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Chasing Positive Bodies

Sayan Bhattacharya∗ Niv Buchbinder† Roie Levin†‡ Thatchaphol Saranurak§

Abstract

We study the problem of chasing positive bodies in ℓ1: given a sequence of bodies
Kt = {xt ∈ R

n

+ | Ctxt ≥ 1, P txt ≤ 1} revealed online, where Ct and P t are nonnegative
matrices, the goal is to (approximately) maintain a point xt ∈ Kt such that

∑
t
‖xt−xt−1‖1

is minimized. This captures the fully-dynamic low-recourse variant of any problem that
can be expressed as a mixed packing-covering linear program and thus also the fractional
version of many central problems in dynamic algorithms such as set cover, load balancing,
hyperedge orientation, minimum spanning tree, and matching.

We give an O(log d)-competitive algorithm for this problem, where d is the maximum
row sparsity of any matrix Ct. This bypasses and improves exponentially over the lower
bound of

√
n known for general convex bodies. Our algorithm is based on iterated infor-

mation projections, and, in contrast to general convex body chasing algorithms, is entirely
memoryless.

We also show how to round our solution dynamically to obtain the first fully dynamic
algorithms with competitive recourse for all the stated problems above; i.e. their recourse is
less than the recourse of every other algorithm on every update sequence, up to polyloga-
rithmic factors. This is a significantly stronger notion than the notion of absolute recourse

in the dynamic algorithms literature.
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1 Introduction

We study the problem of chasing positive bodies in ℓ1 defined as follows. We are given a sequence
of bodies Kt = {xt ∈ R

n
+ | Ctxt ≥ 1, P txt ≤ 1} revealed online, where Ct and P t are matrices

with non-negative entries. The goal is to (approximately) maintain a point xt ∈ Kt such that the
total ℓ1-movement,

∑
t ‖xt − xt−1‖1, is minimized where x0 = 0. More generally, given weight

w ∈ R
n
+, we want to minimize the weighted ℓ1-movement,

∑
t wi

∑n
i=1 |xti−xt−1

i |. This captures
the fully dynamic variant of any problem that can be expressed as a mixed packing-covering
linear program, and thus also the fractional version of many central fully dynamic problems
when the goal is to minimize recourse, i.e., the amount of change to the solution, as measured
by ℓ1 movement. Examples include set cover, load balancing (hyperedge orientation), minimum
spanning tree, and matching.

A more general version our problem, called the convex body chasing problem, allows Kt to be
an arbitrary convex body and the goal is to minimize total ℓp-movement for any p ≥ 1. Fried-
man and Linial [FL93] introduced convex body chasing as a vast generalization of many online
problems. This problem has been the subject of intensive study recently [BBE+20, ABC+19,
BKL+20] which has culminated in algorithms with O(n) competitive ratios [AGTG21, Sel20].
This bound is nearly tight since there is a lower bound of Ω(max{√n, n1−1/p}) [BKL+20]. Unfor-
tunately, because of this strong lower bound, algorithms for this general problem have generated
no interesting applications to concrete combinatorial optimization problem.

In this paper, we show that for the special yet still expressive case of chasing positive bodies in
ℓ1, we can bypass and exponentially improve upon the

√
n lower bound. We then show that a

solution to the positive body chasing problem can be rounded online to yield low-recourse fully
dynamic algorithms for all the combinatorial problems mentioned above. Our algorithms have
competitive recourse guarantees, a significantly stronger notion of recourse than the usual one
used in the dynamic algorithm literature, which we will discuss soon.

1.1 Our Results

Our main contribution is the following theorem.

Theorem 1.1. For any ǫ ∈ (0, 1], there is an an O (1/ǫ log (d/ǫ))-competitive algorithm for chas-
ing positive bodies in ℓ1 such that xt ∈ K1+ǫ

t =
{
xt ∈ Rn

+ | Ctxt ≥ 1, P txt ≤ 1 + ǫ
}

at time t,
and d is the maximal number of non-negative coefficients in a covering constraint.

Note we give our algorithm ǫ-resource augmentation, i.e. we allow it to violate the packing
constraints slightly. Alternatively, by scaling the solution, we may produce a solution that
fully satisfies all packing constraints but violates the covering constraints up to an ǫ factor.
As we discuss below, ǫ-resource augmentation does not matter in our applications since we lose
additional approximation factors while rounding anyway. We compare the total movement of our
algorithm that maintains a point in K1+ǫ

t with an optimal solution that maintains a point in Kt.
In several applications where d = O(1), such as the fractional version of dynamic edge orientation
and set cover with bounded frequency, our competitive ratio is completely independent of n. We
also remark that we can handle static box constraints of the form x ≤ b, where b ∈ Rn

+ ∪ {∞}
without any violation. See Appendix F for more details.

We complement Theorem 1.1 by the following lower bound:

Theorem 1.2. No algorithm for positive body chasing can achieve competitive ratio better than

Ω

(
max

{
min

(
1

ǫ
√

log(1/ǫ)
,
√
n

)
, log n

})
.
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The Ω(log n) lower bound follows by the known bound for covering LPs [BN09b, GKL21]. The
Ω(min(1/(ǫ

√
log(1/ǫ)),

√
n)) lower bound follows by a reduction to the

√
n lower bound for the

general convex bodies chasing problem (Theorem 5.4 of in [BKL+20])1. The full proof appears
in Appendix E.

This lower bound implies that all the assumptions of Theorem 1.1 are crucial for the exponential
improvement over the general convex body chasing case. In particular, it shows that the lower
bound of Ω(

√
n) for the general convex body chasing problem holds for the positive body chasing

problem (without resource augmentation) as well. More generally, our linear dependence on 1/ǫ
is essentially tight. For example, when ǫ = Θ(n−δ) for a constant 0 < δ < 1/2, the competitive
ratio is at least Ω̃(nδ) (hiding logarithmic terms), and in particular O(poly log n)-competitive
ratio is impossible. When ǫ = O( lognn ) the best algorithm is still the O(n)-competitive algorithm
for general convex body chasing [AGTG21, Sel20]. Finally, we remark that for ℓp-norms, when
p > 1, the known lower bound of [FL93] forbids any o(n1−1/p)-competitive algorithms even for
chasing positive bodies and even with Ω(1)-resource augmentation.

Competitive Recourse for Dynamic Problems. An overarching goal of online and dy-
namic algorithms is to maintain near-optimal solutions to combinatorial problems as constraints
change over time while minimizing the number of edits to the solution, a.k.a. recourse. An
extensive line of work has produced low-recourse algorithms for Steiner tree under terminal up-
dates [IW91, GGK16, GK14, ŁOP+15, GL20a], load balancing under job arrivals [AAPW01,
GKS14, KLS23], set cover under element insertions/deletions [GKKP17, AAG+19, BHN19,
GL20a, BHNW21, AS21], facility location under client updates [BLP22, GKLX20], and many
fully dynamic graph problems under edge updates like edge orientation [BF99, SW20a, BBCG22],
graph coloring [SW20b], maximal independent sets [AOSS18], and spanners [BKS12, BSS22].

The works mentioned above, and most others on dynamic algorithms, measure recourse in
absolute terms. Such bounds are of the form “after T updates, the algorithm incurs recourse at
most kT ”. We call these absolute recourse bounds. On the other hand, the online algorithms
literature prefers competitive analysis, where one compares the performance of the algorithm
to the best algorithm in hindsight. In this paper we give competitive recourse bounds: we say
an algorithm has c-competitive recourse if it incurs recourse at most c times that of any other
offline algorithm on every update sequence.

There are several advantages to studying competitive recourse over absolute recourse. An ab-
solute recourse bound is a worst-case bound over all update sequences, whereas a competitive
recourse bound is tailored to each update sequence. To illustrate this, consider an update se-
quence for set cover that repeatedly inserts and deletes the same element without changing the
optimal solution. While competitive recourse algorithms would incur no recourse, an algorithm
with absolute recourse guarantees might have large recourse proportional to these “irrelevant”
updates. Hence, competitive recourse bounds can be much stronger than absolute bounds.
For a concrete example, it is straightforward to obtain a fully dynamic algorithm for (1 + ǫ)-
approximate matching with O(1/ǫ) absolute recourse by eliminating short augmenting paths,
but no non-trivial algorithm with competitive recourse was known prior to our work.

For some problems small absolute recourse may not be possible at all. In the context of fully
dynamic load balancing, [KLS23] show that no algorithm, even with full knowledge of the job
arrival/departure sequence, can achieve competitive ratio α = o(log(n)) with less than Ω(n1/α)
absolute recourse. They write:

“To circumvent the negative result, one needs to consider a different measurement
for recourse for the fully dynamic model.”

1We would like to thank Mark Sellke for pointing out this reduction.
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We argue in this paper that competitive recourse is the natural way around this obstacle.

Applications of Theorem 1.1 to Combinatorial Problems. In this paper, we give
the first fully dynamic algorithms with polylogarithmic competitive recourse for central prob-
lems studied in the dynamic algorithms literature, including set cover, load balancing, bipartite
matching and minimum spanning tree. The results are summarized in Table 1. In the table,
our algorithms with α-approximation and c-competitive recourse guarantees have the following
formal guarantee. For every update sequence, our algorithms maintain α-approximate solution
with recourse at most c times the optimal recourse for maintaining an optimal solution. More
generally, each of our algorithms even allow the following trade-off. Given parameter β, for
every update sequence σ, it maintains a (αβ)-approximate solution with total recourse at most

c ·Opt
β
Rec

(σ) where Opt
β
Rec

(σ) denotes the optimal recourse for maintaining a β-approximate
solution undergoing updates σ. This is useful because it is natural to expect that the optimal
recourse becomes significantly smaller when we allow some approximation.

Problems Approx.
Competitive

recourse

Randomized

vs.

Deterministic

Ref.
Update

type
Variables

Set cover
O(log n) O(log n log f) Randomized Cor. 4.2

elements
n elements,
each in ≤ f setsO(f) O(f log f) Deterministic Cor. 4.2

Load
balancing

2 + ǫ O

(
1

ǫ5
log n

· log r

ǫ
log 1

ǫ

)
Deterministic Cor. 4.6

jobs
n jobs, each
applicable
to ≤ r machines

O
(

log log n

log log log n

)
O(log r) Randomized Cor. 4.6

Bipartite
matching

1 + ǫ O
(

1

ǫ4
log n log n

ǫ

)
Randomized Cor. 4.4 edges n vertices

Minimum
spanning
tree

2 + ǫ O
(

1

ǫ3
log n log n

ǫ

)
Randomized Cor. 4.8 edges n vertices

Table 1: Summary of our fully dynamic algorithms with competitive recourse. All randomized algorithms
assume an oblivious adversary, and incur a polynomially-small additive term in the recourse bound which we
omit. See Section 4 for details.

An important feature of our fractional algorithms is that their guarantees are independent of
the type of dynamic update because Theorem 1.1 works so long as the feasible region at every
step forms a positive body. For example, our fractional minimum spanning tree and bipartite
matching algorithms work under both vertex and edge arrivals/departures, our fractional load
balancing algorithm works under fine-grained updates to job-machine loads, and our fractional
set cover algorithm works when set costs can be updated. Since our rounding schemes also work
under these generalized types of updates, our final algorithms do as well.

We emphasize that our focus is minimizing recourse and not update time, the usual metric
in the dynamic algorithms literature. Obtaining competitive recourse and small update time
simultaneously is an interesting research direction.

