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Many gravitational wave (GW) sources in the LISA band are expected to have non-negligible
eccentricity. Furthermore, many of them can undergo acceleration because they reside in the presence
of a tertiary. Here we develop analytical and numerical methods to quantify how the compact binary’s
eccentricity enhances the detection of its peculiar acceleration. We show that the general relativistic
precession pattern can disentangle the binary’s acceleration-induced frequency shift from the chirp-mass-
induced frequency shift in GW template fitting, thus relaxing the signal-to-noise ratio requirement for
distinguishing the acceleration by a factor of 10 ∼ 100. Moreover, by adopting the GW templates of the
accelerating eccentric compact binaries, we can enhance the acceleration measurement accuracy by a factor
of ∼100, compared to the zero-eccentricity case, and detect the source’s acceleration even if it does not
change during the observational time. For example, a stellar-mass binary black hole (BBH) with moderate
eccentricity in the LISA band yields an error of the acceleration measurement ∼10−7 m · s−2 for SNR ¼ 20

and observational time of 4 yr. In this example, we can measure the BBHs’ peculiar acceleration even when
it is ∼1 pc away from a 4 × 106M⊙ supermassive black hole. Our results highlight the importance of
eccentricity to the LISA-band sources and show the necessity of developing GW templates for accelerating
eccentric compact binaries.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by LIGO
and Virgo [1,2] has greatly enhanced our understanding of
the properties of compact objects in the Universe. In the
future, the Laser Interferometer Space Antenna (LISA) [3]
would broaden the scope of GW astronomy by detecting
GW signals in a lower frequency band (10−4–10−1 Hz),
where GW signals in the LISA band may last for years [4],
potentially having signatures of a compact binary’s long-
term evolution long before they merge. Therefore, LISA
detection can shed light on a compact object binary’s
formation channel and surrounding environment.
Among all the parameters that can be measured using

LISA, the GW source’s acceleration is of great importance,
because it carries the signature of the binary’s environment.
Several studies suggested that accelerating compact object

binaries may significantly contribute to the population
observed by LISA [5–29]. For example, observational
endeavors show that stars often reside in binaries, and high
mass stars reside in higher multiples [5–10]. According to
long-term stability arguments, the spatial separation of these
multiples is likely to evolve into one tight inner binary with
tertiary in wide outer orbit(s) [11–16]. Stellar evolution of
such systems may result in compact object binaries that host
at least a tertiary companion [17–19]. The observation of
white dwarfs (WDs) also directly suggests that many WDs
binaries reside in a triple configuration [20–22]. These
compact object binaries can undergo non-negligible accel-
eration in the triple system, thus leaving an imprint of
acceleration on the GW signal.
Additionally, many binaries and compact object binaries

are supposed to reside in the center of galaxies [23–30].
Already a few stellar binaries were detected in the inner
∼0.1 pc of our Galactic Center [31]. Moreover, the number
of compact binaries visible in the LISA band within
the inner parsec of our Galactic Center is estimated to
be 14–150WD-WD, 0–2 neutron star (NS)-black hole (BH),
0.2–4 NS-NS, 0.3–20 BH-BH, and the results are of the
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same order for other galaxies [29]. These systems mentioned
above can undergo non-negligible acceleration caused by
the gravitational potential of the supermassive black hole
(SMBH) in the Galactic Center.
Measuring the acceleration will give us direct evidence

about the GW source’s dynamic environment. For example,
a binary black hole (BBH) orbiting the SMBH on a close
configuration will undergo a time-dependent Doppler shift
induced by acceleration, which is potentially detect-
able [32–38]. Additionally, an acceleration signature on
the GW signal may help detect double WDs (DWDs)
accompanied by a star or a planet [34,39–43]. Further,
eccentricity oscillations due to the eccentric Kozai-Lidov
mechanism (e.g., [44–46]) can induce a time-changing
characteristic strain profile in the LISA band [47–50], thus
imprinting a signature on a binary in the presence of a
tertiary. However, the effect of acceleration on the GW
signal is not always distinguishable and measurable.
Sometimes it may degenerate with the measurement of
other parameters and yield a misleading interpretation of
the physics behind the GW sources [34,38,51,52].
Consider a circular compact object binary as an example.

When its evolution is dominated by GW radiation and the
observer is in the rest frame of the source, the intrinsic GW
frequency fe will increase with time. The frequency shift
rate _fe is proportional to the “chirp mass” as _fe ∼M5=3

c ,
whereMc ≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5, andm1 andm2 are
masses of the two compact objects [53]. But if the GW
source is accelerating, the peculiar acceleration also leads
to an extra frequency shift rate _facc by changing the
peculiar velocity of the GW source and inducing a time-
dependent Doppler shift. Therefore, the detected GW
signal has two components that contribute to the observed
frequency shift rate, one from the GWemission that shrinks
and circularizes the orbit and the other from the accel-
eration of the system. In other words, there is a degeneracy
between the chirp mass and peculiar acceleration since
they both contribute to the frequency shift rate in the GW
signal for the leading order.
Such kind of degeneracy makes it harder to measure

peculiar acceleration. Some studies suggested that GW
sources with measurable acceleration may be limited to the
caseswhen the compact binary is very close to the tertiary and
the period of the outer orbit is short enough [34,38]. Further,
for DWDs in the Milky Way, there is a significant parameter
space where acceleration is large enough to cause a non-
negligible _facc, yet still not distinguishable (degenerate with
other parameters) in GW template fitting [52].
However, there can be a different story when the

eccentricity of the GW source is detected. In fact, several
studies suggest that many eccentric compact binaries are
in the LISA band [23,29,47,54–58]. And in some dynami-
cal channels, the existence of a tertiary is supposed
to directly produce LISA-band sources by exciting the
eccentricity of the inner orbit and accelerating the

merger [27,27–29,57,59–62]. Thus, we expect binaries
in an accelerating environment to be eccentric.
If the binary has nonzero eccentricity, the general rela-

tivistic (GR) precession will induce a triplet waveform,
which in turn changes the frequency-peak position of each
harmonic. This signature can be used to extract the binary’s
total mass independent of the frequency shift rate [63,64],
making it possible to break the degeneracy between peculiar
acceleration and the chirp-mass-induced frequency shift.
Here we propose a strategy aimed to break this

degeneracy by considering the GR precession signature
of the accelerating eccentric binary. In Sec. II, we present
analytical methods yielding an overall understanding of
how eccentricity can disentangle the acceleration feature
from the chirp-mass-induced frequency shift. In Sec. III,
we introduce the numerical tools used to simulate LISA
event waveforms (Sec. III A), analyze the waveform
(Sec. III B), and estimate the error of parameter mea-
surements (Sec. III C). Section IV shows the application
of numerical methods. In particular, in this section,
we map the parameter space where the GW signal
from accelerating sources can be distinguished from
nonaccelerating GW templates and quantify the effect
of eccentricity on the accuracy of peculiar acceleration
measurement. Finally, in Sec. V, we offer our discussion
and conclude that eccentric binaries have a clear signature
on the GW form when it is undergoing peculiar accel-
eration. Specifically, the acceleration measurement
enhanced by eccentricity can shed light on the GW
source’s environment.

II. ANALYTICAL CONSIDERATION

We begin with establishing the effects of acceleration on
the GW signal (Sec. II A). This effect causes a degeneracy
between the peculiar acceleration and the chirp-mass-
induced frequency shift. We suggest that eccentricity
can be used to disentangle this degeneracy. The role of
eccentricity in detecting compact binaries’ peculiar accel-
eration can be divided into two parts.
(1) Ignoring the possible contribution of acceleration in

the signal: In this case, consider using GW templates,
in the data analysis, that do not include the binary’s
peculiar acceleration. Below (Sec. II B), we show that
eccentricity can help distinguish an accelerating
eccentric compact binary from nonaccelerating ones.

(2) Including the possible contribution of acceleration
in the signal: In this case, the data analysis uses the
GW templates with accelerating features, making
it possible to measure the binary’s acceleration.
Below (Sec. II C), we show how the measurement
of acceleration depends on the eccentricity of the
binary. Later, using numerical analysis, we demon-
strate that the eccentricity can increase the accel-
eration measurement accuracy (Sec. IV B).

