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ABSTRACT 

Recent research has highlighted the effectiveness of advanced building controls in reducing the energy consumption of heating, ventilation, and air-conditioning 

(HVAC) systems. Among advanced building control strategies, deep reinforcement learning control (DRL) shows the potential to achieve energy savings for 

HVAC systems and has emerged as a promising strategy. However, training DRL requires an interactive environment for the agent, which is challenging to 

achieve with real buildings due to time and response speed constraints. To address this challenge, a simulation environment serving as a training environment is 

needed, even though the DRL algorithm does not necessarily need a model. The error between the model and the real building is inevitable in this process, 

which may influence the efficiency of the DRL controller. To investigate the impact of model error, a virtual testbed was established. A high- fidelity Modelica-

based model is developed serving as the virtual building. Three reduced-order models (ROMs) (i.e., 3R2C, Light Gradient Boosting Machine (LightGBM) and 

artificial neural network (ANN) models) were trained with the historical data generated from the virtual building and were embedded in the training 

environments of DRL. The sensitivity of ROMs and the Modelica model to random and periodical actions were tested and compared. Deploying the policy trained 

based on a ROM-based environment, which stands for a surrogate model in reality, into the Modelica-based virtual building testing environment, which stands for 

real-building, is a practical approach to implementing the DRL control. The performance of the practical DRL controller is compared with rule-based control 

(RBC) and an ideal DRL controller which was trained and deployed both in the virtual building environment. In the final episode with best rewards of the case 

study, the 3R2C, LightGBM, and ANN-based DRL outperform the RBC by 7.4%, 14.4%, and 11.4%, respectively in terms of the reward, comprising the 

weighted sum of energy cost, temperature violations, and the slew rate of the control signal, but falls short of the ideal Modelica-based DRL controller which 

outperforms RBC by 29.5%. The DRL controllers based on data-driven models are highly unstable with higher maximum rewards but much lower average 

rewards which might be caused by the significant prediction defect in certain action regions of the data-driven model. 

 

INTRODUCTION 

 

Background and Literature Review 

In 2022, the commercial and residual buildings consumed 35.1% and 38.9% of total U.S. retail sale electricity. 32.1% of 

power in residential buildings and 12.9% of power in commercial buildings is used for space conditioning(EIA, 2023), which 

indicates Heating, Ventilation and Air-conditioning (HVAC) system is a large end-use for electricity 
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consumption. Numerous studies have shown that advanced HVAC control can significantly reduce energy use and mitigate 

greenhouse gas emissions (Fu et al., 2019). 

However, a large portion of buildings today are still operated under simple rule-based control (RBC) strategies which 

have limited energy-saving potential, especially under a flexible energy price, e.g., time-of-use price. Advanced model-based 

control strategies e.g., Model Predictive Control (MPC) are often inefficient in practice, due to the compromise between the 

complexity of the building thermal dynamic modeling and the difficulty to get the feasible optimal solution (Zong et al., 

2017). 

Compared with model-based control, deep reinforcement learning (DRL) control has advantages due to its model- free 

nature, i.e., DRL agents train their policies via direct interaction with an environment to learn the optimal control strategies. 

Although many efforts have been made to incorporate RL in HVAC control (Kazmi et al., 2018; Qiu et al., 2020; Wei et al., 

2017) , the application of DRL control in practice of HVAC industry is still limited. The most notorious reason is that it may 

take a long time for an RL agent to converge to a stable control policy, e.g., 40 days reported by (Vázquez-Canteli et al., 

2019) and over 50 days presented by (Fazenda et al., 2014). Besides, the DRL agent is supposed to learn policies based on 

the environment states under various actions to make a good decision. However, it is not practical to traverse the whole 

action space because the thermal comfort of the building needs to be maintained to avoid complaints from occupants. 

Therefore, simulation-based pre-training of DRL agents was adopted in various research (Chen et al., 2019; Luo et al., 2022). 

Fu et al., 2023 investigated the performance of both MPC and DRL control in a single zone building energy system 

assuming that no modeling error exists, i.e., using the same high-fidelity model for model predictions in MPC or agent 

training and control signal implementations in DRL. However, a model error is inevitable in practice, and developing a high-

fidelity model is time-consuming and requires a lot of data and effort to calibrate (Zhang et al., 2019). Adopting a reduced-

order model (ROM), such as Resistance-Capacitance (RC) model or data-driven model, is a more feasible approach than 

using a high-fidelity model such as Modelica and EnergyPlus. 

