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Abstract—For hard-real time systems, cache memory increases

execution time variability, increasing the complexity of timing

analysis. As such, cache memory is often treated exclusively as

a detractor to schedulability. Cache-aware co-located scheduling

aims to improve schedulability by carefully scheduling threads to

share cached values. Cache sharing between threads potentially

reduces task execution times and increases schedulability with

fewer resources. Antithetically, co-located scheduling may reduce

parallelism, decreasing efficiency. Thus, identifying the optimal

set of threads to co-locate that minimizes the resources required

while ensuring timing constraints is a complex challenge. This

work establishes optimal co-location as NP-Hard in the strong

sense. It offers an approximation method for the co-located

scheduling of Fork-Join tasks named 3-PARM-HD. The approx-

imation has a 3-factor guarantee and a resource augmentation

bound of 3. The simulated evaluation shows 3-PARM-HD increases

schedulability compared to an optimal intractable algorithm

(without co-location) scheduling 28% more tasks with 30% fewer

cores. Simulated results show 3-PARM-HD outperforms a 2-factor

approximation for traditional makespan, scheduling 39% more

tasks with 44% fewer cores. An experimental RISC-V evaluation

running on a QEMU platform confirms the benefits of 3-PARM-

HD, scheduling and executing tasks deemed unschedulable by a

2-factor makespan approximation without co-location.

I. INTRODUCTION

Computational demands found in today’s safety-critical sys-
tems exceed the capacity of a single processor. Multi-processor
systems with parallel scheduling algorithms are employed to
meet the demands of systems performing autonomous driving,
computer vision, object detection, and other complex tasks
[39]. For these systems to operate safely their timely operation
must be guaranteed.

Ensuring the temporal guarantees required of safety-critical
systems is the responsibility of schedulability analysis. The
schedulability of parallel tasks has been well studied [6]–
[8], [10], [16], [17], [19], [24]–[26], [28], [29], [32], [33],
[49], [53], [57], [59], [61], [64], [72], [73], [78]–[80]. A
persistent challenge for schedulability analysis is memory
contention [20], [35].

As a component of the memory system, instruction caches
contribute to contention. The variability cache contention
introduces to task execution times is typically perceived neg-
atively [5], [54], [77], exclusively increasing execution times.
An alternative positive perspective is taken in [70], whereby
threads of tasks are scheduled in a cache-aware manner to
reduce variability and total execution times. This cache-aware
co-located scheduling of parallel tasks has the potential to
reduce task execution times, increase efficiency, and ensure
safety with fewer resources for safety-critical systems.

For parallel directed acyclic graph (DAG) tasks, the distinct
execution of threads upon distinct cores may be joined into
a single execution request upon a single core [70]. Execution
requests are joined by the BUNDLE thread-level scheduling
algorithm [67], reducing the aggregate execution time of all
threads. Doing so reduces the number of cores required to
schedule high utilization federated DAG tasks. Joining execu-
tions in this way is referred to as co-location. Unfortunately,
not all threads may be co-located while guaranteeing the
timely and safe completion of parallel tasks. This creates a
decision problem, where finding the subset of threads to co-
locate in order to reduce the number of required cores must
be balanced with the timely execution of a task.

The problem of optimal co-location for DAG tasks was
introduced in [70], where it was addressed by sub-optimal
heuristics. That work did not show the complexity class
nor provide a guaranteed approximation. Herein, optimal co-
location is proven to be NP-Hard in the strong sense. By estab-
lishing the intractability of co-location, research into an exact,
tractable algorithm is halted. In place of an exact algorithm,
this work provides the first guaranteed approximation methods
with proven augmentation bounds for Fork-Join parallel tasks.
Fork-Join tasks may be seen as restricted forms of DAG tasks.
The major contributions of this work are:

1) Proof of strong NP-hardness of optimal co-location.
2) A 3-factor approximation algorithm for minimizing the

makespan of a Fork-Join task with cache-aware schedul-
ing with a resource augmentation bound of 3.

3) A simulated evaluation of the approximate and ex-
act methods that may be freely extended and repur-
posed [66].

4) An empirical Fork-Join scheduling algorithm evaluation
for RISC-V [66] utilizing the QEMU platform.

To convey these contributions, the presentation is divided
into sections. Section II presents the Fork-Join task model.
Section III provides the necessary background. Sections IV
and V present the optimal co-location problem and prove its
complexity. Two 3-factor approximation methods are proposed
in Section VI. Section VII and VIII verify the benefits of
co-location through simulations and experimentation. Related
work appears in Section IX. Section X concludes.

II. FORK-JOIN PARALLEL TASK MODEL

Under the Fork-Join model [36] the individual executable
objects of a parallel task are represented as nodes. A Fork-Join
task is a series of fork nodes, parallel sections, and join nodes.



A fork node has one or more outgoing edges to immediate
successor nodes, these successors comprise a parallel section.
All nodes of a parallel section have one outgoing edge to a
shared immediate successor, a join node. A fork node may
also be a join node.

Figure 1 illustrates the relationship between an
OpenMP [52] fragment and a Fork-Join task graph.
From the code fragment, the functions s(), q(), and t()
are represented as fork, fork-join, and join nodes within the
graph of the task. There are two parallel sections, the first
contains three nodes corresponding to three threads executing
the function p() concurrently. The second parallel section
contains two nodes corresponding to two threads executing
the functions r() and x() concurrently. The general Fork-
Join [36] model permits embedded parallel sections, e.g. p1
may represent a fork node, parallel section, and join node.
Herein, embedded parallel sections are prohibited.

s ( ) ; / * f o r k node * /
# pragma omp f o r
f o r ( i =1 ; i <=3; i ++) {

p ( i ) ;
}

q ( ) ; / * fo rk − j o i n node * /

# pragma omp p a r a l l e l s e c t i o n s {
# pragma omp s e c t i o n
{ r ( ) ; }
# pragma omp s e c t i o n
{ x ( ) ; }

}
t ( ) ; / * j o i n node * /

Fig. 1: Fork-Join Task and OpenMP Code Fragment

A Fork-Join task ⌧ is represented by a tuple ⌧ = (T,D,G)
where T is the minimum inter-arrival time, D is the relative
deadline, and G is the graph of the task. A task’s graph
G = (V,E) is composed of nodes V and edges E. A node
v 2 V represents a thread executing in isolation upon a single
core and its execution is bounded by its worst-case execution
time (WCET) Cv . An edge (u, v) 2 E expresses an execution
dependency between u, v 2 V . A node v is ready to execute
only when all predecessors ({u | (u, v) 2 E}) have termi-
nated. Consequently, only nodes in a single parallel section
may execute in parallel.

Fork and join nodes are referred to as sequential nodes,
the set of sequential nodes is denoted S ⇢ V . Without loss of
generality, there are |S|� 1 parallel sections.The set of parallel
sections is denoted by P = {P1, P2, ..., P|S|�1} and ordered
by increasing distance from the source node. Nodes within a
parallel section are referred to as parallel nodes.