1.2 Connections to Previous Work

Positive Body Chasing. Our result for chasing positive bodies directly generalizes the in-
fluential line of work on online covering problems [BN09b, GN14, GL20b]. In these, the con-
vex bodies are nested and defined solely by covering constraints: for each time t, the body
is Kt =

{
x ∈ Rn

+ | Ctx ≥ 1
}

where Ct is a non-negative matrix and Kt ⊆ Kt−1. The task
is to maintain a monotonically increasing xt ∈ Kt while minimizing 〈w, x〉 for fixed w ∈ R

n
+.

This goal is equivalent to minimizing the ℓ1-movement weighted by w, since decreasing any
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variable never helps to satisfy covering constraints. Even this special case of positive body
chasing has been amazingly successful in unifying previous results and in resolving important
open questions in competitive analysis. This includes, e.g., the classic ski rental problem, on-
line set cover [AAA+09], weighted paging and variants [BBN12a, BBN12b, CLNT22], graph
optimization problems related to connectivity and cuts [AAA+06, NPS11], the dynamic TCP-
acknowledgement problem [KKR01, BJN07], metrical task systems [BBN10, BCLL21], and the
k-server problem [BCL+18, BGMN19].

Another line of work [ABFP13, ABC+16] generalizes [BN09b, GN14] in a different way. Here
the convex bodies Kt are nested covering constraints and xt ∈ Kt may only move monotonically.
The goal in [ABFP13] is to minimize the maximum violation of a fixed set of packing constraints,
and the goal of [ABC+16] is to minimize a non-decreasing convex function. This is different from
our objective since we must handle an online sequence of both packing and covering constraints,
but our solution x is allowed to move non-monotonically.

[BKS23] gave dynamic algorithms for maintaining (1+ǫ)-approximate solutions to mixed packing-
covering linear programs. They showed how to handle relaxing updates (where the feasible region
only grows) using small update time, and asked as an open problem if it is possible to do the
same for restricting updates (where the feasible region only shrinks). Theorem 1.1 resolves the
recourse version of this question: we can maintain an (1+ ǫ)-approximate solution of the mixed
packing-covering linear program with total absolute recourse O(|x∗|1 · 1

ǫ log
n
ǫ ), where x∗ is any

feasible solution at the end of the sequence of restricting updates. This follows because an offline
algorithm can just move the solution to x∗ from the beginning.

Competitive Recourse in Combinatorial Problems. Here, we only compare our algo-
rithms from Table 1 with some of the few known dynamic algorithms with competitive recourse
guarantees.

For the set cover problem, the online algorithms in [GN14] support element insertions and
guarantee min{O(log n log f), O(f log f)}-approximation, and these are the best possible. When
every set has unit weight, the approximation ratio also translates to a competitive recourse
bound, because no set ever leaves the solution. Our algorithm (Corollary 4.2) is the first fully
dynamic competitive-recourse algorithm, even in the unweighted case.

For the load balancing problem, our algorithms have interesting consequences even when we
focus on special cases; Corollary 4.6 implies the first competitive-recourse algorithm for fully
dynamic edge orientation in weighted graphs.2 Previously, this was known only for unweighted
graphs [BF99]. In the unweighted setting, our algorithm with O(log r)-competitive recourse is
the first algorithm for fully dynamic hyperedge orientation with constant competitive recourse
and non-trivial approximation when the rank r = O(1). The previous result of [BBCG22] suffers
a O(log n) factor in recourse.

[GTW14] gave an algorithm for maintaining a spanning tree (more generally a matroid base)
when edges have acquisition costs and evolving holding costs. Their result can be used to
obtain an O(log2 n) competitive recourse algorithm for maintaining a spanning tree under edge
updates but does not give guarantees about the cost of the tree at every step. Our algorithm
(Corollary 4.8), in contrast, guarantees a guarantees (2 + ǫ) approximation with Oǫ(log

2 n)
competitive recourse.

The only other dynamic algorithm with competitive recourse guarantees we are aware of are
[AMPST23] for vertex coloring and [ALPS16, ABL+20] for balanced graph partitioning. We
hope that our generic framework will facilitate further results in this direction.

2This corresponds to the load balancing instance where each job is applicable to two machines.
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1.3 Techniques and Overview

Our key technical contribution is an algorithm for chasing positive halfspaces, or positive bodies
defined by a single covering or packing constraint (we explain the reduction from chasing bodies
to chasing halfspaces in Appendix A). Our algorithm is the following. Given point xt−1 from
the last round, our algorithm performs a projection in KL divergence onto the new feasible
region (plus a small additive update for technical reasons). This is sometimes referred to as
an information projection (e.g. [Csi84]). One can interpret many online covering algorithms
as information projections [BGMN19]; our contribution is to extend the analysis for packing
constraints which has until now remained elusive. Interestingly, in contrast to competitive
algorithms for general convex body chasing ([AGTG21, Sel20]) this algorithm is completely
memoryless, in that it only depends on xt−1 and the current violated constraint.

To analyze the algorithm, we write an auxiliary linear program whose optimal value is the
optimal recourse of an offline algorithm with knowledge of all future constraints, and then fit a
dual to our online algorithm’s solution. We construct this dual using the Lagrange multipliers
of the convex programs we use to compute our projections. We start with a warmup analysis in
Sections 3.1 to 3.3. The proof here is simple and contains the main ideas, but loses an additional
aspect ratio term. To obtain the full result of Theorem 1.1, we need to overcome a significant
barrier: one can show that no monotone dual solution can avoid a dependence on the aspect
ratio (see e.g. [BN09a]). Nevertheless, we show that it is possible to carefully decrease some
coordinates of the dual to achieve the desired bound. The details are in Section 3.4.

We turn to rounding our competitive fractional solution for common applications in Section 4.
Our chasing positive bodies framework captures the task of maintaining fractional solutions
to set cover (Section 4.1), bipartite matching (Section 4.2), load balancing (Section 4.3), and
minimum spanning tree (Section 4.4) under dynamic updates. We show that we can also round
these fractional solutions to true combinatorial solutions with bounded loss in both recourse and
approximation. Our rounding algorithms in Sections 4.2 and 4.4 reuse a common recipe: we
first maintain an object we call a stabilizer, which contains a good solution that itself has good
competitive recourse (see Appendix C and Appendix D for details). We then run existing absolute
recourse algorithms for maintaining a true solution within this stabilizer. Since the number of
updates to the stabilizer is competitive with the recourse of the optimal offline solution, and
the absolute recourse algorithms are competitive with respect to the number of updates to the
stabilizer, overall this strategy yields a solution with good competitive recourse.

2 Preliminaries

Mathematical Notation. All logarithms in this paper are taken to be base e. For w ∈ R, we
use the notation w+ = max(0, w). We use the symbol ⊕ to denote symmetric difference of sets.
In the following definitions, let x, y ∈ R

n
+ be vectors. The standard dot product between x and

y is denoted 〈x, y〉 = ∑n
i=1 xiyi. We use a weighted generalization of KL divergence. Given a

weight function w, define

KLw (x || y) :=
n∑

i=1

wi

[
xi log

(
xi
yi

)
− xi + yi

]
.

It is known that KLw (x || y) ≥ 0 for nonnegative vectors x, y (one can check this is true term by
term above). Throughout this paper, we use the convention that for any a, b ≥ 0, the expression

(a+∞) log

(
a+∞
b+∞

)
− a+ b = 0. (2.1)
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These definitions agree with the respective limit behaviors.

Simplifying Positive Body Chasing Instances. In the positive body chasing problem, since
x0 = 0 and xt ≥ 0, then we have

∑

t∈[T ]

∑

i∈[n]

wi(x
t
i − xt−1

i )+ ≤
∑

t∈[T ]

∑

i∈[n]

wi · |xti − xt−1
i | ≤ 2 ·

∑

t∈[T ]

∑

i∈[n]

wi(x
t
i − xt−1

i )+.

Therefore, without loss of generality, we use the upward recourse as the measure of the movement
of both our algorithm and the optimal algorithm.

Henceforth, we assume without loss of generality that at each time t, the positive body Kt

is defined by a single covering constraint
〈
ct, x

〉
≥ 1 or packing constraint

〈
pt, x

〉
≤ 1. This

reduction from chasing bodies to chasing halfspaces is standard (see e.g. [BBE+20]), but we
spell out the main argument in Appendix A for completeness.

Let cmax
i = maxt c

t
i, c

min
i = mint|ct

i
6=0 c

t
i. We define the aspect ratio ∆ = maxi c

max
i /cmin

i . Let

dt = |{i | cti 6= 0}| be the sparsity of the covering constraint. Let d = maxt{dt} be the maximal
row sparsity of any covering constraint.

3 An Algorithm for Chasing Positive Bodies

In this section we design a fractional algorithm for chasing positive bodies proving Theorem 1.1.
As discussed in Section 2 we may assume without loss of generality that at each time t the
positive body Kt is defined by a single covering or packing constraint.

3.1 The Algorithm:

The algorithm is given a parameter ǫ ∈ (0, 1]. Whenever it gets a violated constraint, it projects
back to the constraint using the following procedure.

• Initially, x0i = 0 for all i. At any time t = 1, 2, . . . , T :

• When a violated covering constraint
〈
ct, x

〉
< 1 arrives, set xt to be the solution to

min
x

∑

i| ct
i
6=0

wi ·
[
x̂i log

(
x̂i

x̂t−1
i

)
− x̂i

]

s.t.
〈
ct, x

〉
≥ 1 (I).

where x̂i := xi +
ǫ

4dt·ct
i

, x̂t−1
i := xt−1

i + ǫ
4dt·ct

i

, and dt = |{i | cti 6= 0}| is the sparsity of the

covering constraint.3 If for some xti the coefficients cti = 0, then we set xti = xt−1
i .

• When we are given a violated packing constraint
〈
pt, x

〉
> 1 + ǫ, set xt to be the solution

to

min
x

∑

i| pt
i
6=0

wi

(
xti log

(
xi

xt−1
i

)
− xi

)

s.t.
〈
pt, x

〉
≤ 1 + ǫ (II).

If for some xti the coefficients pti = 0, then we set xti = xt−1
i .

We assume without loss of generality that we only get violated constraints. Let C,P ⊆ {1, . . . , T}
be the set of times in which covering/packing constraints appear respectively.

3Note: at time t we redefine x̂t−1
i

, even though it was already defined at t− 1 as xt−1
i

+ ǫ/(3dt−1 · ct−1
i

). This
is a slight abuse of notation but it makes our proofs cleaner, and also makes apparent the connection to KL
divergence.
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3.2 Analysis Framework

Let yt, zt be the Lagrange multipliers of the constraints (I) and (II) above. In our proof we use
the KKT conditions at the optimal solution of this program for every time-step t:

∀t ∈ C
〈
ct, xt

〉
= 1 (3.1)

∀t ∈ C, ∀i, cti 6= 0 wi log

(
x̂ti
x̂t−1
i

)
= ctiy

t (3.2)

∀t ∈ P
〈
pt, xt

〉
= 1 + ǫ (3.3)

∀t ∈ P, ∀i wi log

(
xti
xt−1
i

)
= −ptiz

t (3.4)

For convenience, we define y0 = z0 = 0.

The optimal upward recourse can be computed by following linear program (P).

(P) : min
T∑

t=1

n∑

i=1

wiℓ
t
i

s.t.