ZEYUAN XUAN, SMADAR NAOZ, and XIAN CHEN PHYS. REV. D 107, 043009 (2023)

043009-2



A. Mass-acceleration degeneracy in GW data analysis

Consider a compact object binary with a semimajor
axis a, eccentricity e, and the two components’ masses m1

andm2. Its energy is dissipated by the GW radiation, which
results in the decrease of the orbital period Pb. The average
changing rate of the semimajor axis a is [65]

!
da
dt

"
¼ −

64

5

G3m1m2ðm1 þm2Þ
c5a3ð1 − e2Þ7=2

#
1þ 73

24
e2 þ 37

96
e4
$
;

ð1Þ

where G is the gravitational constant and c is the speed
of light.
When the binary has a nonzero eccentricity, the GW

signal is made up of multiple harmonics. The frequency
of the GW’s nth harmonic is related to the binary’s
orbital period as fj¼n

e ≈ n=Pb, where the subscript e
denotes quantities in the rest frame of the source. Note
that, since the orbital period is shrinking, the frequency of
the GW signal will increase with time. This phenomenon is
known as the “chirp signal” of a GW source.
GW data analysis studies often focus on the second

harmonic of the GW signal, which is the dominant signal
for circular and low eccentricities orbits. Thus, here we will
take fj¼2

e as an example to demonstrate the commonly used
method for estimating the mass of the GW source. It should
be noted that GW data analysis methodology often pro-
poses to fit the numerical template for the parameter
estimation of GW sources [53,66], while the analysis
presented here aims to explain different factors’ contribu-
tion to the result of the numerical fitting and give an
analytical estimation of the acceleration measurement
accuracy in different cases.
The time derivative of the second harmonic is uniquely

determined by the frequency of the GW signal, eccentricity,
and the mass of the GW source for the leading order,

_fj¼2
e ¼ 96π8=3

5

#
Mc

G
c3

$
5=3

ðfj¼2
e Þ11=3FðeÞ: ð2Þ

We emphasize that Mc is the intrinsic chirp mass of the
binary as a GW source, which only depends on the mass of
the compact binary’s components. The observed chirp mass
Mo can be different from Mc because the observed GW
signal can be distorted. FðeÞ is a function of the compact
binary’s eccentricity (the enhancement function) [67],

FðeÞ≡ 1þ 73
24 e

2 þ 37
96 e

4

ð1 − e2Þ7=2
: ð3Þ

Thus, we can estimate the intrinsic chirp mass Mc of
compact binaries based on two observables, the frequency
fe and its time derivative _fe. For the circular binary case,
the details of this method can be found in Cutler and

Flanagan [53]. On the other hand, for an eccentric binary,
the amplitude profile of different harmonics is related to
the eccentricity [68–70]. It can enable us to measure the
eccentricity in template fitting [71]. In this way, the results
of [53] can be generalized by plugging in fe; _fe, and e into
Eq. (2) and finding the intrinsic chirp mass of the source,

Mc ¼
#

5c5

96π8=3G5=3

$
3=5

ðfj¼2
e Þ−11=5ð _fj¼2

e Þ3=5FðeÞ−3=5:

ð4Þ

When the GW source is moving relative to the observer
with a velocity v, the frequency of GW’s each harmonic
will be shifted because of the Doppler effect. In the
observer frame, the frequency fo is then [32–34,72]

fj¼n
o ¼ fj¼n

e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p

1þ β cos θ
¼ fj¼n

e ð1þ zdopÞ−1; ð5Þ

where β ¼ v=c, θ is the angle between the velocity vector
and the line of sight, and zdop is the Doppler coefficient.
We are interested in the case when the GW source is

accelerating, which means that the peculiar velocity and
Doppler shift factor are changing with time. Thus, from
Eq. (5) it is straightforward to find the time derivative of
the observed frequency [73], i.e.,

d
dt

fj¼n
o ¼

_fj¼n
e

ð1þ zdopÞ2
þ fj¼n

e
d
dt

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p

1þ β cos θ

!

; ð6Þ

where the power 2 factor on the Doppler coefficient comes
due to the transformation from the observed frames to the
source frame. The last term of Eq. (6) represents the line-of-
sight acceleration a===c. In other words,

a==
c

¼ d
dt

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p

1þ β cos θ

!

: ð7Þ

Equivalently, from Eq. (6), this acceleration relates to the
difference between the time derivative of frequency in the
observer’s frame and the rest frame of the GW source. Such
difference is directly caused by the change of peculiar
velocity and thus can be used to constrain the line-of-sight
acceleration a==, i.e.,

a==
c

¼
_fo − _feð1þ zdopÞ−2

fe
: ð8Þ

However, we cannot directly measure the frequency (fe)
and its time derivative ( _fe) in the source frame. Instead, the
observed quantities are fo and _fo in the observer frame. As
mentioned above, even when a== ¼ 0, constant peculiar
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velocity and cosmological redshift can cause a significant
difference between fo and fe and distorts the parameters
of the GW source. This phenomenon is known as “mass-
redshift degeneracy,” e.g., [72,74–76]. Because of the
scale-free property of gravity, the effect of mass-redshift
degeneracy can be exactly canceled out by making the
measured chirp mass the “redshifted chirp mass” and
the measured distance of the source the luminosity
distance [75], while keeping other parameters the same.
Thus, for simplicity, we will focus on the effect of
acceleration and limit the discussion to the cases when
cosmological and gravitational redshift can be neglected,
i.e., z ≪ 1. In particular, we assume zdop ≪ a==fe=2c _fe,
and simplify Eq. (8) to be

_fo ≈ _fe þ fe
a==
c

: ð9Þ

The complete result for arbitrarily large redshift can be
recovered by replacing all the Mc in the following
discussion to be the redshifted chirp mass Mcð1þ zÞ.
Most of the proposed LISA mission strategies are

to search for a signal using nonaccelerating compact
binary’s GW templates (e.g., [71,77]). However, as
discussed above we expect a degeneracy between Mc
and a== since they both contribute to the frequency shift
rate _fo in the leading order. For the case of a compact
object binary with no or negligible eccentricity, only the
second harmonic of the GW signal dominates. In the
LISA band, such kind of signal is a nearly monochro-
matic sinusoidal wave with slowly increasing frequency.
Since the waveform does not have other significant
features except for fo and _fo, neglecting the acceler-
ation’s contribution can lead to a biased estimation
of the chirp mass. In particular, if one assumes _fo ≈
_fe þ fea===c [see Eq. (9)] as the intrinsic frequency shift
rate _fe in template fitting, the resultant chirp mass will
differ from the “true” chirp mass. This can be seen by
combining Eqs. (4) and (9), which yields an observed
chirp mass with the following expression:

Mo ¼
#

5c5

96π8=3G5=3FðeÞ

$
3=5

ðfj¼2
o Þ−11=5ð _fj¼2

o Þ3=5

¼
#

5c5

96π8=3G5=3FðeÞ

$
3=5

ðfj¼2
o Þ−11=5ð _fj¼2

e þ a===cÞ3=5

≠ Mc: ð10Þ

Thus, there is a degeneracy between the binary’s accel-
eration and mass in GW data analysis. In other words,
the acceleration can significantly bias the chirp mass
estimation if the compact binary has small or zero
eccentricity and only the second harmonic is detected.

B. Disentangling the signatures of accelerating
eccentric GW sources: Analytical approach

For a GW source with peculiar acceleration, the chirp
mass measurement without considering an accelerating
template can lead to erroneous results (see examples
above). However, when the source has non-negligible
eccentricity and detectable multiple harmonics, the GR
precession creates a unique signature in the GW signal and
disentangles the acceleration from the bias on the chirp
mass. As a result, the accelerating GW signal will be
different from any of the nonaccelerating GW templates
and thus can be identified.
Here we detailed the steps of this strategy. In particular,

Sec. II B 1 describes how the GR precession pattern of the
eccentric compact binary leaves a signature on the GW
waveform, thus differentiating the accelerating GW signal
from the nonaccelerating one. Section II B 2 estimates the
critical acceleration for distinguishing accelerating GW
sources in data analysis.