A task ⌧ generates an infinite number of jobs, arriving
at least T time units apart. All jobs of ⌧ must complete
before the next job is released (i.e. D = T ). On a system
with M identical cores, utilizing a non-preemptive, parallel
scheduling algorithm, the following definitions of makespan
and schedulability apply.
Definition 1 (Makespan of Pi given m Cores). For a parallel
section Pi 2 P , the makespan �i of Pi is an upper bound on

the amount of time required to execute all threads of all nodes
of Pi upon m cores.

Definition 2 (Makespan of G given m Cores). The makespan
⇤ of G = (V,E) is an upper bound on the amount of time
required to execute all sequential nodes and parallel sections
upon m cores:
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Definition 3 (Schedulability of G). G = (V,E) is schedulable
if the makespan of G is less than or equal to the relative
deadline of the task: ⇤  D.

Observation 1 (Composition of ⇤). Each parallel section
contributes independently to the makespan of G by Equation 1.

Observation 2 (Minimum ⇤). By Observation 1, minimizing
the makespans of the individual parallel sections minimizes
the makespan of the task.

III. BACKGROUND

For parallel hard real-time tasks executing upon a single
processor, the BUNDLE [67] scheduling algorithm and analysis
techniques integrate cache analysis with thread-level schedul-
ing decisions. Cache analysis depends on the inter-thread
cache benefit (ITCB), which is defined as the reduction in
execution time of one thread due, exclusively, to the placement
of values in the cache by another thread. The analysis serves
as input to the BUNDLE scheduling algorithm. The analysis
segments threads into conflict free regions: sets of instructions
that do not evict one another when executed. The BUNDLE
scheduling algorithm selects one conflict free region as active.
Threads are associated with regions and only threads of the
active region are permitted to execute. Once a thread is
selected to execute, it does so non-preemptively until it leaves
the active region and then it is blocked. Thus, threads of
the active region place values into the cache that cannot be
evicted and will be shared by subsequent threads; producing
the ITCB. Scheduling repeatedly selects an active conflict free
region until all threads terminate. To integrate the ITCB into
the WCET of a task, the benefit must be quantifiable. BUNDLE
analysis and scheduling quantifies and guarantees the ITCB for
parallel tasks, reducing their total WCET.

For each task, BUNDLE analysis produces a WCET function
c(z) : N ! R, where z is the number of threads released per
parallel job. The function returns the WCET of z threads of the
same parallel job scheduled upon one processor by BUNDLE.
By incorporating the ITCB into WCET functions, they become
strictly increasing and concave [69] obeying Equation 2.

8z 2 N, c(z)� c(z � 1) � c(z + 1)� c(z) (2)

Due to their concavity, a BUNDLE WCET function may be
upper bounded by a linear function in the form of Equation 3
taken from [69]. Throughout this work, linear bounding func-
tions take the place of BUNDLE WCET functions.



Definition 4 (Bounding Function of BUNDLE WCET). A
BUNDLE WCET function may be upper bounded by a linear
function c(z) : N ! R, with � 2 [0, 1], of the form:

c(z) = � + (z � 1)(��) (3)
Additional terminology is ascribed to BUNDLE bounding

functions and threads. The � and � terms are referred to as
the base and incremental costs. The first thread with cost �
is referred to as a heavy weight thread, subsequent threads
which increase c(z) by �� for each thread are referred to as
light weight threads. BUNDLE analysis provides the base and
incremental costs. Alternatively, they may be determined from
the WCET functions, where � = c(1) and � = c(2)�c(1)

c(1) .
Due to the concavity of the bounding function, combining

distinct thread execution requests of the same task strictly
decreases the total WCET for the task. This is referred to
as the joined request bound property:
Property 1 (Joined Request Bound). Following from Equa-
tion 2, given n, k 2 N distinct threads for the same parallel
task, the WCET contribution c(n) + c(k) is greater than or
equal to the WCET of their combined execution c(n+ k), i.e.
c(n+ k)  c(n) + c(k).
BUNDLE analysis produces WCET functions for executable

objects. An object is a set of instructions. An object may be
the complete set of instructions for a logical task, e.g. all
instructions reachable from an entry point. Or an object may
be a subset of instructions, such as the body of a parallel for
loop. A thread is the execution of an object. Multiple threads
may execute in parallel over the same object.
BUNDLE analysis is (currently) limited to level one direct-

mapped instruction caches. BUNDLE has been shown [67]–
[70] to reduce the WCET and run-time of parallel tasks. In
terms of single core performance, BUNDLE reduces WCET
times linearly with respect to the number of threads [67]; under
the assumption of a block reload time of 10 cycles, a constant
cycle per instruction of 1 cycle, and a thread level context-
switch cost of 3% of the total execution time of one thread in
isolation. In terms of multi-core performance, federeated DAG
tasks have their dedicated cores reduced by 25% to 50% [70]
on a proof-of-concept distributed parallel processing platform
consisting of ARM Cortex A53 processors.

Herein BUNDLE analysis is an opaque process that generates
a WCET function and bounding function per object. The
bounding functions guide the complexity analysis and co-
location algorithms. As such, any BUNDLE analysis improve-
ments (hierarchical caches, data caches, etc.) would increase
the benefits of co-location, elevating the impact of optimal
co-location – the focus of this work.

A. Co-Location
Within the Fork-Join model there is no distinction between

a thread and an object; they are combined in the concept of a
node. A node represents a thread executing an object, a thread
may execute upon any of the available cores.

To co-locate multiple threads, the distinct requests that may
span multiple cores are combined into a single request that

must execute upon a single core according to the BUNDLE
scheduling algorithm. Only threads that share an object may
be co-located. When co-located, the combined WCET of
all threads is no greater than the sum of their independent
contributions (Property 1).

To support co-location within Fork-Join tasks, the graph
within the model is augmented. A task’s graph is a tu-
ple G = (V,E,O), containing a set of nodes V , edges
E 2 V ⇥ V , and a set of objects O. In place of a single WCET
Cv , every node v 2 V is given two attributes: an executable
object v.↵ 2 O and a number of threads v.z 2 N. Each node
represents the uninterrupted execution of v.z threads of the
object v.↵ upon a single core according to the BUNDLE
scheduling algorithm. The WCET of z 2 N threads of the
object ↵ 2 O scheduled by BUNDLE is given by c↵(z). As
a convenience, the WCET of a node v is denoted by cv and is
equal to cv.↵(v.z). For any fork, fork-join, or join node s 2 V ,
the number of threads is exactly one i.e. s.z = 1.

IV. OPTIMAL CO-LOCATION OF FORK-JOIN TASKS

For Fork-Join tasks as described in Section II, individual
nodes represent the co-located execution of multiple threads
by the BUNDLE scheduling algorithm. For a specific task,
additional threads may be co-located by joining the execution
requests of distinct nodes contained within a parallel section
into a single node.