∀t ∈ C :
〈
ct, xt

〉
≥ 1

∀t ∈ P :
〈
pt, xt

〉
≤ 1

∀i, t : xti − xt−1
i ≤ ℓ

t
i

xti, ℓ
t
i ≥ 0

(D) : max
∑

t∈C

yt −
∑

t∈P

zt

s.t.

∀i, t ∈ C : ctiy
t − rti + rt+1

i ≤ 0

∀i, t ∈ P : −ptiz
t − rti + rt+1

i ≤ 0

0 ≤ rti ≤ wi

∀t : yt, zt ≥ 0

Our goal from now on is to construct a feasible solution to the dual program (D) that bounds
the total cost of our online algorithm.

We start with a weaker bound than the one that appears in Theorem 1.1 as a warmup.

3.3 Warmup: an O (1/ǫ · log (d∆/ǫ)) competitive bound

In this section, we show our first bound on the recourse of our algorithm.

Theorem 3.1 (Warmup Bound). The total recourse of the algorithm is at most O
(
1
ǫ · log

(
d·∆
ǫ

))

times the objective of (D).

Recall that cmax
i = maxt c

t
i and cmin

i = mint|ct
i
6=0 c

t
i, as well as the aspect ratio ∆ = maxi c

max
i /cmin

i .

We construct the following dual solution.

Let A = log
(
1 + 4d·∆

ǫ

)
. We set

ȳτ = yτ/A,

z̄τ = zτ/A,

rτi = wi ·
(
1− 1

A
log

(
1 +

4dcmax
i · xτ−1

i

ǫ

))

(which is useful to write as)

= wi ·
(
1− 1

A

(
log

(
xτ−1
i +

ǫ

4d · cmax
i

)
− log

(
ǫ

4d · cmax
i

)))
. (3.5)
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We start by showing that our dual is feasible.

Lemma 3.2. The variables (ȳ, z̄, r̄) are a feasible dual solution to (D).

Proof. For τ ∈ C we have

rτi − rτ+1
i =

wi

A
· log

(
xτi +

ǫ
4d·cmax

i

xτ−1
i + ǫ

4d·cmax
i

)
≥ wi

A
log

(
xτi +

ǫ
4dτ ·cτ

i

xτ−1
i + ǫ

4dτ ·cτ
i

)
= cτi ȳ

τ .

The inequality follows since for any i and τ ∈ C, we have xτi ≥ xτ−1
i and therefore, for any a ≥ b

the inequality
xτ
i
+a

xτ−1
i

+a
≤ xτ

i
+b

xτ−1
i

+b
holds. Similarly, for τ ∈ P we have

rτi − rτ+1
i =

wi

A
· log

(
xτi +

ǫ
4d·cmax

i

xτ−1
i + ǫ

4d·cmax
i

)
≥ wi

A
log

(
xτi
xτ−1
i

)
= −pτi z̄

τ .

The inequality follows since for any τ ∈ P , we have xτi ≤ xτ−1
i and therefore, for any a ≥ 0 the

inequality
xτ
i

xτ−1
i

≤ xτ
i
+a

xτ−1
i

+a
holds. Finally,

0 ≤ rτi = wi ·
(
1− 1

A
log

(
1 +

4dcmax
i · xτ−1

i

ǫ

))
≤ wi.

To see this, note that for all τ ∈ C and all i ∈ [n] we have 0 ≤ xτi ≤ 1
cτ
i

, otherwise the constraint

in round τ is already satisfied upon arrival. Hence

0 ≤ log

(
1 +

4dcmax
i · xτ−1

i

ǫ

)
≤ log

(
1 +

4dcmax
i

ǫcτ−1
i

)
≤ log

(
1 +

4d ·∆
ǫ

)
= A.

Next, to relate the movement of the algorithm to the dual objective, we need the following pair
of crucial lemmas. First we bound the recourse in terms of just the y terms.

Lemma 3.3 (Bounding movement in terms of y). The upward movement cost of the algorithm
at any time t ∈ C can be bounded as

∑

i

wi

(
xti − xt−1

i

)
+
≤

(
1 +

ǫ

4

)
yt.

Proof. From 1+x ≤ ex with x = log(b/a), we get the following convenient inequality (sometimes
referred to as the “Poor man’s Pinkser” inequality). For all a, b ≥ 0,

a− b ≤ a log
(a
b

)
.

Using this fact, we deduce
∑

i

wi

(
xti − xt−1

i

)
+
=

∑

i| ct
i
6=0

wi

(
x̂ti − x̂t−1

i

)
+

≤
∑

i|xt
i
>xt−1

i

wi · x̂ti · log
(

x̂ti
x̂t−1
i

)

(3.2)
=

∑

i|xt
i
>xt−1

i

(
xti +

ǫ

4dt · cti

)
ctiy

t

≤ ǫ

4
yt + yt ·

∑

i

ctix
t
i

(3.1)
=

(
1 +

ǫ

4

)
yt.

8



To bound the recourse as a function of the full dual objective, we also need argue that subtracting
the z terms does not lose too much.

Lemma 3.4 (Bounding z in terms of y). The dual vectors y and z satisfy

(
1 +

ǫ

4

)∑

t∈C

yt − (1 + ǫ)
∑

t∈P

zt ≥ 0 (3.6)

Proof. By non-negativity of KL we have

∀t ∈ C 0 ≤
∑

i| ct
i
6=0

wi

[
x̂ti log

(
x̂ti
x̂t−1
i

)
− x̂ti + x̂t−1

i

]
=

∑

i| ct
i
6=0

wi

[
x̂ti log

(
x̂ti
x̂t−1
i

)
− xti + xt−1

i

]

∀t ∈ P 0 ≤
∑

i| pt
i
6=0

wi

[
xti log

(
xti
xt−1
i

)
− xti + xt−1

i

]
.

Summing these over all times t we get:

0 ≤
∑

t∈C

∑

i| ct
i
6=0

wi

[
x̂ti · log

(
x̂ti
x̂t−1
i

)
− xti + xt−1

i

]
+

∑

t∈P

∑

i| pt
i
6=0

wi

[
xti log

(
xti
xt−1
i

)
− xti + xt−1

i

]

=
∑

t∈C

∑

i| ct
i
6=0

wix̂
t
i · log

(
x̂ti
x̂t−1
i

)
+

∑

t∈P

∑

i| pt
i
6=0

wi · xti log
(

xti
xt−1
i

)
−

n∑

i=1

wi(x
T
i + x0i ) (3.7)

(3.2) & (3.4)
=

∑

t∈C

yt
∑

i| ct
i
6=0

(
ctix

t
i +

ǫ

4dt

)
−

∑

t∈P

zt
∑

i| pt
i
6=0

ptix
t
i −

n∑

i=1

wix
T
i

(3.1) & (3.3)

≤
(
1 +

ǫ

4

)∑

t∈C

yt − (1 + ǫ)
∑

t∈P

zt. (3.8)

Equation (3.7) follows from (2.1). Inequality (3.8) uses the fact that there are at most dt indices
i for which cti 6= 0.

By a careful combination of Lemma 3.3 and Lemma 3.4, we get the following bound on the
recourse in terms of the dual objective. We write the lemma in terms of a more general ỹτ since
we will need it later. For now, the reader should set α = 0, i.e. ỹτ = yτ .

Lemma 3.5. Let ỹτ be such that
∑

τ∈C ỹτ ≥ (1− αǫ)
∑

τ∈C yτ for α ∈ [0, 1/10]. Then,

T∑

t=1

∑

i

wi

(
xti − xt−1

i

)
+
= O

(
1

ǫ

)[
∑

t∈C

ỹt −
∑

t∈P

zt

]
(3.9)

Proof. Observe that

(
1 +

ǫ

4

)∑

t∈C

yt ≤ 1 + ǫ
4

1− αǫ
·
∑

t∈C

ỹt

≤
(
1 +

ǫ

4

)
· (1 + 2αǫ) ·

∑

t∈C

ỹt

≤
(
1 +

ǫ

4
+ 2αǫ+

2αǫ

4

)
·
∑

t∈C

ỹt

≤
(
1 +

ǫ

2

)
·
∑

t∈C

ỹt, (3.10)

9



where the first inequality follows from our assumption, and the second since 1/(1− x) ≤ 1 + 2x
for x ∈ [0, 12 ] and ǫ ≤ 1.

Summing Lemma 3.3 over all times t and adding 2+ǫ
ǫ of Lemma 3.4, we get:

∑

i

wi

(
xti − xt−1

i

)
+
≤

∑

t∈C

(
1 +

ǫ

4

)
yt +

2 + ǫ

ǫ

[
∑

t∈C

(
1 +

ǫ

4

)
yt −

∑

t∈P

(1 + ǫ)zt

]

≤
∑

t∈C

(
1 +

ǫ

2

)
ỹt +

2 + ǫ

ǫ

[
∑

t∈C

(
1 +

ǫ

2

)
ỹt −

∑

t∈P

(1 + ǫ)zt

]

=
(2 + ǫ)(1 + ǫ)

ǫ

[
∑

t∈C

ỹt −
∑

t∈P

zt

]

= O

(
1

ǫ

)[
∑

t∈C

ỹt −
∑

t∈P

zt

]
,

where the second inequality is from (3.10) above.

Putting things together, we can conclude with the theorem of this section.

Proof of Theorem 3.1. By Lemma 3.5 we can bound the total movement of the algorithm by

T∑

t=1

∑

i

wi

(
xti − xt−1

i

)
+
= O

(
1

ǫ

)
·
[
∑

t∈C

yt −
∑

t∈P

zt

]
= O

(
log

(
d·∆
ǫ

)

ǫ

)
·
[
∑

t∈C

ȳt −
∑

t∈P

z̄t

]
.

Since (y, z, r) is a feasible dual solution, the theorem follows from weak duality.

3.4 Removing the ∆: An O (1/ǫ log (d/ǫ)) competitive bound

We move to proving the more refined bound. The idea is once again to fit a dual to D, but this
time we need to construct our dual solution more delicately. For one, we need to overcome the
following significant barrier: the dual y can be computed monotonically online, however one can
show that no monotone dual solution can avoid a dependence on ∆, see [BN09a]. Nevertheless,
we show that it is possible to decrease some coordinates of the dual carefully, to achieve the
following bound.

Theorem 3.6 (∆-free Bound). The total recourse of the algorithm is at most O (1/ǫ · log (d/ǫ))
times the objective of (D).

We will construct a vector ỹ with the following properties.

Lemma 3.7. Given y, there is a vector ỹ such that

∀1 ≤ s ≤ t ≤ T, ∀i
∑

τ∈C:
τ∈[s,t]

cτi ỹ
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ ≤ wi · log

(
1 +

40d2

ǫ2

)
(3.11)

and
∑

τ∈C

ỹτ ≥
(
1− ǫ

10

)∑

τ∈C

yτ . (3.12)

Once we have this, we can define our dual solution as follows. Let A = log
(
1 + 40d2

ǫ2

)
. We set,

∀s ∈ C ȳs = ỹs/A,

∀s ∈ P z̄s = zs/A,
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rT+1
i = 0,

∀s ∈ [T ] rsi =
1

A
·max


0, max

t≥s





∑

τ∈C:
τ∈[s,t]

cτi ỹ
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ






 .

Before proving Lemma 3.7, let us understand why this dual solution is feasible and implies
Theorem 3.6.

Lemma 3.8. The variables (ȳ, z̄, r̄) are a feasible dual solution to (D).

