
Micro:bit vs. Python: Students’ Perceptions and Attitudes Toward
Computing

Sotheara Veng
University of Delaware

United States
sotheara@udel.edu

Chrystalla Mouza
University of Illinois Urbana-Champaign

United States
cmouza@illinois.edu

Lori Pollock
University of Delaware

United States
pollock@udel.edu

Abstract: There has been a growing interest in teaching computer science (CS) concepts to
students at a younger age. Increasingly, block-based programming has been used in place of
traditional text-based programming languages, like Python, in K-12 education. However, little
empirical research has been conducted to compare the combination of the former and physical
computing with the latter. This study aimed to address this gap by comparing the attitudes and
perceptions of elementary school students in the two approaches in a six-week afterschool program.
The findings from the experiment indicated that students’ attitudes and perceptions toward
computing were more positive when using physical computing. These findings suggest potential
pedagogical implications and future research directions.

Keywords: physical computing, computational thinking, text-based programming

Introduction

Drawing on computer science (CS) concepts, computational thinking (CT) skills are essential for managing
various aspects of our daily lives and navigating the world around us (Wing, 2006). Early involvement in computing
can significantly promote students’ future participation and diversity in CS (Ching et al., 2018; Margolis, 2010;
Yardi & Bruckman, 2007). Block-based programming has been introduced as a method to engage young learners in
CS (Bau et al., 2017). Its combination with physical computing has shown promising results in attitudes toward
computing and learning gains (Veng et al., 2023; Kastner-Hauler et al., 2022). However, the comparison of this
combination with traditional text-based programming remains relatively unexplored. This study compared these
approaches with two groups of elementary school students; one group used Python, a text-based programming
language, while the other group utilized block-based physical computing with Micro:bit . Micro:bit is a device with
various functions that can be programmed via MakeCode's block-based language, aligned with CS concepts (e.g.,
data, variables) (Brennan & Resnick, 2012; Voštinár & Knežník, 2020). This comparison aimed to answer the
following questions:

1. How do students’ experiences and perceptions of using block-based physical computing differ from those
using text-based programming?

2. How do the two approaches differ regarding students’ attitudes toward the field of CS?

Literature Review

-2320-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

Early Engagement in Computational Thinking and Micro:bit
Papert introduced the concept of computational thinking (CT) in 1980, suggesting that interactions with

technology could help develop new ways of thinking. Later, Wing (2006) coined the term “computational thinking”
to specifically describe thinking skills that involve applying concepts fundamental to computer science (CS). CT is
considered a vital 21st-century skill for students to navigate in today’s technology-driven world (Voogt et al., 2015;
Zhang & Nouri, 2019). Therefore, it is important to engage students in CT at a younger age to allow sufficient time
for the skills to develop before tertiary education (Barr & Stephenson, 2011; Czerkawski & Lyman, 2015). One way
to engage students in CT is through physical computing. One of the common physical computing devices is
Micro:bit, a pocket-sized programmable device that has a built-in display, buttons, motion detection, light sensing,
and Bluetooth (Ball et al., 2016). Incorporating Micro:bit in CS education can help with students’ motivation,
creativity, and learning gains (Cliburn, 2006; Sentance et al., 2017). Students reported feeling satisfied and enjoying
learning with the devices (Vlahu-Gjorgievska et al., 2018) and appreciated their ease of use and usefulness for
learning CS concepts and coding (Sentance et al., 2017).

Block-Based and Text-Based Programming
Developing CT skills can be difficult for novice programmers due to the struggle with abstract concepts,

solution organization, and concrete programming concepts (e.g., debugging) (Lahtinen et al., 2005). The majority of
errors made by novice programmers during coding include semantic (e.g., comparing the wrong variables) and
syntax errors (e.g., missing quotes for strings) (Altadmri & Brown, 2015). Therefore, block-based programming is
commonly introduced to overcome these challenges (Bau et al., 2017). Several studies have compared the affective
outcomes (e.g., confidence) of block-based and text-based programming (e.g., Price & Barnes, 2015; Weintrop, &
Wilensky, 2017), but there have been mixed results. For example, Price and Barnes (2015) found that there was no
significant difference in learners’ attitudes towards programming (e.g., perceived difficulty), whereas a different
study showed that block-based programming improved such attitudes (Saito et al., 2017). Moreover, another
comparative study indicated that students in block-based programming groups showed a higher level of interest in
computing in the future, but there was no difference in their confidence or enjoyment (Weintrop & Wilensky, 2017).
However, none of the studies incorporated physical computing. With the positive reported experience and outcomes
from physical computing (Kastner-Hauler et al., 2022; Sentance et al., 2017), our study aimed to compare students’
experience and attitudes when using text-based programming and the combination of block-based programming and
physical computing with Micro:bit.