1. Eccentricity as means to disentangle
the mass-acceleration degeneracy

The GR precession of an eccentric orbit shifts the
periastron by an angle δϕ0 for each period [78]. Thus,
the frequency of the GW’s nth harmonic will split into a
triplet ðnf − Δf; nf; nf þ ΔfÞ [63,68], in which

Δf ¼ 6ð2πGÞ2=3

ð1 − e2Þc2
M2=3

totalðPbÞ−5=3; ð11Þ

where Mtotal is the total mass of compact binary system,
Pb is the orbital period, and f equals 1=Pb. For small
eccentricity, coefficients of some terms in the triplet
waveform are negligible, and the dominant component is
nf þ Δf. Therefore, the position of each GW’s harmonic
will be shifted by Δf in the frequency domain.
Δf is independent of the harmonic number because it is a

feature of the GR dynamic of the orbit. Thus, all the
harmonics will be shifted by the same value Δf. This
feature allows us to disentangle Δf and extract the total
mass of the system, Mtotal [63].
Figure 1 demonstrates this feature of the GR precession

pattern. In this figure, we adopt the x model [87] to generate
the GW signal from eccentric compact object binaries (see
Sec. III A for detailed information) and show the frequency
spectrum of the GW signals from two different compact
binary systems. They have the same chirp massMc, which
means that for each harmonic the time derivative of
frequency (width of the peak in the frequency domain)
is the same. But because of their different mass ratio, their
total massMtotal is different. Such difference inMtotal yields
a different Δf [see Eq. (11)]. Thus, even if we choose the
special case when their GW’s second harmonic has the
same initial frequency/frequency shift rate (position/width),
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there will be a position displacement for their first and third
harmonics, which enables us to estimate their different
Mtotal. However, if their eccentricity is zero, only the second
harmonic is present, and we cannot distinguish such kind of
precession pattern.
As shown in Sec. II A, the acceleration can yield a

degeneracy between Mc and a== [see Eqs. (8) and (10)].
This phenomenon is due to the degeneracy in the level of
observed frequency time derivative _fo. However, estimat-
ingMtotal from the Δf caused by GR precession only relies
on the value of f, instead of its time derivative [see
Eq. (11)]. Thus, the total mass derived from the precession
pattern is not affected by the degeneracy in the level of _f,
and is therefore independent of the source’s peculiar
acceleration.
Thus, we propose that the acceleration signature can be

disentangled from the GW signal for an eccentric source.
Further, we suggest that a higher eccentricity can yield a
higher sensitivity in the detection of acceleration.
This strategy is described in Fig. 2. In particular, we first

introduce the symmetric mass ratio that connects the chirp
mass to the total mass in the following way:

Mc ¼ ν3=5Mtotal; ð12Þ

in which ν is the symmetric mass ratio

ν ¼ m1m2

ðm1 þm2Þ2
: ð13Þ

The symmetric mass ratio always satisfies ν ≤ 1=4,
and the value of ν is often constrained in GW template
fitting.
As illustrated in Fig. 2, given an accelerating, eccentric

compact object binary, its GW signal has the signatures of
GR precession and GW emission. We can use templates
(with/without including the sources’ peculiar accelera-
tion) to fit the parameters of the source. In either case,
the GR precession pattern (Δf) in the signal will con-
strain the total mass Mtotal, which is not biased by the
acceleration according to the reasons mentioned above.
Thus, Eq. (12), combined with the limits on ν, places
constraints on the intrinsic chirp mass Mc (see left
branch in Fig. 2). The limits on Mc can be used to
constrain the intrinsic frequency shift rate _fe via Eq. (2)
(constrain _fe subbranch).
On the other hand, the observed waveform has the

information of both the frequency and its time derivative,
i.e., fo and _fo (see the middle and right branch in Fig. 2).
Moreover, _fo has two components, one due to the intrinsic
GW emission decay and another caused by the peculiar
acceleration. The former is _fe, while the latter is _facc ∝
fo × a== [see Eqs. (6) and (7)]. If we use nonaccelerating
GW templates to fit the signal (middle branch), the
distorted _fo will result in a distorted chirp mass Mo
[see Eq. (10)]. Therefore, the constraints of Mc we get
from the GR precession signature in the left branch of
Fig. 2 contradicts the Mo we get from the GW emission
signature. In the template fitting, such a discrepancy means
that two different signatures in the signal require contra-
dictory parameters in the fitting result. In other words, in
the parameter space of the nonaccelerating templates there
is no such a parameter set that can recover the signatures
of both GR precession and GW emission. The bad match
for nonaccelerating templates may help us distinguish the
acceleration.
In the right branch, we use templates with acceleration to

fit the signal. The constraints on _fe (from the left branch’s
GR precession signature) allow for disentangling the
intrinsic frequency shift rate _fe from the observed quantity
_fo, thus yielding constraints on the acceleration-induced
frequency shift rate ( _facc ¼ _fo − _fe). Therefore, the strat-
egy in Fig. 2 overall explains why the eccentricity can help
us distinguish (measure) the binary’s acceleration when
using GW templates without (with) acceleration.

0.000 0.002 0.004 0.006 0.008

0.0

5.0×10-22
1.0×10-21
1.5×10-21
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0.004501 0.004504 0.004507
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1.5×10-21

f [Hz]

3rd harmonic

FIG. 1. The frequency spectrum of GW signals from two
eccentric BBH systems with the same chirp mass but different
total mass. For the first system (blue line) m1 ¼ 8 M⊙, m2 ¼
40 M⊙, e ¼ 0.3; for the second system (red line) m1 ¼ m2 ¼
16.867 M⊙, e ¼ 0.3. Both of these systems have the same chirp
mass Mc ∼ 14.684 M⊙, but as depicted the difference in total
mass results in a different position of the harmonics. The initial
period of radial motion for the first system is 1.5 mHz, but its GW
frequency of each harmonic is not the integer multiple of 1.5 mHz
because of the shift induced by GR precession (Δf). For the
second system, its GR precession shifts the position of each
harmonic by a different value. For illustration purposes, we adjust
the initial radial frequency of the second system to be slightly
different from 1.5 mHz, so that we compensate for the difference
in Δf and make its GW’s second harmonic having the same
initial frequency as the first system’s. The observation duration is
set to be 2 yr.
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We emphasize that here we adopt a simple case of one
source’s signal. In practice, LISA may detect multiple
sources simultaneously (e.g., [79]), which can consid-
erably add to the noise and confusion. However, the
strategy we outlined here demonstrates that the GR
precession signature in the signal disentangles the pecu-
liar acceleration from the chirp-mass-induced frequency
shift. In other words, the eccentricity can cause the
accelerating GW signal to differ from any nonaccelerat-
ing GW template and constrains the acceleration-induced

frequency shift rate, even when multiple sources
are detected.
Below, we estimate the critical detection threshold that

differentiates between the accelerating and nonaccelerating
GW sources.

