
ar
X

iv
:2

30
2.

05
03

0v
3

 [c
s.D

S]
 2

8
A

pr
 2

02
4

Dynamic (1 + ǫ)-Approximate Matching Size

in Truly Sublinear Update Time

Sayan Bhattacharya∗† Peter Kiss‡ Thatchaphol Saranurak§¶

Abstract

We show a fully dynamic algorithm for maintaining (1 + ǫ)-approximate size of maximum
matching of the graph with n vertices and m edges using m0.5−Ωǫ(1) update time. This is the
first polynomial improvement over the long-standing O(n) update time, which can be trivially
obtained by periodic recomputation. Thus, we resolve the value version of a major open question
of the dynamic graph algorithms literature (see, e.g., [Gupta and Peng FOCS’13], [Bernstein
and Stein SODA’16], [Behnezhad and Khanna SODA’22]).

Our key technical component is the first sublinear algorithm for (1, ǫn)-approximate maxi-
mum matching with sublinear running time on dense graphs. All previous algorithms suffered
a multiplicative approximation factor of at least 1.499 or assumed that the graph has a very
small maximum degree.

∗University of Warwick s.bhattacharya@warwick.ac.uk
†Supported by Engineering and Physical Sciences Research Council, UK (EPSRC) Grant EP/S03353X/1.
‡University of Warwick, Max-Planck-Institut für Informatik peter.kiss@warwick.ac.uk
§University of Michigan thsa@umich.edu
¶Supported by NSF CAREER grant 2238138.

http://arxiv.org/abs/2302.05030v3

Contents

1 Introduction 1

2 Technical Overview 4

3 Notations and Preliminaries 6

4 Matching Oracles of Induced Subgraphs 7
4.1 Oracles on Low Degree Graphs . 7
4.2 Preprocessing . 8

4.2.1 Correctness . 8
4.2.2 Termination without Error . 11
4.2.3 Preprocessing Time . 14

4.3 Query Algorithm . 14

5 Boosting the Approximation Guarantee of a Matching Oracle 15
5.1 A Template Algorithm . 16

5.1.1 Algorithm Description . 16
5.1.2 Analysis . 20

5.2 Implementation in Sublinear Models . 22

6 (1, ǫn)-Approximate Matching Oracle 26

7 Dynamic (1 + ǫ)-Approximate Matching Size 28

A Matching Oracles on Low Degree Graphs 35

B Vertex Reduction for Dynamic Matching: Proof of Lemma 7.2 37

C Dynamic (1 + ǫ)-Approximate Matching in O(n) Update Time 39

D Tables 39

1 Introduction

We study the dynamic version of the maximum matching problem, a cornerstone of combinatorial
optimization [Kuh55, Edm65b, Edm65a]. In the dynamic matching problem, the task is to build a
data structure that, given a graph G with n vertices and m edges undergoing both edge insertions
and deletions, maintains an (approximate) maximum matching of G or, in the value version, just
the size of the maximum matching, denoted by µ(G). The goal is to minimize the update time
required to update the solution after each edge change.

The first non-trivial algorithm for this problem was by Sankowski [San07] 15 years ago, which ex-
actly maintains the maximum matching size using O(n1.495) update time, which is recently improved
to O(n1.407) [BNS19]. Unfortunately, this latter bound is tight under the hinted OMv conjecture
[BNS19]. Furthermore, in sparse graphs, even m1−o(1) update time is required assuming the k-
cycle conjecture [PGVWW20]. These strong conditional lower bounds have shifted the attention
of researchers to approximate matching. An α-approximate matching is a matching of size at least
µ(G)/α. The following has become one of the holy-grail questions in the dynamic graph algorithms
and fine-grained complexity communities [ARW17]:

Question 1.1. Is there a dynamic (1 + ǫ)-approximate matching algorithm with polylogarithmic
update time for an arbitrarily small constant ǫ?

The current state of the art is, however, still very far from this goal. A straightforward algorithm
with O(n) amortized update time is to simply recompute a (1 + ǫ)-approximate matching from
scratch in O(m) time [DP14] every after 2ǫm/n edge updates.1 Surprisingly, this easy O(n) bound
already captures the limitation of all known techniques! An improved algorithm with O(

√
m)

update time was given ten years ago by Gupta and Peng [GP13], but it still takes O(n) time in
dense graphs. Very recently, Assadi et al. [ABKL23] showed how to obtain O(n/(log∗ n)Ω(1)) update
time, but their regularity-lemma-based approach inherently cannot give an improvement larger than
a 2Θ(

√
logn) = no(1) factor. Until now, no dynamic (1+ǫ)-approximate algorithms can break through

the naive O(n) barrier by a polynomial factor.2

Intensive research during the last decade instead showed how to speed up update time by
relaxing the approximation factor. The influential work by Onak and Rubinfeld [OR10] gave the
first dynamic matching algorithm with polylogarithmic update time that maintains a large constant
approximate maximum matching. Then, Baswana, Gupta and Sen [BGS11] showed a dynamic
maximal matching with logarithmic update time, which gives 2-approximation. A large body of work
then refined this result in various directions, including constant update time [Sol16], deamortization
[CS18, BFH19, Kis22], and derandomization [BHN16, ACC+18, BK19, Waj20, BK21]. In 2015,
Bernstein and Stein [BS15, BS16] showed a novel approach for maintaining a (3/2+ ǫ)-approximate
matching using Õ(m1/4) = Õ(

√
n) update time.3 Refinement of this approach and new trade-off

results with approximation in the range (3/2, 2) were also intensively studied [BLM20, GSSU22,
Kis22, BK22, RSW22]. All these techniques, however, seem to get stuck at (3/2)-approximation.