This paper aims to investigate the following two questions: 

1. How to evaluate the control-oriented model? The error between building energy modeling and real building is 

inevitable. The accuracy of models should not be the only criterion for a control-oriented model. The model’s 

insensitivity to its actions strongly affected the agent’s performance even though the absolute error of the 

predictive model is small (Luo et al., 2022). The sensitivity of different ROMs and the Modelica model to random 

and periodical control signals are compared. 

2. How will the DRL controller perform when trained in ROM environments and deployed in a virtual building 

environment? Training DRL in a model-based environment offline and deploying the trained policy in a real 

building will raise problems such as unstable control policy (Zhang et al., 2019). However, the degree of the 

influence is still unclear. This paper compared the control performances of a DRL controller trained in ROM 

environments, the RBC and the ideal DRL controllers trained in a high-fidelity virtual building environment. 

METHODOLOGY 

A virtual testbed that can perform an offline training interacting with ROM environments and an online deployment in 

an environment with a high fidelity model was developed. The framework is shown in Figure 1. The training and testing 

environments and the DRL agents are packaged and deployed in a Docker container (Anderson, 2015) that could be a plug-

and-play application in different computation environments. The major difference between training and testing 

environments is the building and HVAC system model. The testing environment (i.e., Modelica- based virtual building) is 

described in detail in (Fu et al., 2023). In the testing environment, the Modelica model is compiled by the co-simulation 

using Functional Mockup Unit (FMU) and interacts with the DRL agent through the ModelicaGym (Lukianykhin & 

Bogodorova, 2019). In the training environment, the building and HVAC system are simulated by ROMs. ROMs are trained 

based on the historical operation data generated by virtual buildings. Currently, the 3R2C, Light Gradient Boosting 

Machine (LightGBM), and artificial neural network (ANN) models are developed to predict the zonal indoor air 

temperature, and a polynomial model is established to simulate the HVAC system’s 



 

 
performance. The weather data and time-of-use electricity price are provided for both the training and testing environment. 

The interface of training environments and DRL agents is built on OpenAI Gym (Brockman et al., 2016). The virtual 

testbed is implemented in Python. The DRL agent gives actions according to the state of the environment to maximize the 

value of the reward function with the guidance of policy. The policy will be updated during various trials over time. In this 

research, the practical DRL agent was pre-trained interacting with the training environment offline and then deployed the 

well-trained policy in the testing environment for online control while the ideal DRL agent was trained and deployed both 

in the testing environment to get the optimal control performance. In this way, the deviation between the high-fidelity 

model and ROMs mimics the model error between predictive models and real building in practice. 

 

Figure 1   Framework of DRL virtual testbed. 

This research takes a single zone building with a fan coil unit system as a case study to compare to the controllers’ 

performance reported in (Fu et al., 2023) that assumed there were no model errors. All the parameters of the building, 

HVAC system and control problem formulation in this research are set the same as (Fu et al., 2023) to ensure a fair 

comparison. The single zone building is case900FF with a heavyweight construction (Judkoff & Neymark, 1995). The 

building consists of four exterior walls and a flat roof with a floor dimension of 6 m-by-8 m. The floor-to-ceiling height is 

2.7 m. The east and west walls have the shorter dimension and the south wall contains two 3 m-by-3m windows. The 

building is assumed to be located in Chicago, Illinois, USA, and the Typical Meteorological Year 3 weather data is used for 

the simulation. The HVAC system is a direct expansion coil system. This research only studied the cooling scenario. The 

supply air temperature is assumed to be a constant value at 14 ◦C for the simplification. The zone temperature is controlled 

by modulating the fan speed, which is the control variable or action in our DRL controller. The capacity of the fan is 0.45 

m3/s (953.50 CFM). The control variable, i.e., the speed of the fan consists of 50 discrete control actions ranging from 0 to 1 

with an increment of 0.02 to meet the requirement of the DRL algorithm, i.e., Double Deep Q- Network (DDQN) used in 

the case study. The control step is every 15 minutes. 