(a) Before Co-Location of v0 and v1

(b) After Co-Location of v0 and v1

Fig. 2: Co-Locating v0 and v1 as w

To co-locate two nodes u, v 2 V of a Fork-Join task
G = (V,E,O), they must represent requests to execute the
same object u.↵ = v.↵. Joining the nodes u, v removes them



from the graph, inserting a node w: V = (V \ {u, v}) [ {w}.
The inserted node shares the executable object and to-
tal threads of the removed nodes: w.↵ = u.↵ = v.↵ and
w.z = u.z + v.z. All incident edges of u and v are transitioned
to w. By Property 1, cw  (cu + cv).

Reducing the total demand of a parallel segment may
decrease its makespan, thus reducing the makespan of its task.
Figure 2 illustrates the co-location operation and the potential
reduction of the minimum makespan of a parallel section. The
graph in each subfigure represents a parallel section before
and after co-location. In the upper right of each subfigure is
a GANTT chart representing a minimum makespan of the
parallel section for a system with three cores. In the lower
right, a small table identifies the objects associated with each
node and the WCET bounding function for ↵2.

Before co-location v0 and v1 contribute a total of 30 units
to the makespan of the parallel section. After their co-location
as w the total contribution is 21 units. Before co-location, the
minimum makespan of the section is 30 units. Co-location
reduces the minimum makespan to 25 units.

Co-location affects the structure of a task. It reduces the
number of threads executing in parallel within a parallel
section, potentially increasing the makespan of a task. Con-
sequently, co-location may create an infeasible task from a
(potentially) feasible one. Any algorithm that attempts to
leverage co-location to reduce makespans or the number of
cores required to meet a task’s deadline must decide which
threads to co-locate, leading to the optimization problem
focused upon in this work.

Definition 5 (Optimal Co-Location of a Fork-Join Task). Given
a fork-join task with graph G, an optimal co-location of G
is the graph Ĝ obtained by co-locating nodes of G that is
schedulable (⇤  D) requiring the fewest number of cores m.

Note Definition 5 of optimal co-location is compatible with
the definition of optimal collapse for DAG tasks found in [70].
Since all Fork-Join tasks are DAG tasks, the complexity of
optimal collapse of a DAG task is no less than the complexity
of optimal co-location of a Fork-Join task.

An iterative approach is proposed to calculate the optimal
co-location of a Fork-Join task. Starting with one core m = 1,
the minimum makespan ⇤ achievable through co-location
is calculated. If the task is not schedulable (⇤ > D), m is
increased by 1 and the makespan recalculated. Iteration ceases
when the task is schedulable or when m exceeds the cores
available on the system M 2 N. The smallest m  M for
which ⇤  D reflects an optimal co-location of the task.

Pseudocode of the iterative algorithm is provided in Algo-
rithm 1. Each iteration invokes MIN-TSPAN for a specific num-
ber of cores m to determine the minimum makespan for the
task G. Leveraging Observation 2, MIN-TSPAN invokes MIN-
PSPAN to independently calculate the minimum makespan of
each parallel section achievable through co-location. Summing
the minimum makespans of the parallel sections and WCET
of all sequential nodes yields the makespan of the task ⇤. The
complexity of optimal co-location OPT-CORE is determined by

Algorithm 1 OPTCORE

1: procedure OPT-CORE(G,D,M)
2: m 1
3: while m  M do

4: d MIN-TSPAN(G,m)
5: if d  D return m
6: m m+ 1
7: end while

8: return fail

9: end procedure

10: procedure MIN-TSPAN(G,m)
11: Derive S and P from G
12: d 

P
s2S

cs
13: for p 2 P do

14: d d+ MIN-PSPAN(p,m)
15: end for

16: return d
17: end procedure

the complexity of MIN-PSPAN due to the polynomial O(M|P |)
invocations of MIN-PSPAN. By virtue of the structure of OPT-
CORE and Observation 2 the focus of the co-location problem
and its complexity is placed upon minimizing the makespan
of parallel segments (MIN-PSPAN).

V. MINIMUM MAKESPAN SCHEDULES OF INDIVIDUAL
PARALLEL SECTIONS

By Definition 1, the makespan � of a parallel section P is
an upper bound on the time required to execute all threads of
all nodes given m cores. Nodes (and their co-located threads)
may be executed in any order, independent of other nodes
within the parallel section. Intuitively, this creates two inter-
dependent problems when calculating the minimum makespan
of a parallel section. The first problem is the selection of which
nodes to co-locate. The second is the assignment and execution
order of nodes upon the m cores.

In this section, the minimization problem will be simplified
from two problems to one by introducing minimum upper
bound schedules. The problem of co-located scheduling upon
m cores is phrased as the familiar makespan problem.

Parallel nodes within a parallel section have a single depen-
dency, the preceding fork node. Each node may be executed
in any order, independent of other nodes within the parallel
section. The assignment, order, and co-location of all threads
to cores is referred to as a parallel section schedule. For
simplicity, the set of objects within a parallel section is denoted
A. A parallel section schedule is comprised of m individual
core schedules denoted eH1, eH2, ..., eHm. A core schedule is
an ordered list of nodes, represented by the node’s object and
thread count, the elements are denoted ↵ · z where ↵ 2 A is
the object and z 2 N is the number of co-located threads of ↵.
A core schedule represents the ordered execution of sets of co-
located threads, e.g. eH2 = (↵2 · 2,↵1 · 1,↵3 · 5). The length of
a core schedule Li is the sum of its co-located execution times.
When a core schedule eHi or length Li includes a subscript,
the subscript identifies a core ie. 1  i  m.

Definition 6 (Length of a Schedule L). For a schedule eHi =
(↵1 · z1,↵2 · z2, ...), the length of the schedule Li is the sum



of the co-located threads WCET values:
Li 

X

↵·z2 eHi

c↵(z) (4)

Execution of the join node following a parallel section
P cannot begin until all parallel nodes of P complete their
execution. Nodes outside of P cannot participate in any of
the m core schedules. Therefore, the longest core schedule
bounds the makespan � of the parallel section P .
Definition 7 (Makespan � of P Given m Cores). For a parallel
section P , a system with m cores, the makespan � of P is
the maximum length of any of the core schedules of P :

� = max
i2{1,2,...,m}

Li (5)

For a given core schedule eH , if threads of ↵ appear in
multiple elements, co-locating all threads of ↵ into a single
element reduces the length of its schedule L.

Theorem 1 (Minimum Upper Bound of a Schedule). Given
a core schedule eH = (↵1 · z1,↵2 · z2, ...) the minimum upper
bound length of eH is the length of the schedule H which
co-locates all threads of identical objects in eH .

