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The existence of a crumpled phase for self-avoiding elastic surfaces was postulated more than three
decades ago using simple Flory-like scaling arguments. Despite much effort, its stability in a micro-
scopic environment has been the subject of much debate. In this paper we show how a crumpled
phase develops reliably and consistently upon subjecting a thin spherical shell to active fluctuations.
We find a master curve describing how the relative volume of a shell changes with the strength of
the active forces, that applies for every shell independent of size and elastic constants. Furthermore,
we extract a general expression for the onset active force beyond which a shell begins to crumple.
Finally, we calculate how the size exponent varies along the crumpling curve.

1 Introduction
It is well known that the energy cost required to deform an elastic
surface is well accounted for by a bending and a stretching energy
term1–3. Despite its apparent simplicity, the coupling between
bending and stretching modes of deformation is highly nonlinear
for thin elastic materials such as sheets and shells giving rise to
mechanical behavior that is hard to predict. What makes these
materials particularly exciting is that the ratio between stretch-
ing, Es, and bending, Eb, energies for an arbitrary deformation of
amplitude h on a surface of thickness t scales as Es/Eb ≃ (h/t)2 1.
Therefore, for sufficiently thin surfaces, (t ≪ h), only stretch-free
deformations are allowed. Skin wrinkling under applied stress4,5,
stress focusing via cone formation of crumpled paper6, and buck-
ling of thin shells7, are just a few examples arising from this
global constraint.

The theory of elasticity developed for continuum mechanics
has been successfully used to study a number of microscopic sys-
tems, including viral capsids8, graphite-oxide9,10 and graphene
sheets11,12, cross polymerized membranes13 and gels14, the
spectrin-actin network forming the cytoskeleton of red blood
cells15,16 and close-packed nanoparticle arrays17. Significantly,
at this length-scale, the nonlinear coupling between the different
elastic modes can also be induced by thermal fluctuations with
significant consequences for the structure of microscopic surfaces.
Thermal fluctuations renormalize the bending rigidity of thin
elastic sheets which become stiffer as their size increases18–20
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leading to the stabilization of a flat phase for two-dimensional un-
supported surfaces. In thin spherical shells, thermal fluctuations
act as an effective negative internal pressure capable of buckling
the shell21.

Simple Flory-like arguments22 that work so well in establish-
ing the scaling laws of self-avoiding polymers23, predict that
self-avoiding elastic sheets should be found in a crumpled state
for negligible bending rigidities. This state is characterized by
the scaling of the radius of gyration of the sheet, Rg, with its
side length, L, of the form Rg ∼ Lν with the Flory exponent
ν = 4/524,25. Yet, numerical simulations of fully crystalline, self-
avoiding elastic sheets indicate that these surfaces always acquire
a rough, but overall extended (flat), state with a size exponent
along their longitudinal directions ν ≃ 1, even in the absence of
bending rigidity26–29. As of today, it is fair to say that the exis-
tence of a crumpled phase for large tethered membranes in equi-
librium remains uncertain.

Inspired by early experiments of graphite-oxide sheets in poor
solvent30 which seemed to indicate the presence of a crumpled
phase upon improving the quality of the solvent, simulations were
performed to include the presence of attractive interactions, but
the crumpled phase was not observed29. Interestingly, thin elas-
tic spherical shells in the presence of explicit attractive forces
were initially reported to have a Flory exponent compatible with
a crumpled phase in a temperature window that falls between the
flat and the compact regimes31, but simulations with larger shells
did not find such intermediate regime32. For a comprehensive re-
view on the subject, we refer the reader to references3,21,22,28,33.
What is certain at this point is that the one way to reliably ob-
tain a crumpled phase out of elastic thin surfaces is by quickly
compressing them using a large external force34–37, or by rapidly
dehydrating graphene-oxide nanopaper38.

In this paper, we reconsider this problem within the framework
of active matter, and study the effect of active, non-equilibrium
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fluctuations on the structure of a thin spherical shell. Crucially,
we show how a crumpled phase, develops systematically and reli-
ably for sufficiently large active forces. While a significant amount
of work has been done to understand the structural and dynamic
properties of active linear and ring polymers39–44, and more re-
cent work considered the behavior of fluid vesicles in the presence
of active fluctuations or active agents45–49, apart from a few re-
cent papers50–52, very little is known about how elastic surfaces
respond to non-equilibrium fluctuations, and this is an important
problem given their relevance to biological and synthetic materi-
als53–55.

