarantees that G%_, is an hoh'~1-length-constrained ¢-step emulator
for G with congestion slack (2x)’. Since lengp < hoh'=!, there exists a flow FJ in G_; routing
demand Dp, where congpy < (2k)" - congp, < (2r)" - congp and steppy < t. Since edges H; have
unit length, there is a corresponding flow F} in H; where cong Fr < (2k)% - congp and leng Fr <t

By construction, each path in F, is a single edge e of length ¢g(e) € (hoh'™!, hoh'], so there
is a corresponding edge in H; of length [{g(e)/hoh'™!] < lg(x)/(hoh™1) + 1. Let Fy be the flow
in H; that routes each single edge in F5 through its corresponding edge in H;. By construction,
CONgpy = CONGp, < CONgp.

Finally, we concatenate flows F}" and F3 in H; as follows. For each flow-path P in F', consider
the decomposition into at most 2k segments P;, P, .. .. For each path P; of length at most hoh'~!,
take a corresponding flow in F* of length at most ¢, and for each single-edge path P; of length greater
than hoh'~!, take the flow in F}j along its corresponding edge in H;. In both cases, the flow in H; has
length at most max{t, ¢g(P;)/(hohi~')+1}. Concatenating these flows over all i produces a flow for
path P of length at most >, max{t, £c(P;)/(hoh'™1)+1} < 2ht+hoh'/hoh*~14+2h = (2t+3)h. Over
all flow-paths P, the final flow F™* in H; satisfies lengp. < (2t+3)h and congp- < congp.+congps <
((26)" 4 1) - cong.

Use emulator H]. Since H is a (2t+3)h-length-constrained ¢-step emulator of H; with congestion
slack &, there is a flow FT in H! routing Dp+ = Dp with congpt < k-congp. < k-((26)"+1)-congp <
(2x)"*! - congp and steppt < t. Finally, since G is simply H] with edge length increased, the flow
F'in H/ translates to a flow F' in G, with congp < (2k) - congp and stepys < t as promised.
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6 Low-Step Emulators

In this section, we define and construct emulators similar to the length-constrained low-step emu-
lators, but they preserve information about general flows instead of length-constrained flows.

To do this, we need a notion of path-mapping between flows. For any two flows F' in G and F’
in G’ routing the same demand, observe that there exist path-decomposition of F' and F’ denoted
by P and P’, respectively, and a bijection 7 : P — P’ such that for every P € P and P’ = n(P), we
have val(F'(P")) = val(F(P)). We call m a path-mapping from F to F'. We say that m has length
slack s if {q/(m(P)) < s-Lg(P).

Intuitively, if F' can be mapped to F’ via a path-mapping of length slack s, then F’ is “as short
as” F up to a factor of s. Now we are ready to define our main object.

Definition 6.1 (Low-Step Emulators). Given a graph G and a node-weighting A in G, we say that
G’ is a t-step emulator of A with length slack s and congestion slack k if

1. Given a flow F in G routing an A-respecting demand, there is a flow F' in G’ routing the
same demand where congpr < k-congp and stepp < t. Moreover, there exists a path-mapping
from F to F'" with length slack s.

2. G’ can be embedded into G with congestion 1 and length slack 1.

Remark 6.2. Let G’ is a t-step emulator of A in G. Then, G' is simultaneous an h-length-
constrained t-step emulator of A in G for all h, except that G' does not satisfies Condition 1 on
length uniformity.

The main theorems of this section are the construction of low-step emulators.

Theorem 6.3 (Existential). Given any graph G, a node weighing A and parameter t, there exists
a t-step emulator G' for A in G with length slack O(t), congestion slack poly(tlog N)No(l/‘/z), and
|E(G")| < n- NOO/VDpoly(log N).

Next, we show an algorithmic version of the above theorem when A = deg, and the number of
emulator edges is close to m, instead of n.

Theorem 6.4 (Algorithmic). Given any m-edge graph G and € € (log™“ N, 1) for some sufficiently
small constant ¢, let t = exp(poly(1/e)). There is a parallel algorithm LOWSTEPEMU(G,€) that
constructs a t-step emulator G' for A in G with length slack exp(poly(1/€)), congestion slack NPOWYe,
and |E(G")| < mNPoe,

The algorithms takes mNPYe work and NPY¢ depth. Given an edge representation flowps of
flow F' in G, there is an algorithm FLOWMAP(G',flowp) that computes an edge representation

flowp of flow F in G routing the same demand where congp < congpr and lengp < lengp using
mNPY work and O(1/polye) depth.

It is a natural question to ask if we can obtain above emulator for general A whose number of
edges is close to |supp(A)|. We believe this to be possible, but leave this for future work.

In the rest of this section, we prove Theorem 6.3 and Theorem 6.4. We will use the following
basic lemma showing how to construct a t-step emulator given 2'-length-constrained t-step emulator
for each i.
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Lemma 6.5. Let A be a a node-weighting of G. Fori € {1,...,d =log N}, let G% be a 2'-length-
constrained t-step emulator of A with length slack s and congestion slack k. Let G' = |4, G, with

capacity scaled down by d. Then G’ is a t-step emulator of A with length slack 2st and congestion
Kd.

Proof. We will argue the following;:

1. Given a flow F' in G routing an A-respecting demand with congestion 1, there is a flow F’
in G’ routing Dp where congpr < kd and stepp, < t. Moreover, there exist a path-mapping
between F' and F’ with length slack 2st.

2. G’ can be embedded into G with congestion 1 and length slack 1.

For the first point, given F', we decompose F' = F} + - - - 4+ Fj so that F; contains all flow paths P
of F where 2i=1 < ¢(P) < 2! for i > 1. For each flow F; in G, by Definition 4.1, there is a flow F/
routing D, in G} with congzy < &, steppr < t, and lengp < st - 2'. Define F/ = F{ +--- + F) as
a flow in G’. We now bound ‘the congestion, step, and length slack of F’, respectively. We have
conggy pr < d - max; congey pr < kd because G’ is a disjoint union of G} after scaling down the
capacity by d. Also, we have step Fr S tasstepp <t for all i. To bound the length slack, since F;
and F! route the same demand, there exists a path mapping ; from F; to F/. Since all flow paths
of F; and F have length at least 2i=1 and less than st - 2! respectively, the length slack of 7; is at
most 2st. From m,...,m,, there exists a natural path-mapping 7 from F to F’ with length slack
2st. This completes the proof of the first point.

For the second point, for each i, let Hg: ¢ be the embedding from G into G with congestion

1 and length slack 1. Observe that Hg_,q = % 14, g/, is an embedding of G’ (which is |4, G;
after scaling down the capacity by d) into G with congestion d/d = 1 and length slack 1. U

Existential Emulators: Proof of Theorem 6.3. From Theorem 4.2, for any 4, there exists a
2¢-length-constrained t-step emulator G, for A in G with with length slack s = O(t) and congestion
slack x = poly(tlog NYNOW/VD where |E(G])| < nNOW/Vpoly(log N).

By plugging G/, ... ,G{Og y into Lemma 6.5, we obtain a t-step emulator G’ for A in G with
length slack 2st = O(¢2) and congestion slack rd = poly(tlog N)NO/VD  Since G = H; G} with
capacity scaled down, the bound of |E(G?)| follow.

Algorithmic Emulators: Proof of Theorem 6.4. Given € € (log™, 1) for some small enough
constant ¢, let t = exp(poly(1/¢)) and v = N° be the parameters from Corollary 5.3 for some
constant ¢y > 0. Set € < €%/2 and h < N¢ as the stacking parameter. We round up h so that
it is a power of 2. For every hy = 2/ where hg < h, we do the following. Let d’ = log, N = 1/¢’.
Therefore, yd/ < N(€0)/ €0/ _ Neo/? = Npolve We will exploit this inequality.

Construct G’ o, G% ... G; o Vvia Corollary 5.3 such that for each index k, G’ k is an (hoh®)-
length-constrained ¢-step emulator of G. Each emulator G, contains [E(G )| < mAy® = m- NPolve
edges and has with length slack at most O(t2)¢ = exp(poly(l/e) - (1/€ )) = exp(poly(1/e)) and

congestion slack r < 4% < Npolye,
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Therefore, we obtained 2’-length-constrained t-step emulator G’ of G containing m - N polye
edges with length slack s = exp(poly(1/¢)) and congestion slack x = NP°Y¢ for all i < log N. By
plugging these emulators G} into Lemma 6.5, we obtain a t-step emulator G’ of G with length slack
2st = exp(poly(1/€)) and congestion slack xlog N = NPW¢ where G’ = |H; G’ with capacity scaled
down by log N. Clearly, we have |E(G')| < m - NPoVe,

Let us analyze the construction time of G'. We call Corollary 5.3 O(log h) = O(1/polye) times,
each of which takes m~? poly(h) = mNPYe work and O(d - poly(h)) = NP depth.

Finally, given an edge representation flow z of flow F’ in G’, we show how to compute the edge
representation of the corresponding flow F' in G. Given flowp : E (G') — R>g, we define ﬂowFir
as flow s restricted to ?(G;) that represents a flow F} in G where leng F! < leng s and cong F! <
congps/log N (because G' = |4, G; with capacity scaled down by log N). By Corollary 5.3, we
can compute the edge representation flow, of flow F; in G where Dp, = D F!, lengp, < lengp and
congp, < congp/log N in my® h = mNPYe work and O(d) = O(1/polye) depth. By concatenating
all I, we get the flow F' in G where D = Dpr, lengp < lengy and congp < ). congp. /log N < 1.
The edge representation flowr of F' can be defined as flowp = >, flowg,. Thus, we can return
flow > in mNPYe work and O(1/polye) depth.

7 Routing on an Expansion Witness

In this section, we prove the following.

Theorem 7.1 (Routing on a Router). Given a t-step y-router R for a node weighting A, an A-
respecting demand D and € € (log=° N,1) for some sufficiently small constant ¢, for parameters
A (€) = exp(poly(1/€)) and kp(€) = NPY()  one can compute a flow F routing D with

o congestion yk.r(€) and length tA,(€), and
o support size |supp(F)| < (|[E(R)| + [supp(D)|)NPoVe,
with (|E(R)| + |supp(D)|) - poly(t) NPV work and poly(t) NPW¥¢ depth.

Since an expansion witness covers neighbourhoods with routers, the above result for routing on
a router gives as a corollary the following result for routing on a witness.

Corollary 7.2 (Routing on a Witness). Given a (h,tg,tr, ki)-witness (N, R, lr_q) of A in G,
an A-respecting demand D such that for all (a,b) € supp(D) there exists S € S € N such that
a,b € S, and € € (log"°N,1) for some sufficiently small constant ¢, one can compute a flow F
routing D with

o length hiitr A\ (€)) and congestion Kikyr(€), and

e support size |supp(F)| < (Jpath(Ilg__q)| + [supp(D)|) NPoe,

with (|supp(D)| + |path(Ilz_q)|) - poly(tr )NPY(€) work and poly(tg)NPOY(©) depth.
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7.1 Section Preliminaries

Our algorithm is based on the cut-matching game, especially in the low hop-length regime developed
in [HHG22].

Cut-Matching Game. For a node weighting A, a cut-matching game with r rounds produces
a sequence of capacitated unit-length graphs G, ... G on supp(A), where GO is the empty
graph. In round %, the cut-player selects based on G, GM ... .G® a pair of node weightings
(A(i), B(i)), where A® and B@ are A-respecting, have disjoint support, and have equal size (i.e.
|A®)| = |B®W]). The matching player then produces a capacitated unit-length matching graph é(i),
with edges between the supports of A® and B, and capacities such that degsy = AW 4 BO),
The produced graphs are then added to the current graph: GG+ .= GO 4 GO,

Matching Strategy. For a node weighting A, a (r,t,n, A)-cut strategy for the cut matching
game with r rounds produces, regardless of the matching player, a graph G which is a t-step
n-congestion router for A with deg,y < AA.