Direct Proof: Consider a schedule eH with distinct
elements for an object ↵, assign the first occurrence of ↵ index
i and the second occurrence index j. The two elements of ↵
are labeled ↵i · zi and ↵j · zj .

Let k = | eH|+ 1, ↵k = ↵, and H be the core schedule of
eH after co-locating the two elements of ↵:

H =
⇣
eH \ {↵i · zi,↵j · zj}

⌘
[ {↵k · (zi + zj)k}

By Property 1 (Joined Request Bound):
c↵(zi + zj)  c↵(zi) + c↵(zj)

) LH  L eH
Since ↵ was selected arbitrarily, co-locating all threads of

identical objects of eH in H minimizes LH .

Corollary 1 (Minimum Combined Execution Time). Given a
set of nodes represented by their object and thread counts
eV = {↵1 · z1,↵2 · z2, ...}, the minimum total WCET of all
threads W is the total WCET of V , where all threads of
identical objects of eV are co-located in V :

W =
X

↵·z2V

c↵(z)

Proof by Substitution: Within Theorem 1, substitute W
for L, eV for eH , and V for H .

The conversion from a core to a minimum upper bound
schedule is denoted by a function MUB( eH). Figure 3 provides
an example. Conversion, in a straightforward manner, is an
O(| eH|2) operation. Note, the object order in a minimum upper
bound schedule does not impact the length of the schedule.

H  MUB( eH) eH
{↵1 · 2,↵3 · 1,↵2 · 5} {↵1 · 1,↵3 · 1,↵2 · 4,↵1 · 1,↵2 · 1}

Fig. 3: Core Schedule to Minimum Upper Bound Schedule

The complexity of calculating the minimum makespan
of a parallel section is determined by a pair of problems:

PARALLEL SECTION SCHEDULING (PARS) and PARALLEL
SECTION MINIMUM MAKESPAN (PARM). The PARS problem
decides for a parallel section P whether or not all threads
can complete upon m cores before a deadline DP . The Fork-
Join model does not require, nor include a deadline DP per
parallel section. The deadline is included to form a decision
problem. For descriptive ease the set of objects A are ordered
A = {↵1,↵2, . . . ,↵|A|}. The ordering is shared with the set
of threads Z = {z1, z2, . . . , z|Z|}, where zi 2 N is the total
number of threads of ↵i 2 A in P . The total threads of a
parallel section are given by ⇠ =

P
zi2Z

zi.

Problem 1 (PARALLEL SECTION SCHEDULING (PARS)).
Given a system with m 2 N cores, a parallel section P , dead-
line DP , set of ordered objects A, total set of ordered threads
Z, is there a partition of threads into m distinct subsets rep-
resented as minimum upper bound schedules H1, H2, ..., Hm

such that the makespan � of P is no greater DP :

� = max
1im

⇢ X

↵·z2Hi

c↵(z)

�
 DP

Problem 2 (PARALLEL SECTION MINIMUM MAKESPAN
(PARM)). Given an instance I of PARS, PARM is the least
value of DP for which PARS decides “yes” for I .

The PARM problem describes the operation of MIN-PSPAN
within OPT-CORE (Algorithm 1). Given PARM is at least as
hard as PARS, the more convenient problem of the two will be
used to analyze the complexity of both. Being polynomially
related to OPT-CORE, the complexity of PARM determines the
complexity of OPT-CORE. Both PARS and PARM problems are
shown to be NP-Hard in the strong sense by reducing the
strongly NP-Hard problem of MULTIPROCESSOR SCHEDUL-
ING [21] to PARS.

Problem 3 (MULTIPROCESSOR SCHEDULING). Given a set of
tasks A, lengths l(a) 2 N for all a 2 A, and deadline D 2 N

is there a partition A = A1 [A2 [ ... [Am of m disjoint sets
such that Equation 6 holds?

max
1im

(
X

a2Ai

l(a)

)
 D (6)

Intuitively, the reduction creates an instance of PARS by
adding one thread of each object for each length l(a).

Theorem 2 (PARS is NP-Hard). PARS is NP-Hard in the strong
sense.

Proof by Reduction from MULTIPROCESSOR SCHEDUL-
ING: Given an instance of MULTIPROCESSOR SCHEDULING.

For every task ai 2 A = {a1, a2, . . . , a|A|} let
1) ↵i = ai
2) zi = 1
3) c↵i(1) = l(ai)
Every task ai 2 A from MULTIPROCESSOR SCHEDULING

is mapped to a distinct object ↵i in PARS. Therefore, no
nodes may be co-located in PARS. The individual core sched-
ules H1, ..., Hm are equal to their minimum upper bound
schedules. Hence a partition of A from MULTIPROCESSOR



SCHEDULING is a set of minimum upper bound core schedules
H = H1, ..., Hm in PARS i.e. A = H . Since A is unmodified,
if A is a partition that satisfies MULTIPROCESSOR SCHEDUL-
ING with a makespan less than or equal to D so will the core
schedules of H have a makespan less than or equal to D.

VI. APPROXIMATION

Being NP-Hard in the strong sense, a tractable exact al-
gorithm for the PARM problem does not exist unless P =
NP. In place of an exact algorithm, a 3-factor approximation
algorithm (3-PARM) is proposed.

The approximation provides a 3-factor guarantee via the
lower bound LB of a makespan for a parallel section P
executing on m 2 N cores. There are two possible values
for LB. Co-locating all threads of each object produces
the minimum combined WCET for a parallel section by
Corollary 1. Averaging the minimum total WCET over the
m available cores, every core schedule is of equal minimum
length; serving as the first value for LB. The average may
be smaller than one heavy weight thread of an object in A.
Thus, the second possible value for LB is the heaviest heavy-
weight thread. There must exist a heaviest object h 2 A such
that 8↵2A ch(1) � c↵(1). No schedule may be shorter than
ch(1). Combining the two possible values, the lower bound of
PARM is given by the following equation.

LB = max

(
ch(1),

1

m

X

↵i2A

c↵i(zi)

)

Presented as pseudocode in Algorithm 2, the process of
calculating the approximate makespan is to iterate over the
cores, assigning threads to one core until the length of the
core’s schedule exceeds the lower bound. Once exceeded, the
next core is selected, the core schedule is filled with threads
until exceeding the lower bound, and the process is repeated
until all cores have been processed.

Threads are assigned according to their object. Every thread
of one object is assigned before advancing to the next object.
While iterating over each core i  m, the algorithm selects an
arbitrary object ↵j 2 A, adding one of its threads to the core’s
schedule eH on Line 8. The estimated length of the schedule
Li is increased by the WCET of a heavy weight thread of ↵j

on Line 9. For the remaining zj � 1 threads, each is added
in turn to eH as a distinct execution request and to Li as a
light weight thread until the length exceeds the lower bound:
Li > LB. Upon exceeding LB if all threads of ↵j have not
been assigned, i is incremented, where the remaining threads
are added to eH and light threads of ↵j are added to the new
Li until LB is exceeded or all threads have been assigned.