Proof. We start by proving the feasibility of the dual solution. The constraints rsi ≥ 0 hold by
construction. For a sequence a1, a2, . . . , aT of positive and negative numbers is holds that for
any s ∈ [T ]:

max


0, max

t| s≤t≤T





∑

τ∈[s,t]

aτ






 ≥ max


as, as + max

t| s+1≤t≤T





∑

τ∈[s+1,t]

aτ








= as +max


0, max

t| s+1≤t≤T





∑

τ∈[s+1,t]

aτ








By this observation and plugging at = cτi y
τ , if t ∈ C or at = −pτi z̄

τ for t ∈ P , we immediately
get that rsi ≥ cτi y

τ + rs+1
i , or similarly rsi ≥ −pτi z̄

τ + rs+1
i .

Finally, by inequality (3.11) of Lemma 3.7 we get:

rsi =
1

A
·max


0, max

t≥s





∑

τ∈C:
τ∈[s,t]

cτi ỹ
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ






 ≤ 1

A
· wi · log

(
1 +

40d2

ǫ2

)
≤ wi,

and the dual solution is feasible.

Our main theorem now follows by putting everything together.

Proof of Theorem 3.6. By (3.12) of Lemma 3.7 we have
∑

τ∈C ỹτ ≥
(
1− ǫ

10

)∑
τ∈C yτ , so we

can reuse Lemma 3.5 to bound the total recourse as

T∑

t=1

∑

i

wi

(
xti − xt−1

i

)
+
= O

(
1

ǫ

)
·
[
∑

t∈C

ỹt −
∑

t∈P

zt

]
= O

(
log

(
d
ǫ

)

ǫ

)
·
[
∑

t∈C

ȳt −
∑

t∈P

z̄t

]
.

Since (y, z, r) is a feasible dual solution, the theorem follows from weak duality.

The remainder of the section is devoted to proving Lemma 3.7. First we need an auxiliary
lemma.

Lemma 3.9. For any s and t such that 1 ≤ s ≤ t ≤ T , any i ∈ [n], and any S ⊆ C ∩ [s, t],
define cmax

i (S) = maxτ∈S{cτi }. Then

1

wi




∑

τ∈S:
τ∈[s,t]

cτi y
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ


 ≤ log

(
1 +

4d · cmax
i (S)

ǫ
· xti

)
.
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Proof. We have that

1

wi




∑

τ∈S:
τ∈[s,t]

cτi y
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ


 =

∑

τ∈S:
τ∈[s,t], cτ

i
6=0

log




xτi +
ǫ

4dt·ct
i

xτ−1
i + ǫ

4dt·ct
i


+

∑

τ∈P :
τ∈[s,t]

log

(
xτi
xτ−1
i

)
(3.13)

≤
t∑

τ=s

log

(
xτi +

ǫ
4d·cmax

i
(S)

xτ−1
i + ǫ

4d·cmax
i

(S)

)
(3.14)

= log

(
xti +

ǫ
4d·cmax

i
(S)

xs−1
i + ǫ

4d·cmax
i

(S)

)

≤ log

(
1 +

4d · cmax
i (S)

ǫ
· xti

)
.

Equality (3.13) follows from (3.2) and (3.4). To see why inequality (3.14) follows, note that for

any i and τ ∈ C, it holds that xτi ≥ xτ−1
i and therefore, for any a ≥ b we have

xτ
i
+a

xτ−1
i

+a
≤ xτ

i
+b

xτ−1
i

+b
.

For any τ ∈ P , xτi ≤ xτ−1
i and therefore, for any a ≥ 0, we get

xτ
i

xτ−1
i

≤ xτ
i
+a

xτ−1
i

+a
. Finally, for

any τ ∈ (C ∩ [s, t])\S, we have that xτi ≥ xτ−1
i and therefore the corresponding summand is

nonnegative.

With this, we are finally ready to prove the lemma.

Proof of Lemma 3.7. We obtain ỹ by inductively decreasing coordinates of the solution y pro-
duced by the algorithm. We prove by induction on ℓ that inequalities (3.11) and (3.12) hold
until time ℓ, i.e.,

∀1 ≤ s ≤ t ≤ ℓ, ∀i
∑

τ∈C:
τ∈[s,t]

cτi ỹ
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ ≤ wi · log

(
1 +

40d2

ǫ2

)
(3.15)

and
∑

τ∈C
τ≤ℓ

ỹτ ≥
(
1− ǫ

10

)∑

τ∈C
τ≤ℓ

yτ . (3.16)

The base of the induction is ℓ = 0 which holds trivially. Now suppose by induction that we have
an assignment of ỹτ for all τ ≤ ℓ−1 such that inequalities (3.15) and (3.16) hold until time ℓ−1
(and ỹτ = 0 for τ ≥ ℓ). We show how to create an updated assignment ỹτnew such that these
inequalities also hold for time ℓ.

If time ℓ ∈ P , the inequalities hold already and there is no need to change ỹτ . Therefore, assume
that ℓ ∈ C. We construct ỹnew as follows.
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Algorithm 1 Constructing ỹnew

1: for i = 1, . . . , n do
2: Initialize

Ri ←
{
τ ∈ [ℓ− 1]

∣∣∣∣ c
τ
i ≥ 10 · dℓ · cℓi

ǫ
, ỹτ > 0

}
, // candidates for decrease

B ← cℓi · yℓ. // budget

3: while B > 0 and Ri 6= ∅ do
4: Let τ∗ be the latest time in Ri.
5: Update

B ← B − cτ
∗

i ∆ỹτ
∗

i .

6: for every τ ∈ [ℓ− 1] do
7: Update

∆ỹτi ← min{ỹτ , B/cτ∗i }.
8: If ∆ỹτi = ỹτ , then also update Ri ← Ri \ {τ∗}.
9: Finally, set

ỹℓnew ← yℓ,

and for all t ∈ [ℓ− 1]

ỹτnew ← ỹτ − max
i| ct

i
6=0

{∆ỹτi }.

By construction, at the end of while loop which always terminates, either Ri = ∅, or the total
budget spent is ∆B = cℓiy

ℓ
i =

∑
τ≤ℓ−1 c

τ
i ∆ỹτi . Throughout the execution, we always maintain

that

cℓiy
ℓ
i −

∑

τ≤ℓ−1

cτi∆ỹτ ≥ 0

and for all τ ∈ [ℓ− 1], that ∆ỹτi ≤ ỹτ .

Since cℓiy
ℓ
i −

∑
τ c

τ
i∆ỹτi ≥ 0 and for each τ ∈ Ri, by definition cτi ≥ 10 · dℓcℓi/ǫ, we get that

∑

τ≤ℓ−1

∆ỹτi ≤ ǫ

10 · dt ·
∑

τ≤ℓ−1

cτi ·∆ỹτi
cti

≤ ǫ

10 · dt · y
ℓ. (3.17)

Thus, even after the decreases of Algorithm 1, the total mass we add to ỹ is at least

(ỹℓnew − ỹℓ) +
∑

τ≤t−1

(ỹτnew − ỹτ ) = yℓ −
∑

τ≤ℓ−1

max
i| ct

i
6=0
{∆ỹτi }

≥ yℓ −
∑

i| ct
i
6=0

∑

τ≤ℓ−1

∆ỹτi

≥ yℓ − ǫ

10 · dℓ
∑

i| cℓ
i
6=0

yℓ

=
(
1− ǫ

10

)
yℓ.

Above, the first equality follows from the fact that we defined ỹℓ to be 0. The second inequality
came from (3.17), and the third from the fact that at most dℓ coordinates of cℓ are nonzero.
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Combining this with the inductive hypothesis (3.16),
∑

τ≤ℓ

ỹτnew = (ỹℓnew − ỹℓ) +
∑

τ≤ℓ−1

(ỹτnew − ỹτ ) +
∑

τ≤ℓ−1

ỹτ ≥
(
1− ǫ

10

)∑

τ∈C
τ≤ℓ

yℓ,

and hence inequality (3.16) is preserved.

It remains to prove that for any i ∈ [n] and s ≤ t = ℓ, inequality (3.15) holds. Fix an index i
and let τmin

i be the earliest time τ for which ∆ỹτi > 0. We split into cases.

Case 1: c
ℓ
i
= 0. In this case

∑

τ∈C:
τ∈[s,ℓ]

cτi ỹ
τ
new −

∑

τ∈P :
τ∈[s,ℓ]

pτi z
τ =

∑

τ∈C:
τ∈[s,ℓ−1]

cτi ỹ
τ
new −

∑

τ∈P :
τ∈[s,ℓ−1]

pτi z
τ ≤

∑

τ∈C:
τ∈[s,ℓ−1]

cτi ỹ
τ −

∑

τ∈P :
τ∈[s,ℓ−1]

pτi z
τ .

and inequality (3.15) holds by the induction hypothesis. Assume in the remaining cases that
cℓi > 0.

Case 2: Ri 6= ∅ at the end of the loop and s ≤ τmin
i

. In this case, the budget B was
completely spent, i.e.

cℓiy
ℓ =

∑

τ∈C
τ∈[τmin

i
, ℓ−1]

cτi∆ỹτi ,

which means that
∑

τ∈C:
τ∈[τmin

i
, ℓ]

cτi ỹ
τ
new −

∑

τ∈P :
τ∈[τmin

i
, ℓ]

pτi z
τ ≤

∑

τ∈C:
τ∈[τmin

i
, ℓ−1]

cτi ỹ
τ −

∑

τ∈P :
τ∈[τmin

i
, ℓ−1]

pτi z
τ .

Then, for any s ≤ τmin
i ,
∑

τ∈C:
τ∈[s,ℓ]

cτi ỹ
τ
new −

∑

τ∈P :
τ∈[s,ℓ]

pτi z
τ ≤

∑

τ∈C:
τ∈[s,ℓ−1]

cτi ỹ
τ −

∑

τ∈P :
τ∈[s,ℓ−1]

pτi z
τ ,

and again, inequality (3.15) holds by the induction hypothesis.

Case 3: Ri = ∅ at the end of the loop or s > τmin
i

. In this case [s, ℓ]∩Ri = ∅ and therefore,
for each τ ∈ [s, ℓ] either ỹτnew = 0, or cτi ≤ 10 · dℓcℓi/ǫ. Define

S = C ∩ {τ ∈ [s, ℓ], ỹτ > 0},
cmax
i (S) = max

τ∈S
{cτi } ≤ 10 · dℓcℓi/ǫ.

Applying Lemma 3.9 with the set S above, we get that:

1

wi




∑

τ∈C
τ∈[s,t]

cτi ỹ
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ


 =

1

wi



∑

τ∈S

cτi y
τ −

∑

τ∈P :
τ∈[s,t]

pτi z
τ




≤ log

(
1 +

4d · cmax
i (S)

ǫ
· xti

)

≤ log

(
1 +

4d

ǫ
· 10 · d

ℓcℓi
ǫ

· 1

cℓi

)

≤ log

(
1 +

40d2

ǫ2

)
.

The second inequality follows from the definition of cmax
i (S). The last inequality follows from

the fact that xℓi ≤ 1/cℓ
i
, since otherwise the constraint at time ℓ is already satisfied at time ℓ− 1.

This concludes the proof.
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4 Rounding

In this section we study several applications of the chasing positive bodies problem. For each of
these problems we show that a suitable fractional version of it fits into our framework. We then
show how to round the fractional solution to an integral solution.