 

DRL CONTROLLER DESIGN 

 

Control Target and Reward Function 

The rewards function is formulated as Eq. 1. The target of the DRL controller is to reduce the energy cost while 

maintaining the indoor thermal comfort and stability of the HVAC system. So, the reward function contains three terms, i.e., 

energy cost, thermal comfort, and action slew rate. 



 

 

 

𝑹𝒕 = −(𝜔𝟏𝒑𝒕𝑷𝒕∆𝒕 + 𝜔𝟐𝝐𝒕𝟐 + 𝜔𝟑∆𝒖𝒕𝟐) Eq. 1 
In Eq. 1, 𝜔𝟏, 𝜔𝟐. 𝜔𝟑 are the weights for the three terms. The product of energy price at time t, 𝑝t, the electricity power 

consumption at time t, 𝑃t , and the time interval, ∆𝑡 , stands for the energy cost. The difference between zone temperature 

setpoint and indoor air temperature at time t, 𝜖t , denotes the temperature violation. The slew rate of control signal ∆𝑢 
indicates the system oscillation. The reward value at time t, 𝑅t , is the negative sum of the three terms 

because the DRL agent is designed to maximize the reward. The weights in the rewards function are set to [100, 1, 10] to 

facilitate the comparison of the control results with the ideal DRL controller in (Fu et al., 2023). 

Action-space Design 

The action in DRL is what the agent gives to the environment, corresponding to the control signal in the control 

problem. The action in this case is the speed ratio of the fan. The action space is designed as 50 discrete fan speed ratios 

ranging from 0 to 1 to meet the requirement of the DDQN algorithm. 

State-space Design 

States are the feedback that the agent receives from the environment. The states at each timestep include current 

measurements, historical measurements and future disturbances which can be obtained by prediction. Table 1 summarizes all 

the states and their boundaries designed for the DRL environment, which includes the time index, indoor air temperature, 

outdoor air temperature, solar radiation, power consumption and utility rate. Historical and current states usually can be 

collected by building automation systems or weather stations, the future weather data can be accessed via weather 

forecasting and the future utility rate is feasible to get from energy providers. Therefore, the design of environment states is 

practical to implement. In this paper, the previous step m and the future step k are set to 4 which means information from 8 

timesteps need to be provided at each timestep. 

Table 1 Summary of States in DRL environment. 

Symbol Bound Description 

𝑡 [0, 86400] Current time index in seconds, [s] 
𝑇z,t [5,40] Zone temperature at time 𝑡, [◦C] 
𝑇oa,t [-10,40] Outdoor air temperature at time 𝑡, [◦C] 
𝑞̇ s,t [0, 1000] Solar radiation at time 𝑡, [W/m2] 

𝑃t [0, 1500] Power at time 𝑡, [W] 

𝑝𝑡 
[0,1] Energy price at time 𝑡, [$/kWh] 

𝑇oa,{t+l...t+k} [-10,40] Outdoor air temperature at the next 𝑘 steps from 𝑡, [◦C] 
𝑞̇ s,{t+l...t+k} [0, 1000] Solar radiation at the next 𝑘 steps from 𝑡, [W] 

𝑝
{t+1...t+k} [0,1] Energy price at next 𝑘 steps from 𝑡, [$/kWh] 

𝑇z,{t-m...t-l} [5,40] Zone air temperature at previous m steps from 𝑡, [◦C] 
𝑃{t-m...t-l} [0, 1500] Power at previous m steps from 𝑡, [W] 

 

REDUCED-ORDER MODEL (ROM) 

Developing and calibrating a high-fidelity model is laborious work. ROMs are introduced to surrogate high-fidelity 

model for pre-training the DRL agent. This research developed a hybrid model, i.e., 3R2C model, and two data-driven 

models using LightGBM and ANN algorithms for predictions of zone air temperatures and a polynomial model to predict 

HVAC power consumption. 

Hybrid Zone Model: 3R2C 

The reduced-order RC model simplified the energy balance in the zone with multiple heat resistances and capacitances. 