Lines 8 and 12 of 3-PARM assign one thread of ↵j to
some schedule eHi. Once assigned to a schedule all threads
for ↵j within eHi will be co-located according to Theorem 1
on Lines 18-21. The maximum of the minimum upper bound
schedules Hmax is returned as the makespan of the section.

Theorem 3 (3-PARM is in P). 3-PARM is O(⇠).
Direct Proof: Threads are assigned to core schedules

serially starting with the for loop on line 7. Thus, the com-

Algorithm 2 3-PARM

1: procedure 3-PARM(P = (A, V ), m)
2: eH  ;⇥m . m empty schedules
3: L 0⇥m . m estimated lengths of 0
4: i 1
5: while i  m ^ |A| > 0 do

6: aj  an element of A
7: A A \ aj
8: eHi  eHi [ (↵j · 1)
9: Li  �↵j . Heavy request

10: k  1
11: while k < zj do . Light requests
12: eHi  eHi [ (↵j · 1)
13: Li  Li + (�↵j )(�↵j )
14: k  k + 1
15: i i+ 1 if Li > LB
16: end while

17: end while

18: for eHi 2 eH do

19: Hi  MUB( eHi) . Theorem 1
20: H  H [Hi

21: end for

22: Hmax = argmax
Hi2H

LHi
23: return Hmax

24: end procedure

plexity is bounded by the total number of threads in the parallel
section ⇠. Hence, 3-PARM is O(⇠) and in P.

Within 3-PARM, the estimated length Li of each schedule
Hi may be shorter than the actual length. When assigning
the zj threads of an object aj , exactly one heavy weight
thread is added to precisely one core schedule Hi�1. During
the execution of the while loop beginning on line 11, if
Li�1 exceeds LB before all zj have been assigned, Hi will
be assigned at least one light weight thread of aj and no heavy
weight threads. Therefore, Li will be �↵j units shorter than the
actual minimum upper bound schedule. Theorem 4 utilizes the
estimated lengths Li to show the actual length of the longest
schedule Hmax provides the 3-factor guarantee.

Theorem 4 (3-PARM guarantee). 3-PARM yields an approxi-
mation guarantee of 3.

Direct Proof:

Fig. 4: Hmax and Lmax

Upon completion, 3-
PARM returns the greatest
minimum upper bound
schedule Hmax with
length Lmax. Denote
the estimated length
and core schedule of
Hmax as Lest and
Hest respectively where

Hmax = MUB(Hest). Within Hmax denote the first and
final elements {↵x · 1} and {↵y · 1} respectively.
Illustrated by Figure 4, the contributors to length Lmax

may be decomposed into three components, {↵x · 1}, {↵y · 1},
and the intermediate threads I between ↵x and ↵y:
I = Hest \ {↵x · 1,↵y · 1}.

By construction, the contribution of I to Lest and Lmax are
equal. The first element of I is the second thread assigned to
Hmax, denote this element ↵i · 1. It is the case that ↵i = ↵x

or it does not. If ↵i = ↵x then it will contribute a light



weight cost to Hest (Line 12) and Hmax after conversion to a
minimum upper bound schedule. If ↵i 6= ↵x, it will contribute
a heavy weight cost to Hest (Line 9), and a heavy weight cost
to Hmax after conversion to a minimum upper bound schedule.
The remaining elements of I contribute equally to Lest and
Lmax by the same reasoning. Further, by construction, the
contribution of I must be less than LB, ie. LI  LB.

By construction, ↵x may have contributed a light weight
value to Lest. However, within Hmax, ↵x may be a heavy
weight thread of the heaviest object contributing a heavy
weight to Lmax: c↵x(1)  ch(1)  LB. Similarly, ↵y may be
one thread of the heaviest object: c↵y (1)  ch(1)  LB.

Thus, the length Lmax is upper bounded by:
Lmax  c↵x(1) + LI + c↵y (1)

 LB + LB + LB  3LB
Since the optimal scheduler cannot produce a makespan less

than the lower bound LB, and Lmax  3LB  3PARM, 3-
PARM is a 3-factor approximation.

A. Resource Augmentation Bound
An approximation guarantee of parallel section makespans

does not fully inform the schedulability of tasks comprised
of parallel sections and sequential nodes. A scheduling algo-
rithm with a resource augmentation bound B � 1 successfully
schedules a task on m processors of speed B if an optimal
scheduling algorithm can successfully schedule the task by
its deadline on m processors of speed 1. For each parallel
section, 3-PARM has a resource augmentation bound of B = 3,
further the bound applies to the scheduling of the complete
task. The two following theorems (Theorems 5 and 6) establish
the bound for parallel sections and Fork-Join tasks scheduled
utilizing the co-located schedules of 3-PARM.

Theorem 5 (Parallel Section Resource Augmentation Bound
for 3-PARM). 3-PARM has a resource augmentation bound of
B = 3 for parallel sections.

Direct Proof: For a parallel section P , executing on
m cores, the makespan of an optimal algorithm is termed
OPT. The lower bound LB of 3-PARM is defined as the equal
distribution of WCET of all threads across m cores when all
threads are co-located. Since the total WCET is minimized
by co-locating all threads, and the total is equally distributed,
LB must also be a lowerbound on the makespan of an optimal
schedule: LB  OPT.

The upper bound of a makespan for a parallel section
schedule generated by 3-PARM is 3LB. Executing a parallel
schedule generated by 3-PARM on a processor of speed B = 3
will complete in 3LB

B
= LB  OPT, which is less than or

equal to the optimal makespan. Therefore, 3-PARM has a
resource augmentation bound B = 3 for parallel sections.

Betwixt parallel sections of Fork-Join tasks lie sequential
nodes. According to the Fork-Join model, execution of sequen-
tial nodes must be executed in isolation (sans parallelism). As
such, there can be no significant difference between an optimal
scheduling algorithm’s execution of sequential nodes and an
algorithm that schedules parallel sections by 3-PARM.

Theorem 6 (Fork-Join Task Resource Augmentation Bound
for 3-PARM schedules of parallel sections). Scheduling paral-
lel sections of a Fork-Join task with 3-PARM has a resource
augmentation bound of B = 3.

Direct Proof: By Definition 2 the makespan of a Fork-
Join task is divided into the contribution of sequential nodes
and parallel sections:
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Meaning, ⇤3P running on processors of speed 3 will com-
plete in equal or less time than ⇤OPT. Therefore, scheduling
parallel sections of a Fork-Join task with 3-PARM has a
resource augmentation bound of B = 3.