2. Analytical analysis of the detection threshold

Let us consider a LISA-band GW waveform that
is generated by an accelerating compact binary with

FIG. 2. A flowchart of the proposed strategy, as the reason why the eccentricity can help us disentangle the acceleration in template
fitting. The GW signal from accelerating eccentric sources has the signatures of GR precession (Δf) and chirp waveform ( _fo), which
contribute differently to the result of template fitting. The left branch describes that Δf primarily constrains the fitted total massMtot, for
either accelerating or nonaccelerating templates. Since the total mass Mtot and the chirp mass Mc can be related to each other [see
Eq. (12)], GR precession signatures in the waveform eventually put a constraint on the chirp mass Mc in template fitting. The middle
branch shows the case when we use nonaccelerating GW templates. In this case, the acceleration distorts the chirp rate ( _fo ≠ _fe) and
yields an inaccurate chirp massMo in template fitting. However, theMc from the left branch (GR precession signature’s constraint) is
not affected by acceleration and thus will not agree with Mo. Such a discrepancy between two waveform signatures means we can
hardly find a good match in the nonaccelerating templates family. It reminds us to include acceleration in the GW templates (i.e., shift to
the right branch). In the right branch, we use GW templates with acceleration to fit both _fe and _facc. Since the GR precession (from the
left branch) can constrain the intrinsic chirp rate _fe, it disentangles _fe from _facc and further helps with improving the acceleration
measurement accuracy.
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non-negligible eccentricity (e.g., DWDs, initially fj¼2
e ¼

3 mHz, e > 0.1). In the cases that we consider, multiple
harmonics of the waveform should be detected. For sim-
plicity, below we neglect the constant redshift by assum-
ing z ≪ 1.
In this subsection, we consider the implications of using

nonaccelerating GW templates to fit the GW signal. In
particular, the GR precession pattern (Δf) constrains the
intrinsic total mass of the system in template fitting. As
outlined in Sec. II B 1, one can use Eq. (11) to extract the
total mass, which is not affected by the extra _f caused by
a== since the measurement only depends on fe and Δf.
However, the measured chirp mass Mo is different from
the intrinsic chirp mass Mc for an accelerating source,
because the acceleration changes the frequency shift rate _fo
of the signal [i.e., Eq. (10)].
We can relate the intrinsic Mtotal with the intrinsic Mc

via the symmetry mass ratio ν [see Eq. (14)]. But as
mentioned above, in the template fitting of accelerating
GW sources, the Mtotal remains its intrinsic value while the
Mo is biased. Thus, instead of being its intrinsic value
(νint), the fitted symmetric mass ratio has to be biased (ν0) to
make Mo and Mtotal agree with each other,

Mo ¼ ðν0Þ3=5Mtotal: ð14Þ

In other words, the acceleration distorts the GW signal
by changing the _fo (width of each harmonic in the
frequency domain) but keeping the Δf (the position
displacement of each harmonic) unchanged. We can create
a similar signature with nonaccelerating waveforms by
changing the symmetric mass ratio. Thus, sometimes it is
still possible to find a nonaccelerating GW template that fits
the accelerating GW signal for the leading order. However,
when the amplitude of acceleration increases, such degen-
eracy will eventually break.
In particular, since the symmetric mass ratio ν (and

also ν0) has an upper bound of 0.25, the observed chirp
mass has a clear limit for a given total mass, i.e.,
Mo ≤ 0.253=5Mtotal. This limit can then be translated
to a maximum acceleration amax for which the observed
chirp mass reaches 0.253=5Mtotal. In other words, when the
acceleration exceeds amax, Mo > 0.253=5Mtotal, we cannot
find a proper match in nonaccelerating GW templates to fit
both the Mc ( _fo) and the Mtotal (Δf).
This relationship is depicted in Fig. 3, where we

consider an example of a DWD system at varying
distances, and thus with varying acceleration, from a
SMBH. As seen in the figure, neglecting the contribution
of acceleration in the template fitting can yield an
observed chirp mass Mo that is larger than the allowed
limit, thus implying that the binary exists in an accel-
erating environment.

We now derive the expression of amax. As outlined in
Sec. II A, comparing the difference between the intrinsic
and observed GW frequency shift rate can be used to
constrain the binary’s peculiar acceleration. Using
Eqs. (4), (8), and (10), we have

a==
c

≈
_fo − _fe
fe

¼ 1

fj¼2
e

96π
8
3

5

#
G
c3

$
5=3

ðfj¼2
e Þ11=3FðeÞðM5=3

o −M5=3
c Þ;

ð15Þ

which describes the dependency of the observed acceleration
on the difference between the observed (Mo) and intrinsic
(Mc) chirp mass.
As seen in Fig. 3, the maximum acceleration is reached

when the observed chirp mass Mo reaches it upper
limit Mmax,

Mmax ¼ 0.253=5Mtotal ¼
#
0.25
νint

$
3=5

Mc: ð16Þ

FIG. 3. The measured chirp mass Mo as a function of binary’s
acceleration. We show a DWD system with m1 ¼ 0.25M⊙,
m2 ¼ 0.5M⊙, e ¼ 0.1, fj¼2

e ¼ 3 mHz, on a circular orbit around
a SMBH with MSMBH ¼ 4 × 106M⊙ at different distances. We
choose the phase angle such that line-of-sight acceleration caused
by the SMBH gravitational pull is maximized and pointing
toward the observer. The chirp mass one measures using non-
accelerating GW templates is depicted as a function of DWD’s
acceleration/distance from the SMBH. As is shown in Sec. II B 2,
the GR precession pattern will put a constraint on the maximum
possible value of chirp mass: Mc ≤ 0.253=5Mtotal. The figure
shows that, when the DWD system is close to the SMBH (∼1 pc),
acceleration becomes large enough (a > amax) to make Mo
exceed the upper bound Mmax, enabling us to find the discrep-
ancy between Mo and Mtotal, thus distinguishing the acceler-
ation. Note that the acceleration in this figure increases to the left.
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Plugging Eq. (16) into Eq. (15), we can get

amax

c
¼ FðeÞ

fj¼2
e

96π8=3

5

#
G
c3

$
5=3

ðfj¼2
e Þ11=3M5=3

c

#
0.25
νint

− 1

$

¼
_fj¼2
e

fj¼2
e

#
0.25
νint

− 1

$
; ð17Þ

which is shown as the dashed vertical line in Fig. 3.
Thus, this maximum acceleration can help us estimate the
detectability of the acceleration for eccentric GW sources.
Additionally, in realistic observation there is noise. Thus,

to distinguish the accelerating GW signal, the actual critical
acceleration will need to be higher than the maximum
acceleration amax by a factor of δa,

acrit ¼ δaþ amax: ð18Þ

We can get δa via the following reasoning: In general, to
distinguish the acceleration, two conditions need to take
place. First, the acceleration amplitude needs to be higher
than amax and, second, the acceleration creates a significant
difference in the waveform, which is larger than the noise.
When a < amax (right-hand side on Fig. 3), the accel-

eration’s signature can still be compensated for by changing
the parameters of nonaccelerating templates, and thus it is
harder to detect. On the other hand, for a > amax, we can no
longer find a fit in the nonaccelerating templates. However,
due to the noise, the minimal acceleration that causes a fail
fit in nonaccelerating templates should be larger, see
Eq. (18). Therefore, the observed chirp mass will be larger
than its original critical value when there is no noise. Using
Eq. (15), once for acrit and once for amax, we can express
this higher chirp mass as follows:

M0 ¼
#
M5=3

max þ
δa

96
5 π

8=3ðfj¼2
e Þ8=3FðeÞ

#
c3

G

$
5=3$3=5

¼ 0.253=5M0
total

> 0.253=5Mtotal: ð19Þ

Since ν0 has reached its maximum value of 0.25, the total
mass M0

total in the template fitting has to be larger to
be consistent with this new, and higher, chirp mass M0.
Thus, the fitted template will have a larger shift for the
frequency (Δf0), due to the GR precession, than the
shift that is observed (Δf). If the difference between
Δf0 and Δf is larger than the frequency resolution of
the GW detector [80], we will have a clear signature of the
acceleration. In other words, if

Δf0 − Δf >
4

ffiffiffi
3

p

π
τ−1obs
SNR

; ð20Þ

where τobs is the duration of observation, and SNR is the
signal-to-noise ratio, the acceleration may result in a fail fit
for a nonaccelerating template.