The structure of the lumped 3R2C model is shown in Figure 2 and the mathematic formulation is given 



 

  

 

   

 
  

 

 

by Eq. 2, where 𝐶z, 𝐶w represent the thermal capacity of zone and walls; 𝑅w,int, 𝑅w,ext, 𝑅win denote the lumped 

thermal resistance of interior wall surface convection and conductance, exterior wall surface convection and 

conductance, and window; 𝑇oa , 𝑇w , 𝑇z represent the outdoor air temperature, wall temperature and indoor air 

temperature; 𝑄sol.wall = 𝛼wal𝐴wal𝑞̇sol , 𝑄sol.win = 𝜏win𝐴win𝑞̇sol are solar heat gains absorbed by external wall surface, 

solar heat flux transmitted through the window, 𝛼wal, 𝜏win are the absorptivity of wall and transmissivity of window; 

𝑄inter, 𝑄hvac are internal heat gains and cooling energy conveyed by the HVAC system, respectively. The cooling 

energy conveyed by the HVAC system can be calculated via 𝑄hvac = 𝑚̇  ret ∗ ℎret − 𝑚̇  supℎsup, where supply air rate ,𝑚̇  

sup, and and return airflow, 𝑚̇  ret, can be calculated by the control signals, enthalpy of supply air and return air ℎsup, ℎret 

can be approximated using the fixed supply air temperature and indoor air temperature. The thermal resistances, 

thermal capacities, the absorptivity of wall and transmissivity of the window 𝛼wal, 𝜏win were identified using one week 

data before the control period. The HVAC system was excited with a free floating case during the night and random fan 

speeds in the daytime to fully capture the dynamics of the zone. The reasons for utilizing only one week of data are 

twofold: first, it expedites the solution process, and second, the benefit from increasing the size of training data is 

marginal. The measurements of the dataset contain outdoor air temperature, zone temperature, internal heat gain, solar 

radiation and cooling energy from the HVAC system which are feasible to get or estimate in real building 

operations. The energy flow from infiltration is not considered for this preliminary study as the infiltration in this study was 

neglectable. 
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Figure 2 Structure of 3R2C model for single zone building. 

 

Data-driven Zone Model: LightGBM and ANN 

LightGBM is a gradient-boosting framework that uses tree-based learning algorithms (Ke et al., 2017). It is famous for 

its faster training speed, higher efficiency and low memory usage. LightGBM framework showed a high accuracy in building 

energy prediction applications (Miller et al., 2020). The artificial neural network (ANN) is a widely used algorithm in the 

machine learning field. Considering the data availability in real-life operation, only four features, including outdoor air 

temperature, global solar irradiance, hour of the day and airflow rate of the fan which is the control variable, are adopted as 

the input of the LightGBM model and the ANN model in this study. Auto machine learning (autoML) techniques are 

utilized to find the optimal hyperparameters for the LightGBM model and ANN model. The extrapolation of the data-

driven model is typically poor. So, the training dataset should fully cover the action space and state space. Most variables in 

the state space are external disturbances that we can’t control in reality. A comprehensive dataset, from fully excited action 

space was established. Initially, the training data comprises data from one month, with one week for free float setting, one 

week for periodical signal increasing fan speed from 0% to 100%, and two weeks for random fan speed signal. However, 

the LightGBM model had a bad performance when responding to the control signal, even though the root mean square 

errors (RMSEs) for the zone air temperature predications in the testing period for one day with random fan speeds at 

daytime and fan turned off at night was small of only 0.94 ◦C (1.69 ℉). The 



 

 
LightGBM model trained by the aforementioned dataset tends to underestimate the zone temperature when the fan speed is 

small, so that the DRL controller pre-trained the LightGBM environment tends to turn down the fan speed because the 

zone temperature received by the DRL agent is still lower than the upper boundary even the zone temperature in the virtual 

building is very high. This indicates that the low model errors in testing dataset cannot guarantee the performance of 

controller. Their response to control signals should be examined. To get more reliable data-driven models, the period of 

training data was increased to 3 months with one month with free float setting, one month with periodicals signal, and one 

month with random fan speed signals. 