B. 3-PARM-HD

The 3-PARM algorithm performs poorly given pathological
parallel sections. Pathological sections exceed the task’s dead-
line regardless of the number of cores. Consider the following
example task with deadline D = 32 and one parallel section,
where all objects have a single thread of execution:

A c(1)
↵1 8
↵2 5
↵3 20
↵4 6
↵5 4

Fig. 5: Pathological Task for 3-PARM D=32

Due to ↵3, the lowerbound of the section is 20. Abiding
by 3-PARM’s assignment of threads to cores, if ↵1 or ↵2

are assigned before ↵3 the length of the first core’s schedule
will always be less than the lowerbound before assigning ↵3.
Therefore, ↵3 will be assigned to the first core’s schedule,
resulting in a section makespan of 25, 28, or 33, task WCET
of 35, 38, or 43, and an unschedulable task. Increasing the
number of cores (infinitely) will not reduce the WCET. Yet,



the task is schedulable with two cores by assigning ↵3 to
distinct cores from ↵1 and ↵2.

To counteract pathological tasks, 3-PARM is modified with
a heuristic deadline d and named 3-PARM-HD. The heuristic
deadline is a parameter to the core schedule assignment (CSA)
that constricts the length of core schedules. For 3-PARM when
assigning a thread to a core schedule Hi, if the estimated
length Li exceeds LB, the thread is assigned to the next core
schedule Hi+1. For 3-PARM-HD, the next core schedule is
selected when the actual length exceeds the heuristic deadline
d. Due to the heuristic deadline, CSA may exhaust the supply
of cores, indicating the deadline cannot be met with m cores
– unlike 3-PARM which does not return failure.

3-PARM-HD takes an iterative approach to finding the
smallest heuristic deadline d for which the section is schedu-
lable on m cores. A binary search for d explores the range
d 2 [LB, 3 · LB]. If core schedule assignment returns success
for a given d, then the search continues by reducing d. If core
schedule assignment returns failure for a given d, the search
continues by increasing d. The smallest possible value of d
is taken as the makespan of the parallel section. Since the
largest possible value for d is LB, 3-PARM-HD retains the 3-
factor approximation ratio and resource augmentation bound
of 3 from 3-PARM.

Algorithm 3 3-PARM-HD

1: procedure 3-PARM-HD(P = (A, V ), m)
2: low  LB, high 3 · LB
3: while low 6= high do

4: d low+high

2
5: Hmax  CSA(P,m, d)
6: if Hmax 6= FAILURE then

7: high d
8: else

9: low  d
10: end if

11: end while

12: return Hmax

13: end procedure

14: procedure CSA(P , m, d)
15: eH  ;⇥m, L 0⇥m, i 1
16: while i  m ^ |A| > 0 do

17: aj  an element of A, A A \ aj
18: k  1
19: eHi  eHi [ (↵j · 1), Li  �↵j . Heavy request
20: while k < zj do . Light requests
21: eHi  eHi [ (↵j · 1), Li  Li + (�↵j )(�↵j )
22: k  k + 1
23: if Li > d then

24: i i+ 1
25: goto Line 19 . Li = actual length of Hi

26: end if

27: end while

28: end while

29: return FAILURE if i > m . Error, unable to meet d
30: max argmax

i2|L|Li

31: return MUB(Hmax)
32: end procedure

VII. SIMULATED EVALUATION

Simulated evaluation of 3-PARM and 3-PARM-HD are
presented as comparisons (1) to the exact solutions with
co-location EXACTCOLO and without EXACTNOCOLO (2)

to Graham’s [22] 2-factor MULTIPROCESSOR SCHEDULING
(MSCHED) approximation and (3) to the DAG [70] core
allocation algorithms without co-location DAG-m and co-
location heuristics DAG-LP and DAG-GB. The EXACTCOLO
and EXACTNOCOLO methods yield the shortest makespan of
parallel segments by exploring all possible schedules with and
without co-location. Graham’s greedy algorithm is applied to
parallel segments without co-location.

Synthetic task generation is a randomized process. Task gen-
eration assigns a random number of objects, parallel sections,
and deadline within limited ranges. Each parallel section is as-
signed a random number of threads, every thread is associated
with random object from the task’s set of objects. Every object
↵ is assigned a WCET function c↵(z) = �↵ + (z � 1)(�↵�↵);
�↵ is randomly selected from a limited range and �↵ is
randomly selected from a restricted percentage of �↵. Table I
summarizes the generation parameters.

Group |P | |O| ⇠ �
E [2, 4] [2, 8] [6, 12] [25, 50]
X [4, 8] [8, 16] [64, 256] [50, 100]

Group � D n M |⌧ |
E [5%, 45%] 450 100 5 50000
X [10%, 90%] 1800 500 64 50000

TABLE I: Synthetic Task Group Generation Parameters
Tasks are characterized by a metric termed the cache reuse

factor. The cache reuse factor of a task quantifies, as a propor-
tion, the maximum reduction in execution time achievable by
co-locating all threads. The value ranges from [0, 1), where a
larger value reflects a greater potential to reduce WCETs and
therefore makespans. The cache reuse factor of a task F̄ (G) is
defined by Equation 7, the average group factor F̄ is defined
by Equation 8. For both equations, the set of parallel sections
P = {P1, P2, ...} and sequential nodes S = {s1, s2, ...} are
implicitly derived from G, the set of objects A and threads
Z are implicitly derived from the in-scope parallel section.
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Tasks are randomly generated according to the parameters
of their group. Within a group tasks are filtered, removing
trivially feasible and infeasible tasks. Once filtered, additional
tasks are removed creating a distribution of tasks according to
their F interval – the goal is to distribute an equal number of
tasks per interval. As a subtractive process, reaching the target
number of tasks per interval is not guaranteed. Details of con-
struction, subtraction, and implementation, are available [66].

Two task groups are evaluated. The first E, is smaller
and less complex, demonstrating the potential schedulability
improvements of co-location. The second X , is larger and
more complex, accentuating the benefit of co-location of the
3-PARM and 3-PARM-HD algorithms when compared to Gra-
ham’s 2-factor MSCHED approximation and DAG heuristics.

Task group generation parameters are: |P | the range of
parallel sections per task, |O| the number of objects per task,



⇠ the number of threads per parallel section, � the range of
base costs, � the range of incremental costs, D the maximum
deadlines, n the target number of tasks per F̄ interval, M the
maximium number of cores a task may utilize, and |⌧ | the
number of tasks generated before filtering. With the exception
of the incremental cost �, the generation parameters were
selected with the greatest range possible for each parameter
with the intention of avoiding bias – while completing within
48 hours on the available hardware. The incremental cost �
ranges are informed by [68], where the incremental cost fell
below 10% for benchmarks from the Mälardalen [27] suite,
and are supported by experimentation in Section VIII.

The metrics of comparison for the algorithms are: the
number of tasks schedulable on m cores, average completion
time, and the number of cores required for a task to be
schedulable. Table I lists the generation parameters for the
“exact” group E and the “approximate” group X .