Using the equations above, we can find the minimum
magnitude of the acceleration (acrit) required to detect a
signature of accelerating eccentric binary. In particular, we
plug Eq. (16) into Eq. (19) to get the M0

total as a function of
Mtotal. Then, we use Eq. (11) to get Δf and Δf0. We thus
can use Eq. (20) to relate δawithMtotal and SNR. Using the
relationship between acrit and amax [Eq. (18)], we finally get

acrit
c

≈
_fj¼2
e

fj¼2
e

10
ffiffiffi
3

p
ð1 − e2Þ

3π5=3
τ−1obs
SNR

ðfj¼2
e Þ−5=3

#
G
c3

Mtotal

$−2=3

þ
_fj¼2
e

fj¼2
e

#
0.25
νint

− 1

$
: ð21Þ

This analytical expression of the critical acceleration is
useful for estimating whether the GW signal from accel-
erating eccentric sources can be distinguished from non-
accelerating GW templates, provided that more than one
harmonic is detected with a signal-to-noise ratio above a
certain SNR. In other words, if the acceleration of the GW
source is larger than the critical acceleration in Eq. (21), we
can distinguish between the accelerating signal and non-
accelerating templates in observation.
Additionally, this criteria is suitable for analyzing a wide

range of sources, in particular, double white dwarfs and
double neutron stars (DNSs). However, the GW frequency
of BBHs can change significantly during the observation
because of their higher mass. This significant change of
frequency contributes extra sensitivity in GW data analysis,
thus limiting the potential usage of Eq. (21). Below, we will
use numerical results to discuss the case of accelerating
BBHs. We do emphasize that a dense place, such as the
Galactic Center, is expected to host a high abundance of
DWDs and potentially DNSs (e.g., [27,29]).

C. Measuring the acceleration of eccentric compact
binaries: Analytical approach

Herewe assume that an accelerating template for eccentric
binaries is used in the data analysis. As mentioned before,
the precession pattern can assist in distinguishing the
eccentric binary’s peculiar acceleration when we use non-
accelerating GW templates to fit the signal. Thus, it is also
possible that such a pattern can enhance the accuracy of
acceleration measurement when we include the acceleration
in the template. In this section, we derive an analytical
expression for the eccentric binary’s measured acceleration
and use it to estimate the accuracy of acceleration meas-
urement for different kinds of compact binaries.
In particular, consider an accelerating eccentric compact

binary system, for which the GR precession is detected so
the total massMtotal can be extracted. As shown in Sec. II B,
the measured frequency shift _fo has two parts: intrinsic
frequency shift _fe caused by GW radiation, and an extra
term caused by the acceleration. In order to determine the
extra term and measure the acceleration, we need to
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subtract _fe from _fo [see Eq. (15)]. However, _fe is a
function of the intrinsic chirp massMc, while we can only
extract the Mtotal from the precession pattern. In fact, Mc
depends on both Mtotal and ν [see Eq. (12)]. Thus, an
eccentric binary with a total mass measured from its GR
precession will still have uncertainty on its acceleration
measurement, which is coupled to the symmetric mass
ratio ν.
The acceleration has straightforward dependence on the

symmetric mass ratio ν. Thus, for a range of possible ν, the
line-of-sight acceleration a== can be expressed as

a==
c

≈
_fj¼2
o

fj¼2
o

−
96π
5

ðΔfoÞ5=2ðf
j¼2
o Þ−3=2

#
1 − e2

3

$
5=2

FðeÞν;

ð22Þ

where fj¼2
o ( _fj¼2

o ) is the observed frequency (the observed
frequency shift) of the GW’s second harmonic; Δfo is the
observed frequency difference caused by precession; and e
is the eccentricity of the binary, which can be got by
comparing the relative amplitude of each harmonic.
Equation (22) was derived by using Eqs. (2), (6), and (11),
substitutingMc with ν3=5Mtotal. We have also assumed that
the redshift of the binary is small.
All the other quantities on the right side of Eq. (22) can

be directly found by measuring the frequency, frequency
evolution, and amplitude for different harmonics of the GW
waveform, except for ν. Thus, the only unknown in this
case is ν, for considering the leading order features of the
GW signal. However, since ν will affect the frequency
evolution in higher orders, it can be constrained using
template fitting in the data analysis. The error of the
measured ν and its influence on acceleration measurement
can be different, depending on the specific parameters of
the GW source. Thus, we will adopt DWDs/BBHs as
examples in the following discussion.
DWDs typically have a smaller chirp mass than BBHs,

which means their intrinsic frequency shift rate of GW
(“chirp rate” hereafter) is smaller. In other words, DWDs
behave like monochromatic GW sources. As mentioned
above, the lack of intrinsic frequency evolution renders
an underconstrained ν for DWDs. However, since Δf ∝
M2=3

total, the coefficient before ν is also smaller for DWDs in
Eq. (22). Therefore, acceleration measurement of DWDs
has a weaker dependency on ν compared to the BBHs case.
Thus, even if DWDs’ ν is highly uncertain, we can still
establish an accurate acceleration measurement in the
observation.
This behavior is depicted in the upper panel of Fig. 4,

where we show the acceleration as a function of the
symmetric mass ratio ν [see Eq. (22)]. To highlight that
the symmetric mass ratio is not constrained, we denote it in
the figure as “uncert,” i.e., νuncert. As seen in the figure,
because the DWDs’ chirp rate ( _fe) is relatively small, the

FIG. 4. The measured acceleration as a function of the
uncertainty in measured symmetric mass ratio νuncert. Here we
place a binary at 0.04 pc from a 4 × 106M⊙ SMBH and choose
the phase angle so that the line-of-sight acceleration is maxi-
mized. Upper: a binary WD composed of m1 ¼ 0.35 M⊙,
m2 ¼ 0.4 M⊙, e ¼ 0.1, with the frequency of the second har-
monic f2 ¼ 2, 3, 4, 5, and 6 mHz, from bottom to top. Middle: a
BH binary composed of m1 ¼ 15 M⊙, m2 ¼ 20 M⊙, e ¼ 0.1.
Bottom: same as the top and middle, but shows the comparison
between DWDs and BBHs for f2 ¼ 3 mHz to scale. The solid
lines represent the measured acceleration as a function of
measured ν [see Eq. (22)]. The dashed lines correspond to the
magnitude of peculiar acceleration at the labeled distances from
the SMBH. As noted in the text, the measurement of the
symmetric mass ratio can be uncertain, depicted here in the x axis
by νuncert (all the possible values of ν). The intrinsic symmetric
mass ratio νint of the binary is marked on the plot for reference.
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frequency shift we observe mostly comes from the source’s
peculiar acceleration [fea===c in Eq. (9)]. Thus, the DWDs
have a small error of acceleration measurement and a clear
signature of the accelerating environment. Even for a
highly underconstrained symmetric mass ratio, the accu-
racy of acceleration measurement is still promising,
about 05%–10% from the lowest to highest frequency
(compared to the dashed line in the figure, also see the
bottom panel).
On the other hand, BBHs’ chirp rate is relatively large,

enabling us to determine ν better. But the acceleration
measurement of BBHs highly depends on ν because of their
large total mass. Therefore, an inaccurate ν in the GW data
analysis of BBHs can induce an extremely large error in the
acceleration measurement. For example, in the middle and
lower panels of Fig. 4, error of acceleration measurement is
over 100% for a BBH system with the frequency of the
second harmonic 2–4 mHz, which is not acceptable in the
observation.
To conclude, DWDs’ acceleration measurement accu-

racy is promising even if there is no constraint on the
symmetric mass ratio ν in observation. Thus, it can be
estimated analytically. However, the estimation of BBHs’
acceleration measurement error requires the numerical GW
template fitting, in which we analyze the higher-order
frequency evolution and determine the accuracy of ν
measurement. We address this issue for the case of
BBHs using the numerical method in Sec. IV B.
For a binary at the center of a galaxy, other physical

processes may also affect its evolution. In particular, the
eccentric Kozai-Lidov (EKL) mechanism (e.g., [44,46,81])
can excite eccentricities and enhance the compact objects
merger rate (e.g., [27–29]). However, in our case, we focus
on binaries that will appear in the LISA band (i.e., in the
millihertz frequencies), in other words, hard binaries, where
the EKL timescale is very long. For example, a 3 mHz GW
signal for a 35M⊙ circular binary system corresponds to a
binary separation of ∼0.0025 A:U: Specifically,

TLK ∼
P2
SMBH

Pb
ð1− e2Þ3=2

∼ 2× 1010 yr

×
#

mSMBH

4× 106M⊙

$−1# fj¼2
e

3 mHz

$#
r

0.1 pc

$
3

ð1− e2Þ3=2;

ð23Þ

where PSMBH is the period of the binary around the SMBH.
Therefore, for these hard binaries, EKL effects can be
neglected [82]. Similarly, the interactions with flying
neighbors will only tend to harden the binary (e.g., [83]).
Moreover, two-body relaxation may allow the binary to
migrate in a diffusive manner over time, however, this
process is also much longer than the observational time-
scale and thus can be neglected (e.g., [84,85]).