We use the following cut-matching strategy of [HHG22].

Theorem 7.3 (Good Cut Strategy, Theorem 4.2 of [HHG22]). For every node weighting A and
every t < log N, there exists a (r,t,n, A)-cut strategy with r,n, A < NPy (/) - Suppose that each
graph G produced by the matching player contains at most m' edges. Then, such a cut strategy
can be computed in time O(poly(t) - (T'(m) +m")), where T(m') is the time needed for computing
an (h,2')-length (¢, NPY /D) _expander decomposition on a capacitated unit-length m/-edge graph.

Using the expander decomposition algorithm of Theorem 3.18 with e = 1/t (and disregarding
linkedness), we immediately obtain the following.

Corollary 7.4. For every node weighting A and every € € (log™“ N, 1) for some sufficiently small
constant ¢, we can compute a (r,t,n, A)-cut strategy with t = 1/e and r,n, A < NP°Y in depth
O(1) - poly(t) NPV and work O(m’ + [supp(A)|) - poly(t) NPV, where m/ is the mazimum number
of edges in any graph produced by the matching player.

Note that what we use here has two differences to the result stated in [HHG22]:
e The cut matching game is on a node weighting, instead of a vertex set.

e The matching player can return arbitrary complete flows between the two vertex sets, instead
of being restricted to return a perfect matching.

Obtaining the first generalization is simple: first, round down the node weighting A into powers
of two, and bucket equal powers of two, forming node weightings Ay, ..., A, (for b < log N) such
that A4;(v) € {0,2}, exactly one of A;(v) is nonzero for any v, and A/2 < >". A; < A. Then, the
node weighting A; of maximum value |4;| satisfies |4;| > $ >, |Ay|. Next, we run a cut matching
game on vertex set |[supp(A4;)|, with step bound ¢ — 2. Finally, the remaining vertices need to be
connected to the router constructed on [supp(A4;)|. This can be done through b — 1 cuts, each of
which has Aj, j # i as one side, and a subdemand A} < A; of size |A}| = |4;| as the other side.
Now, any demand can be routed with congestion b times higher (which can be absorbed into the
NPolye_factor) through paths of length (t —2) 4+ 2 = t.

The second generalization is possible with a capacitated length-bounded expander decomposi-
tion algorithm. The algorithm or potential analysis of the cut-matching game needs no changes.
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Length-Constrained Multicommodity Flow. We will use the following lemma for h-length
k-commodity flow, obtained by applying a result of [HHT24] to the specific case of routers. Note
that the additive k in support size (as opposed to multiplicative k as in the algorithms of [HHS23])
is critical for our application. For derivation of Lemma 7.5, see Appendix A.

Lemma 7.5. Let G = (V, E) be a t-step vy-router for node weighting A, and {(Aj,A;-)}je[k] node

weighting pairs such that 3 ; A;j + A’ is A-respecting and |Aj| = |A}| for all j. Then, one can
compute a flow F = Zj F; where F; is a complete A; to A;- -flow for each j € [k] with

o length 2t and congestion O(v), and

e support size |supp(F)| < O(|E(G)| + k + >~ [supp(4; + A%))),

with O((|E(G)| + > Isupp(4; + A%)[) - k- poly(t)) work and O(k - poly(t)) depth.

7.2 Algorithm for Routing on a Router

In this section, we present Algorithm 3, which routes a flow on a router. The correctness of the
algorithm is proven in Section 7.3. The simple extension to routing on a witness is performed in
Section 7.4.

In addition to the length-bounded cut-matching game strategy and flow algorithm presented in
the section preliminaries, Algorithm 3 needs two simple functions SplitFlow and ConcatFlow for
manipulating flows.

SplitFlow splits a complete flow F' from a node weighting A = .., A; to A" into complete
flows F; from node weightings A; to A} for Y. F; = F and ) , A, = A"

Lemma 7.6. Let G be a graph, A =73, A; and A" be node weightings, and F be a complete flow
from A to A'. Then, there is a deterministic algorithm SplitFlow(F,{A;}ick) that returns (flow,
node weighting) pairs {(F;, AL)} such that

o« SFi=Fand A= A,

o [ is a complete flow from A; to AL, and

o > [supp(A7)| <37, [supp(Fi)[ < 32; [supp(Ai)| + [supp(F)|
The algorithm has work O(|supp(F)|) and depth O(1).

Proof. For every vertex v € supp(A4), let I := {i : A;(v) > 0} be the set of node weightings with
nonzero weight on v and a = |I|, and let Py,..., P, € supp(F') be the flow paths from v. Fix an
arbitrary order of the a node weightings and b paths. Then, form a + b — 1 pairs (i,7), where a
pair is formed if the prefix sums from node weighting ¢ — 1 to ¢ and paths j — 1 to j overlap. For
every pair, add flow path P; to flow F; with value equal to the overlap. As sorting can be done
with depth O(1), this can be done with depth O(1). O

ConcatFlow concatenates a complete flow F' from node weighting A to node weighting A’ with

a complete flow F’ from node weighting A’ to node weighting A”, forming a complete flow F"
from A to A”.
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Lemma 7.7. Let G be a graph, A, A" and A" be node weightings with |A| = |A'| = |A"|, F a
complete A-to-A'-flow, and F' a complete A'-to-A"-flow. Then, there is a deterministic algorithm
ConcatFlow (F, F') that returns a complete A-to-A"-flow F** such that

e FEach flow path in F™ is a concatenation of a flow path in F with a flow path in F’, and the
total flow value of flow paths using a path P € F or P' € F' is F(P) or F(P') respectively.

o [supp(F")| < [supp(F)| + [supp(F”)].
The algorithm has work O(|supp(F)| + |supp(F")|) and depth O(1).

Proof. For every vertex v € supp(A’), let Py,..., P, € supp(F) be the flow paths of F' to v, and
P/, ..., Py the flow paths of I from v. We have 3, F(P;) = >_, F'(P;) as I is a complete flow to
A’ and F’ is a complete flow from A’.

Now, as with Lemma 7.6, pair paths P; with paths P; if the prefix sums of flow value overlap,
to form a + b — 1 pairs (4,7). For every such pair, add a path P that consists of P; concatenated
with P; of value equal to the overlap. O

Brief overview of Algorithm 3. The algorithm is recursive, with the goal of splitting the
instance into k£ smaller instances of roughly the same total size (where the ”size” of an instance
equals the number of edges in the router plus the number of pairs in the demand). Suppose the
graph contains more than one vertex (otherwise, we are in a trivial base case). Then, the algorithm
performs the following steps:

1. Split the vertex set of the router into k equal size vertex subsets.

2. Embed a router in each of the vertex subsets, by running a cut-matching game in each subset
in parallel.

3. Compute flows sending demand from each vertex subset to the correct vertex subset, so that
it only remains to route flow within each vertex subset.

4. Recursively route the resulting demand within each vertex subset using the embedded router.

Each recursive instance will be on a vertex set that is a factor k smaller than the current one, for
a recursion depth of log, |V (R)|. Thus, if the total size of the recursive instances is at most N°¢
times the size of the current instance, the total size of the instances at the bottommost level of the
recursion is N¢1°8k V(I times the initial size — for k = |V(R)|¢, this is NP°Y¢, Notably, we must
ensure that the total size of the recursive instances is not k times the size of the current instance.

In step 2, the routers we recurse on are constructed through parallel cut-matching games: we
run an independent cut-matching game in each of the k vertex subsets. Each round ¢, we receive
from each game j € [k] a partition (Ay),B](-Z)) of the node weighting of its vertex subset. To

construct the matching, we call Lemma 7.5 once, with k commodities, one for each pair (Ag-i), B](-i)).
Thus, the number of flow paths produced is O(|E(G)|+k+ > ]supp(Ag»i) +B§i))]) < O(|E(GQ)|+F)
instead of O(k - |[E(G)]); as each flow path will correspond to an edge in the constructed routers,
this avoids multiplying the total size of the recursive instances by k. The cut-matching games need

to run for NP°Y¢ rounds, but this is an acceptable blowup in instance size.
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For step 3, we want to route the part of the demand that starts and ends at different vertex
subsets (say, A; and Aj;) from A; to Aj, so that it only remains to route flow within each subset.
To do this, we create a k?-commodity flow instance, where each commodity corresponds to a pair
of source-vertex-subset, destination-vertex-subset, with the node weightings equal to the amount of
flow each vertex of the subsets needs to send or receive from the other subset. We call Lemma 7.5
once to solve this flow instance; again, the additive k2 in support size is critical, as this goes to the
total support size of the demands in the recursive instance.

Step 4 is then simple. It remains to route flow within each vertex subset, which we can do using
the routers embedded in step 2. After computing these flows, we map them back to the original
graph using the embeddings of the routers, and concatenate the flows of step 3 with those produced
recursively.

For notational simplicity, the algorithm represents the demands with node weightings: the
demand is a set of node weightings {Sy }wev, with the correspondence S, (v) = D (v, w).

7.3 Analysis of the Algorithm

Proof of correctness of Algorithm 3 is split into multiple simple lemmas. Lemma 7.8 certifies the
validity of the recursive instance and bounds its size, Lemma 7.9 bounds the work and depth of a
single call, excluding recursive calls, and Lemma 7.10 bounds the congestion, length and support
size of the produced flow. After proving the lemmas, we combine them for the proof of Theorem 7.1.

Lemma 7.8. For each recursive call made by Algorithm 3,
o G is at'-step n-router for Ay, and

o Zwe\/j/ Sy, and |Sy,| (restricted to Vi) are Aj -respecting,

and the total size of recursive instances satisfies

Do IB@G)I+ ) [supp(S))| | <O <k2 +IEG)+ Isupp(Sw)l> NPobe,

j’ wGV}/ weV

Proof. For the first claim, the graphs G, are produced through a (r,t’,n, A)-cut strategy for the
node weightings A;/, and are thus t'-step n-routers for Aj.

For the second claim, for all j, j/, the sum >,y SI, ;18 Bj j-respecting, as I’ ;r;-&}tCh is a complete
J ) ).

Aj i, Bj jy-flow, and Lemma 7.6 partitions the destination node weighting. We have B; j(w) =
|Sw,j| for w € Vi, thus 37, Bj j/(w) = [Sy| for w € Vjr. Since |Sy| is A-respecting and Ay is A
restricted to Vjr, |Sy| is Aj-respecting for w € Vjs. Finally, by Lemma 7.6, |Sy,| = |Sw|.

It remains to bound the total size of the recursive instances. We show the following two bounds,
which combine to the desired bound:

o 3, Isupp(S,)| < O(k? + E(G) + X, Isupp(Su)|).-
o >,/ |E(Gy)| < O(E(G)| + k)NPebe,

For the first bound,
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Algorithm 3 Router Routing Algorithm RouteRouter(G,t,v, €, A, {Sy }wev, k)

Input: t-step y-router G = (V, E) for a node weighting A with edge capacities u, demand node

weightings S,

(D(v,w) = Sy(v)) such that > Sy and |S,| are A-respecting, and a recursion

parameter k > 1.
Output: Multicommodity flow F' =} F, satisfying the demand (i.e. val((Fy )y w)) = Sw(v)).

0. Base case: If |V| = 1, output the empty flow as there is no demand to satisfy.

1. Partition vertices into k parts: let Vi,..., V) be a partition of V such that ||V;| — [V;/|| < 1
for all j,7" € [k], and let A;, S, ; be the node weightings A, S, restricted to V;.