4.1 Dynamic Set Cover

In the set cover problem we are given a universe of n elements U and a collection of m sets
S1, . . . , Sm ⊆ U , where each set Si has a cost c(Si) ≥ 0. The goal is to find a minimum cost
collection of sets that covers all elements.

In the dynamic setting, at each time-step t ∈ [T ], an element gets inserted into/deleted from
the universe U . Let U t denote the state of U at time t,4 and let Opt

t denote the cost of
the optimal fractional set cover for U t. We wish to maintain a set cover St of U t whose cost
c(St) :=

∑
S∈St c(S) is always within a factor β ≥ 1 of Opt

t, such that the total recourse,∑
t∈[T ] |St ⊕ St−1|, is as small as possible. The fractional version of the dynamic set cover

problem fits naturally into our framework

Kt :=




xt ∈ R

m
+

∣∣∣∣∣∣∣

∑
i∈[m] :
u∈Si

xti ≥ 1 ∀u ∈ U t,

∑
i∈[m] c(Si) · xti ≤ β · Opt

t





.

Theorem 4.1 (Set Cover Rounding). For any fractional solution xt to dynamic set cover, we
have:

(1) A deterministic dynamic rounding scheme such that

∑

t∈[T ]

|St ⊕ St−1| ≤ O(f) ·
∑

t∈[T ]

‖xt − xt−1‖1,

∑

S∈St

c(S) ≤ O(f) ·
∑

i∈[m]

c(Si) · xti ∀t ∈ [T ].

Here, f is an upper bound on the maximum frequency of any element at any time, i.e.,

f ≥ max
u∈U t

|{i ∈ [m] : u ∈ Si}| ∀t ∈ [T ].

(2) For every α ≥ 1, a randomized dynamic rounding scheme such that

E


∑

t∈[T ]

∣∣St ⊕ St−1
∣∣

 ≤ (α log n) ·

∑

t∈[T ]

‖xt − xt−1‖1 +O

(
T

nα

)
, (4.1)

E

[
∑

S∈St

c(S)

]
≤ O(α log n) ·

∑

i∈[m]

c(Si) · xti ∀t ∈ [T ]. (4.2)

Here, n ≥ maxt |U t| is an upper bound on the number of elements in the universe at any
time.

4We assume that each element in U t is covered by at least one set in {S1, . . . , Sm}. This ensures the existence
of a valid set cover.
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The proof, which we defer to Appendix B, is an adaptation of standard offline rounding tech-
niques to the dynamic setting. Note that in this problem the row sparsity of the covering
constraints of Kt is at most f ≥ maxu∈U t |{i ∈ [m] : u ∈ Si}|. Hence, by setting ǫ = 1 in Theo-
rem 1.1, we can maintain a fractional solution xt that satisfies the covering constraints, at any
time t has cost at most O(β) ·Opt

t, and has a O(log f)-competitive total recourse with respect
to any offline algorithm maintaining a fractional solution of cost ≤ β · Opt

t. Also note that if
we set α to be a constant, then the additive term in (4.1) becomes 1/poly(n) per time-step.
Combining this with Theorem 4.1 we get:

Corollary 4.2. For any β ≥ 1 and any update-sequence σ consisting of T updates, there exist:

(1) A deterministic dynamic algorithm that maintains a set cover St with cost O(β · f ·Opt
t)

at all times, whose total recourse is at most O(f log f) · Opt
β
Rec

(σ).

(2) A randomized dynamic algorithm that maintains a set cover St with expected cost O(β ·
log n·Opt

t) at all times, whose expected total recourse is at most O(log f ·log n)·Opt
β
Rec

(σ)+
T

poly(n) .

Here, Opt
β
Rec

(σ) is the optimal total recourse for any offline algorithm which maintains a frac-
tional set cover of cost at most β · Opt

t throughout the update-sequence σ.

We observe that we can easily extend our analysis to allow for other forms of updates, such as
changing the cost of a set.

4.2 Dynamic Bipartite Matching

In the maximum bipartite matching problem, we are given a bipartite graph G = (V,E) with
|V | = n nodes. A matching M ⊆ E is subset of edges that do not share any common endpoint,
and the goal is to find a matching M of maximum size. In the dynamic setting, at each time-step
t ∈ [T ] an edge gets inserted into/deleted from the set E. Let Et denote the state of E at time
t, and let Opt

t denote the value of the maximum fractional matching at time t. We wish to
maintain a matching M t in Gt = (V,Et) whose size is always within a constant factor β ≤ 1 of
Opt

t, such that the total recourse,
∑

t∈[T ] |M t ⊕M t−1|, is as small as possible. The fractional
version of the dynamic maximum matching problem fits naturally into our framework with the
following

Kt :=



xt ∈ R

(|V |
2 )

+

∣∣∣∣∣∣

∑
e∈∂(v) x

t
e ≤ 1 ∀v ∈ V,

xte = 0 ∀e ∈
(V
2

)
\Et,∑

e∈Et xte ≥ β · Opt
t.



 . (4.3)

Note that the vector xt has an entry for every potential edge (i.e., unordered pair of nodes)
e ∈

(V
2

)
. If a potential edge e is currently not present in the graph, then we set xte = 0. The

notation ∂(v) denotes the set of all potential edges with one endpoint in v ∈ V .

The main result in this section is summarized below. The proof of Theorem 4.3, which we defer
to Appendix C, follows from an adaptation of a standard rounding technique [ACC+18] to our
setting.

Theorem 4.3 (Maximum Matching Rounding). For any fractional solution xt to dynamic bi-
partite matching, and any δ ∈ (0, 1), α ≥ 1, there exists a randomized dynamic rounding scheme
such that:

E


∑

t∈[T ]

∣∣M t ⊕M t−1
∣∣

 ≤ O

(
α log n

δ3

)
·
∑

t∈[T ]

‖xt − xt−1‖1 +O

(
T

δ · nα

)
. (4.4)
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E
[∣∣M t

∣∣] ≥ (1− δ) ·
∑

e∈Et

xte ∀t ∈ [T ]. (4.5)

Note that in this problem the row-sparsity of the covering constraint in Kt is at most
(n
2

)
=

Θ(n2). Thus, using the online algorithm from Theorem 1.1, we can maintain a fractional match-
ing xt that satisfies

∑
e∈Et xte ≥ (1 − ǫ)β · Opt

t at all times t, and has a O((1/ǫ) · log(n/ǫ))-
competitive total recourse with respect to any offline algorithm which maintains a fractional
matching of value ≥ β · Opt

t. Setting δ = ǫ and α to be some large constant, and combining
this with Theorem 4.3, we now get:

Corollary 4.4. For any β, ǫ ∈ (0, 1], and any update-sequence σ with T updates, there exists
a randomized dynamic algorithm that maintains a matching M t of expected size at least (1 −
ǫ)β · Opt

t at all times, with expected total recourse O((1/ǫ4) · log n · log(n/ǫ)) · Opt
β
Rec

(σ) +
T

ǫ·poly(n) . Here, Opt
β
Rec

(σ) is the optimal total recourse for any offline algorithm which maintains

a fractional matching of value at least β · Opt
t throughout the update-sequence σ.

We remark that it is straightforward to extend Theorem 4.3 and Corollary 4.4 to weighted
bipartite graphs, at the cost of incurring an exponential in (1/ǫ) factor overhead in recourse,
using a well-known reduction due to Bernstein et al. (see Theorem 3.1 in [BDL21]). We can
also easily extend our analysis to also allow for vertex updates as well.

4.3 Dynamic Load Balancing on Unrelated Machines

In the load balancing problem, we are given a set M of m machines, and a set J of jobs. Each
job j ∈ J can only be processed by a nonempty subset M(j) ⊆ M of machines. If we assign job
j to machine i ∈ M(j), then the machine incurs a load of pij . Our goal is to come up with a valid
assignment ψ : J → M of jobs to machines so as to minimize the “makespan”, which is defined

to be the maximum load on any machine and is given by Obj(ψ) := maxi∈M

(∑
j∈J :ψ(j)=i pij

)
.

In the dynamic setting, at each time-step t a job gets inserted into/deleted from the set J . (Our
analysis also works for other types of updates, such as changing the set M(j) for a job j.) Let
J t denote the set of jobs at time t. Let Opt

t
int denote the optimal integral makespan at time

t. We wish to maintain a valid assignment ψt : J t → M such that Obj(ψt) ≤ β · Opt
t
int for

some β ≥ 1. We incur a “recourse” of one whenever a job gets reassigned from one machine to
another, or whenever a job gets inserted into/deleted from the set J . Overloading the notation
⊕, which denotes the symmetric difference between two sets, we define the recourse incurred at
time t to be ψt−1 ⊕ ψt := |J t ⊕ J t−1| + |{j ∈ J t ∩ J t−1 : ψt(j) 6= ψt−1(j)}|. We wish to ensure
that the total recourse, given by

∑
t∈[T ] ψ

t ⊕ ψt−1, is as small as possible. Let J denote the

collection of all possible jobs that can ever be present, so that we have J t ⊆ J for all t, and let
n := |J |. The fractional version of this dynamic problem fits into our framework, where the set

Kt consists of all xt ∈ R
|J |×|M |
+ that satisfy the following constraints:

∑

i∈M

xtij ≥ 1 ∀j ∈ J t. (4.6)

xtij = 0 ∀i ∈ M, j ∈ J t with pij > Opt
t
int. (4.7)

xtij = 0 ∀i ∈ M, j ∈ J \ J t. (4.8)

xtij = 0 ∀j ∈ J , i ∈ M \M(j). (4.9)
∑

j∈Jt

pij · xtij ≤ β · Opt
t
int ∀i ∈ M. (4.10)

The main result in this section is summarized below. The proof of Theorem 4.5 follows almost
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immediately from a recent result by Krishnaswamy et al. [KLS23]. Parts 1 and 2 of the theorem
below follow from Appendix B and Section 4 of [KLS23], respectively.5

Theorem 4.5 (Load Balancing Rounding by [KLS23]). Consider any fractional solution xt to
the dynamic load balancing problem on unrelated machines. Then we have:

(1) For any δ > 0, a deterministic dynamic rounding scheme such that:

∑

t∈[T ]

ψt ⊕ ψt−1 ≤ O

(
1

δ4
log

1

δ
· log n

)
·
∑

t∈[T ]

∥∥xt − xt−1
∥∥
1
, (4.11)

Obj(ψt) ≤ (2 + δ)β · Opt
t
int ∀t ∈ [T ]. (4.12)

(2) A randomized dynamic rounding scheme such that:

E


∑

t∈[T ]

ψt ⊕ ψt−1


 ≤ O(1) ·

∑

t∈[T ]

∥∥xt − xt−1
∥∥
1
+

T

poly(n)
, (4.13)

E
[
Obj(ψt)

]
= O

(
log log n

log log log n

)
· Opt

t
int ∀t ∈ [T ]. (4.14)

The row-sparsity of the covering constraints in Kt is r := maxj∈J |M(j)|. Thus, by Theorem 1.1,
we can maintain a fractional solution xt that satisfies the four constraints (4.6)-(4.9) as well as
the constraint

∑
j∈Jt pij · xtij ≤ (1 + ǫ)β · Opt

t
int at all times t. Furthermore this solution has

total recourse that is O((1/ǫ) log(r/ǫ))-competitive with respect to any offline algorithm which
maintains a feasible fractional solution to all five constraints (4.6)-(4.10). Setting δ = ǫ and
combining this with Theorem 4.5, we get:

Corollary 4.6. For any β ≥ 1, ǫ ∈ (0, 1], and any update-sequence σ with T updates, there
exist:

(1) A deterministic dynamic algorithm that maintains an assignment ψt with makespan at most

(2+ǫ)β ·Opt
t
int at all times, with total recourse O((1/ǫ5) log(1/ǫ) log n log(r/ǫ)) ·Opt

β
Rec

(σ).