Theoretical Framework

We situated our work within the concepts of computational thinking, constructionism, and structuration.
Computational thinking (CT) refers to “the thought processes involved in formulating problems and their solutions
so that the solutions are represented in a form that can be effectively carried out by an information-processing agent”
(Cuny et al., 2010, p. 1). It draws on CS concepts, which encompass various cognitive processes, such as reasoning
at different levels of abstraction and problem-solving skills (Wing, 2006). There have been different approaches to
teaching CT (e.g., Denning, 2017; Folk et al., 2015), one of which draws on constructivism where students learn by
actively constructing their knowledge (Ben-Ari, 1998). Constructionism, built on constructivism, posits that learning
happens by creating tangible outputs. (Papert & Harel, 1991). Physical computing, drawing from constructionism,
focuses on creating tangible and programmable objects. Prior studies highlighted its benefits in enhancing students’
motivation, and creativity (Sentance et al., 2017). Moreover, receiving tangible and immediate feedback may benefit
students’ engagement and motivation (Scherer et al., 2020). Structuration reflects the dynamic relationship between
knowledge tools and understanding (Wilensky & Papert, 2010). Studying these evolving systems helps us
understand their influence on students’ learning experiences and attitudes. Therefore, based on the aforementioned
frameworks, we aimed to explore students’ attitudes and perceptions when using two different systems: block-based
physical computing with Micro:bit and text-based coding with Python.

Methods

-2321-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

Context and Participants

The study was conducted as part of an after-school program, a joint effort between a university and an
elementary school. Students, consisting of fourth and fifth graders, were randomly assigned into two groups: Group
A: a block-based physical computing group (n =30), and Group B: a text-based programming group (n = 32). Two
CS undergraduates, enrolled in a college course on engaging youth in computing (Mouza et al., 2016, 2021; Pollock
et al., 2015), served as instructors. CS undergraduates met with faculty and teachers to plan lessons and discuss
strategies to foster computing participation. The six-week program consisted of 90-minute sessions covering various
CS concepts (see Table 1), with instructors rotating between groups biweekly. Each session consisted of (1) an
unplugged activity, in which CS concepts were taught through an interactive activity without using a computer, and
(2) a programming activity where Group A programmed their Micro:bits to solve a problem and Group B developed
screen-based programs. The program is designed for students to develop positive self-perception in computing
through exposure to diverse instructors and parents in the CS field and by linking learning content to students'
identities, such as asking them to design their projects in the final session (Shah et al., 2013).

Table 1. Overview of the After-School Program’s Content
Week Content CS Unplugged Programming

Group A
(Micro:bit)

Group B
(Python)

1 Input and
Variables

Brainstorming ways to interact with an
imaginary friend

Create a pet
hamster

Create a pet turtle

2 Conditionals If/then notecard game Rock, Paper,
Scissors Game

Rock, Paper, Scissor
Game

3 Radio Guess the frequency number Send radio wave
messages

Create program to
send a message to
your friends

4 Loops Over and over instruction Shake the
Micro:bit to
activate the
countdown

Create a countdown
timer

5 While-loop Musical Chair Create the Hot
Potato Game

Create a number
guessing game

6 Review Connecting Coding to everyday lives Students get to develop their own code

Data Collection

Data were collected through four main sources:
(a) Observations of After-School Program: Five sessions were observed, documenting covered CS concepts,

teaching techniques, interactions, and materials used.
(b) Pre/Post surveys for elementary school students: A pre/post survey in a Likert scale format developed by

Ericson and McKlin (2012) was used to examine changes in students’ attitudes toward computing (e.g.,
computing confidence; computer enjoyment)

(c) A focus group interview with elementary school students: A semi-structured interview was conducted
with six students to understand their experiences and perceptions of each approach.