2. Construct routers G for each A; with embeddings II;: run £ cut-matching games in parallel,
one on each A;, using a (r,t',n, A)-cut strategy of Corollary 7.4 with parameters ¢’ = 1/e and
r,n, A< INPolye.

(a) For each round i =1,2,...,7 sequentially:

i.

il.

iii.

For each j € [k], let Ag-i), Bj(-i) < Aj; be the ith node weightings produced by the cut
strategy on A;.

Let F() = Zj Fj(i) be a k-commodity flow for node weighting pairs {(Ag-i) , Bj(-i))} jelk)
computed using Lemma 7.5.

For each flow-path P € F @ with endpoints v, w, add an edge e = (v, w) of capacity
Fj(i)(P) to the matching graph G( ) with embedding IL;(e) = P.

(b) For each j € [k], let G; = Gy) be the constructed router and II; its embedding.

3. Compute flows between pairs Vj, Vj:

(a) For each 7,7’ € [k], let A; ji(v) := Zwe\// Sw,j(v) and Bj j/(w) =[Sy ;|I[w € Vj].

(b) Let Fmatch  — Z] i Fj matCh be a k%-commodity flow for node weighting pairs
{(Aj5, Bjj)}jrer computed using Lemma 7.5.

(c) For all j, 5" € [k], let {(Fﬁ?mh,S{m)}wevj, = SplitFlow (Fath, {Sw,jtwev,)-

(d) Let Sy, =3 e St

4. Recurse to route {S{U}wevj, inside each G

(a) For all j' € [k],

i.
ii.

iii.

Let Fjr = Zwevl Fl%° := RouteRouter(Gj/, t',n, €, Ajr, {S{D}wevj,,k).
Let Fil .= I1;/ (Fre) for w € Vj.
Let {(Ftil Ve = SplitFlow (Fti {80 iew)) for w e Vi

w,)?

(b) Return F =Y F, = Y., ConcatFlow (Fateh, Fiai)
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e By Lemma 7.6, 3=, [supp(S,,)| < 32, ; [supp(S,, ;)| < 32, [supp(Sw)| + [path (F<h)].

e By Lemma 7.5, [supp(F™*)| < O(k? + E(G) + 3, s [supp(A; ;7 + B; j/)|) = O(E(G) + k* +
2w [supp(Sw)])-

e Thus, 3, [supp(S,,)| < O(K* + E(G) + X, [supp(Su)|)-
For the second bound,
e By Lemma 7.5, 32, [supp(F}")| = [supp(F)| < O(E(G) + k + X2, lsupp(4]” + B{"))) =
O(E(G) + k).

e The cut strategy (Corollary 7.4) used has r < NPV rounds, thus > E(G))] < O(|E(G)| +
k) Nolve,

O

Lemma 7.9. In a call to Algorithm 3, excluding the recursive calls, the work done is O((|E(G)| +
> 1supp(Sy)]) - k2 - NPOYe . poly(t)) and the depth is O(k* - NPV . poly(t)).

Proof. Excluding the recursive calls, work done outside calls to Lemma 7.5 or Corollary 7.4 is
negligble. For those two,

e the cut-strategy of Corollary 7.4 can be computed with work O(|E(G)| + k) - poly(t) NPl
and depth O(1) - poly(t)N polye " as the maximum number of edges m’ in a matching graph
produced is m’ = O(|E(G)| + k). The total number of cut-strategies computed is k.

e computing the flows for the cut-matching games takes O(|E(G)| - k - poly(t)) work and O(k -
poly(t)) depth, and is done r = N polye times. Computing the flows for matching vertex sets
Vj, V! takes O((|E(G)| + Y=, [supp(Sw)|) - % - poly(t)) work and O(k? - poly(t)) depth, and is

done once.

Thus, the total work excluding recursive calls is O((|E(G)| + 32, [supp(Sy)]) - k2 - NPV poly(t)),
and the depth is O(k? - NPOYe . poly(t)). O

Lemma 7.10. Suppose that each flow Fire = Yowev, Fur¢ returned by the recursive calls from a
J
call to Algorithm 3 satisfies the demand { S, }wev,, (i.e. val((Fy)vw) = Sy, (v)), with

e length at most 7,
e congestion at most k"¢, and
e support size at most s*°° - (|E(Gj)| + X ,ev, [supp(Sy,)|)-
J
Then, the flow F =", F,, returned satisfies the demand {Sy, }wev with

e length at most t™° - O(t),

e congestion at most K" - O(’prOlyE), and
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e support size at most (smc : O(Np°1y€)) (|E(G)| + 3, [supp(Sw)|) + O(K?).

Proof. First, consider the flows F2! := IL;(F5°). The length of any path in this flow is at most
2t - t'°¢, as the length of each flow path computed by Lemma 7.5 is at most 2¢, and each edge in
G maps to one such flow path. For this reason, we also have |supp(F )| = |[supp(FrLe)|.

For congestion, consider some edge e of E(G). The total capacity of edges in the graphs G
that map to a flow path containing e is at most the number of rounds r of the cut strategy times
the maximum congestion of a flow produced by Lemma 7.5, which is O( ), and the maximum
congestion of an edge ¢ € F (G ) is the edge’s capacity times ', thus the congestion of ), F tail
is at most 7 - O(7) - K¢ = O(y - K7 - NPOlye,

Next, consider the flows F;azl The total congestion and dilation of these flows follows from
> F;azl =", Ftl For support size, by Lemma 7.6, we have

> Jsupp(Fih] <> (> Isupp(S,, ;)| + lsupp(Fih)]) < Z |supp(S,, ;)| + Z |supp(£,7)]-
w,j woog

and, using the bound 37, . |supp(S;, ;)| < O(k*> + E(G) + X, Isupp(Sy)|) from the proof of
Lemma 7.8 and the assumption from the lemma,

Z|supp Fih| < (s - O(NP)) - (B(G)] + Y supp(S)]) + O(K?).

Now, consider the flows Fﬁ}‘?“h. As they are computed by a single call to Lemma 7.5, the
congestion of -, ., I} mamh is at most O(7), the length of each flow path is at most 2¢, and

D Isupp(F )| < O(K? + B(G) + Y [supp(4; ; + B;;1)|) = O(k* + E(G) + > _ |supp(Su)|)
7.3’ 7.3’ w

as argued in the proof of Lemma 7.8. As before, after splitting, the flow Zm j Fg‘jmh retains the

same congestion bound O(y), the length bound 2¢ and has the same support size: O(k* + E(G) +

> supp(Sw)|) + 22, [supp(Sw,j)| = O(k* + E(G) + 3, [supp(Su)|)-

The returned flow is the concatenation of the flows FmatCh with the flows F ta;I. Thus, by
Lemma 7.7, the congestion is at most the sum of the two congestlons the length the sum of the
two lengths, and the support size the sum of the two support sizes. In each case, the quantity of
F;azl is larger, giving the desired bounds.

It remains to show the flow satisfies the demand {S,, },cv. This is simple: as the flow F;}:?mh
is a complete SwJ-to-Sq’U’j—ﬂow, and sz]aél is a complete Sz’w—to—w-ﬂow, their concatenation is a
complete S, j-to-w-flow. The sum of such flows over j is a complete Sy,-to-w-flow, as desired. [

We are ready to prove Theorem 7.1.

Theorem 7.1 (Routing on a Router). Given a t-step y-router R for a node weighting A, an A-
respecting demand D and € € (log™° N, 1) for some sufficiently small constant ¢, for parameters
Arr(€) = exp(poly(1/€)) and kpp(€) = NPY()  one can compute a flow F routing D with
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e congestion yk.r(€) and length tA.(€), and
o support size |supp(F)| < (|E(R)| + [supp(D)|) NP,
with (|E(R)| + |supp(D)|) - poly(t) NPV work and poly(t) NP¥e depth.

Proof. We produce a flow with the properties claimed by the theorem by calling Algorithm 3 with
the graph R and node weighting A (which is a t-step v-router), {Sy,}wev defined by Sy, (v) =
D(v,w), k = |V(R)|* (which results in recursion depth d := [log, |V (R)|] = [1/e€], and error
parameter € = €'/ for a sufficiently large constant ¢/, such that

° O(Npolye’)d < j\fpolye7 and
o O(1/¢')* < exp(poly(1/e)).

Note that this is possible as € > log™¢ N, thus O(N pOlyﬁl) = NP for a different polynomial.

Now, having set the parameters, consider the jth level of recursion, for 0 < j < d. As the
recursion always splits into k instances, there are k7 recursive instances at this level. Let siz;
denote the total size (sum of |E(G’)|+ Y, |supp(S,,)|) of instances at the jth level of recursion
(with sizg = |[E(R)| + )_,, [supp(Sw)|.- We have

SiZj_H < (SiZj + kI k2) ON(JVpolye’)7

thus siz; < (sizg + ]<;J'+1) . O(Npolye’)j'
At every recursion level except the topmost, the graph G’ is a t’-step n-router for ¢’ = 1/€¢’ and

n < NPWE  Let ¢ be the maximum length of a flow returned from the jth recursion level and
Ko the maximum congestion, as in Lemma 7.10. Then, we have

o I, < 1. O(1/¢'), and
o K% <RI O(NPO),

For support size, the total support size of the flows returned from the second-bottommost level is
at most sizg_; - O(NPY¢') 4+ k41 . O(k?). Thus, the final returned flow has

e length at most ¢ - O(1/€')? < t - exp(poly(1/e)),

e congestion at most - O(NPOW)d < ~ . NPolye and

e support size at most (sizg_; + k41) - O(NPoY<)d < (|E(R)| + |supp(D)|) NPolve,

Finally, we analyze the work and depth. By Lemma 7.9, the total work of the algorithm is
sizg - poly(t) = (sizo + K1) - O(NP¥ )0 . poly(t) < (IE(R)| + supp(D)]) - N*¥ - poly (t)

and its depth is O(k® - NP5 . poly(t)) < NPWe.poly(t) (as the size of the recursive instance does
not affect its depth, and the recursion depth is k). O
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7.4 Routing on a Witness

Recall the definition of an expansion witness:

Definition 3.14 (Expansion Witness). Let G be a graph and A a node weighting. A (h,tgr, hi, K11)-
witness of A in G is a tuple (N, R, lr_q).

e N is a neighborhood cover with covering radius h.

e R is a collection of routers. For each cluster S € N, there exists a (tr,1)-router RS € R on
vertex set S for node-weighting S N A.

o llg g is an embedding of all routers in R to G. llgr_g has length hiy and congestion K.

Our algorithm satisfying Corollary 7.2 is simple: for every demand pair, choose an arbitrary
neighbourhood cover cluster containing both vertices of the pair. Then, call routing in a router
within the embedded router of each cluster to route that cluster’s demand.

Corollary 7.2 (Routing on a Witness). Given a (h,tgr,tm, kir)-witness (N, R, lIx—¢) of A in G,
an A-respecting demand D such that for all (a,b) € supp(D) there exists S € S € N such that
a,b € S, and € € (log™“ N, 1) for some sufficiently small constant ¢, one can compute a flow F
routing D with

o length hiitrArr(€)) and congestion ik (€), and
o support size |[supp(F)| < (|path(Ilg—q)| + |Supp(D)|)NpOlye’

with (Jsupp(D)| + |path(Ilr—q)|) - poly (tr ) NPY(©) work and poly(tr) NP depth.

Proof. First, to simplify the algorithm, for every edge e in a router R of a cluster S € S € R, we
split the edge into multiple edges, each of which IIz_, maps to a path, not a flow. After this, the
total size of the routers is |path(Ilg—q)|.