2 Numerical model

We model the thin spherical shell using a triangulated network
of harmonic bonds56 organized as an icosadeltahedron57. All
vertices in icosadeltahedra are six-coordinated apart from twelve
five-coordinated vertices (disclinations) as required by topolog-
ical constraints. This structures are characterized by two inte-
gers (a,b) which define the relative position on the spherical lat-
tice of the disclinations, and set the total number of vertices to
N = 10(a2 +ab+b2)+2. Although most of our data are obtained
with this crystalline structure, we also considered amorphous
shells with a disordered distribution of nodes on the sphere. We
construct amorphous shells by running Monte Carlo simulations
of a fluid membrane (bond flip moves allows for neighbor ex-
change58) for sufficiently long time until the bonds are random-
ized. We then freeze the bonds and use this as the initial con-
figuration for our simulations. The rest shape of the crystalline
shell is an icosahedron8 while that for an amorphous shell is a
sphere59.

To enforce self-avoiding interactions, we place a spherical parti-
cle of diameter σ at each vertex. Each of these vertex particles are
connected to their nearest neighbors with a harmonic potential.
The interaction potential of the system can be written as

U = K ∑
<i j>

(ri j −σ)2 +κ ∑
<lm>

(1−ηηη l ·ηηηm)
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+

1
4
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(1)

where ri j is the distance between any two vertices i, j. The first
term accounts for the harmonic bonds between nearest neigh-
bor particles with a spring constant K. The second term is the
bending energy where, κ is the bending rigidity of the shell and
(ηηη l ,ηηηm) are the normal vectors of any two adjacent triangles, l
and m, sharing an edge. The third term implements the excluded
volume interactions between the vertex particles. The potential
is cut off at 21/6σ and set to zero beyond that distance. Unless
otherwise specified, we set K = 160kBT0/σ2, κ = 10kBT0, and
ε = kBT0, where kB is the Boltzmann constant and T0 is the refer-
ence temperature. Activity is introduced in the system by adding
a self-propelling velocity of constant magnitude vp to each of the
node particles. The system dynamics is resolved using Brownian

Fig. 1 The monotonically decreasing normalized volume (V/V0) as a
function of the self-propulsion speed vp, for shells of different size, N and
different structure (Crystalline/Amorphous). Simulation snapshots for
the crystalline shell with N = 7682 are shown at vp = 10 and 100. While
the shells are constructed as triangulated networks of particles and bonds,
we display them here as continuous surfaces for representation purposes.
The elastic constants are K = 160 and κ = 10.

motion according to60–62
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where i is the particle index and the unit vector n̂n̂n̂ is the axis
of propulsion. The conservative forces on each particle are de-
noted by fff i = −∂U/∂ rrri. The translational diffusion coefficient
D, temperature T0 and the translational friction γ are constrained
to follow the Stokes-Einstein relation D = kBT0γ−1. Likewise, the
rotational diffusion coefficient is constrained to be Dr = kBT0γ−1

r ,
with Dr = 3Dσ−2. The Gaussian white-noise terms induced by the
solvent for the translational ξξξ and rotational ξξξ r motions are char-
acterized by the relations ⟨ξξξ (t)⟩= 0 and ⟨ξp(t)ξq(t ′)⟩= δpqδ (t−t ′)
(here the indices p and q stand for the Cartesian components
x,y,z).

The simulations have been carried out using the numerical
package LAMMPS63 and the units of length, time and energy re-
spectively are set to be σ , τ = σ2D−1 and kBT0. Consequently, the
spring constant K, bending constant κ and self-propulsion speed
vp are measured in units of kBT0/σ2, kBT0 and σ/τ respectively.
Physically, τ is the time taken for a passive particle to diffuse a
length of σ . All simulations were run with a time step smaller
than ∆t = 2×10−6 τ. We record the state of the system every 105

time steps. After the system reaches a steady state as indicated by
the saturating values of the shell volume, we collect statistics for a
time period ∼ (103 −104)τ, which amounts to a minimum of one
billion time steps for the smaller systems and up to 10 billion time
steps for the largest. For both crystalline and amorphous shells,
most of the data we report are for elastic constants of K = 160 and
κ = 10.
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Fig. 2 The collapse of normalized volumes (V/V0) as a function of
vp/(K0.125κ0.5) for various elastic spring constants K and bending con-
stants κ. The size of the crystalline shell is N = 4322.

3 Crumpling of active shells
With our choice of elastic constants K and κ, crystalline shells
acquire a well-defined icosahedral state when thermalized in the
absence of active fluctuations. This is expected8 given that with
our parameters, the Föppl-von Kármán number γF = 4

3 KR2/κ ≫
102 for every shell radius R considered in this study for N ∈
[1922,12002]. We begin our analysis by monitoring the volume
of the shell as a function of increasing values of the strength
of the active forces. For small values of vp, the shells develop
smooth surface undulations on the scale of the shell radius with-
out altering its overall shape. Upon increasing the activity, these
undulations deepen resulting in a monotonically decreasing shell
volume and a disruption of its global symmetry. For even larger
self-propulsion velocities, the shell crumples to a volume that sat-
urates at roughly 20% of its original value V0 = (4/3)πR3. See the
Supplemental Material† for the cross-sections of locally flat and
crumpled spheres.