Data Analysis

(a) Quantitative Data: Data on students’ computing attitudes were analyzed using R Studio. Paired t-tests
were used to measure students’ attitude changes after the program and compare the pre-test results of the
two groups, which showed that there were no statistically significant differences between the pre-test
results of the two groups. ANCOVA was conducted to compare attitudes between block-based physical
computing and text-based computing groups, controlling for pre-test data and gender.

(b) Qualitative Data: The interview transcript was coded using content analysis, suitable for phenomena with
limited literature or knowledge (Hsieh & Shannon, 2005). Generated codes were organized into main and

-2322-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

subcodes as shown in Table 2 below. Data from in-class observations (n = 5) with students from both
classes were analyzed for triangulation purposes.

Table 2. Coding Scheme
Codes Subcodes
Grammatical Complexity Syntax error; Frustration
Tangibility Physical device feedback; Sharing results with others

Assistance and Support

Sense of Belonging

Debugging support from instructors; Peer mentoring; Feeling of
competence and confidence
Opportunity for exploration and creativity

Results

RQ1: How do students’ experiences and perceptions of using block-based physical computing differ from
those using text-based programming in the program?

Findings indicate that there were differences in students’ experiences and perceptions in the two classes.

Grammatical Complexity

Students found Python coding challenging due to syntax errors, which hindered their creative work. One
student shared their Python experience, “I'm still confused about it. The grammar is really hard to get right …. It is
really hard when I really want to make something.” Observations revealed that students in Python class encountered
more errors, asked for help frequently, and often expressed frustration.

Tangibility

Students in the Micro:bit class enjoyed the immediate results and tangibility of their projects. They felt
satisfaction in sharing their work with others. One student said, “Microbit, instead of ….. on screen, it could also be
in the Micro:bit, it was really fun to play …. and show it to friends and adults.”
Another student also said, “Like you put an LED to show up on the Micro:bit….like for the magic 8 ball. It makes
me feel kind of good.”

Observations confirmed that Micro:bit students frequently showcased their projects, while Python students,
despite occasionally sharing their codes with peers, typically spent more time on their computers.

Assistance and Support

Students in both classes valued instructor support for debugging codes. Python class students felt guilty
asking for help repeatedly due to the lack of other resources. One student said, “[The instructors] told you where the
bug is... But sometimes, I feel bad when I ask them a lot... There is no video for us to watch.” Students from both
groups also sought help from peers. One student said, “There were people around me who knew more so sometimes
I asked them for help.”

Sense of Belonging

Python class students questioned their competence and future success, despite recognizing Python's
practicality. One student said, “Even if you mess up one little thing in Python, it won't work, because they really
want you to get all the grammar correct. I probably need more time, but I don’t know if I am going to be good….”.
These students also felt they lacked enough time to explore the codes and complete their projects due to Python's

-2323-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

complexity. One student shared, “So I never really got to finish it and I never got time to either. [Be]cause like it's
hard on Python."

RQ2: How do the two approaches differ regarding students’ attitudes toward the field of CS?

The pair t-test results indicated that students’ attitudes towards computing significantly improved in both
groups, except for identity and belongingness and intention to persist for those in Group B (see Tables 3 and 4).
When comparing the two groups by controlling for pre-test data and gender, the ANCOVA result suggested that
block-based physical computing has a more statistically significant effect on all constructs of students’ attitudes,
except gender equality and intention to persist (see Table 5). The result on gender equality was expected as
programming environments should not have any effect on such students’ attitudes. Interestingly, the result also
indicated that female students showed a higher intention to persist (p<.05) in studying CS than males, after
accounting for class types and pre-test scores.