Now, let Dg, S € § € N be demands such that Dg is restricted to cluster S, Dg(a,b) € D(a,b),
and >.¢Dg = D. For each cluster S, let FE"" be a flow routing Dg on RS computed by
Theorem 7.1 with error parameter e. Then, FE"" has length t - Ai(€), congestion 1 - Ky (€) and
support size (|[E(R%)|+ |supp(Ds)|) - NP°¥€. This takes (|E(R?)| + |supp(Ds)|) - NPV . poly(tr)
work and has depth NP¥€. poly(tr); over all the clusters S, the total support size is (|supp(D)| -+
Ipath(ITg_q)|) - NP°¥€ and the work is (|supp(D)| + |path(Ilg_q)|) - NP°¥¢ . poly(tr).

Next, we map the flows back to the original graph using IIg_,g. Let Fg := Ig_q(FE" ")
be the flow on the router mapped into G by the embedding of the expansion witness, and F =
> g Fs. Then, F has length hry -t - A(€), congestion ky.(€) - ki and support size |supp(F)| =
> seser [FE], as desired. The work and depth of this stage of the algorithm are negligible. [

8 Low-Step Multi-commodity Flow
In this section, we give O(t)-step k-commodity flow algorithms whose the running time are |E| -

poly(t)NP°e, We emphasize that the running time is independent from k, in contrast the algo-
rithms from [HHS23]. Later in Section 10, we will further remove the poly(¢) dependency.
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Below, a flow F' is said to partially route a demand D if Dp < D (pointwise), where Dp is the
demand routed by the flow F. The definition of the total length and average length of a flow are
defined as follows:

totlen(F) := Y F(P){(P) =Y F(e)l(e),
P e

__ totlen(F")
anlen(F) = T(F’)

The following is the main result of this section. We can control both the maximum step ¢ and total
length bound T of the flow. The bound of the total length is very useful, as we will see in Section 9,
as it us to “boost” the congestion slack x to match the length slack s < k.

Theorem 8.1 (Low-step Non-concurrent Flow). Let G be a graph with integral edge lengths
£ > 1 and capacities uw > 1, D an integral demand, t > 1 a step bound, T > 1 a total length
bound, and € € (log=“N,1) for some sufficiently small constant ¢ a tradeoff parameter. Then,
LowSTEPNONCONCFLOW(G, D, t,T,¢€) (Algorithm 6) returns a multicommodity flow F partially
routing D, such that

1. F has mazimum step length ts, total length T's and congestion k for step slack s = exp(poly1/e)
and congestion slack k = NP°W(©)  The support size of F is (|E| 4 supp(D))NPoWe,

2. Let F* be the mazimum-value multicommodity flow partially routing D of step length t, total
length T' and congestion 1. Then, val(F') > val(F™).

The algorithm has depth poly(t)NP°Y(€) and work (|E| + supp(D)) - poly(t) NPW(€),

The organization of this section is as follows. In Section 8.1, we first give a weak cutmatch al-
gorithm, which we need later. In Section 8.2, we give an algorithm for computing multi-commodity
flows with bounded maximum length. We will use this key subroutine to prove Theorem 8.1 in
Section 8.3.

8.1 Weak Cutmatch for Many Commodities

For the flow algorithms, we will need a weak cutmatch algorithm WEAKCUTMATCH. It has a similar
guarantee as the cutmatch algorithm from [HHS23], but, in contrast to [HHS23], our running time
is independent of the number of commodities. This comes at the cost of slack in both length and
congestion and a weaker bound on the size |C| of the cut: the cut has size at most a ¢-fraction of
the size of the total demand, instead of just the un-routed part of the demand.

Lemma 8.2. Let G be a graph with integral edge lengths £ > 1 and capacities uw > 1, D an integral
demand, h > 1 a mazximum length bound, ¢ a sparsity parameter and € € (1/log N, 1) a tradeoff
parameter. Then, WEAKCUTMATCH(G, D, h, ¢, €) returns a multicommodity flow, h-length moving
cut pair (F,C) such that

1. F partially routes D. Moreover, val(F(,y)) € {0,D(a,b)}. That is, for every vertex pair,
either none of the demand or all of the demand is routed by F'.
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Algorithm 4 Weak Cutmatch: WEAKCUTMATCH(G, D, h, ¢, €)

Input: Graph G with integral edge lengths ¢ > 1 and capacities u > 1, integral demand D,

maximum length bound h > 1, sparsity parameter ¢, tradeoff parameter e.

Output: A pair (F,C) of a multicommodity flow partially routing D and a h-length moving cut.
K

It is guaranteed that I has length hs and congestion § for s = exp(poly(1/e)) and £ = N poly(e)
that |C| < ¢ - |D|, and that the demand between any vertices h-close in G — C'is routed by F.

1. Let s' := exp(poly(1/e)) and &’ := NP°¥(€) with appropriate asymptotics.

2. Let C and (NV,R,IIg_g) be a pair of a h-length moving cut of size ¢|D| and a
(h,[1/€],hs’,2k"/¢) expansion witness for G — C, computed by Theorem 3.18 on G and
node weighting load (D) with parameters (h,¢/2,0,[1/€]).

3. Let D'(a,b) = D(a,b)I[3S € S € N :a,be S].

4. Let F be an flow routing D’ of length hs’®, congestion x> and support size (|E| +

|D'|)NP°Y¥¢ computed by Corollary 7.2 on graph G' — C, node weighting load(D) and wit-
ness (N, R, lr-a).

5. Return (F,C), with length slack s = s'3 and congestion slack x = 2x"%.

2. F has length hs and congestion g for length slack s = exp(poly(1/€)) and congestion slack
K = NP The support size of F is (|E| + supp(D))NPoWve.

3. For any (a,b), if distg_c(a,b) < h, then val(F(,y)) = D(a,b). That is, ' routes all the
demand between any vertex pair not h-separated by the cut C.

4. C has size at most ¢ - |D|.
The algorithm has depth poly(h)NP°Y(©) and work (|E| + |supp(D)|) - poly(h)NPoW(©),

The algorithm for Lemma 8.2 is simple. We first compute a witnessed length-constrained ¢-
expander decomposition C for load(D) of size |C| < ¢|D|. Since G — C has an expansion witness,
all demand pairs (a,b) that appear together in some cluster S € S € N that are still close in G —C
can be fully routed using routing in a witnessed graph (Corollary 7.2) with a length-constrained
multicommodity flow of congestion ~ 1/¢.

Proof of Lemma 8.2. We show each of the claims.

e Property 1. Corollary 7.2 guarantees the returned flow routes exactly D’. As D'(a,b) €
{0, D(a,b)}, for every vertex pair, either none of the demand or all of the demand is routed.

e Property 2. The flow has length hs = hs® and congestion x/¢ = 2x"?/¢ with appropriately
chosen s’ and «' as Corollary 7.2 produces a flow of length h - tgtr\.-(¢) and congestion
krikrr(€). For support size, Theorem 3.18 guarantees the embedding IIx_,¢ has path count
|E|NPY(©) | thus the call to Corollary 7.2 produces a flow of support size (|E|NPOW(©) 4
[supp(D)|) NPV = (|E| + [supp(D)[) NPV,
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e Property 4. If distg_c(a,b) < h, then a,b € S for some S € S € N as N is a neighbourhood
cover of G — C with covering radius h.

e Property 3. Theorem 3.18 guarantees that |C| < (¢/2)|load(D)| = ¢|D|.

e Work and depth. The algorithm’s work consists of a call to Theorem 3.18 and a call to
Corollary 7.2, both of which have depth at most poly(h)NP°¥(€) and work (| E| 4+ supp(D)) -
poly(R)NPY(€)  thus the algorithm has this work and depth.

8.2 Maximum Length-Constrained Non-Concurrent Flow

In this section, we give an algorithm for computing multi-commodity flows with bounded maximum
length. When we use later it as a subroutine, we the input demand will be #—fractional. This is
why the statement handles n—g—fractional demands instead of just integral demands.

Lemma 8.3. Let G be a graph with integral edge lengths ¢ > 1 and capacities w > 1, D a #—

fractional demand, h > 1 a mazimum length bound, and € € (log™¢ N, 1) for some sufficiently small
constant ¢ a tradeoff parameter. Then, MAXLENNONCONCFLOW(G, D, h,€) (Algorithm 5) returns
a #—fmctional multicommodity flow F routing a subdemand D' of D such that

1. F has maximum length hs and congestion k for s = exp(polyl/e) and k = NPoly(€)  The
support size of F is (|E| + supp(D))NPOWye,

2. Let F* be the mazimum-value multicommodity flow partially routing D of mazimum length h
and congestion 1. Then, val(F') > val(F™).

The algorithm has depth poly(h)NP°Y(€) and work (|E| 4+ supp(D)) - poly(h)NPoW (),

Our high-level strategy is as follows. We try to repeatedly apply WEAKCUTMATCH to send flow
as much as possible. We will set its sparsity parameter to be small enough so that the cuts from
WEAKCUTMATCH have small total size. Since WEAKCUTMATCH guarantees that the demands
pairs that are not cut, i.e., those still close after applying the cut, must have been fully routed, this
mean that we have send a lot of flow. The complete algorithm description of Lemma 8.3 to carry
out this strategy is shown in Algorithm 5.

Algorithm Explanation. We motivate the algorithm in more details here. First, we scale up the
demand and capacity of the input graph by v = n? from the beginning to allow us to solely work on
integral demands. Our returned flow Fi.s directly satisfies Property 1 as the sum of logarithmically
many flows returned from WEAKCUTMATCH plus a tiny, short flow. However, showing the second
property, i.e. that val(Fies) > val(F*), is non-trivial.

The algorithm has two main loops. For the outer for-loop, we will make progress as follows.
After the iteration 7 of the outer loop, let F;* denote the max-value flow with small maximum length
and congestion partially routing remaining D’. We will route a flow F' (and add it Fyes) to with value
val(F) > val(F})/2 as long as val(F;*) > 2n?. This implies that, either either val(F™*) — val(Fyes)
halves, or we have val(F*) — val(Fyes) < 2n? for every iteration. If the latter happens, then we will

37



Algorithm 5 Length-Bounded NC Multicommodity Flow: MAXLENNONCONCFLOW(G, D, h, €)

Input: Graph G with integral edge lengths £ > 1 and capacities u > 1, %—fractional demand D,
maximum length bound i > 1, tradeoff parameter e.

Output: A multicommodity flow F of length hs and congestion x routing a %—fractional sub-

demand of D for length slack s = exp(polyl/e) and congestion slack k = N poly(€)  For every
multicommodity flow F™* partially routing D of maximum length A and congestion 1, it is guaran-
teed that val(F") > val(F™).

1. Let v :=n? and &’ := 167 - [logy|D|].
2. Let Fyes < 0, D' + «D, and G’ be G with capacities ~yu.
3. Forie {1,2,...,[log|D|]}:

(a) Let C <0, F + 0 and Scjose < supp(D’).

(b) For p € {1,2,...,[logv|D|]}:
i. Let D/, (a,b) :== min(D'(a,b),2P) - I[(a,b) € Sciose)-

ii. Let (C’,pF’) = WEAKCUTMATCH(G' — C, Dy, 2h, 1/K'  €).

iii. Set C - C+C" and F < F + F'.

iv. Set D'(a,b) « D'(a,b) — val(F(’mb)) for each (a,b) € supp(D’).
v. Set Selose < Sclose N {(a,b) : val(F(’a’b)) >0}

(¢) Fres ¢ Fres + F.
4. Let F}_ ., = WEAKCUTMATCH(G' — C, D’,2h,1/N? ¢).