Interestingly, repeating the same calculations with different
crystalline8 and amorphous shell59 sizes N ∈ [1922,12002] result
in normalized volume V/V0 curves with only a weak size depen-
dence at larger self-propulsion speeds†. Figure 1 shows the re-
sults of this analysis. We find the flex of this curve, calculated by
evaluating the maximum of |dV/dvp|, to be a reasonable estima-
tor of the onset self-propulsion speed, v∗p ≈ 30, beyond which the
shells begin to crumple. Our results clearly show that the activity-
induced crumpling of the shell is quite general and does not de-
pend on the initial specific structure of the shell (crystalline or
amorphous). We should also stress that the maximum of |dV/dvp|
does not show a diverging peak with system size, suggesting that
for this system, crumpling is a smooth process devoid of singular-
ities rather than a real phase transition.

To understand how the onset value, v∗p, depends on the elas-
tic parameters of the membrane, we performed the same calcu-
lations with different sets of stretching and bending rigidities,
in the range of K ∈ [160,3000] and κ ∈ [10,80]. Remarkably, as
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Fig. 3 Log-log plot of the structure factor S(q) for different shell sizes
N, at vp = 100, as a function of the rescaled wave vector qRν . The best
collapse of the data for q > 2π/Rg is shown in this figure and is obtained
for ν = 0.76±0.06 which is within error bar of the Flory exponent ν = 4/5.
The elastic constants are K = 160 and κ = 10.

shown in Fig. 2, all data collapse into an empirical master curve
of V/V0 against vp/(K0.125κ0.5). This suggests a universal crum-
pling onset for any shell size and any set of elastic constants be-
yond v∗p ≃ 5K1/8κ1/2. To ensure that the collapse of data is not
an artifact of the choice of bending energy chosen in Eq. 1, we
also considered a bending energy based on calculating squares of
local averages of mean curvature58,64. We find that the results
stand independently of the specific discretization of the bending
energy†. If the dependence on κ could be, in principle, rational-
ized by reinterpreting activity as an effective temperature gener-
ating fluctuations that carry an energy that scales as v2

p, and one
would expect v2

p > κ, i.e vp > κ1/2, for the shell to begin to crum-
ple, this simple argument does not, however, explain the weaker
dependence on the stretching constant. Furthermore, despite our
best attempts, we were unable to use temperature to crumple our
shells in equilibrium. Although, partial buckling of the shell can
be achieved by increasing the temperature of the bath at equilib-
rium21,59, our simulations at high temperatures show no crum-
pling of the shell.

As a possible estimate of the size of the active fluctuations to
be mapped into an effective temperature in our system, we con-
sidered a recent work on ideal active membranes which used
the same model for an open elastic sheet. In that case an ef-
fective temperature was obtained by matching temperature and
activity at the crumpling transition point, yielding an effective
temperature T eff = (1+ 1/42v2

p)T0
50. For a bending of κ = 10,

the crumpling of active shells at v∗p ≈ 30 would then correspond
to T eff ≈ 22T0. Alternatively, one could try to estimate the ex-
tent of the active fluctuations using the active energy scale ksTs =

γv2
p/(6Dr)

65. In this case one would obtain an effective temper-
ature T eff ≈ 55T0. We however find that even at temperatures of
the thermal bath reaching values as large as 100−200T0, passive
equilibrated shells do not show signs of crumpling. For instance,
at T = 100T0 , even when we provide a crumpled shell as the ini-
tial configuration, the volume of the shell re-swells over time to
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Fig. 4 Size exponent of an elastic shell ν as a function of the self-
propulsion speed vp. The elastic constants are K = 160 and κ = 10. The
dotted lines indicate the size exponents of a spherical (ν = 1) and a
compact (ν = 2/3) phase. The dash-dotted line at ν = 4/5 marks the
crumpled Flory phase. While the shell is locally flat for vp ≤ v∗p = 30, the
size exponent for larger values of vp show a clear departure from the flat
phase and saturates to ν ≈ 0.76 for vp > v∗p.

60% of its original volume†. This suggests that the crumpled con-
formation of the shell is distinctly non-equilibrium in nature, and
a simple temperature mapping of the activity is not sufficient to
explain our data.

4 The Flory phase
So far, we have used the term crumpled quite loosely and with the
only intent of providing a visual description of the shape of the
shell at large active forces. To accurately characterize the physi-
cal properties of this phase, we now calculate the size exponent,
ν , for the shells deep into the crumpled phase. For a shell with
elastic constants K = 160 and κ = 10 discussed in Fig. 1, we set
vp = 100. We evaluate the size exponent by computing the shell
structure factor S(q) for different values of the shell radii R ∝ N1/2.
We then plot S(q) against qRν , and find the value ν for which all
data points collapse onto the same curve within the range 2π/Rg
and 2π/σ . The results of this analysis are shown in Fig. 3. The
best collapse is obtained for ν = 0.76(6), a result within error bars
of the Flory exponent ν = 4/5 predicted for the crumpled phase
of self-avoiding membranes, and clearly different from ν = 1 and
ν = 2/3 associated with the flat and the compact phase, respec-
tively.