 

Performances of Zone Models 

What has a significant impact on the performance of the DRL controller may not be the model accuracy using the 

testing dataset but the model’s sensitivity to the actions of the agent (Luo et al., 2022). So, in this research, the models’ 

performances are evaluated by their response to random control signals and periodical control signals increasing the fan 

speed from 0% to 100% in the testing week. The random or periodical 50 discrete fan speeds, aligning with the action design 

in DRL, are exerted to ROMs and high-fidelity Modelica model, respectively. The zone temperature predictions of ROMs 

are compared with the response of the high-fidelity Modelica model. Figure 3 gives an example of the periodical signal and 

the responses of ROMs and the Modelica model. Generally, all the ROMs can capture the up and down trends of zone 

temperature. LightGBM and ANN models have bad performances when the fan speed is low. The mean and maximum 

absolute error (AE) which are widely used to measure the difference between predicted values and the actual values are used 

to quantify the response error. Table 2 summarizes the evaluation matrices of ROMs. LightGBM model has the lowest mean 

AE while the 3R2C model has the lowest maximum AE. Data-driven models have large maximum AEs. The LightGBM and 

ANN model have some significant errors in response to control signals within specific regions, notably at lower fan speeds. 

The response of the 3R2C model is the most stable. 

 

Figure 3 Responses to Periodical Control Singal of Zone Models. 

Table 2 Matrices to evaluate ROMs’ performances. 

 Random Signal   Periodical Signal  
Model Mean AE Mean AE Max AE Max AE Mean AE Mean AE Max AE Max AE 

 [◦C] [℉] [◦C] [℉] [◦C] [℉] [◦C] [℉] 
3R2C 2.18 3.93 5.66 10.18 2.36 4.25 5.72 10.30 

LightGBM 1.56 2.81 14.69 26.44 1.59 2.86 16.29 29.31 

ANN 2.61 4.69 25.35 45.63 2.56 4.62 23.61 42.50 

HVAC Model: Polynomial 

A polynomial model described by Eq. 4 was developed to surrogate the Modelica HVAC model in the cooling 

season, where 𝛼l, 𝛼2, 𝛼3, 𝛼4 are the coefficients identified by the historical data; 𝑚̇ denotes the airflow rate of the fan; 

𝑇z and 𝑇s are the indoor air temperature and supply air temperature, respectively; COP is the Coefficient of Performance 
of the chiller, which is a constant value of 3 in the ideal Modelica chiller model. The first four terms represent the power 



 

 
consumption of the fan and the last term is the power consumption of the chiller. One-month historical data is used to 

identify 𝛼l, 𝛼2, 𝛼3, 𝛼4. The polynomial model fits the historical data exceptionally well, achieving a Coefficient of the 

Variation of the Root Mean Square Error (CV-RMSE) (Hwang et al., 2022) of 1.6% in the training dataset and 1.5% in the 

testing dataset since the Medelica model is an ideal HVAC system model. 

 

𝑃 = 𝛼l + 𝛼2𝑚̇ + 𝛼3𝑚̇2 
 
+ 𝛼4𝑚̇3 + 

1008 ∗ 𝑚̇ ∗ (𝑇z − 𝑇𝑠) 

𝐶𝑂𝑃 

Eq. 4 

 
 

Figure 4 Comparison of performance by RBC, ideal DRL controller, and DRL based on different ROMs. 

 

RESULTS AND DISCUSSIONS 

The practical DRL controller trained in the ROM environment and directly deployed in the virtual environment of 

the high-fidelity Modelica model was compared with the ideal DRL controller trained and deployed in the high- fidelity 

environment and the baseline, i.e., rule-based control, which sets the zone air cooling setpoint to 24 ◦C for occupied hours 

and 30 ◦C for unoccupied hours. Due to the stochastic properties of DRL algorithms, six experiments were run under 

different random seeds. The time-of-use electricity price, outdoor air temperature, and the controller’s performance under 

the seed with the best rewards in the test week (seven days) are shown in Figure 4. The ideal solution reveals the upper 

bound of the DRL controller under the DDQN algorithm in this case. The control signals of all ROM controllers fluctuate 

more than those from the ideal DRL controller. The DRL controller based on the 3R2C training environment has the most 

similar control output as the ideal DRL controller. The DRL controller based on the LightGBM training environment 

maximizes the utilization of nighttime low electricity prices for precooling the zone compared with controllers with other 

training environments. The key performance indicators, the maximum rewards of the final epoch, and the maximum, 

average rewards of the high-fidelity environment in the training process are summarized in Table 3. The ROM-based DRL 

controllers lower the energy cost at the expense of some thermal comfort. As shown in Table 3, all the ROM-based DRL 

controllers under the “best” random seed have higher reward values than the RBC while having lower reward values than 

the ideal DRL controller. In the final episode of the case study, the 3R2C, LightGBM, and ANN-based DRL outperformed 

the RBC by 7.4%, 14.4%, and 11.4%, respectively while the ideal DRL outperformed the RBC by 29.5% in terms of reward. 