5. Let Fhnal be a subflow of FY, ., with integral D, of value val(Fiipa) = min(val(F} ), 2n?)
routing a subdemand of D’.

6. Let Fres — Fres + Fﬁnal-

7. Return %Fres.

add Fhpa to Fres at the end of value min(val(F*) —val(Fyes), 2n%). Note that Fyua can be computed
trivially as we do not need to worry about the congestion as we have scaled up the capacity of the
graph by n? from the beginning.

The inner for-loop tries to construct F where val(F) > val(F})/2 assuming val(F}) > 2n?. Our
strategy is to maintain a subdemand Dy, of D' such that |Dy,,| < 2val(F;"). Our definition of
D, satisfies this when p = 1 since val(F;") > 2n®. Also, |D/,,| can grow by only a factor of 2 per
iteration of the inner loop.

We will use WEAKCUTMATCH to cut or route Dy,,. The interesting case is when val(F}*) <

| Deap| < 2val(Fy). If WEAKCUTMATCH routes more than half of Dy, ,, then we have routed at least

val(F})/2 and we have achieved the goal. Otherwise, WEAKCUTMATCH cuts/separates more than

half of Dy, which reduces | Dy, | in the next iteration and maintain the invariant | Dy, | < 2val(F}").

The bound of |D,,,| is useful because it means that each cut from WEAKCUTMATCH has size
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bounded by ¢|D!,

capl = O(¢val(F}")) where ¢ is a parameter we can choose. So the total size size
after O(1) iterations is small compared to val(E}). So all cuts found did not “separates” too many
demand pairs routed by F;*. Since WEAKCUTMATCH guarantees that the demand pairs that are
not separated must be are completely routed. This implies that the total flow we have routed

during the inner for loop is at least val(F}*)/2 again.

For the proof of the theorem, we will use the following lemmas:

Lemma 8.4. Let G be a graph with edge capacities u and lengths £. Let F' be a h-length multi-
commodity flow and C a 2h-length moving cut. Let F' be the subflow of F' that is 2h-separated in
G — C, i.e., for all paths P, F'(P) := F(P)I[lg_c(P) > 2h]. Then,

val(F’) < 2|C| - congp.

Proof. Let L be the total length of the flow F' in G. The total length of F in G — C is at
least L + h - val(F’), as the length of the subflow F’ has increased from at most h to at least
2h. On the other hand, the total length of F' in G — C is at most L + )" F(e) - 2h - C(e) <
L + congp-2h ) u(e)C(e) = L + congp - 2h|C|. This implies that gives

L+ h-val(F <ZF Wa—c(P) < L+2h-|C|-congp.

Cancelling L and dividing by h gives val(F’) < 2|C| - congp, as desired. O

Lemma 8.5. Let G be a n-vertex graph with edge capacities u > n? and lengths £, h a mazimum
length bound, v > 1 a congestion bound and D an integral demand. Then, there exists a flow F™*
of maximum length h and congestion 27 that routes an integral subdemand of D, such that any
flow F** of maximum length h and congestion ~y that routes a subdemand of D satisfies val(F*) >
val(F**).

Proof. Let F** be the maximum-value flow of length h and congestion = routing a subdemand of
D. Let F* be the flow created by rounding up the flow value between every vertex pair up to the
next integer. This increases the total flow by at most n?, and thus the total flow over any edge
by at most [supp(D)| < n?. Thus, as the capacity of every edge is at least n?, the congestion goes
up by at most 1 < «, while the flow value does not decrease. The routed demand still remains a
subdemand of D, as D is integral. O

Lemma 8.6. At the end of each iteration of the for-loop on line 3, for every (a,b), either D'(a,b) =
0 (the flow fully satisfies the (a,b)-demand) or distg/_c(a,b) > 2h (the pair is 2h-separated).

Proof. Consider the iteration of the for-loop on line 3b where p = [log~|D||. Then, 2 > ~|D|,
and in particular D’(a,b) < 2P holds for every vertex pair (a,b). There are four possible situations
before the updates to C, F, D’ and S, of the iteration:

e D'(a,b) =0,

e (a,b) € Seose and val(Fy (a, b)) D!, (a,b),

cap (

e (a,b) € Sose and val(F/ (a b)) =0, and
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L4 (a, b) g Sclose'

In the first case we are trivially done. In the second case, we are done as D'(a,b) = D¢, (a,b). In
the third case, since the cutmatch algorithm guarantees that for (a,b) with distg_c(a,b) < 2h we
have val(F, (’a’b)) = D¢,p(a,b), the pair must be 2h-separated. Similarly, for (a,b) to have left Sciose
in a previous iteration, their distance must have been greater than 2h. Thus, as distances cannot
decrease, their distance remains greater than 2h. O

We are ready to prove Lemma 8.3.

Proof. The work and depth bounds are clear, as the algorithm’s work and depth are dominated by
O(1) calls to Algorithm 4.

Property 1. The cutmatch algorithm only produces integral flows, thus the returned flow is #—
fractional. The flow Fjes before adding Fipa is the sum of O(1) flows, each produced by Algorithm 4
with maximum length bound 2h and sparsity parameter % = O(1/~log N). Algorithm 4 thus
guarantees that the flow has length 2h - s = h - exp(polyl/e) and congestion x'k” = yNPW()  for
s" = exp(polyl/e) and k" = NPW(©) The flow Fjin, has length 2h - s” and congestion at most its
value of 27, thus adding it to Fies does not change the asymptotic length and congestion, and the
returned flow has congestion NP°¥() | as desired. Finally, the support size is (| E|+supp(D))NPowe

as F' is the sum of O(1) flows of support size (|E| + supp(D))NPoWe,

Property 2. The algorithm starts by scaling up all capacities and demands by v = n?. Then,
u > n?, thus by Lemma 8.5, the maximum-value length-h congestion-2vy flow F* routing an integral
subdemand of vD has value at least the value of any maximum-length-h congestion-v flow routing
a possibly fractional subdemand of vD. It thus suffices to show that val(Fies) > val(F™*) at the end
of the algorithm.

Fix a iteration i of the outer for-loop on line 3. Let D) be the remaining demand D’ at
the start of iteration i. Let F* be the maximum-value length-h and congestion-2v flow routing
an integral subdemand of D!. Consider the demand D® = min{D!, Dg:} where Dp« is routed
by F*. Since DZ-A is a subdemand of Dp~, it is routable by a length-A congestion-2v flow. So
val(F}) > |D2| > val(F*) — val(Fys) for Fyes at the beginning of iteration .

If val(E}) > 2n%, we will show that the flow F' constructed at the end of iteration i satisfies
val(F') > val(F})/2. Therefore, at the end of iteration i when we set Fies ¢ Fres + F, either
val(F™*) — val(Fyes) halves, or we have val(F*) — val(Fles) < 2n?. As the difference is initially at
most | D| = n?|D| and at the end of the algorithm we add a flow Fy,) of value 2n? to the returned
flow, we have that after [log|D|] iterations and after line 6, we have val(Fyes) > val(F™).

Now, assume that val(F}) > 2n?. We show that the flow F constructed satisfies val(F) >
val(F})/2. To show this, by Lemma 8.6, we have that the produced cut C' 2h-separates all of the
demand not routed by F'. Thus, it is sufficient to show that at most half of F}" is 2h-separated by
C.

By Lemma 8.4, any length-2h cut C' 2h-separates at most 4y|C| of F, as F has congestion
at most 2. Thus, as long as |C| < val(F}")/8v, C separates at most half of F}*. The size of the
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length-2h cut C’ produced on line 3(b)ii of the algorithm is at most

1 1 1 1
~D. | =—— . (2D

by the guarantee of WEAKCUTMATCH from Lemma 8.2. Thus, assuming that |D., | < 2val(F})

cap
at every point during iteration i, we have that the size of the final length-2h cut C' produced is at

ost Valéfi*). So, at most half of F;* can be 2h-separated by C, as desired.
Next, we prove the following result, which gives either |Dy,,| < 2val(F;*) at every point during
iteration i or directly that val(F) > Ival(F}), by induction: for every p € {0,1,..., [log~|D|]},
either val(F) > 1val(F}), or |Deap pr1l < 2val(F), where Dy, ., is the demand defined at line 3(b)i

cap,p
in the iteration of the loop on line 3b for a particular p.

The base case follows from | D/, | < 2P[supp(D’)| < 2n? < 2val(F}) when p = 1. Assume the
claim holds for p’ < p. If for the previous iteration val(F') > %Val(Fi*), we are done, as the value of

F' cannot decrease and the value of F}* is invariant. Thus, we may assume that the other condition
holds.

Observe that |Dg,, 11| < 2[Dyp |- Thus, if [Dy,, | < val(F}"), we are done. Assume the
contrary, and consider the pair (C’, F’) returned by WEAKCUTMATCH. By Lemma 8.2, either
the moving cut C’ drops pairs from Scjse contributing at least a %—fraction of |D.,. | or the flow

cap,p
F' has value val(F') > §|D},.|. In the latter case, we are done, as now val(F) > val(F’) >

%’Déap,p’ > %val(Fi*). In the former case, we are done, as the demand pairs dropped from S¢joge
will not contribute to |D., .| the next iteration and all iterations after, and the demand value for

cap,p
the other pairs is at most doubled, and thus | D, 41| < 2(3| Dk < 2val(F}). O

cap,p‘)

8.3 Low-Step Total-Length-Constrained Non-Concurrent Flow

In this section, we prove Theorem 8.1. The algorithm needs to round edge lengths to go from a
step bound and a length bound to just a length bound. The following fact shows the correctness
of the approach:

Fact 8.7. Let G be a graph with positive edge lengths £, h be a length bound, and t be a step bound.
Define the length function ¢'(e) = {#W Then, for any path p, we have

t-f(p)‘

max <|p|, tw(p)) <l(p) < lpl +—

h
In particular,
o if {(p) < h and |p| < t, then {'(p) < 2t, and

o if I'(p) < 2t, then £(p) < 2h and |p| < 2t.

Proof. We have ('(p) =3_ , P'nge)] Clearly, max (|p|, %) <D eep F'Z}Eeq <|p| + %. O

Now, we describe the algorithm of Theorem 8.1 in Algorithm 6.
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Algorithm 6 Low-Step Non-Concurrent Flow: LowSTEPNoONCoONCFLOW(G, D, t, T €)

Input: Graph G with integral edge lengths ¢ > 1 and capacities u > 1, integral demand D, step
bound ¢ > 1, total length bound T > 1, tradeoff parameter e.

Output: A multicommodity flow F' partially routing D of step length ts, total length T's and
congestion k for s = exp(polyl/e) and Kk = N poly(€) - For every multicommodity flow F* partially
routing D of step length ¢, total length T" and congestion 1, it is guaranteed that val(F') > val(F™).

1. Let s’ = exp(poly(1/€)) be the length slack of Algorithm 5 on tradeoff parameter e.
2. Let T" = 55'T.
3. Let F < 0and D' + D.
4. For p € {0,1,...,[lognN]}:
(a) Let h =2P.
(b) Let ¢'(e) = {%W and G’ be G with edge lengths ¢'.
(c) Let F*'8 = MAXLENNONCONCFLOW(G', D', 2t,€).
(d) Let A be the maximum value in [0, 1] such that totlen(F + A\F?18) < T".
) Set F' <+ F + AF?2us,
)
)

(
(f) If X < 1, return F.

(g) For all (a,b) € supp(D’), set D'(a,b) + D'(a,b) — Val(F(aauf)).

[§]

5. Return F.

Proof. The work and depth are dominated by the calls to MAXLENNONCONCFLOW, of which there
are O(1)-many. Note that since flow returned by MAXLENNONCONCFLOW routes a #—fractional
subdemand, D’ is always %—fractional and is a valid input for MAXLENNONCONCFLOW. Now, we
prove the two properties of the returned flow F.