(2) A randomized dynamic algorithm that maintains an assignment ψt with expected makespan

O( log logn
log log logn) ·Opt

t
int for all t, with expected total recourse O(log(r)) ·Opt

β
Rec

(σ)+ T
poly(n) .

Here, Opt
β
Rec

(σ) is the optimal total recourse for any offline algorithm which maintains a feasible
fractional solution to all the five constraints (4.6)-(4.10) throughout the update-sequence σ, and
r := maxj∈J |M(j)| is the maximum number of machines that are willing to process any given
job.

4.4 Dynamic Minimum Spanning Tree

In the minimum spanning tree (MST) problem, we are given a connected graph G = (V,E) with
|V | = n nodes, and a cost ce ≥ 0 associated with each edge. Our goal is to compute a spanning
tree T = (V,ET ) of G of minimum total cost

∑
e∈ET

ce.

In the dynamic setting, at each time-step t ∈ [T ] an edge gets inserted into/deleted from the set
E, subject to the condition that the input graph G = (V,E) remains connected. Let Et denote
the state of E at time t, and let Opt

t denote the value of the minimum cost spanning tree of
Gt = (V,Et). We wish to maintain a spanning tree T t = (V,Et

T ) in Gt whose cost is always

5The final result on load balancing of [KLS23] handles only job arrivals because of the limitation of their
online fractional algorithm. However, their rounding schemes work in the fully dynamic setting.
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within a factor β ≥ 1 of Opt
t, such that the total recourse,

∑
t∈[T ]

∣∣Et
T ⊕ Et−1

T

∣∣ is as small as
possible. The fractional version of the dynamic MST problem fits naturally into our framework
with the following

Kt :=



xt ∈ R

(|V |
2 )

+

∣∣∣∣∣∣

∑
e∈∂t(S) x

t
e ≥ 1 ∀ ∅ ⊂ S ⊂ V,

xte = 0 ∀e ∈
(V
2

)
\Et,∑

e∈Et ce · xte ≤ β · Opt
t.



 . (4.15)

Note that the vector xt has an entry for every potential edge e ∈
(V
2

)
. If a potential edge e is

currently not present in the graph, then we set xte = 0. The notation ∂t(S) denotes the set of all

edges in Gt crossing the cut S. We say that an xt ∈ R
(V2)
+ is a fractional MST in Gt, with cost

at most β ·Opt
t, iff xt ∈ Kt as per (4.15) above. The main result in this section is summarized

in the theorem below. We defer the proof of Theorem 4.7 to Appendix D.

Theorem 4.7 (MST Rounding). Consider any fractional solution xt to the dynamic MST
problem, and any δ > 0, α ≥ 1. Then there exists a randomized dynamic rounding scheme which
maintains a spanning tree T t = (V,Et

T ) of Gt such that:

E


∑

t∈[T ]

∣∣Et
T ⊕ Et−1

T

∣∣

 ≤ O

(
α log n

δ2

)
·
∑

t∈[T ]

∥∥xt − xt−1
∥∥
1
+

T

O(nα)
, (4.16)

∑

e∈Et

T

ce ≤ (2 + δ) ·
∑

e∈Et

ce · xte ∀t ∈ [T ]. (4.17)

In this problem, the row-sparsity of the covering constraints is at most
(n
2

)
= Θ(n2). Thus,

by Theorem 1.1, we can maintain a fractional MST xt in Gt that has cost
∑

e∈Et ce · xte ≤
(1+ ǫ)β ·Opt

t, and has a O((1/ǫ) log(n/ǫ))-competitive total recourse with respect to any offline
algorithm which maintains a fractional MST of cost at most β ·Opt

t at all times. Setting δ = ǫ
and α to be some large constant, and combining this with Theorem 4.7, we get:

Corollary 4.8. For any β ≥ 1, ǫ ∈ (0, 1], and any update-sequence σ with T updates, there exists
a randomized dynamic algorithm that maintains a spanning tree of cost at most (2 + ǫ)β · Opt

t

at all times, with expected total recourse O((1/ǫ3) · log n · log(n/ǫ)) · Opt
β
Rec

(σ) + T
poly(n) . Here,

Opt
β
Rec

(σ) is the optimal total recourse for any offline algorithm which maintains a fractional
MST of cost at most β · Opt

t throughout the update-sequence σ.

We remark that we can easily extend our analysis to allow for other forms of updates, such as
changing the cost of an edge that is being inserted, or vertex insertions/deletions.

A Reducing Positive Bodies to Positive Halfspaces

In this section we show that it is enough to assume that at each time t, each positive body Kt

is defined by a single covering or packing constraint.

Suppose we have an algorithm A for chasing halfspaces that satisfies covering constraints fully
and satisfies packing constraints up to ǫ: the algorithm produces xt such that for all t ∈ C we
have

〈
ct, x

〉
≥ 1 and for all t ∈ P we have

〈
pt, x

〉
≤ 1 + ǫ.

The following is an algorithm A′ for the that satisfies packing constraints up to violation δ. Given
a body Kt 6= ∅, while there a constraint of Kt violated by at least δ/10, feed that constraint
to algorithm A run with parameter ǫ = δ/20. With every such fix, algorithm A moves at
least Ω(δ/w), where w is the maximal non-zero coefficient in the constraint. Since there exists

19



a finite-movement optimal solution that satisfies all the constraints, and the competitive ratio
of algorithm A that chases half-spaces is also finite, we get that the number of such rounds is
finite.

Hence, after finitely many rounds, all the constraints in Kt are satisfied up to δ/10. By scaling
up the solution by (1− δ/10)−1 (in all times t), we may ensure that all covering constraints are
fully satisfied, and packing constraints are violated by up to δ. Furthermore, if A is c-competitive
for positive halfspace chasing, then the solution output by A is at most c that of the optimal
algorithm that chases the bodies Kt. Hence algorithm A′ is also O(c) competitive for positive
body chasing.

B Proof of Theorem 4.1

Theorem 4.1 (Set Cover Rounding). For any fractional solution xt to dynamic set cover, we
have:

(1) A deterministic dynamic rounding scheme such that

∑

t∈[T ]

|St ⊕ St−1| ≤ O(f) ·
∑

t∈[T ]

‖xt − xt−1‖1,

∑

S∈St

c(S) ≤ O(f) ·
∑

i∈[m]

c(Si) · xti ∀t ∈ [T ].

Here, f is an upper bound on the maximum frequency of any element at any time, i.e.,

f ≥ max
u∈U t

|{i ∈ [m] : u ∈ Si}| ∀t ∈ [T ].

(2) For every α ≥ 1, a randomized dynamic rounding scheme such that

E


∑

t∈[T ]

∣∣St ⊕ St−1
∣∣

 ≤ (α log n) ·

∑

t∈[T ]

‖xt − xt−1‖1 +O

(
T

nα

)
, (4.1)

E

[
∑

S∈St

c(S)

]
≤ O(α log n) ·

∑

i∈[m]

c(Si) · xti ∀t ∈ [T ]. (4.2)

Here, n ≥ maxt |U t| is an upper bound on the number of elements in the universe at any
time.

Proof. We prove each part separately.

Proof of (1): Initialize S0 = ∅. Subsequently, while handling the update at time t, initialize
St = St−1. Next, whenever xti ≥ 1/f for some Si /∈ St, add Si to St. In contrast, whenever the
LP-value xti ≤ 1/2f for some Si ∈ St, remove Si from St.

Thus, we always have {Si : xi ≥ 1/2f} ⊇ S ⊇ {Si : xi ≥ 1/f}. Since x is a valid fractional set
cover, this ensures that S is a valid integral set cover with cost at most 2f ·∑m

i=1 c(Si) · xti.
To bound the recourse, note that we insert/delete a set Si in S (thereby incurring a recourse of
one) only after its LP-value has changed by at least 1/2f. In other words, the recourse of our
rounding scheme is at most 2f times the recourse incurred by the underlying dynamic algorithm
which maintains the fractional solution x.

Proof of (2): We maintain two collections of sets Rt and Bt, and output as our solution
St := Rt ∪ Bt. (The reader may think of R as being the randomly sampled sets, and B as the
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backup sets.) For each i ∈ [m], the set Si has an exponential random variable χi with parameter
λ := α log n that is sampled once and fixed at the outset of the dynamic process. Throughout
the sequence of updates, any every time-step we define Rt := {Si ∈ S : xti ≥ χi}. For each
element u ∈ U , let S(u) denote a minimum cost set in {S1, . . . , Sm} which contains u. Define
Bt = {S(u) | u uncovered by Rt}.
Clearly Rt ∪ Bt is a feasible set cover; it remains to analyze the approximation ratio and the
recourse. We do so separately for Rt and Bt.

To analyze Rt, note that for all i ∈ [m], we have

Pr[Si ∈ Rt] = Pr[xti ≥ χi] = 1− exp
(
−xti · α log n

)
≤ xti · α log n.

Summing over i ∈ [m], we bound the expected cost of Rt as E[c(Rt)] ≤ ∑
i∈[m] c(Si) ·xti ·α log n.

For the recourse of R, observe that due to the tth update, the set Si contributes a recourse of
one iff χi lies in an interval of length

∣∣xti − xt−1
i

∣∣. As the exponential distribution is memoryless,
this event occurs with probability at most 1− exp

(
−
∣∣xti − xt−1

i

∣∣ · α log n
)
≤

∣∣xti − xt−1
i

∣∣ ·α log n.
Summing over all i ∈ [m], the expected recourse of R due to the tth update is given by:

E
[∣∣Rt ⊕Rt−1

∣∣] ≤ α log n ·
∥∥xt − xt−1

∥∥
1
.

Moving on to Bt, consider any element u ∈ U t. We have:

Pr
[
u not covered by Rt

]
=

∏

i∈[m]:u∈Si

Pr[Si /∈ Rt] =
∏

i∈[m]:u∈Si

e−xt
i
·α logn

= exp



−α log n ·


 ∑

i∈[m]:u∈Si

xti





 ≤ 1

nα
,

where the last inequality holds since xti is a feasible fractional set cover. Since |U t| ≤ n, it follows
that the expected number of uncovered (with respect to Rt) elements in U t is at most n · 1/nα ≤
1/nα−1. Each of these uncovered elements contributes one set to Bt. Accordingly, the expected
recourse of B for the tth update is at most E

[
Bt ⊕ Bt−1

]
≤ E

[
|Bt|+ |Bt−1|

]
= O(1/nα−1).

To bound the expected cost of Bt, note that each set B ∈ Bt is added because of an element
u ∈ U t that is uncovered by Rt. Since B = S(u) is a cheapest set covering u and xti is a feasible
fractional set cover for U t, we have c(B) ≤ ∑

i∈[m] c(Si) · xti. By the argument above, we now
derive that:

E
[
c(Bt)

]
≤ E


|Bt| ·

∑

i∈[m]

c(Si) · xti


 ≤ 1

nα−1
·
∑

i∈[m]

c(Si) · xti = O(α log n)
∑

i∈[m]

c(Si) · xti.

To summarize, the total expected cost of St = Rt ∪ Bt is at most O(α log n) ·∑i∈[m] c(Si) · xti,
and the expected recourse per update is at most α log n · ‖xt − xt−1‖1 +O(1/α).