Table 3
Student Attitudes Toward Computing – Group A (Micro:bit) (n =30)
Constructs Pre Mean Post Mean Mean Difference Paired t-

test
Effect Size
(Cohen’s D)

Computing Confidence 2.422 4.300 1.877 <.001** 1.355
Computer Enjoyment 2.357 4.500 2.142 <.001** 1.496
Computer Importance 3.688 4.461 0.772 <.001** 0.736
Motivation to Succeed 3.411 4.172 0.761 <.001** 0.668
Identity and belongingness 3.355 4.177 0.822 .001** 0.616
Gender Equality 2.333 4.658 2.325 <.001** 1.464
Intention to Persist 3.100 3.916 0.816 <.001** 0.785
***p<.001, ** p<.01, *p<.05. (where 1 = least positive attitudes toward computing and 5 = most positive attitudes
toward computing)

Table 4
Student Attitudes Toward Computing – Group B (Python) (n =32)
Constructs Pre Mean Post Mean Mean Difference Paired t-

test
Effect Size
(Cohen’s D)

Computing Confidence 2.515 3.312 0.797 .004** 0.558
Computer Enjoyment 2.888 3.911 1.022 .001** 0.673
Computer Importance 3.536 3.91 0.406 .64 0.34
Motivation to Succeed 3.1 3.636 0.536 .013* 0.467
Identity and belongingness 3.083 3.646 0.563 .35 0.389
Gender Equality 2.046 4.273 2.23 .001** 1.276
Intention to Persist 2.883 3.328 0.445 .55 0.353
***p<.001, ** p<.01, *p<.05. (where 1 = least positive attitudes toward computing and 5 = most positive attitudes
toward computing)

Table 5
Comparing Student Attitudes Toward Computing between Python and Micro:bit Group
Constructs Unstandardized

B
Standardized
Coefficient Beta

Sig. Effect
Size r2

Gender
Sig.

Computing Confidence 0.994 0.246 <.001*** 0.189 .949

Computing Enjoyment 0.571 0.167 .001** 0.156 .899
Computer Importance 0.476 0.155 .003 ** 0.148 .374

Motivation to Succeed 0.4674 0.208 .028 * 0.131 .943

Identity and Belongingness 0.507 0.234 .035 * 0.049 .940
Gender Equality 0.373 0.210 .082 0.028 .514

-2324-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

Intention to Persist 0.359 0.225 .117 0.258 .003**

***p<.001, ** p<.01, *p<.05. (where 1 = least positive attitudes toward computing and 5 = most positive attitudes
toward computing)

Discussion

Our study contributes to the growing research on teaching methods and programming environments in CS
education. Unlike previous studies focusing solely on block-based or text-based programming (e.g., Grover & Basu,
2017; Weintrop, 2019) or the comparison between the two (e.g., Price & Barnes, 2015; Weintrop & Wilensky,
2017), our work incorporated physical computing in the comparison and in-depth analysis of how these different
environments may influence students’ attitudes and perceptions toward computing. Our findings show that students
have more positive perceptions of block-based physical computing than those of text-based programming due to the
likelihood of errors and tangibility. Moreover, the complexity of text-based programming may play a negative role
in students’ sense of belonging and intention to persist in the CS field. In contrast, block-based programming has a
higher impact on students’ attitudes toward computing, except for gender equality and intention to persist. Similar
pre-test attitudes in both groups suggest ceiling effect is unlikely for the Python group. The findings are inconsistent
with prior works comparing text-based programming and block-based programming as the studies did not show a
significant change in computing confidence and enjoyment (Weintrop & Wilensky, 2017) or no difference at all
(Price & Barnes, 2015). The addition of physical computing, appreciated for its tangibility by students or unplugged
activities, could be the factor causing these differences, given their promising results in prior studies (Gardeli &
Vosinakis, 2017; Jiang & Wong, 2017). The findings can help guide decisions about elementary school CS
education programming environments. Future studies could explore larger samples over longer periods to
understand students’ attitudes and the impact of introducing physical computing in text-based environments.

Acknowledgments
This work was funded by grants from the National Science Foundation: Award #1639649 and #1923483.

References

Altadmri, A., & Brown, N. C. (2015, February). 37 million compilations: Investigating novice programming
mistakes in large-scale student data. Proceedings of the 46th ACM Technical Symposium On Computer
Science Education (pp. 522-527). https://doi.org/10.1145/2676723.2677258

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is Involved and what is the role
of the computer science education community? Inroads, 2(1), 48–54.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming. Communications of the
ACM, 60(6), 72–80. https://doi.org/10.1145/3015455

Ball, T., Protzenko, J., Bishop, J., Moskal, M., De Halleux, J., Braun, M., Hodges, S., & Riley, C. (2016, May).
Microsoft touch develop and the BBC micro: bit. Proceedings of the 38th International Conference on
Software Engineering Companion, 637-640.

Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE Bulletin, 30(1), 257–261.
https://doi.org/10.1145/274790.274308

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational
thinking. [Conference presentation]. 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada.

Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018). Developing computational thinking with educational technologies
for young learners. TechTrends, 62(6), 563–573. https://doi.org/10.1007/s11528-018-0292-7

Cliburn, D. (2006). Experiences with the LEGO Mindstorms throughout the undergraduate computer science
curriculum. Proceedings Frontiers in Education 36th Annual Conference.
https://doi.org/10.1109/fie.2006.322315

Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying computational thinking for non-computer scientists.
Unpublished manuscript in progress, referenced in
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

-2325-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

https://doi.org/10.1145/3015455
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://doi.org/10.1007/s11528-018-0292-7

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in higher education.
TechTrends, 59(2), 57–65. https//doi.org/10.1007/s11528-015-0840-3

Denning, P. (2017). Computational thinking in science. American Scientist, 105(1), 13.
https://doi.org/10.1511/2017.124.13

Ericson, B., & McKlin, T. (2012). Effective and sustainable computing summer camps. Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education, 289–294.
https://doi.org/10.1145/2157136.2157223

Folk, R., Lee, G. R., Michalenko, A. C., Peel, A., & Pontelli, E. (2015, October 21). GK-12 DISSECT:
Incorporating computational thinking with K-12 science without computer access. Frontiers in Education
Conference. https://doi.org/10.1109/fie.2015.7344238

Gardeli, A., & Vosinakis, S. (2017). Creating the computer player: An engaging and collaborative approach to
introduce computational thinking by combining “unplugged” activities with visual programming. Italian
Journal of Educational Technology, 25(2), 36–50. https://doi.org/10.17471/2499-4324/910

Grover, S., & Basu, S. (2017, March 8). Measuring student learning in introductory block-based programming.
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education.
https://doi.org/10.1145/3017680.3017723

Hsieh, H. F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content Analysis. Qualitative Health
Research, 15(9), 1277–1288. Sage. https://doi.org/10.1177/1049732305276687

Jiang, S., & Gary W.K. Wong. (2017, December 1). Assessing primary school students’ intrinsic motivation of
computational thinking. 2017 IEEE 6th International Conference on Teaching, Assessment, and Learning
for Engineering (TALE). https://doi.org/10.1109/tale.2017.8252381

Kastner-Hauler, O., Tengler, K., Sabitzer, B., & Lavicza, Z. (2022). Combined effects of block-based programming
and physical computing on primary students’ computational thinking skills. Frontiers in Psychology, 13.
https://doi.org/10.3389/fpsyg.2022.875382

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice programmers. ACM
SIGCSE Bulletin, 37(3), 14-18.

Margolis, J. (2010). Stuck in the shallow end: Education, race, and computing. MIT Press.
Mouza, C., Marzocchi, A., Pan, Y.-C., & Pollock, L. (2016). Development, implementation, and outcomes of an

equitable computer science after-school program: Findings from middle-school students. Journal of
Research on Technology in Education, 48(2), 84–104. https://doi.org/10.1080/15391523.2016.1146561

Mouza, C., Sheridan, S., Lavigne, N. C., & Pollock, L. (2021). Preparing undergraduate students to support K-12
computer science teaching through school-university partnerships: Reflections from the field. Computer
Science Education, 1–26. https://doi.org/10.1080/08993408.2021.1970435

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic books.
Papert, S., & Harel, I. (1991). Situating constructionism. In I. Harel (Eds.), Constructionist learning. Cambridge,

MA: MIT Media Laboratory.
Pollock, L., Mouza, C., Atlas, J., & Harvey, T. (2015). Field experiences in teaching computer science: Course

organization and reflections. Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, 374–379. https://doi.org/10.1145/2676723.2677286

Price, T. W., & Barnes, T. (2015, August 9). Comparing textual and block interfaces in a novice programming
environment. Proceedings of the Eleventh Annual International Conference on International Computing
Education Research. https://doi.org/10.1145/2787622.2787712

Saito, D., Washizaki, H., & Fukazawa, Y. (2017). Comparison of text-based and visual-based programming input
methods for first-time learners. Journal of Information Technology Education: Research, 16(1), 209-226.