Property 1. Let s = exp(polyl/e) and kK = N poly(€) be the length slack and congestion slack
respectively of MAXLENNONCONCFLOW from Lemma 8.3. By Fact 8.7, the step bound of F' is at
most 2ts’ because F' has maximum ¢'-length at most 2ts’. The total length bound of F' is at most
T' = 3s'b as explicitly enforced by line 4d. The flow F' has congestion x[lognN]| as there are at
most 1 4 [lognN] iterations. The support size bound supp(F) = (|E| + supp(D))NP°Ye follows
directly from Lemma 8.3.

Property 2. Let F* be the maximum-value multicommodity flow partially routing D using step
t, total length T" and congestion 1. Our goal is to show that val(F') > val(F™*).

For p € {0,1,...,[lognN]}, let )y be the sub-flow of I* with path lengths in £ at most 2P.
Note that F* = F[*log AN because simple paths have length at most n/N as £(e) < N. Let D} be the
demand routed by F;. Let F,""® be the flow that augment Fy , to F, i.e., Fy = Fr | + F,™"®.
Let Fy"® be the flow produced by Algorithm 5 from Lemma 8.3 on line 4c when h = 2P. Let
F, = F,_1 + F}"® where F_; = 0. That is, F,;"® augments F),_; to F,.
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First, we show that val(F},) > val(F}) for all p. Consider D), = D" — Dp,_,. That is, Dj, is the
remaining demand D’ at the start of the iteration of the loop when h = 2P. Consider the demand
DpA = min(D;,, Dy). By the definition of F};, there is a step-t {-length-h congestion-1 flow routing
DpA. So, DpA can be routed by a flow with #-length 2t and congestion 1 by Fact 8.7. Therefore,
by the guarantee of MAXLENNONCONCFLOW from Lemma 8.3, the flow F;"® produced on line 4c
has value at least \DPA\ > val(Fy) — val(F,_1). Hence, we have val(Fy) = val(Fp"®) + val(Fp_1) >
val(Fy).

Suppose F' is returned on line 5. Then, F' = Fj,,,n and so we have val(F') = val(Ffiog nn) >
Val(FﬁOgnm) = val(F™).

From now, we assume that F' is returned on line 4f at the iteration p. Observe that F' =
F,_14+ AF;"® and totlen(F) = T". The key claim is the following, which will be proved at the end.

Claim 8.8. For all p, there is a subflow ﬁp of F, such that Val(ﬁp) = val(Fy) and totlen(ﬁp) <
4s' - totlen(F}).

We will use the above claim only for F,_;. Now, suppose for contradiction that val(F) <
val(F™). We will analyze totlen(F*) = totlen(F™ — F;_;) + totlen(F,;_;). Let us analyze the two
term as follows. First, we have

totlen(F™ — F;_,) = avglen(F" — F_)(val(F™) — val(F,_;))

1 ~ ~
> @avglen(F — Fp_1)(val(F™) — val(F') + val(F) — val(Fp_1))

1 fay A~
=17 <avglen(F — Fp)(val(F™) — val(F)) + totlen(F — Fp_1)>

1
> 4—s/totlen(F —Fy1)

where the first inequality follows from (1) the minimum /(-length of F* — I} is at least 2P=1 (2) the
maximum /-length of F — ﬁp_l is at most 2P*1s’ because the maximum ¢-length of F is 2ts’ and
by Fact 8.7, and (3) Val(ﬁp_l) = val(F;_;) by Claim 8.8. The last inequality is by our assumption
that val(F*) — val(F') > 0. Second, by Claim 8.8, we directly have

~

. 1
totlen(F,_,) > ™ - totlen(F,_1).

Combining the two inequalities, we get a contradiction because

T > totlen(F™)
= totlen(F™ — F}) + totlen(F})
> totlen(F)/4s'
>T

where the last equality is because totlen(F) = T” = 5s'T. This concludes the proof that val(F') >
val(F*) when returned on line 4f. O

Finally, we prove Claim 8.8.
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Proof of Claim 8.8. We prove by induction. The base case when p = —1 is trivial because val(F*,) =
0 as every edge has length at least 1 and F_; = 0. Now, assume the claim holds for all p’ < p.

Since val(F,) > val(F}) and val(F}, Fp1) = val(F,_;) by induction, we have that val(F}, — ﬁp_l)
val(F, *aug) 3 So, there exists 5y € [0, 1] such that yval(F, — F,_1) = val(F;™8). We define Fi"8 =
v(Fp — Fp 1) and set Fp = Fp |+ Fpe,

Let us verify that Fp satisfies the two properties. For the first property, we have

v

val(Ep) = val(Fp_1) + val(E2U8) = val(Fy_,) + val(F8) = val(EF))

by induction and by the definition of ﬁ;“g. For the second property, observe that maximum ¢'-
length of F"¢, which is a subflow of F}, is at most 2¢s’, and so the maximum ¢-length of F;"® is at
most (2ts') - h/t = 2PF1s' by Fact 8.7. But the minimum /-length of F,*"® is at least 2°~1. Hence,

avglen(F1"8) < 4s'avglen(Fy™€) and so totlen(Fi"8) < 4s'totlen(F; *aug) because the value of the
two flows are same. Thus, by induction, we get

totlen(l3 ) = totlen(F, 1) —I—totlen(Faug) < 4s'-totlen(F;_;) +4s’ - totlen(F;*"®) = 45" - totlen(F;).

This completes the inductive step of the claim. O

9 Flow Boosting

In this section, we show how to boost a flow algorithm that achieves length slack s and congestion
slack k to an algorithm that achieves length slack s and congestion slack (1+ ¢€)s with an additional
running time overhead of poly(k/e€). Since we are primarily interested in the regime when s =
exp(poly(1/e€)) and k = nP°Y¢, boosting effectively reduces the congestion slack down to the length
slack.

In order to bypass the O(mk) flow-path decomposition barrier, our algorithms must output an
implicit flow, which we formalize as a flow oracle.

Definition 9.1 (Flow Oracle). A flow oracle O for a multi-commodity flow F on a graph G is a
data structure supporting the following query:

o Given a subset S of pairs of vertices of G, return the edge representation flowry of Fs, where
Fg := Z(mb)es Flap is the subflow of F' between the vertex pairs (a,b) € S.

The oracle has query work Q. and query depth Qg if every query S takes at most Q,, work and
has depth at most Q.

9.1 Flow Boosting Template

We begin with a generic flow boosting template that does not depend on the specifics of the flow
problem, and instead works for any convex set F of satisfying flows. For illustration, the reader
can imagine that F is the set of concurrent or non-concurrent flows for a given demand.

3Note that F, — ﬁ,kl is well-defined because ﬁp,1 is a subflow of Fj,_; which is a subflow of F},.
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Theorem 9.2 (Flow Boosting Template). Let G = (V, E,u,b) be a graph with capacity function u
and cost function b, and let B > 0 be the cost budget. Let F be any convex set of flows in G con-
taining at least one capacity-respecting flow, and let €, s,k > 0 be parameters. Suppose an algorithm
is given an oracle O that, given any integral edge length function ¢ : E — {1,2,... ,O(ml/EN/e)},
computes the edge representation of a (not necessarily capacity-respecting) flow F € F such that

o Length slack s: > .pFl(e) - l(e) < s-Y cpF*(e)-Lle) for any flow F* € F that is also
capacity-respecting, and

e Congestion slack k: F(e) < ku(e) for all e € E, i.e., F(e)/k is capacity-respecting.

Then, there is a deterministic algorithm that makes O(ke=2log®n) calls to oracle O and outputs
the edge representation of a flow F' € F and scalar A > 0 such that

1. Feasibility: The flow AF is capacity-respecting with cost at most B, and

2. Approximation factor = s: Let \* be the maximum value such that there exists flow F* € F
where \*F* is capacity-respecting with cost at most B. Then, A > I_TO(E))\*.

Moreover, the flow F is a convex combination of the flows returned by oracle O, and this convex
combination can be output as well.

Furthermore, if the oracle O also outputs a flow oracle with query work Q. and query depth
Qg, then the algorithm can also output a flow oracle for F with query work O(ke 2Qy) and query

depth O(Qy).

The algorithm takes O(rke=2m) work and O(ke~?) time outside of the oracle calls.

For the rest of this subsection, we prove Theorem 9.2. The proof closely follows Sections 5 and 6
of [GKO07], so we claim no novelty here. We first impose the assumption that A* > 1 for \* as defined
in Condition 2 of Theorem 9.2.

Let I be the set of capacity-respecting flows in (G, and consider the following flow LP of the
graph G. We have a variable z(F') > 0 for each F' € F N K indicating that we send flow F' scaled
by x(F). To avoid clutter, we also define b(F) = " . F'(e) - b(e) as the cost of the flow F.

max Z z(F)

s.t. > Fle)-ax(F) < ue) Ve e E
FeFnkK
> bWF) x(F)<B
FeFnkK
x>0

Let 8 be the optimal value of this LP. Note that since 7 N K is convex, there is an optimal solution
with z(F*) = 8 for some F* € F and x(F) = 0 elsewhere. It follows that 5 = \*.

The dual LP has a length ¢(e) > 0 for each edge e € E as well as a length ¢ > 0 of the cost
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constraint.

min Z u(e) - L(e)+ B - ¢ =: D¢, ¢)
eeE

st Y Fle)- (£(e) +b(e)p) > 1 VFe Fnk
eeE
0>0,¢>0

Let D(¢,¢) = > cpu(e)l(e) + B - ¢ be the objective value of the dual LP. Define a(, ¢) as the
minimum length of a flow F' € F N K under length function ¢ + ¢b:

a(t.9) = i 5 F(E) - (0)+He)9)
Then by scaling, we can restate the dual LP as finding a length function ¢ minimizing D (¢, ¢)/a(¥, ¢).
By LP duality, the minimum is 5, the optimal value of the primal LP, which we recall also equals
A > 1.

The algorithm initializes length functions £ (e) = §/u(e) and ¢(°) = §/B for parameter § =
m~Y¢, and proceeds for a number of iterations. For each iteration i, the algorithm wishes to call
the oracle O on length function ¢~V + ¢(=Dp but the length function 0~ + ¢(=Dp is not
integral. However, we will ensure that they are always in the range [0/N,O(1)]. So the algorithm
first multiplies each length by O(N/(d¢)) = O(m!/N/e¢) and then rounds the weights to integers so
that each length is scaled by roughly the same factor up to (1 + €). The algorithm calls the oracle
on these scaled, integral weights to obtain a flow F(). On the original, unscaled graph, the flow
satisfies the following two properties:

1. Length slack (1 +¢€)s: > cp FO(e) - (00D (e) + b(e)pt—1) < (14 €)s - a(lt~D ¢(=1) and
2. Congestion slack k: F'(e) < ku(e) for all e € E, i.e., F/x € K.

Define z(") = min{1, B/b(F®)} so that b(z) F()) < B, i.e., the cost of the scaled flow 2 F(®) is
within the budget B. The lengths are then modified as

. . (@) i) . . b(20) FO))
() (o) — pli-1) € 2Z9FY(e) (i) _ 4i-1) € bEIEY)
0 (e) =" (e) <1 + - ) and ¢ o) 1+ - 5 .