C Proof of Theorem 4.3

Theorem 4.3 (Maximum Matching Rounding). For any fractional solution xt to dynamic bi-
partite matching, and any δ ∈ (0, 1), α ≥ 1, there exists a randomized dynamic rounding scheme
such that:

E


∑

t∈[T ]

∣∣M t ⊕M t−1
∣∣

 ≤ O

(
α log n

δ3

)
·
∑

t∈[T ]

‖xt − xt−1‖1 +O

(
T

δ · nα

)
. (4.4)

21



E
[∣∣M t

∣∣] ≥ (1− δ) ·
∑

e∈Et

xte ∀t ∈ [T ]. (4.5)

Our rounding scheme consists of two steps. In the first, we maintain a subgraph Ht of Gt, which
we call a stabilizer, such that the recourse of Ht is bounded with respect to the ℓ1 movement of
xt, and Ht contains a matching whose size is very close to Obj(xt) :=

∑
e∈E xte. In the second

step, we maintain a (1− δ)-approximate maximum matching in Ht whose recourse is small with
respect to the number of updates to Ht.

In the first step, we show:

Lemma C.1. We can maintain a subgraph H = (V,EH) of Gt such that:

(1) E[µ(Ht)] ≥ (1− δ) · Obj(xt) at all times t, where µ(Ht) is the maximum matching size in
Ht.

(2) E

[
∑

t

∣∣Et−1
H ⊕ Et

H

∣∣
]
≤ O

(
α log n

δ2

)
·
∑

t

∥∥xt − xt−1
∥∥
1
+O

(
T

nα

)
.

We defer the proof of Lemma C.1 for a moment, while we show how to complete the proof of
the theorem.

Lemma C.2. We can maintain a (1−δ)-approximate maximum matching M t in Ht, with O(1/δ)
absolute recourse per update in Ht.

Proof. We maintain a matching M t in Ht that does not admit any augmenting path of length
less than 1+Θ(1/δ). Such a matching M t is a (1−δ)-approximate maximum matching in Ht. If
an update in Ht leads to the creation of an augmenting path of length less than 1+Θ(1/δ) with
respect to M t, then we modify M t by augmenting along that path. This implies an absolute
recourse of O(1/δ) per update in Ht.

Theorem 4.3 now follows by combining Lemma C.2 and Lemma C.1.

Proof of Lemma C.1. We construct the stabilizer Ht as follows. Fix the parameter

κ := ⌈(100(α + 4) log n)/δ2⌉. (C.1)

At preprocessing, for each e = (u, v) ∈
(V
2

)
and each i ∈ [κ], we draw a value χe,i ∈ [0, 1]

uniformly and independently at random. Define the collection of multi-edges

F t :=

{
ei : e ∈

(
V

2

)
, i ∈ [κ], and xe > χe,i

}
,

(note that F t is always a subset of the edge set of Gt) and let z be the weighted multigraph that
assigns each edge in F t the value ((1 + δ)κ)−1. Define Γt to be the event that zt represents a
valid fractional matching in F t. Finally, set the edge set of Ht to be F t if Γt holds, otherwise
set Ht to be an arbitrary maximum matching in Gt.

Before proving Lemma C.1, we first show that zt is a high-value fractional matching with good
probability. For convenience, let

Obj(zt) :=
∑

ei∈F t

ztei .

Also, for each edge e ∈ Et and i ∈ [κ], let Xe,i ∈ {0, 1} be the indicator for the event that
ei ∈ Et

F . Note that
E[Xe,i] = Pr [xe > χe,i] = xte. (C.2)

Claim C.3. For all time-steps t, event Γt holds with probability at least 1− 1/nα+3.
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Proof. Fix any node v ∈ V . Let degt(v, F ) denote the number of multi-edges incident on v in
F . Since zei = (1 + δ)−1 · (1/κ) for all ei ∈ Et

F , it suffices to show that degt(v, F ) ≤ (1 + δ)κ
with sufficiently high probability. Observe that (C.2) implies

E[degt(v, F )] =
∑

e∈Et(v), i∈[κ]

E[Xe,i] =
∑

e∈Et(v)

κ · xte ≤ κ. (C.3)

Recall the value of κ from (C.1). Applying a Chernoff bound,

Pr
[
degt(v, F ) ≤ (1 + δ) · κ

]
≥ 1− 1/nα+4. (C.4)

The claim follows by a union bound over all n nodes in Gt.

Claim C.4. For all time-steps t, we have E[Obj(zt) | Γt] ≥ (1−Θ(δ)) · Obj(xt)− 1/nα+1.

Proof. From (C.2) and the fact that ztei = ((1 + δ)κ)−1,

E[Obj(zt)] =
∑

e∈Et

E




∑

i∈[κ]: ei∈Et

F

ztei


 =

∑

e∈Et

(1 + δ)−1 · xte. ≥ (1−Θ(δ)) · Obj(xt) (C.5)

Next, since |Et
F | ≤ κn2, it follows that with probability 1

Obj(zt) = |Et
F | · (1 + δ)−1(1/κ) ≤ n2. (C.6)

By the law of total probability

E[Obj(zt) | Γt] ≥ E[Obj(zt) | Γt] · Pr
[
Γt
]
= E[Obj(zt)]− E

[
Obj(zt)

∣∣∣ Γt
]
· Pr

[
Γt
]
.

Using (C.5), (C.6), and Claim C.3, we conclude

E[Obj(zt) | Γt] ≥ (1−Θ(δ)) · Obj(xt)− n2

nα+3
= (1−Θ(δ)) · Obj(xt)− 1/nα+1.

We are now ready to prove part (1) of Lemma C.1. The claim is trivially true if Gt is the empty
graph. Otherwise, by the law of total probability,

E[µ(Ht)] = E[µ(F t) | Γt] · Pr
[
Γt
]
+ E[µ(Gt) | Γt] · Pr

[
Γt
]

≥ E[Obj(zt) | Γt] · Pr
[
Γt
]
+ Obj(xt) · Pr

[
Γt
]

(C.7)

≥ (1−Θ(δ)) · Obj(xt)− 1/nα+1 (C.8)

≥ (1−Θ(δ)) · Obj(xt). (C.9)

Step (C.7) follows from the fact that the bipartite matching polytope has no integrality gap,
step (C.8) from Claim C.4, and step (C.9) since Gt is nonempty and hence 1/nα+1 ≤ δ ·Obj(xt).
We conclude with the proof of part (2). The recourse of Ht is at most the recourse of F t, plus
n2 for every time-step that Γt does not hold (because in this case we need to replace the graph
with a maximum matching in Gt and back which requires at most 2 ·

(n
2

)
≤ n2 edge insertions).

Since Γt holds with probability 1 − 1/nα+3, the expected contribution of switching to Gt and
back is at most 1/nα per time-step.

To bound the recourse of F t, note that each copy of an edge ei ∈ Et
F ⊕ Et−1

F iff the random
variable χe,i (which is uniform in [0, 1]) lies in an interval of length

∣∣xte − xt−1
e

∣∣, and hence

E[
∣∣Et

F ⊕Et−1
F

∣∣] = κ ·
∑

e∈(V2)

∣∣xte − xt−1
e

∣∣ = κ ·
∥∥xt − xt−1

∥∥
1
.
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Summing over all time-steps t and putting everything together, the total expected recourse of
Ht is at most

E

[
∑

t

∣∣Et
H ⊕ Et−1

H

∣∣
]
≤ κ ·

∑

t

∥∥xt − xt−1
∥∥
1
+

∑

t

1/nα.

D Proof of Theorem 4.7

Theorem 4.7 (MST Rounding). Consider any fractional solution xt to the dynamic MST
problem, and any δ > 0, α ≥ 1. Then there exists a randomized dynamic rounding scheme which
maintains a spanning tree T t = (V,Et

T ) of Gt such that:

E



∑

t∈[T ]

∣∣Et
T ⊕ Et−1

T

∣∣

 ≤ O

(
α log n

δ2

)
·
∑

t∈[T ]

∥∥xt − xt−1
∥∥
1
+

T

O(nα)
, (4.16)

∑

e∈Et

T

ce ≤ (2 + δ) ·
∑

e∈Et

ce · xte ∀t ∈ [T ]. (4.17)

We follow the same paradigm as in Appendix C of maintaining a stabilizer, which in this case
is a graph that contains a low-cost spanning tree whose recourse is bounded with respect to the
ℓ1 movement of x, and then giving an absolute recourse algorithm with respect to the updates
to the stabilizer.

In the first step, we show:

Lemma D.1. We can maintain a subgraph H = (V,EH) of Gt such that:

(1) E
[
µ(Ht)

]
≤ (2+δ)

∑
e∈Et ce ·xte, where µ(Ht) is the expected cost of the minimum spanning

tree of Ht.

(2) E

[
∑

t

∣∣Et−1
H ⊕ Et

H

∣∣
]
≤ O

(
α log n

δ2

)
·
∑

t

∥∥xt − xt−1
∥∥
1
+O

(
T

nα

)
.

Once again, we show to complete the proof before giving the stabilizer construction.

Lemma D.2. We can maintain a minimum spanning tree T of F with O(1) absolute recourse
per edge insertion/deletion in F .

Proof. When edge e gets deleted from F , if e /∈ ET , we don’t make any changes to T , otherwise
replace e in ET , with the cheapest edge crossing its fundamental cut. When an edge e is
added to F , add e to ET then delete from ET the cheapest edge along the fundamental cycle
associated with e. In both cases T remains the MST after the update, and incurs absolute
recourse O(1).

Combining Lemma D.1 and Lemma D.2 yields Theorem 4.7. We turn to showing how to build
the stabilizer.

Proof of Lemma D.1. Let γ > 0 be a sufficiently large constant. For every edge e ∈
(V
2

)
, define

pte := min

{
1,

100γ(α + 3) log n · xte
δ2

}
(D.1)

At preprocessing, for each edge e ∈
(V
2

)
we draw a value χe ∈ [0, 1] uniformly and independently

at random, and define the edge set F t :=
{
e ∈

(
V
2

)
: pte > χe

}
(note that F t is always a subset

of the live edges Et). Let Γt be the event that F t contains a spanning tree of cost at most
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(2 + δ) ·∑e∈Et ce · xte. Finally, define the edge set of Ht to be F t if Γt holds, otherwise set Ht

to be an arbitrary minimum spanning tree of Gt.

Part (1) of Lemma D.1 is immediate by construction (since the integrality gap of the cut LP
formulation of minimum spanning is at most 2), and it remains to prove part (2). To this end,
we show that Ht contains a cheap spanning tree with good probability.

Claim D.3. For all time-steps t, event Γt holds with probability at least 1− 1/nα+3.

Proof. We follow the proof of Lemma 3.8 in [CQ18]. Let (Gt, xt) be the weighted graph with
edge weights defined by xt. Define the strength of an edge e, denoted by κte, to be the maximum
value of k such that a maximal k-connected vertex-induced subgraph of Gt contains e.