We emphasize that the peculiar acceleration and the
velocity of the binary are still relatively small here
(∼102 km · s−1 in this example) and thus do not require
any special relativity corrections. Additionally, when meas-
uring the acceleration of the eccentric compact binaries,
other factors can contribute differently to the precession
pattern in the GW signal (e.g., spin effect and tidal effect, the
latter can be important for DWDs and DNSs [86]). The full
inclusion of these effects is beyond the scope of this paper.
Moreover, unlike the previous studies of circular binary’s
acceleration (e.g., [34,38,39]), the acceleration of eccentric
compact binaries is measurable even when they are distant
from the tertiary, up to ∼1 pc for a BBH system around a
4 × 106M⊙ SMBH, with the orbital period (∼103 yr) much
longer than the observation duration.

III. NUMERICAL APPROACH

A. Waveform template

For the generation of the accelerating eccentric compact
binaries’GW templates, we adopt the x model developed in
Ref. [87] and add the effect of peculiar acceleration by
including the time-dependent Doppler effect in waveform
modulation.
The xmodel is a time-domain, post-Newtonian (pN)-based

waveform family, which captures all the critical features that
eccentricity introduces to nonspinning binaries [88]. The
binary orbit is given in the Keplerian parametrization to 3 pN
order and the conservative evolution is given to 3 pN order
as well. In the x model, the loss of energy and angular
momentum is mapped to the change of orbital eccentricity e
and the pNexpansion parameter x≡ ðωMtotalÞ2=3, inwhichω
is the mean Keplerian orbital frequency. These two param-
eters are evolved according to 2 pN equations.
The equations in the x model can be numerically solved

and thus can be used to generate eccentric GW templates in
the time domain. The results have been validated against
numerical relativity for the case of equal mass BBHs,
e ¼ 0.1, 21 circles before the merger. The x model also
reduces to some well-studied template families in the GW
data analysis for the zero-eccentricity case [89].
We remind the reader that here, as a proof of concept, we

focus on the acceleration-induced, time-dependent Doppler
effect. For demonstration purposes, in the following exam-
ples, the tertiary is placed in a circular orbit, and the phase
angle is set to make the line-of-sight acceleration toward
the detector maximized. However, we emphasize that
different phase angles can lead to different signatures of
acceleration in the GW waveform, and the specific value of
acceleration measurement accuracy also varies.

B. Matched filtering and criteria for distinguishing
the acceleration

To numerically verify whether the acceleration can be
identified or not, we need to introduce some standard
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definitions in the GW data analysis. Here we use a
numerical technique called “matched filtering,” which is
commonly adopted in the GW data analysis to estimate the
GW sources’ parameters [53,66,90,91].
For our purpose, we use this technique to quantify the

similarity between two different waveforms. In particular,
we will first transform the GW signal from an accelerating
eccentric compact binary into the frequency domain
(denoted as h1 hereafter), then use a set of nonaccelerating
GW templates h2 to fit the detected signal h1. We treat the
waveforms as vectors in a Hilbert space [92] and define the
noise-weighted inner product between h1 and h2 as

hh1jh2i ¼ 2

Z
∞

0

h̃1ðfÞh̃%2ðfÞ þ h̃%1ðfÞh̃2ðfÞ
SnðfÞ

df; ð24Þ

in which h̃j (with j ¼ 1, 2) means a Fourier transformation
of the waveform, the star stands for the complex conjugate,
and SnðfÞ is the one-sided noise power spectral density
of LISA [93,94].
The similarity between h1 and h2 can be estimated by the

match between them (e.g., see Sec. IV of Ref. [95] for a
summary). First, define the normalized overlap as

Oðh1; h2Þ ¼ hĥ1jĥ2i ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh1jh1ihh2jh2i
p : ð25Þ

The match between h1 and h2 is defined as the maximized
overlap over the signal’s arrival time t0 and phase Φ0,

Matchðh1; h2Þ ¼ max
t0;Φ0

Oðh1; h2Þ: ð26Þ

For a given h1, we will generate a set of nonaccelerating
waveforms h2, with different values of template parame-
ters, to match h1. The maximized match over all the
template parameters of h2 is called the fitting factor (FF),

FF ¼ max
λ

fMatchðh1; h2Þg; ð27Þ

in which λ represents the parameters of the GW template
(e.g., chirp mass Mc, symmetric mass ratio ν, etc.).
In general, the absolute value of the FF varies from

0 to 1, and a perfect match between two waveforms would
give FF ¼ 1.
Additionally, we need to consider the strength of the

signal, which is quantified by the signal-to-noise ratio. For a
given SNR level, there should exist a region in the parameter
space where we cannot tell between two similar GW
templates because of the noise in observation. The stronger
the signal is (i.e., larger SNR), the smaller the confusion
region will be. Since the FF evaluates the similarity between
two GW waveforms, we can compare the FF with SNR and
derive a rule-of-thumb criterion for the two waveforms to be
indistinguishable in the GW data analysis [96–99],

FF > 1 − ðD − 1Þ=ð2 SNR2Þ; ð28Þ

in which D represents the dimension of parameter space
where the matched filtering is carried out. (∼10 for LISA-
band sources, depending on the template. In our case, the
parameters include mass for the components of binary m1,
m2, eccentricity e, orbital frequency f, the distance of the
source d, the angular position of the source ϕS; θS,
orientation of the source ϕL; θL, and the line-of-sight
acceleration a==.)
To conclude, we generate a set of nonaccelerating GW

waveforms h2, with different parameters, then compute the
match between an accelerating GW signal h1 with h2, using
Eq. (27). Denoting the value of the optimal match as the FF,
it represents how similar the accelerating GW signal can be
to the nonaccelerating waveforms. Thus, in the observation,
if the FF is below the threshold given by the right side of
Eq. (28), it means the accelerating GW source’s signal is
distinguishable from any nonaccelerating GW templates,
i.e., strong enough for us to find the signature of accel-
eration in GW data analysis.
For demonstration purposes, in this paper, we will plot

the quantity 1-FF instead of FF to highlight the difference
between the two waveforms. Since FF is the maximized
match over all the template parameters, 1-FF represents the
minimized mismatch (1-Match) between a GW signal and
its optimal fit. Similar to the criteria mentioned above,
if this minimized mismatch becomes large enough, i.e.,
1 − FF > ðD − 1Þ=ð2 SNR2Þ, there will be a distinguish-
able difference between the accelerating and nonaccelerat-
ing waveforms.

C. Fisher matrix analysis and measurement accuracy

Adopting the GW templates with acceleration, we can
measure the value of compact binaries’ peculiar acceler-
ation in the data analysis. In this case, the accuracy of
acceleration measurement can be evaluated using the Fisher
matrix analysis [53,100], which is commonly used as a
linearized estimation for the measurement error in the high
SNR limit.
Representing the parameters of a GW source as a vector

λ, the GW waveform h can be expressed as hðλÞ. The
Fisher matrix is defined as

Fij ¼
!
∂hðλÞ
∂λi

;
∂hðλÞ
∂λj

"
: ð29Þ

We define C as the inverse of the Fisher matrix, C ¼ F−1. It
approximates the sample covariance matrix of the Bayesian
posterior distribution for the GW source’s parameters. In
other words, we can use the following equation to estimate
the error of parameter measurement in our work:

δλi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔλiÞ2i

q
¼

ffiffiffiffiffiffi
Cii

p
: ð30Þ
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In a nutshell, when estimating the accuracy of acceleration
measurement, the waveform templates are generated
numerically according to the method mentioned in
Sec. III A, including the peculiar acceleration in the
parameter set. We then adopt the Fisher matrix analysis
to calculate the error of the acceleration measurement for
different kinds of GW sources.