This concludes the description of a single iteration. The algorithm terminates upon reaching the
first iteration ¢ for which D(¢) > 1 and outputs

L p0) L@ p@) Ly 1) p-) L) 4 @) o)
F= — and =
20 1,0 f .. 10D rlogy 4 1/6

Analysis. We will analyze the values of D(£®), () and (£, ¢(?) only for the lengths £, ¢(®).
To avoid clutter, we denote D(i) = D({®,¢®) and a(i) = a(f®,¢®). For each iteration i, we
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have

eeE

. O ) (e) a e bz F)
— -1 e 22 PGS R S
_e%;u(e)e ()<1+K o) >+B¢ <1+K 5 )

D — 1) +_ S 2O FO () - D (e) + £ 20 p(F0) . D)
ecE R
D 1)+ £ <ZF(2 () + be)o ")
ecE

gD(z—1)+£-z<Z’>.(1+e)s-a(z’—1).
Since D(i — 1)/a(i — 1) > B by definition of 3, we have
D()<D(z—1)+; 20 (14e)s. =~
Define ¢ = €(1 + €)s/k so that

D(i) < <1 + W)D(i 1) = (1 + Elz(i)>D(z' —1).

Since D(0) = md we have for i > 1
, (@)
D(i) < (H(l—l—e’z(J)/ﬂ))mé: < >m5 11 ( ¢z’ >
1<t 1<i—1

NN L)
< (1+€)mdexp <€ZJ%>,

where the last inequality uses our assumption that 8 > 1 and the fact that 2(9) < 1 by definition.
To avoid clutter, define z(< =< 2U) for all 4.

The procedure stops at the first iteration ¢ for which D(¢) > 1. Therefore,

(<t-1)
1< D) < (1+¢€)mdexp <T>,

which implies
B ¢

— < : (1)
~(<t-1) 1nm

Claim 9.3. The scaled down flow
respecting with cost at most B.

7&10&1“ 1/5(2(1)F(1) +:DF®@ 4.4 LD EED) s capacity-
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Proof. To show it is capacity-respecting, consider an edge e. On each iteration, we route z(*) F'() (e) <
() p(®)
e 27 F0)) < 14 e Sofor

K u(e)
every ku(e) units of flow routed through e over the iterations, we increase its length by at least a
factor 1+ e. Initially, its length is 6 /u(e), and after ¢t — 1 iterations, since D(t — 1) < 1, the length

of e satisfies €=V (e) < D(t — 1) /u(e) < 1/u(e). Therefore the total amount of flow through e in

the first ¢ — 1 phases is strictly less than xlog; . % = rlogy, . 1/0 times its capacity. Scaling

ku(e) units of flow through e and increase its length by a factor (1 +

the flow down by rlog; . 1/d, we obtain a capacity-respecting flow.

To show that the scaled down flow has cost at most B, similarly observe that on each iteration,
L ] . () pi)

we route a flow of cost b(2() F()) < B and increase the length ¢(*) by a factor (1 + = LBF)) <

1+ €/k over the previous length #i=1) . So for every B cost of flow routed, we increase the length
¢ by at least a factor 1 + ¢/k. And for every kB cost of flow routed, the length increases by at
least a factor (1+¢/k)® > 1+ e. Initially, ¢(°) = §/B, and after t — 1 iterations, since D(t —1) < 1,
the length satisfies ¢(*~1) < D(t —1)/B < 1/B. Therefore the total cost of flow in the first ¢t — 1
phases is strictly less than xBlog; . ;?—g = kBlogy,.1/6. Scaling the flow down by «log;,.1/6,

we obtain a flow with cost at most B. O

= L F0) 4@ @) 1) (1) (s
Recall that F' = =D and A = *log1 173

with cost at most B, fulfilling Condition 1. To establish Condition 2, we use Equation (1) and the
fact that & = m!/€ to obtain

so AF is capacity-respecting

A S(St=1) In

1
A klogy . 1/0 B

1 1
(1+€')ymd In (1+€")ymé > 1-— O(E)

> =
~ € -klogy  1/0 eslogy  1/0 ~ s

Running time. Recall from above that AF is capacity-respecting with cost at most B, so A < .

%, we obtain z(St=1 < gk log;,.1/0. On each iteration i <t — 1, either 20 =1

or z() < 1, and the latter case implies that b(z() F()) = B, which means ¢(*) = ¢(—1(1 + ¢/k).
Initially, ¢(°) = §/B, and after t — 1 iterations, since D(t — 1) < 1, we have ¢*~1) < D(t —1)/B <
1/B. So the event ¢() = ¢(=1)(1 4 ¢/k) can happen at most 10814/, 1/6 times. It follows that
2() <1 for at most l0g; 4/, 1/6 values of i <t — 1. Since (571 < Brlogy, 1/6, we have 2() = 1
for at most Bk log; . 1/6 many values of i <t —1. Therefore, the number of iterations ¢ is at most

Since A =

108, 4/ 1/6 + Brlogy, 1/6 +1 = O(Bre > log m).

By scaling all edge capacities and costs by various powers of two, we can ensure that 5 € [1,2]
on at least one guess, so the number of iterations is O(klog,, 1/6) = O(ke *logm). Doing so
also ensures that A* = 8 > 1 as we had previously assumed. For incorrect guesses, we terminate
the algorithm above after O(ke=2logm) iterations to not waste further computation. Among all
guesses, we take the one with maximum A that satisfies feasibility (Condition 1). Since there are
O(logn) relevant powers of two, the running time picks up an overhead of O(logn).

Flow oracle. Finally, if oracle O outputs a flow oracle, then the algorithm can return the following
flow oracle for the output flow F: on input subset S of pairs of vertices of GG, query the flow oracles
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of the flows FW, F@ . Ft=1 to obtain flows Fél), Fg), e ,Fg_l), respectively, and output

Z(l)Fé,l) + 2(2)Fé2) 4t Z(t_l)Fé,t_l)
2 22 4. L)

S =

Querying each flow oracle F éi) takes work @, and depth Qg and can be done in parallel. Since
there are t —1 < O(ke~21ogm) many flow oracles, the total work is O(ke2Q,,) and the total depth
is O(Qd)

9.2 Flow Boosting: Thresholded Instantiation

By choosing an appropriate convex set F of flows, we directly obtain boosting theorems for com-
puting a flow of a given target value 7 that partially routes a given flow demand D. Note that
this formulation includes both min-cost concurrent and non-concurrent multicommodity flow: for
concurrent we set 7 = |D| forcing the flow to route the entire demand D, and for non-concurrent
we set 7 = 1 which is less than or equal to the value of any nonzero demand pair (when the demand
is integral).

Theorem 9.4 (Thresholded Flow Boosting). Let G = (V, E,u,b) be a graph with capacity function
u and cost function b. Let B > 0 be the cost budget. Let D : V x V. — R>q be a flow demand,
and let €,s,k > 0 be parameters. Let T be the target flow value parameter such that there exists a
capacity-respecting flow partially routing D of value at least T.

Suppose an algorithm is given an oracle O that, given any integral edge length function £ : E —
{1,2,...,0(m"Y<N/e)}, computes the edge representation of a flow F of value val(F) > 7 partially
routing D such that

o Length slack s: > cpF(e) - l(e) < s> .cpF*(e)-Le) for any capacity-respecting flow F*
of value val(F*) > 7 partially routing D, and

e Congestion slack k: F(e) < ku(e) for all e € E, i.e., F(e)/k is capacity-respecting.

Then, there is a deterministic algorithm that makes O(ke=2log®n) calls to oracle O and outputs
the edge representation of a flow F' of value val(F) > 7 partially routing D and scalar X\ > 0 such
that

1. Feasibility: The flow AF is capacity-respecting with cost at most B, and

2. Approximation factor = s: Let A* be the maximum value such that there exists a flow F* of
value val(F™*) > 1 partially routing D where \*EF™* is capacity-respecting with cost at most B.
Then, A > =9\~

Moreover, the flow F is a convex combination of the flows returned by oracle O, and this convex
combination can be output as well.

Furthermore, if the oracle O also outputs a flow oracle with query work Qu and query depth
Qa, then the algorithm can also output a flow oracle for F with query work O(ke™2Qy,) work and
O(Qq) depth.

The algorithm takes O(rke=2m) work and O(ke~?) time outside of the oracle calls.

Proof. Let F be the set of flows of value at least 7 partially routing D. Apply Theorem 9.2. O
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10 Constant-Approximate Multi-commodity Flow

This section concludes with our constant-approximate algorithms for k-commodity flow in (m +
k)'T€ time. The main results are stated in Theorem 10.5. Below, we first implement the oracle
for flow boosting in Section 10.1 and then apply the oracle to the flow boosting framework in
Section 10.2 to obtain our results.

10.1 Oracle for Flow Boosting
In this subsection we construct the oracle required for Theorem 9.4.

Theorem 10.1 (Oracle for Flow-Boosting). Let G be a graph with integral edge lengths £ > 1 and
capacities u > 1, D an integral degq-respecting demand, T an integral required flow amount such
that there exists a value-T capacity-respecting flow partially routing D and € € (log™“ N, 1) for a
small enough constant ¢ a tradeoff parameter. Then, UNBOOSTEDFLOW(G, D, 1,¢€) (Algorithm 7)
returns a flow oracle Op for a flow F of value val(F') > 7T partially routing D, with

1. Length slack s: ) cpF(e)-L(e) < s-> . cpF*(e)-L(e) for any capacity-respecting flow F*
of value val(F*) > 7 partially routing D, and

2. Congestion Slack k: F(e) < ku(e) for all e € E, i.e., F(e)/k is capacity-respecting,

for length slack s = exp(poly(1/€)) and congestion slack k= NPOW(),

The algorithm has depth and the flow oracle has query depth NP°Y(©) and the algorithm has
work and the flow oracle query work (|E| +supp(D)) - NP°¥(©) . The produced flow has support size
(|B| + supp(D)) NP (),

Proof of Theorem 10.1. Let F* be the capacity-respecting flow of value at least T routing a subde-
mand of D on G of minimum total length 7*. Theorem 6.4 guarantees that G’ is a t-step emulator
for deg with length slack s’ = exp(poly(1/¢)) and congestion slack x' = NP°W(), Since D is deg-
respecting, there is a flow F* on G’ routing the same demand as F™* of step-length ¢, congestion at
most " and total length T*s’. As G” is simply G’ with capacities scaled up by &', the flow F*' on
G" is a capacity-respecting flow partially routing D of step length ¢, total length T*s’, and value
at least 7.

Algorithm 6 guarantees that for input (G”,D,t,T,¢), for every capacity-respecting flow F*
partially routing D of step length ¢ and total length 7', the returned flow F' has value val(F) >
val(F*). Thus, notably when 7' > T*s, the returned flow has value at least 7. Let T’ be the
minimum value of T for which the returned flow Fes had value at least 7 on line 5c. By the above
argument, T" < [T*s'].

Algorithm 6 guarantees that Fyes on G” is a congestion-+" flow partially routing D of step length
ts”, total length T’s” and value at least 7 for the congestion slack x” = NPW() and length slack
s” = exp(poly(1/e€)) of the flow algorithm. The flow has the same step length, total length and
value, but congestion 'k” = k = NP°¥(©) on G’. Since G’ can be embedded into G with congestion
1 and length slack 1, the flow F that is Fyes mapped from G’ to G by the embedding is a congestion-

1,0

k = K'k” flow partially routing D of value at least 7 of total length T*s = [T*s"]s"” = T"s” for length
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Algorithm 7 Fast Unboosted Flow: UNBOOSTEDFLOW(G, D, T, ¢€)

Input: Graph G with integral edge lengths ¢ > 1 and capacities © > 1, integral degg-respecting
demand D, integral required flow amount 7 such that there exists a value-T capacity-respecting
flow partially routing D, tradeoff parameter e.

Output: A flow oracle Of for a flow F' of value val(F') > 7 partially routing D with length slack
s = exp(poly(1/e)), congestion slack x = NP°¥(©) and support size (|E| + supp(D))NPoW (),

1. Let t,G’ = LOWSTEPEMU(G, ¢).
2. Let x’ be the congestion slack of G’, and let G” = x'G’ be G’ with capacities scaled up by .
3. Let Tiow = 0 and Tjen = N.
4. Let Fies = 0.
5. While Tiow < Thigh:

(a) Let T = LMJ

(b) Let F/ = LowSTEPNONCONCFLOW(G”, D, t,T\€).