Figure 6 summarizes the results of the exact and approxi-
mate algorithms when applied to the smaller group of tasks E
on 5 or fewer cores. The purpose of the graphs are to illustrate
the trends of the approximations as they relate to the exact
algorithms. Y-values represent the percentage of schedulable
tasks within the cache reuse interval for each algorithm. Within
this graph, the potential benefit of co-location for Fork-Join
tasks is illustrated by the gap between the EXACTCOLO and
EXACTNOCOLO algorithms. Comparing the PARM approxi-
mations to Graham’s MSCHED approximation, 3-PARM per-
forms poorly scheduling fewer tasks than Graham’s. However,
by incorporating a heuristic deadline 3-PARM-HD is able to
outperform Graham’s, scheduling 40% more tasks – implying
pathological tasks are a significant impediment to 3-PARM.
Further, 3-PARM-HD is able to schedule 95% of feasible tasks.

Fig. 6: Schedulability Results

By
construction,
trivially
infeasible
tasks (where
the minimum
WCET exceeds
the deadline),
and trivially
feasible (where
the total demand
without co-

location is less than the deadline) are removed. The
consequence of subtracting such tasks is that tasks with
low cache reuse factors are favorable with respect to
schedualability for all algorithms. For E, the average cache
reuse factor F is .36.

When executing on an Intel Xeon Silver 4210R over E,
the maximum running time of the EXACTCOLO and EXACT-
NOCOLO algorithms were 120 and 131 seconds respectively,
while the maximum for the 3-PARM and 3-PARM-HD did not
exceeded 0.02 seconds.

Figure 7 compares the core allocation performance
of the algorithms. Only tasks deemed schedulable

by all algorithms take part in the comparison.

Fig. 7: Core Comparison for E

Of the 917 tasks
of E, 319 were
schedulable by
all algorithms.
3-PARM and
3-PARM-HD
allocated 27%
and 32% fewer
cores on average
compared to
Graham. On
average the DAG

heuristics require 4% or more cores than 3-PARM and 11%
or more than 3-PARM-HD.

Shifting focus to the larger set X where construction
produced an F of 50.3%, the approximation algorithms were
offered 64 cores to schedule tasks upon. Of the 3121 tasks,
DAG-GB scheduled 7%, DAG-LP 8%, Graham 15%, 3-PARM
16% and 3-PARM-HD 44%.

The DAG heuristics perform poorly compared to the approx-
imations, as they are unable to leverage the structure of Fork-
Join tasks. The DAG heuristics prioritize nodes for collapse at
the task level. DAG-GB co-locates nodes in decreasing order
of the total workload decrease. DAG-LP co-locates node in
decreasing order of critical path extension. They are unable
to rely on the dedication of a core to a subset of co-located
nodes as the approximation methods do.

Fig. 8: Core Comparison for X

For X , 423
of the tasks
are schedulable
by 3-PARM,
3-PARM-HD, and
Graham. The
DAG heuristics
were omitted
due to their poor
performance.
Figure 8 conveys
the benefit of
co-location upon core allocation, where 3-PARM requires
21% fewer and 3-PARM-HD requires 44% fewer cores than
Graham.

Summarily, Figure 6 conveys the potential schedulability
benefits of co-location as the gap between EXACTNOCOLO
and EXACTCOLO. Through co-location, 3-PARM-HD outper-
forms Graham’s approximation, scheduling nearly three times
the number of tasks of X . Figure 8 shows among tasks deemed
schedulable by both algorithms 3-PARM-HD requires 56%
fewer cores than Graham’s approach.

VIII. RISC-V EXPERIMENT

In addition to the simulation an empirical experiment was
performed with a bare-metal Fork-Join scheduling algorithm
implemented upon an 8-core RISC-V processor. The primary
purpose of the experiment is to demonstrate the benefits of



the approximation algorithms and co-location on a realistic
platform. The secondary purpose is to validate the parame-
ters used in the synthetic evaluation. Source and installation
instructions for the experiments are publicly available [66].

QEMU [23] provides the execution platform as an emulated
8-core RISC-V target. QEMU does not guarantee parallel
execution of cores, nor do execution times reflect the impact of
cache memory of the target system. As such, exact response
times and makespans cannot be measured or calculated. In-
stead, per-core cycle counts are calculated through the number
of instruction accesses and cache misses reported by the
QEMU TCG cache plugin. To estimate makespans, the exper-
iments limit tasks to a single parallel section, where the core
with the greatest cycle count represents the task’s makespan.
Multiple parallel sections would obscure the representative
value. Focusing upon a single parallel section does not de-
tract from the validity of these results, as the approximation
algorithms are also focused upon a single parallel section.

To calculate cycle counts, a memory model is required.
The memory model of a modern RISC-V processor, the
SiFive FE302 G002 [30] is used; a single 16kB 2-way in-
struction cache with 32B blocks and a random replacement
policy. Memory accesses consume 2048 core clock cycles (e.g.
brt = 2048). Instructions executions are modeled as a single
cycle (e.g. cpi = 1).

When a Fork-Join executable terminates, the QEMU TCG
cache plugin reports per core m the number of instructions
accessed am and the number of cache misses bm. The number
of cycles a core executes cm is the sum of access and reloading
cycles due to misses: cm = am ⇥ cpi+ bm ⇥ brt.

Benchmark � �� � ��

bs 88133 7.14 0.02 8.60e-05
bssort100 345426 7.62 0.78 4.20e-05

crc 201068 6.82 0.51 6.00e-05
expinit 79914 4.22 0.04 8.10e-05

fft 182636 6.54 0.07 4.80e-05
insertsort 74651 3.92 0.03 8.10e-05

jfdctint 172024 9.02 0.03 4.20e-05
lcdnum 58272 7.16 0.00 1.56e-04

matmult 485706 6.18 0.83 2.20e-05
minver 49836 6.24 0.00 1.86e-04

ns 86519 8.53 0.26 1.30e-04
nsichneu 1891047 6.35 0.70 6.00e-06

qurt 114525 10.03 0.01 9.10e-05
select 123072 9.15 0.03 7.90e-05

simple 53945 7.68 0.00 1.86e-04
sqrt 72769 5.93 0.01 1.04e-04

statemate 266232 6.45 0.01 2.80e-05
ud 137377 5.35 0.04 5.80e-05

TABLE II: MRTC Mean Base � and Incremental Costs �

Previous BUNDLE [68] analysis utilized 18 of the
Mälardalen WCET (MRTC) Benchmarks [27] . These 18
benchmarks were tested using the experimental platform to
calculate representative base and incremental costs. To test a
benchmark ↵, it is executed exactly once in isolation on one
core mi, then executed twice serially in isolation on a distinct
core mj , and the target is terminated. The cycles of mi provide
a representative value for the base cost of the benchmark ↵:
�↵ = cmi . The difference in cycles of mi and mj is used to
calculate the incremental cost: �↵ =

cmj�cmi

�↵
. These values

are representative rather than exact due to the inclusion of
non-deterministic synchronization costs. Table II summarizes
the results of testing the 18 MRTC benchmarks 100 times, the
�µ and �µ values are means, with their standard deviations
denoted �� and �� .