IV. EXAMPLES AND RESULTS

Here we provide several examples to highlight the
usefulness and application of the methods in Sec. III.
We emphasize that the measurement accuracy of accel-
eration is only valid if we distinguish the accelerating GW
sources from the nonaccelerating ones. Thus, adopting
nonaccelerating GW templates in search of GW signals
can suppress us from identifying some accelerating GW
sources. As mentioned in Secs. III C and III B, these
sources can have good acceleration measurement accuracy
but are misidentified because they fail to meet the criteria
for distinguishing the acceleration. However, we can over-
come this drawback by using the accelerating GW tem-
plates when searching for the GW signal.
In other words, the criteria in Sec. III B and the examples

in Sec. IVA are for the cases when we merely use non-
accelerating templates in search of GW signals, thus being
more stringent. However, the analysis of Sec. III C and
examples of Sec. IV B assume that the acceleration has been
identified and included in the GW template fitting. Thus,
their results represent the maximum capability of LISA to
measure the acceleration of eccentric compact binaries.

A. Distinguishing the acceleration: Numerical approach

In Sec. II B 2, we derived the criteria for distinguishing
the acceleration [Eq. (21)]. This equation is valid when the
mass of a compact binary is small and the curvature of
frequency evolution is hard to measure (e.g., DWDs). Here
we compare this equation with numerical results as well as
expand it to other cases, such as BBHs.
The first example is depicted in Fig. 5, where we

consider a DWD system orbiting around a SMBH. Note
that we expect a high abundance of DWDs to reside in the
vicinity of our own SMBH [27,29]. This figure shows 1-FF,
the mismatch between the accelerating signal and its
optimal fit within nonaccelerating templates, as a function
of the source’s acceleration. As shown in the figure, larger
acceleration values yield a larger mismatch between the
accelerating signal and nonaccelerating templates.
Comparing Fig. 5 with Fig. 3, although the y axis is
different in these two figures, we recover a similar trend as
in the analytical estimation.
In particular, when 1-FF exceeds each dashed black line

in Fig. 5, we can distinguish the acceleration of the GW
source for the corresponding SNR level. For the configu-
ration in this figure, the mismatch becomes large enough

for us to distinguish the acceleration when the DWD’s
distance to the SMBH is 2.4, 1.9, 1.2 pc (for the SNR ¼ 20,
10, 5, respectively). This result is consistent with the
analytical estimation in Fig. 3, where the chirp mass
measurement significantly deviates from the intrinsic chirp
mass and exceeds the upper bound given by the precession
pattern at around 1 ∼ 2 pc.
Figure 5 highlights that the critical distance for distin-

guishing the acceleration is much larger than the estimation
of former works [34,38]. This difference is because we
allowed for a non-negligible, though still small, eccentric-
ity, e ¼ 0.1, in our example.
Next (Fig. 6) we consider a BBH system orbiting around

a SMBH. As mentioned in Sec. II B 2, since the BBH
system has a larger chirp mass than DWD and DNS
systems, its intrinsic chirp rate changes significantly during
the observation [see Eq. (2)]. The varying chirp rate makes
it hard to estimate analytically if the acceleration is
distinguishable. However, the numerical analysis (see
Sec. III B) is still valid and can be used to estimate if
we can distinguish an accelerating signal from a non-
accelerating signal in this case.
In Fig. 6, we fix the BBHs’ distance to the SMBH as

0.1 pc and vary the eccentricity of the BBH system. As
shown in this figure, the mismatch between the accelerating
GW signal and its optimal fit in nonaccelerating templates

5×10-7 1×10-7 5×10-81×10-7

0

0.05

0.1

0.15

0.2

1-
FF

a [m s-2]

1-FF

SNR=5

SNR=10

SNR=20

Distance from SMBH: 1.2pc 1.5pc 2.5pc 3.5pc

FIG. 5. The mismatch between an accelerating DWD’s GWand
its optimal fit within nonaccelerating templates (1-FF), as a
function of the DWDs’ peculiar acceleration. We show a DWD
system with m1¼0.35M⊙, m2¼0.4M⊙, e¼0.1, fj¼2

e ¼ 3 mHz,
on a circular orbit around a SMBHwithMSMBH ¼ 4 × 106 M⊙ at
different distances. The observation duration is set to be 4 yr.
Adopting the proposed methodology of future observations, we
apply a matched filtering method [53,66] to find the best fit in
templates without considering acceleration. 1-FF is plotted as a
function of DWD’s acceleration/distance from the SMBH. The
black lines mark the critical value of 1-FF for the detection of
acceleration, providing different SNR in observation [see
Eq. (28), D ¼ 10 for this example]. Note that the acceleration
in this figure increases to the left.
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grows with eccentricity. In particular, the signal-to-noise
ratio requirement for distinguishing the acceleration drops
from 130 to 10 as the eccentricity increases from 0 to 0.7.
This figure is also a proof of concept that distinguishing an
accelerating GW source from a nonaccelerating one can be
done for an eccentric system with a large chirp mass,
i.e., BBH.

B. Measuring the acceleration: Numerical approach

With the help of the Fisher matrix analysis (see Sec. III C),
we can give a numerical estimation of the acceleration
measurement accuracy, providing that GW templates
with acceleration are adopted in the parameter extraction.
Figure 7 demonstrates how the relative error of acceleration
measurement (δa=a0, where a0 is the intrinsic acceleration)
decreases with increasing eccentricity. As a proof of
concept, we fix the signal-to-noise ratio (SNR ¼ 20),
observation duration (τobs ¼ 4 yr), and the acceleration
(a ¼ 3.5 × 10−6 m · s−2). As shown in the figure, the error
of acceleration measurement is quite large (∼100%) when
the orbit eccentricity is zero. However, the error sharply
drops to∼5% for moderate eccentricity and is lower than 1%
when the eccentricity is over 0.8. This sharp decrease
happens because the multiple harmonics in the GW signal
can be detected even when the binary’s eccentricity is ∼0.1.
This feature enables us to detect the eccentric GR precession
pattern and disentangle the acceleration from the chirp mass
measurement.

Additionally, the acceleration measurement accuracy’s
dependence on eccentricity varies for different kinds of
compact binaries. In particular, BBHs have a larger error of
acceleration measurement than DWDs when their eccen-
tricity is negligible. However, the error drops more sharply
along with the increase of BBHs’ eccentricity. This fact is
consistent with the analysis in Sec. II C: the large chirp
mass of BBHs renders its large intrinsic chirp rate _fe.
Therefore, because of the degeneracy between the accel-
eration and the chirp mass ( _facc and _fe), BBHs will have
larger uncertainty of acceleration if the eccentric precession
pattern is not detected and _fe is not disentangled. However,
when the eccentricity increases and the precession pattern
helps us disentangle the acceleration, the large chirp rate of
BBH enables us to get a higher measurement accuracy of
the source’s parameters, including acceleration.
Figure 8 demonstrates the effect of the observation

duration on the acceleration measurement accuracy. Here
we focus on the case of an eccentric BBH system around a
SMBH and adopt the same configuration as in Fig. 7 to
quantify LISA’s ability of acceleration measurement. The
signal-to-noise ratio is set to be 20, and we consider three
characteristic observation durations (τobs ¼ 2, 4, and 10 yr,
from top to bottom, respectively). For a stellar-mass BBH
system like the one in Fig. 8, the accuracy of acceleration
measurement is around ∼10−7 m · s−2 for a 4 yr mission
and can be ∼10−8 m · s−2 for a 10 yr mission.