(c) If val(F') > T,

o Set Thjgh =T — 1.

o Set Flos = F'.
(d) Else, set Tiow =T + 1.

6. Return O = (G, Fres) with query function Op(S) = FLoWMAP(G', F).

slack s = exp(poly(1/e€)) and congestion slack x = NPW(©)4 as desired. As |E(G')| = |E|NPoW(©)
and the embedding from G’ to G maps edges to paths, thus not increasing the flow support size,
the flow support size is (| E| 4+ supp(D)) - NP°W(9) as desired.

The algorithm consists of one call to LowSTEPEMU and O(1) calls to LowSTEPNONCONCFLOW
on a |E|NPY()_edge graph, thus its work and depth are (|E| + supp(D)) - NPoW(€) and NPoly(e)
respectively. O

10.2 Constant-Approximate Min Cost Multi-Commodity Flow

The following theorem is a generalisation of concurrent and non-concurrent flow, which gives con-
current flow when 7 = |D| and non-concurrent flow when 7 = 1.

Theorem 10.2 (Constant-Approximate Multi-Commodity Flow). Let G = (V, E,u,b) be a con-
nected graph with edge capacities u > 1 and costs b > 0. Let B > 0 be the cost budget. Let D :
V xV — N be a integral flow demand, T € [|D|] a integral required flow amount and € € (log™“ N, 1)
for some sufficiently small constant ¢ be a tradeoff parameter. Then, MCMCFLOW(G, B, D, T, ¢€)
returns a flow oracle Op for a flow F of value val(F) > 7 partially routing D and a value \ > 0,

4Note that since 7 is a integer and £ > 1, T* > 1 and taking ceil does not affect the asymptotic congestion slack
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such that

o Feasibility: the flow \F is capacity-respecting with cost at most B, and

o Approzimation factor 1/ exp(poly(1/€)): let \* be the mazimum value such that there exists a
flow F* of value val(F*) > T partially routing D where \*F* is capacity-respecting with cost
at most B. Then, A > m)\*.

The algorithm has work and the flow oracle query work (|E| + supp(D))NPY() and the algorithm

has depth and the flow oracle query depth NP°™(€) . The produced flow F has support size (|E| +

supp(D)) NPV,

Algorithm 8 Constant-Approximate MCMC Flow: MCMCFLOW(G, B, D, ,¢€)

Input: Connected graph G with edge capacities u > 1 and costs b > 0, integral demand D, integral
required flow amount 7, tradeoff parameter ¢.

Output: A flow oracle Op for a flow F' of value val(F') > 7 partially routing D and a value A > 0,
such that AF is capacity-respecting with cost at most B, and A > (1/exp(poly(1/¢€)))A* for the
optimal \*, F™* pair.

1. Let v = |D|.
2. Let ¢ = O(1) be small enough that 1 — O(¢') > 3 in Theorem 9.4.

3. Let Op, A be the flow-scalar pair returned by Theorem 9.4 on graph G with capaci-
ties yu, costs b, total cost budget 7B, demand D, required flow amount 7, parameters
(¢/, exp(poly(1/€)), NP°¥ () and flow oracle UNBOOSTEDFLOW(G, D, T, €).

4. Return Op, \/7.

Proof of Theorem 10.2. For a flow F', parameter A and value v > 0, the following are equivalent:

e \F' is capacity-respecting with capacities u and has cost at most B,

e (\y)F is capacity-respecting with capacities yu and has cost at most vB,

but scaling all capacities and the cost bound by v = |D| guarantees that there exists a capacity-
respecting flow partially routing D of value at least 7, which is required by Theorem 9.4.

UNBOOSTEDFLOW(G, D, 7, €) is a oracle function of the kind required for Theorem 9.4 for length
slack s = exp(poly(1/¢)) and congestion slack x = NP°¥(©) Note that D is degq-respecting for
graph G’ that is G with capacities yu as u > 1.

The flow F returned as a flow oracle Or and value A returned by Theorem 9.4 are guaranteed
to satisfy the required properties: F partially routes D and has value at least 7, AF is capacity-
respecting with cost at most B, and for the maximum value A* such that there exists a flow F™*
of value val(F™*) > 7 partially routing D where \*F™* is capacity-respecting with cost at most B,
A> 0@ > Lyx - A%

1
s exp(poly(1/e))
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The flow support size is at most the product of the support size (|E| + [supp(D)|)NPoW(€) of
flows returned by Theorem 10.1 and the number of oracle calls O(ke 2log?n) = NPW(©)  giving
the desired bound of (|E| + ]supp(D)])NPOME).

For work and depth, Theorem 9.4 makes O(rke' =2 log? n) =N poly(€) calls to the oracle, which has
work (| E|+|supp(D)|) NP (€) and depth NP°Y(€) and takes O(ke'~2m) = |E|-N?°Y(©) work and has
depth O(ke'=2) = NP¥(©) outside the oracle calls. This gives total work (|E| + |supp(D)|)NPo¥(©)
and depth NPOW(©) ag desired. O

10.3 Constant-Approximate Concurrent/Non-Concurrent Flow

Finally, we prove a formal version of Theorem 1.1, first giving formal definitions for concurrent and
non-concurrent flow.

Definition 10.3 (Concurrent Flow Problem). Let G be a connected graph with edge capacities
u>1and D : V xV — N an integral demand. The concurrent flow problem asks to find a
capacity-respecting flow F routing AD for mazimum X. An algorithm is a C-approximation for
the concurrent flow problem if it always produces a capacity-respecting flow F routing AD, where
A > CX and X* is the mazimum value for which there exists a capacity-respecting F* routing A*D.

In the concurrent flow problem with costs, each edge has a cost b > 0 and there is a total cost
budget B: the produced flow F must additionally have total cost Y p F(P)) .cpble) < B. An
algorithm is a C-approximation for the concurrent flow problem with costs if it always produces
a capacity-respecting flow F of total cost at most B routing A\D, where X\ > CX* and \* is the
mazimum value for which there exists a capacity-respecting F* of total cost at most B routing \*D.

Definition 10.4 (Non-Concurrent Flow Problem). Let G be a connected graph with edge capacities
u > 1 and S a set of vertex pairs. The non-concurrent flow problem asks to find a capacity-
respecting flow F routing flow between vertex pairs in S, i.e. supp(Dp) C S of mazimum value.
An algorithm is a C-approximation for the non-concurrent flow problem if it always produces a
capacity-respecting flow F routing flow between vertex pairs in S of value val(F) > Cval(F*),
where F* is the mazimum-value capacity-respecting flow routing flow between vertex pairs in S.

In the non-concurrent flow problem with costs, each edge has a cost b > 0 and there is a total
cost budget B: the produced flow F' must additionally have total cost ) p F(P))  .pble) < B. An
algorithm is a C-approximation for the concurrent flow problem with costs if it always produces a
capacity-respecting flow F of total cost at most B routing flow between vertex pairs in S of value
val(F) > Cval(F™), where F* is the mazimum-value capacity-respecting flow of total cost at most
B routing flow between vertex pairs in S.

Theorem 10.5 (Constant Approximate Concurrent/Non-Concurrent Flow). For every tradeoff
parameter € € (log=° N, 1) for some sufficiently small constant ¢, for both concurrent and non-
concurrent multi-commodity flow with costs, there exists a (m+ k) TPV () work (m 4 k)P _depth
0(2_1/ ©)-approximate algorithm that returns a flow oracle O for the flow F'.

Proof. We can select € = poly(e) such that exp(poly(1/€'))~" = O(27/¢). Both the concurrent
flow and non-concurrent flow algorithm are direct consequences of applying Theorem 10.2 with this
¢’ and differing D, 7 and returning AOp:

e Concurrent Flow: apply Theorem 10.2 with 7 = |D|, return AOp.
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e Non-Concurrent Flow: apply Theorem 10.2 with D(a,b) =I[(a,b) € S], 7 = 1, return AOp.

O
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A Derivation of Lemma 7.5

In this appendix section, we give the derivation of Lemma 7.5 from Theorem A.1 (of [HHT24]), a
low-support-size version of the flow algorithms of [HHS23]. The theorem gives an algorithm for
efficiently computing a cutmatch, defined below.

Cutmatch. Given a graph G = (V, E) with length ¢, an h-length ¢-sparse cutmatch of con-
gestion 7 between disjoint node weighting pairs {(Aj, A;)};c(x consists of, for each 4, a partition of
the node-weightings A; = M; + U; and A}, = M} + U] where M;, M} and Uy, U] are the "matched”
and "unmatched” parts respectively and |M;| = |M}] and

e A h-length flow F = Zj F; in G with lengths ¢ of congestion +, such that, for each j € [k],
Fj is a complete M; to M} -flow.

e A h-length moving cut C' in G, such that for all j € [k], supp(U;) and supp(U;) are at least
h-far in G — C, and C has size at most

Cl<o- | | D141 ) —val(F)

J

Theorem A.1 ([HHT24]). Let G = (V,E) be a graph on m edges with edge lengths £ > 1 and
capacities uw > 1. Then, for any h > 1, ¢ < 1, there is an algorithm that, given node-weighting
pairs {(A;, A;»)}je[k}, outputs a multi-commodity h-length ¢-sparse cutmatch (F,C) of congestion -y

where v = O <é> This algorithm has depth O(k - poly(h)) and work O(|(E(G)| + >_j lsupp(4; +

AL)[) - k - poly(h)). Moreover, |supp(F)| < O(|E(G)| + k + > [supp(4; + A%))).
To obtain Lemma 7.5, we use the fact that routers have no sparse cuts; selecting ¢ and h as

twice the router’s parameters, the multicommodity flow produced by the cutmatch must completely
satisfy the demand.
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Lemma 7.5. Let G = (V,E) be a t-step y-router for node weighting A, and {(A;, A})}jen node
weighting pairs such that Zj Aj+ A;» is A-respecting and |A;| = |A;| for all j. Then, one can
compute a flow F' =3, F; where Fj is a complete A; to Al -flow for each j € [k] with

o length 2t and congestion O(v), and

o support size |supp(F)| < O(|E(G)| + k + 32 [supp(4; + Af)]),
with O((|E(G)| + > Isupp(A; + A})|) - k - poly(t)) work and O(k - poly(t)) depth.

Proof. We may assume without loss of generality that the supports of A; and A;- are disjoint for
all j; if they are not, we can add a flow path of length 0 from that vertex to itself of value equal

to the minimum of the two. Now, let (F,C') be a 2t-length <%>-sparse cutmatch (F,C') between
{(Aj, A%)}jeir)- Then, for each j € [k], Fj is a complete A; to A -flow. Thus, calling Theorem A.1

with length 2¢ and sparsity <%> suffices.

We prove the claim. Assume the contrary; then, >, |U;| = >_, |Uj| > 0. For each j, let D; be
an arbitrary demand such that load(D;) = U; + U ]/ ,and let D = )" j Dj. Then, D is A-respecting,
and there exists a t-step ~-congestion flow on G satisfying D. Let F'* be that flow. We have

1= 3 cente) < (3) 121

but

e for every path P € F*, > ., C(e) > %, as C is a length-2t cut and every flow-path had its
length increased by more than ¢, and

. %ZPGF*:@GP F*(P) < u(e), as F* has congestion ,

thus
1 1 . 1, ..
() 1012 S c@u =2 ¥ )Y clo) > oI
v e€G 7 per- ecP v
a contradiction. Thus, the unmatched part of the cutmatch and the cut are empty. O
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