Scherer, R., Siddiq, F., & Viveros, B. S. (2020). A meta-analysis of teaching and learning computer programming:
Effective instructional approaches and conditions. Computers in Human Behavior,
109. https://doi.org/10.1016/j.chb.2020.106349

Sentance, S., Waite, J., Hodges, S., MacLeod, E., & Yeomans, L. (2017, March 8). “Creating cool stuff”: Pupils’
experience of the BBC Micro:bit. Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. https://doi.org/10.1145/3017680.3017749

Shah, N., Lewis, C. M., Caires, R., Khan, N., Qureshi, A., Ehsanipour, D., & Gupta, N. (2013). Building equitable
computer science classrooms. Proceeding of the 44th ACM Technical Symposium on Computer Science
Education, 263–268. https://doi.org/10.1145/2445196.2445276

Veng, S., Mouza, C. & Pollock, L. (2023). Examining the Design and Outcomes of an After-School Physical
Computing Program in Middle-School. In E. Langran, P. Christensen & J. Sanson (Eds.), Proceedings of

-2326-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

https://doi.org/10.1145/2445196.2445276
https://psycnet.apa.org/doi/10.1016/j.chb.2020.106349
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2676723.2677286
https://doi.org/10.3389/fpsyg.2022.875382
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1511/2017.124.13

Society for Information Technology & Teacher Education International Conference (pp. 2316-2326). New
Orleans, LA, United States: Association for the Advancement of Computing in Education (AACE).

Vlahu-Gjorgievska, E., Videnovik, M., & Trajkovik, V. (2018). Computational thinking and coding subject in
primary schools: Methodological approach based on alternative cooperative and individual learning cycles.
In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)
(pp. 77-83). IEEE.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education:
Towards an agenda for research and practice. Education and Information Technologies, 20, 715-728.
https://doi.org/http://dx.doi.org/10.1007/s10639-015-9412-6

Voštinár, P., & Knežník, J. (2020). Education with BBC Micro:bit. International Journal of Online and Biomedical
Engineering (IJOE), 16(14), 81. https://doi.org/10.3991/ijoe.v16i14.17071

Weintrop, D., & Wilensky, U. (2015, June 21). To block or not to block, that is the question. Proceedings of the
14th International Conference on Interaction Design and Children.
https://doi.org/10.1145/2771839.2771860

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school computer
science classrooms. ACM Transactions on Computing Education, 18(1), 1–25.
https://doi.org/10.1145/3089799

Weintrop, D. (2019). Block-based programming in computer science education. Communications of the ACM,
62(8), 22-25. https://doi.org/10.1145/3341221

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulating knowledge disciplines through new
representational forms. Proceedings of the Constructionism 2010 Conference.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yardi, S., & Bruckman, A. (2007). What is computing? Proceedings of the Third International Workshop on

Computing Education Research - ICER ’07. https://doi.org/10.1145/1288580.1288586
Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9.

Computers & Education, 141, 103607. https://doi.org/10.1016/j.compedu.2019.103607

-2327-

SITE 2024 - 35th Anniversary - Las Vegas, Nevada, United States, March 25-29, 2024

https://doi.org/10.1145/1288580.1288586
https://doi.org/10.1145/3089799

	Introduction
	Literature Review
	Early Engagement in Computational Thinking and Micro:bit
	Block-Based and Text-Based Programming

	Theoretical Framework
	Methods
	Context and Participants
	Data Collection
	Data Analysis

	Results
	RQ1: How do students’ experiences and perceptions of using block-based physical computing differ from those using text-based programming in the program?
	Grammatical Complexity
	Tangibility
	Assistance and Support
	Sense of Belonging

	RQ2: How do the two approaches differ regarding students’ attitudes toward the field of CS?

	Discussion
	References