We also evaluated how the size exponent of the shell depends
on the strength of the active forces along the full spectrum of
the shape transformation. What we find is that the size exponent
crosses over continuously from ν = 1 in the icosahedral/spherical
state, to ν = 0.76 in the collapsed state. We do observe somewhat
faster change beyond vp = 30 which we had identified as the on-
set self-propulsion speed for crumpling. The results are shown
in Fig. 4. Given the computational cost of these calculations, the
values of ν in Fig. 4 for the largest values of vp are obtained by col-
lapsing the power-law regime of the structure factor as discussed
above using five curves (rather than seven) associated with shells
of size N = 1922,3002,4322,5882,7682. We calculate the expo-

nents and error bars using a measure that quantifies the quality
of collapse66. Given that for vp ≤ 30, the shell has a simpler icosa-
hedral shape, the structure factor has multiple peaks and does not
exhibit a power-law behaviour. In this low-activity regime, we in-
stead find the size exponent by fitting the size scaling of the radius
of gyration Rg(R) = aRν .

5 Conclusions
In this paper, we carried out extensive numerical simulations to
understand the role of active fluctuations on the structural prop-
erties of thin elastic shells. Remarkably, we observe that thin
shells easily and fully crumple under the presence of active fluc-
tuations. Furthermore, we discovered that for different elastic
constants, the curves describing the relative volume change of
the shells as a function of the strength of the active forces, col-
lapse into a single universal curve when appropriately normal-
ized. Along this curve, the size exponent continuously decreases
from ν = 1.00 to ν = 0.76±0.06, and the latter is compatible with
the elusive crumpled Flory phase postulated for thermalized self-
avoiding elastic membranes. While thermalized membranes are
found to depart their flat phase only with explicit attractive inter-
actions27, active shells which are distinctly out of equilibrium are
seen to crumple even in the absence of explicit attractive interac-
tions.

The crumpled structures of quasi non-extensile surfaces such
as paper or aluminium-foil unattainable by simple equilibration
of their microscopic counterparts can also only be formed by non-
equilibrium means and are found to be in the Flory phase35–37.
While these remain static in a quenched disordered state, the
crumpled phase of active shells continuously fluctuates exploring
the ensemble of crumpled configurations.

It is known that sufficiently large thin spherical shells buckle
due to an effective negative pressure generated by thermal fluc-
tuations21,59. However, in the absence of an explicit internal
pressure67, we found no evidence of crumpling in such equili-
brated shells even when the strength of the thermal fluctuations
become comparable to that of the harmonic bonds that keep the
shell together. This is not surprising as a crumpled phase at such
large temperatures would be entropically unfavorable, suggest-
ing that activity cannot be mapped into an effective temperature
for thin spherical shells. For equilibrated shells with large nega-
tive internal pressure, the shells collapse into shapes with a size
exponent of ν = 1.00 ± 0.03†. Thus the crumpled phase of ac-
tive shells cannot be qualitatively mapped to shells that are col-
lapsed using explicit inward pressure. The crumpling of active
shells is a particularly intriguing result because we have recently
shown that active elastic sheets (rather than spherical shells) be-
have similarly to high temperature passive sheets50. Specifically,
a crumpled phase was not found in that instance as the sheet re-
mained extended for all self-propulsion velocities considered in
that study. Our results thus raise questions about the role of in-
trinsic curvature and topology in these systems. More work is
currently underway to sort out their roles.

It is worth noting that studies of the one-dimensional analogs
of our system, active rings in two dimensions, present a re-entrant
behavior of the radius of gyration with activity. In that case,
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a narrow region for intermediate activities where the ring col-
lapses has also been observed, but this is immediately followed
by a re-swelling at larger activities44. We verified that re-swelling
does not occur in our system by running a few simulations at
larger activities vp = 200,400 (data not shown), making the two-
dimensional shell qualitatively different from its lower dimen-
sional counterpart.

More recently, the role of non-equilibrium fluctuations on the
shape of an elastic shell has also been tested by performing Monte
Carlo simulations with an explicit detail-balance breaking rule52.
In this case, buckling of the shell was observed as a function of
the degree of detailed balance breaking, but a crumpled phase
was not observed.

Potential realizations of active shells could be constructed with
water permeable elastic capsules using polymers. In principle one
could use porous cross-linked polymeric vesicles with tethers con-
necting active particles to their surface, or cross-polymerized col-
loidosomes built from active particles.
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