0.0 0.2 0.4 0.6 0.8
10-4

10-3

10-2

10-1

e

1-FF
1-
FF

SNR=10

SNR=20

SNR=50

SNR=5

SNR=100
SNR=130

FIG. 6. The mismatch between an accelerating BBH’s GW and
its optimal fit within nonaccelerating templates (1-FF), as a
function of the BBH’s eccentricity. Here we place a BBH system
with m1 ¼ 15M⊙, m2 ¼ 20M⊙, f

j¼2
e ¼ 3 mHz at 0.1 pc from a

4 × 106M⊙ SMBH, and set the observational time τobs¼ 4 yr.
Following the same steps as in Fig. 5, we apply a matched
filtering method to find the best fit in templates without consid-
ering acceleration and plot 1-FF as a function of BBH’s
eccentricity. As is shown in the figure, 1-FF becomes larger
and the acceleration is more likely to be detected for higher
eccentricity.

FIG. 7. Relative error of acceleration measurement as a function
of the compact binary’s eccentricity. Here we place a compact
binary system at 0.4 pc from a 4 × 106M⊙ SMBH, set the initial
GW frequency fj¼2

e ¼ 3 mHz, observational time τobs¼ 4 yr, and
SNR ¼ 20. We plot the relative error of acceleration measure-
ment, as a result of the Fisher matrix analysis (see text), as a
function of binary’s initial eccentricity. Red line shows a DWD
system with m1 ¼ 0.35M⊙, m2 ¼ 0.4M⊙, and blue line repre-
sents a BBH system withm1 ¼ 15M⊙,m2 ¼ 20M⊙. Note that the
amplitude of peculiar acceleration is a0 ∼ 3.5 × 10−6 m · s−2 for
this configuration.
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We emphasize that the period of the outer orbit (∼105 yr)
is much longer than the observation duration (∼4 yr) in
Fig. 8. Thus, the results of this figure can be generalized to
other cases when the acceleration is almost constant during
the observation.
Figure 9 maps the parameter space where we can

accurately measure the binary’s peculiar acceleration. In

particular, the left panel corresponds to a compact binary
orbiting around the 4 × 106M⊙ SMBH, and the right panel
demonstrates the case when the tertiary is a 1M⊙ star.
Setting the x axis as the amplitude of acceleration (distance
to the tertiary) and the y axis as the eccentricity of the inner
binary, we plot the boundary of the regimes where the
acceleration measurement accuracy is higher than the
given values. The result shows that LISA can measure
an eccentric compact binary’s peculiar acceleration when it
is within ∼100 pc from a 4 × 106M⊙ SMBH or ∼102 A:U:
from a stellar-mass tertiary.
As shown in Fig. 9, the existence of eccentricity extends

the parameter space where the binary’s acceleration can be
measured, allowing us to identify more distant tertiaries (up
to ∼10 times the distance when the inner binary is circular).
Moreover, when the binary’s eccentricity is small, DWDs
have a higher accuracy of acceleration measurement than
BBHs. However, the increase in eccentricity can enhance
the BBHs’ acceleration measurement more significantly,
which is consistent with our analysis of Fig. 7.

V. DISCUSSION

Many LISA-band compact object binaries have non-
negligible acceleration caused by the gravitational pull of
either a nearby stellar-mass tertiary or a SMBH in the
Galactic Center (e.g., [26–29,60,85,101]). Moreover, these
accelerating GW sources are likely to have eccentricity in
the millihertz band [23,29,47,54–58]. In particular, in some

FIG. 8. Absolute error of acceleration measurement as a
function of BBHs’ eccentricity for different observation dura-
tions. Here we take the same BBH as in Fig. 7, but compare the
absolute error of acceleration measurement for different obser-
vation durations (2, 4, or 10 yr). The initial frequency of GW is
fj¼2
e ¼ 3 mHz and SNR is set to be 20 for all the cases.
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0.6
0.7
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0.7
0.8
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DWD 3% err
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FIG. 9. Critical eccentricity, for the measurement accuracy of acceleration to reach given thresholds, as a function of the binary’s
peculiar acceleration. For each line in the two panels, we set a targeted accuracy of peculiar acceleration measurement (i.e., 30%, 10%,
and 3%, from left to right) and show the critical eccentricity of the binary for GW measurement to reach such accuracy as a function of
the binary’s acceleration. The solid lines represent a BBH (m1 ¼ 15M⊙, m2 ¼ 20M⊙), and the dashed lines represent a DWD
(m1 ¼ 0.35M⊙, m2 ¼ 0.4M⊙). Both systems have the initial GW frequency fj¼2

e ¼ 3 mHz. As explained in the text, the acceleration
measurement can be applied to a wide range of tertiaries. Here, as an example, we consider a 4 × 106M⊙ SMBH case (left) and a 1M⊙
star case (right). We set the observation duration as 4 yr and SNR to be 20, compute the absolute error of acceleration measurement for a
fixed distance from the tertiary (r ¼ 0.4 pc for the SMBH case, r ¼ 100 A:U: for the star case), and analytically generalize the results to
get the relative error for the different magnitude of a (distance to the tertiary). The acceleration measurement exceeds the targeted
accuracy in the region to the right of each line, where we darken the background color to highlight the difference. For illustration
purposes, we translate the acceleration into the binary’s distance to the tertiary and mark it on the top of each panel. This figure
highlights that higher eccentricity can extend the parameter space where acceleration can be accurately measured.
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dynamical channels, the existence of a tertiary can
directly produce LISA-band sources by exciting the
eccentricity of the inner orbit and accelerating the merger
[27,27–29,57,59–62]. Thus, we expect the accelerating
eccentric binaries to be a common feature in future GW
observation.
However, it may be difficult to ascertain the properties

of these sources because a degeneracy exists between the
chirp-mass-induced frequency shift and acceleration-
induced frequency shift [34,38,51,52]. This degeneracy
happens because both the chirp mass and the peculiar
acceleration contribute to the frequency shift rate in the GW
signal for the leading order, making it hard to disentangle
chirp mass from acceleration in data analysis.
In this work, we explored the detection of peculiar

acceleration for eccentric compact binaries in the LISA
band, taking into account the effect of GR precession pattern.
We find that the eccentric GR precession pattern can break
the degeneracy between the compact binary’s acceleration
and chirp mass (see the flowchart in Fig. 2 for our overall
approach). Therefore, it can be much easier to detect the
acceleration of eccentric GW sources than circular ones.
By deriving analytical formulas, we quantified how

eccentricity helps with distinguishing the accelerating
GW sources from nonaccelerating GW templates [see
Eq. (21)]. Furthermore, we demonstrated that the existence
of eccentricity can improve the measurement accuracy of
acceleration. Analytically, we constrained such accuracy
for DWDs in Fig. 4.
The analytical results are verified numerically, and the

ability of LISA to detect the peculiar acceleration of
eccentric GW sources is estimated. For example, we find
that the critical distance to distinguish the acceleration is
∼2 pc for the case of a DWD system orbiting around a
4 × 106M⊙ SMBH, with e ¼ 0.1 and SNR ∼ 20 (i.e.,
Fig. 5). Additionally, we find that the critical SNR for

distinguishing the acceleration of a stellar-mass BBH
system can drop from 130 to 10 when the eccentricity
rises from 0 to 0.7 (for example, as highlighted in Fig. 6).
Moreover, by adopting the GW templates with accelera-
tion, we can improve the accuracy of acceleration meas-
urement by a factor of 10–100 for GW sources with
moderate eccentricity, compared with the zero-eccentricity
cases (see Fig. 7).
During a 4 yr LISA mission, the accuracy of acceleration

measurement can be ∼10−7 m · s−2 when SNR ¼ 20 for an
eccentric stellar-mass BBH system orbiting around a SMBH.
Such accuracy enables us tomeasure the binary’s acceleration
when it is ∼1 pc from a 4 × 106M⊙ SMBH. Moreover, the
accuracy of acceleration measurement for eccentric compact
object binaries can be even higher when the observation
duration is longer (see Fig. 8) or if the eccentricity of the GW
source is higher (as depicted in Fig. 9).
Our results highlight the importance of eccentricity in

GW astronomy, as it can disentangle the compact binary’s
parameters and significantly enhance acceleration meas-
urement. In future GW data analysis, adopting GW
templates that include both eccentricity and acceleration
can be meaningful to our understanding of the environment
of the GW sources.
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