Examining Table II, the representative incremental costs
range from below 1 percent to 83 percent. Eleven of the
benchmarks showed an incremental cost less than 5%. Only
five of the benchmarks showed an incremental cost above 25%.

Combining the experimental data from Table II, the task set
creation methodology from Section VII, and parameters from
Table III, 1,000 tasks were generated. The 1,000 tasks are then
filtered, removing tasks that are trivially feasible or infeasible,
leaving 658 tasks in R. No further reduction of R is made.

Group |P | ⇠ D
R 1 [64, 128] 3,200,000

TABLE III: MRTC Group Generation Parameters

Analyzing R, the task cache reuse factor ranges from 18%
to 95.3% with a mean F of 55.8% and a standard deviation
of 18.8%. There are two consequences of the observed reuse
factors. First, the potential of co-location is verified for Fork-
Join tasks on a RISC-V platform with a memory model
matching the modern in-production FE302 chip. Second, the
greater (+5%) average reuse factor than the X group supports
the base and incremental costs in Table I, showing them to be
conservative. Further, experimental results are lower bounds,
calculated from the serial execution of objects rather than by
a BUNDLE thread level scheduler.

From R three tasks were selected for comparative analysis
and execution on the platform: FJ-791 with maximum reuse
factor of .95, FJ-956 with the minimum reuse factor .18, and
FJ-484 with reuse factor .55 (the mean). One of the eight cores
of the experimental platform is reserved for synchronization.
For seven cores, the approximation algorithms return a sched-
ule and makespan for each of the tasks. For an unschedulable
task, the approximation algorithms return their shortest 7 core
makespan. The EXACTCOLO and EXACTNOCOLO algorithms
were deemed impractical, as they were unable to return a
schedulability result within 72 hours for any of the tasks.

The approximation schedules are manually converted to
Fork-Join executables, assigning benchmarks to cores in the
order prescribed by the schedule. Details of conversion are in-
cluded in [66]. The executables are run 100 times, calculating
the number of cycles per core. Across all runs, the maximum
number of cycles observed on core m is denoted maxm.

Figure 9 summarizes the analytical and experimental results.
Within each sub-figure, the Y-axis indicates the number of
cycles and the dashed line the deadline of the task. Three
groups separate the three approximations. Within a group,
the analytical makespan is denoted by the ⇤ bar, the number
of cores required to be schedulable below the approximation
method’s name (> 7 if unschedulable), and seven per-core
worst case observed cycle counts with the core number m
denoted atop each maxm bar.
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(c) FJ-484 F = .55
Fig. 9: Task Analysis and Experimental Results of Group R

The experiments validate the benefits of co-location. For
task FJ-791, 3-PARM and 3-PARM-HD schedule a task on one

core that Graham was unable to on seven. Further, FJ-791
highlights the pessimism of Graham’s approach where the
task’s makespan is four times less than the calculated deadline.
Task FJ-956 is unschedulable by any of the approximations.
Given the low cache reuse factor and high utilization the
result is unsurprising. For task FJ-484, Graham’s MSCHED
approximation deemed the task unschedulable on 7 cores,
while the PARM approximations scheduled the task on 6 cores.
Viewing the total area of the maxm bars per approximation,
FJ-484 illustrates the impact of Corollary 1, the PARM ap-
proximations produce a smaller area compared to the MSCHED
approximation, representing a reduction in execution time.

The experiments demonstrate the practical benefits of co-
location executing established benchmarks upon a RISC-V
platform. In the experiments, 3-PARM and 3-PARM-HD were
able to reduce makespan and increase the number of schedu-
lable tasks compared to Graham’s.

IX. RELATED WORK

Exact schedulability analysis of parallel scheduling algo-
rithms is often intractable [50]. As such, schedulability anal-
ysis for Fork-Join parallel tasks continues to be an active
area of research [1], [4], [15], [31], [37], [46], [51], [60],
[74], [75]. However, these works are cache-agnostic, and do
not account for the inter-thread cache benefit. At the time of
writing, the authors are unaware of any preexisting Fork-Join
schedulability analysis that incorporate ITCBs.

In the uniprocessor setting, accounting for the impact of
cache memory upon real-time tasks is incorporated into WCET
calculation [3], [40], [47], [48]. Accounting for cache memory
may positively impact the non-preemptive scheduling of tasks
by reducing WCET values. However, when tasks are scheduled
preemptively response times may be negatively impacted due
to cache-related preemption delay (CRPD) [2], [34], [38],
[42]–[45], [63], [65], [71].

Alternative scheduling techniques have been developed to
limit the negative impact of CRPD. The PREM [5], [54],
[77] model and scheduling algorithm divides tasks into load
and execute phases, limiting inter-task cache interference.
Explicit preemption placement [9], [11], [38], [62], [76] per-
mits preemptions at specific program locations to reduce their

CRPD impact. These scheduling techniques take a negative
perspective of caches, where inter-task (or inter-thread) cache
interactions exclusively increase response times.

In the multi-processor setting for parallel tasks, shared
caches increase the complexity of schedulability analysis and
increase task response times – similar to CRPD. Bounding
and mitigating evictions under global scheduling policies were
examined in [12], [13]. Cache coherency and false sharing
also extend completion times [18], [41], [58].

Caches are almost exclusively treated as a detractor to
schedulability analysis by extending execution times. Few
works treat cache memory positively. For uniprocessor single-
threaded systems, persistent cache blocks share values between
task releases [55], [56]. In the multi-processor setting, Calan-
drino [14] utilizes the cache spread in an empirical analysis.

A positive perspective of caches for multi-processor tasks
was introduced in [70]. It merges federated multi-processor
scheduling and BUNDLE [68] uniprocessor cache-aware
scheduling algorithms through collapsing nodes within a DAG.
In this work collapse is generalized to co-location. In [70],
heuristics determined which nodes to co-locate; a complexity
analysis of the optimal co-location problem was also absent.

Within this work, the optimal co-location problem closely
resembles the multi-processor minimum MAKESPAN prob-
lem [21]. However, the optimal co-location problem differs
significantly from MAKESPAN in that the order of tasks
scheduled on a processor impacts the execution time of the
task. Summarily, unlike MAKESPAN, the execution times of
tasks in the optimal co-location problem are not independent.

X. CONCLUSION

In the previous sections, the complexity of optimal co-
location is established as strongly NP-Hard for DAG and
Fork-Join tasks. Due to the intractability of the problem, two
approximations are presented as the first with guarantees and
a resource augmentation bound. The approaches are able to
schedule a greater number of tasks compared to Graham’s
MSCHED 2-factor approximation algorithm due to co-location.
The practical benefits of co-location and the approximation
algorithms are verified upon a RISC-V platform.
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