Even though the data-drive-based DRL controllers have a lower best reward, the average reward is much worse than the 

3R2C-based DRL controller., which 



 

 
indicates that the data-driven-based DRL controller has a poor stability and could be problematic to implement in practice 

directly. The deviation of the 3R2C-based DRL controller under different random seeds is much lower than the other 

ROM-based DRL controllers. This may come from the fact that the 3R2C model has a relatively accurate response to any 

action in the action space, as shown in Figure 3 of the model performance section. 

Table 3 Control performances of different DRL controllers 

Scenario Energy 
Cost 

Total Thermal 
Discomfort 

Maximum 
Temperature 

Action 
Changes 

Reward of 
Final 

Best 
Rewardb [- 

Average 
Rewardc [-] 

 [$] [Kh] Violation [K] [-] Episodea [-] ]  

RBC 7.16 2.00 2.32 1.84 -746.90 -746.90 -746.90 
Ideal DRL 5.27 12.01 0.96 3.45 -564.02 -526.29 -557.36 

DRL-3R2C 5.98 8.91 2.55 6.95 -691.70 -638.20 -754.05 

DRL-LGB 5.63 12.32 1.71 3.34 -639.67 -582.00 -1747.11 
DRL-ANN 5.65 12.08 2.19 5.13 -661.74 -637.77 -1377.94 

a. Episodic reward in the final episode with the “best” random seed. The final episode for 3R2C, LGB and ANN-based DRL is 300, 200, and 300. The reward in the 

virtual building trained by the LGB-based DRL will fluctuate after 200 episodes even though the reward in the training environment is stable and convergent. 

b. Best reward is given by the testing virtual building environment during the training process among 6 random seeds. 
c. Average reward is given by the testing virtual building environment during the training process of 6 random seeds. 

 

CONCLUSIONS AND FUTURE WORK 

This study investigated the influence of model error in the deep reinforcement learning (DRL) based controller. The 

performances of the practical reduced-order model (ROM)-based DRL controllers which are trained in different ROM 

environments are compared with a rule-based controller (RBC) and an ideal DRL controller which is trained and deployed 

both in the virtual building environment. The conclusions are drawn as follows: 

• The preliminary results indicate that all the ROM-based DRL controllers outperform the RBC but are inferior to 

the ideal DRL controller in terms of rewards in the final episode. The ROM-based DRL controllers are more 

unstable than the ideal DRL controller with a higher maximum temperature violation and higher deviation between 

maximum reward and average reward among experiments with 6 random seeds. 

• DRL controllers trained in data-driven environments could have higher maximum rewards but have much lower 

average rewards and larger deviations with different random seeds than controller trained in the 3R2C 

environment. The 3R2C model is the most robust among all ROM cases in this preliminary study. 

• Data-driven models tend to be accurate when the training data is sufficient but perform poorly in specific ranges of 

actions, such as low fan speed regions. The performance of the 3R2C model is stable in the full action space 

despite having a slightly larger mean AE than the lightGBM model. This might be the reason that the 3R2C-based 

DRL controller is the most robust among ROM-based DRL controllers. 

It’s worthwhile to propose metrics to evaluate the control-oriented models comprehensively. The measurements to 

improve the performance and stability of the practical ROM-based DRL controller, e.g., adaptive deployment, integration of 

model uncertainty and policy gradient algorithms will be investigated in the future. 

NOMENCLATURE 
 

 = Artificial Neural Network 

COP = Coefficient of Performance 

DDQN = Double Deep Q Networks 

DRL = Deep Reinforcement Learning 

HVAC = Heating, Ventilation, and Air Conditioning 

AE = Absolute Error 

RBC = Rule-Based Control 

ROM = Reduced-order Model 
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