The mincut in (Gt, xt) has value ≥ 1, since xt is feasible to (4.15), and therefore κte ≥ 1 for all
e ∈ Et. For each edge e ∈ Et, we now define

qte := min

{
1,

γ(α+ 3) log n · ce · xte
δ2 ·∑e′∈Et ce′ · xte′

}
and rte := max{pte, qte}. (D.2)

Now, consider the weighted graph (Zt, zt) with edge set Et
Z :=

{
e ∈

(V
2

)
: rte > χe

}
, where the

weight of edge e ∈ Et
Z is zte := (1 + δ) · xte/rte. Let E t be the event that the weighted graph

(Zt, zt) has mincut at least 1 and has
∑

e∈Et

Z

ce · zte ≤ (1 + δ) ·∑e∈Et ce · xte. Since the cut LP

formulation of minimum spanning tree has integrality gap at most 2, event E t in turn means
that Zt contains an integral spanning tree T ′ of cost at most 2(1 + δ) ·∑e∈Et ce · xte.
Following the analysis in the proof of Lemma 3.8 in [CQ18], we derive that E t holds with
probability at least 1−1/nα+3. Conditioned on E t holding, consider any edge e∗ ∈ Et

Z \Et
F . We

have pte∗ ≤ χe∗ < rte∗ . Since χe∗ ∈ [0, 1], recalling the values of pte∗ and rte∗ from (D.1) and (D.2),
we infer that

100γ(α + 3) log n · xte∗
δ2

≤ γ(α+ 3) log n · ce∗ · xte∗
δ2 ·∑e∈Et ce · xte

.

Rearranging the terms in the above inequality, we get ce∗ ≥ 100 · ∑e∈Et ce · xte, which means
that e∗ is not in T ′, the spanning tree of cost 2(1 + δ) ·∑e∈Et ce · xte in Zt. In other words, the
edges of T are also contained in F t, which was the claim to be proven.

We conclude with the proof of part (2) of Lemma D.1. The recourse of Ht is at most the
recourse of F t, plus n2 for every time-step that Γt does not hold (because in this case we need to
replace the graph with a spanning tree in Gt and back which requires at most 2 ·

(n
2

)
≤ n2 edge

insertions). Since Γt holds with probability 1− 1/nα+3, the expected contribution of switching
to Gt and back is at most 1/nα per time-step.

To bound the recourse of F t, note that each edge e ∈ Et
F ⊕ Et−1

F iff the random variable χe

(which is uniform in [0, 1]) lies in an interval of length
∣∣pte − pt−1

e

∣∣ = O(α log n/δ2)
∣∣xte − xt−1

e

∣∣,
and hence

E[
∣∣Et

F ⊕ Et−1
F

∣∣] = O

(
α log n

δ2

)
·
∑

e∈(V2)

∣∣xte − xt−1
e

∣∣ = O

(
α log n

δ2

)
·
∥∥xt − xt−1

∥∥
1
.

Summing over all time-steps t and putting everything together, the total expected recourse of
Ht is at most

E

[
∑

t

∣∣Et
H ⊕ Et−1

H

∣∣
]
≤ O

(
α log n

δ2

)
·
∑

t

∥∥xt − xt−1
∥∥
1
+

∑

t

O(1/nα).
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E Lower Bound

In this section we show that resource augmentation is essential in order to get a sub-polynomial
competitive ratio for positive body chasing.

Theorem 1.2. No algorithm for positive body chasing can achieve competitive ratio better than

Ω

(
max

{
min

(
1

ǫ
√

log(1/ǫ)
,
√
n

)
, log n

})
.

The crux of our bound is the following lemma.

Lemma E.1. No algorithm for positive body chasing can achieve competitive ratio better than

max

{√
n(1− 10ǫ · √n log n)

10
, 0

}
.

Let us first see how this implies Theorem 1.2.

Proof of Theorem 1.2. First note that the Ω(log n) lower bound for fractional online set cover
(see e.g. [BN09b]) implies an Ω(log n) bound for positive body chasing, even with ǫ resource
augmentation when ǫ ∈ (0, 1].

It remains to argue the remaining part of the bound. If ǫ ≤ 1/(20
√
n log n), then Lemma E.1

implies a lower bound of Ω(
√
n). If on the other hand ǫ > 1/(20

√
n log n), then the same

construction from Lemma E.1 on a subspace of dimension n′ = 1/(900 · ǫ2 log(1/ǫ)) ≤ n implies
a lower bound of Ω(

√
n′) = Ω(1/ǫ

√
log(1/ǫ)).

Finally, we prove the main lemma.

Proof of Lemma E.1. Assume that n = 2k for sufficiently large k. Also, assume ǫ ≤ 1/10
√
n log n,

otherwise there is nothing to prove. Let hi be the ith row of the Hadamard matrix of order n. De-
fine S =

√
n(2

√
log n+1), as well as (x0, s0) = (2

√
(log n)/n ·~1,√n). Note that S = ‖(x0, s0)‖1.

We execute the following instance for M many phases. In each phase the adversary chooses a
uniformly random vector b ∈ {−1, 1}n. A phase is composed of n time-steps, where the body at
time t ∈ [n] is defined as

Kt =

{
(x, s) ∈ Rn+1

+

∣∣∣∣∣
〈
ht, x

〉
+ s+

n∑

i=1

xi ≥ bt + S +
〈
ht, x0

〉
}

if bt = 1

Kt =

{
(x, s) ∈ Rn+1

+

∣∣∣∣∣
〈
ht, x

〉
+ s+

n∑

i=1

xi ≤ bt + S +
〈
ht, x0

〉
}

if bt = −1.

We claim that this is an instance of positive body chasing. Let us first check that the constraint of
each Kt is a covering/packing constraint. For the left-hand side of each constraint, the coefficients
of each variable are at least zero because entries of ht are in {+1,−1} and so the coefficient of xi is
hti+1 ≥ 0. Also, the coefficient of s is 1. For the right-hand side, we have that bt+S+

〈
ht, x0

〉
≥ 0

because, by the definition of the Hadamard matrix,
〈
ht, x0

〉
equals to 0 when t > 0 and equals

to ‖x0‖ when t = 0. It remains to show that Kt 6= ∅. Observe that (x0, s0+bt) ∈ Kt and, in fact,
the constraint is tight:

〈
ht, x0

〉
+(s0+ bt)+

∑n
i=1 xi = bt+S+

〈
ht, x0

〉
because S =

∑
i xi+ s0.
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Movement cost of Alg: We argue that any online algorithm must pay at least n/2 · (1 −
10ǫ · √n log n) per phase in expectation.

For convenience, define Lt =
〈
ht, xt

〉
+ s +

∑
i xi to be the left-hand side of the constraints

above, and let Rt = S +
〈
ht, x0

〉
. The algorithm needs to satisfy covering constraints fully, and

packing constraints up to (1 + ǫ); if bt = 1, the algorithm must choose xt such that

Lt ≥ Rt + 1,

and if bt = −1, the algorithm must choose xt such that

Lt ≤ (Rt − 1)(1 + ǫ).

The term Lt must change by at least half the distance between Rt + 1 and (Rt − 1)(1 + ǫ) in
expectation, i.e.

E
[
|Lt − Lt−1|

]
≥ (Rt + 1)− (Rt − 1)(1 + ǫ)

2
= 1− ǫ(Rt − 1)

2
.

Since Lt =
〈
lt, (xt, st)

〉
where lt is a vector with coefficients in [0, 2], this implies that

E
[
‖(xt, st)− (xt−1, st−1)‖1

]
≥ 1

2
− ǫ(Rt − 1)

4
=

1− 10ǫ · √n log n

2
.

Therefore, the expected cost of any algorithm during a single phase of n time-steps is at least
n/2 · (1− 10ǫ · √n log n).

Movement of Opt: We argue that Opt pays at most 5
√
n in expectation per phase. We

begin by assuming that Opt always returns to (x0, s0) at the end of a phase, since this can only
increase the cost of Opt.

First, note that since (x0, s0 + bt) ∈ Kt, then the optimal solution may move at each time t
to this point, and return at the end to (x0, s0). The total movement cost of this solution is
bounded by 4

∑n
i=1 |bt| = 4n. However, we claim that a better solution is available to Opt with

high probability.

Let E be the event that ‖H−1b‖∞ ≤ 2
√

(log n)/n. Because

‖H−1b‖2 ≤ ‖H−1‖ · ‖b‖2 ≤
1√
n
· √n = 1,

we have that ‖H−1b‖1 ≤
√
n · ‖H−1b‖2 ≤

√
n. Define

x∗ = x0 +H−1b = 2

√
log n

n
·~1 +H−1b,

s∗ = S −
∑

i

x∗i ≥
√
n− ‖H−1b‖1

Now for all t ∈ [n], since
〈
ht, x∗

〉
=

〈
ht, x0

〉
+ bt by definition of x∗, we have by design

〈
ht, x∗

〉
+ s∗ +

n∑

i=1

x∗i = bt + S +
〈
ht, x0

〉
.

Additionally, if E holds, then using the fact that ‖H−1b‖1 ≤
√
n, the point (x∗, s∗) ∈ Rn+1

+ and
thus (x∗, s∗) ∈ ⋂n

t=1 Kt. Consequently, Opt can move directly from (x0, s0) to (x∗, s∗) and back
at the end of the phase, paying at most 4

√
n.

It remains to bound the probability of E . The matrix H−1 has entries in {−1/n, 1/n}, so each
entry of H−1b is a random walk on the line with step size 1/n.
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Fact E.2 (Chernoff Bound). If Z =
∑n

i=1 Xi where Xi are independent random variables such
that Pr [Xi = 1] = Pr [Xi = −1] = 1/2, then

Pr
[
|Z| ≥

√
an log n

]
≤ 2n−a/2.

By this fact together with a union bound, event ‖H−1b‖∞ ≤ 2
√

(log n)/n holds with probability
1−2/n. Hence, the expected cost of Opt in total over the phase is (1−2/n) ·4√n+2/n ·4n ≤ 5

√
n,

for sufficiently large n.

To conclude, summing over M phases and accounting for Opt moving to (x0, s0) before the first
phase, the competitive ratio of any algorithm is at least

E[Alg]

E[Opt]
≥ M · n/2 · (1− 10ǫ · √n log n)

5 ·M · √n+ ‖(x0, s0)‖1
≥

√
n(1− 10ǫ · √n log n)

10
· (1− o(1)).

F Handling Box Constraints

In this section we show that we can handle box constraints, a special case of packing constraints,
without violation. Box constraints are “static” packing constraints of the form xj ≤ bj.

In general, we allow to add to the polytope at time t the box constraints x ≤ b, where b ∈
Rn

+ ∪ {∞}. Thus, the more general polytope at time t is:

K1+ǫ
t =

{
xt ∈ Rn

+ | x ≤ b, Ctxt ≥ 1, P txt ≤ 1 + ǫ
}

We claim that we can simply eliminate these new constraints by adding additional covering
constraints. For each covering constraint

∑
j cijxj ≥ 1, and every subset of variables S, we add

the constraint:
∑

j 6∈S

cijxj ≥ max



0, 1−

∑

j∈S

cij · bj





It is easy to verify that if x ∈ Rn
+ satisfies these new constraints, then the vector x′, where

x′j = min{xj , bj} satisfies the original constraints along with the box constraints. On the other
hand, any x′′ that satisfies the box constraints satisfies all the new covering constraints.

Thus, our algorithm maintains a feasible point to K1+ǫ
t but with box constraints removed, and

the new covering constraints added instead. The algorithm maintains at time t the vector x′,
where x′j = min{xj , bj}, and its total movement cost is no more than that of x.

Finally, we remark that although the number of such constraints is exponential, it is easy to
verify if a solution x satisfies these new constraints by checking that x satisfies the covering
constraint with S = {j | xj ≥ bj}.
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