Very recently, the above long-standing trade-off was improved by Behnezhad [Beh23] and, in-
dependently, by Bhattacharya et al. [BKSW23] via a new connection to sublinear and streaming
algorithms. To maintain maximum matching size, they gave 1.973-approximation algorithms with
polylogarithmic update time, and, on bipartite graphs, Behnezhad [Beh23] pushed it further to
(3/2 − Ω(1))-approximation in Õ(

√
n) update time. While this new connection is very inspiring,

1See Appendix C for the proof of this simple algorithm.
2In contrast, in the partially dynamic setting where graphs undergo edge insertions only or edge deletions only,

there are many algorithms with polylogarithmic amortized update time [GRS14, GLS+19, BGS20, JJST22, BKSW23].
3We use Õ(·) to hide polylog(n) factor throughout the paper.

1

it has been a key open problem [BRRS23] whether non-trivial (1 + ǫ)-approximate matching algo-
rithms in dense graphs exist in the sublinear model. Hence, it remains unclear whether an improved
dynamic (1+ ǫ)-approximation algorithm is possible via this new connection or even possible at all.

Indeed, in this paper, we give the first dynamic (1 + ǫ)-approximate matching size algorithm
that finally improves the O(n) bound by a polynomial factor, formally stated below.

Theorem 1.2. There is a dynamic (1 + ǫ)-approximate matching size algorithm with m0.5−Ωǫ(1)

worst-case update time.
The algorithm is randomized and works against an adaptive adversary with high probability.

Moreover, the algorithm maintains (1+ ǫ)-approximate matching M of G in the sense that, given a
vertex v, it can return a matched edge (v, v′) ∈ M or ⊥ if v /∈ V (M) in m0.5+f(ǫ) time, where f is
an increasing function such that f(ǫ) → 0 when ǫ → 0.

It has been asked repeatedly [GP13, BS15, BS16] whether there exists a dynamic (1 + ǫ)-
approximate matching algorithm with m0.5−Ωǫ(1) update time. Theorem 1.2 thus gives an affirmative
answer to the value version of this open question. Although the matching is not explicitly maintained
in Theorem 1.2, it still supports queries whether a vertex is matched or not. The recent algorithms
that only maintain the estimate of µ(G) by [Beh23, BKSW23] inherently cannot support this query.

We obtain Theorem 1.2 by making progress in sublinear algorithms: we show the first sublinear
(1, ǫn)-approximate matching algorithm with truly sublinear time even in dense graphs. Here, an
(α, β)-approximate matching means a matching of size at least µ(G)/α−β. Given our new sublinear
matching algorithm summarized below, Theorem 1.2 follows using known techniques.

Theorem 1.3. There is a randomized algorithm that, given the adjacency matrix of a graph G, in
time n2−Ωǫ(1) computes with high probability a (1, ǫn)-approximation µ̃ of µ(G).

After that, given a vertex v, the algorithm returns in n1+f(ǫ) time an edge (v, v′) ∈ M or ⊥ if
v /∈ V (M) where M is a fixed (1, ǫn)-approximate matching, where f is an increasing function such
that f(ǫ) → 0 when ǫ → 0.

We note that the additive approximation factor in Theorem 1.3 is unavoidable for sublinear
algorithms with access to only the adjacency matrix: checking whether there is zero or one edge
requires Ω(n2) adjacency matrix queries.

Behnezhad et al. [BRRS23] posted an open question about sublinear matching algorithms as
follows “ruling out say a 1.01-approximation in n2−Ω(1) time would also be extremely interesting.”4.
Since the additive approximation factor is unavoidable for algorithms using the adjacency matrix
only, the analogous question becomes whether one can rule out a (1, n/100)-approximation in n2−Ω(1)

time. Theorem 1.3 answers this question negatively since we can get arbitrarily good additive
approximation in n2−Ω(1) time.

To put Theorem 1.3 into the larger context of sublinear matching literature, let us discuss its
history below. We use ∆ and d to denote the maximum and average degree of the graph respectively.

Approximating µ(G). One of the main goals in this area, initiated by Parnas and Ron [PR07],
is to approximate the size of maximum matching µ(G) in sublinear time when given access to the
adjacency list and matrix of an input graph. Early research on this topic focused on obtaining O(1)
time algorithms when ∆ = O(1). However, these early work [PR07, NO08, YYI12] may require
Ω(n2) time on general graphs. This drawback was first addressed in [KMNFT20] and [CKK20]
(based on [ORRR12]), both of which were then subsumed by the algorithms of Behnezhad [Beh22]
that compute a (2, o(n))-approximation in Õ(d+1) time. His algorithms are near-optimal and settle
the problem in the regime of approximation ratio at least 2.

4In [RSW22], they use different notation and write 0.99-approximation instead of 1.01.

2

Subsequent work focuses on optimizing the approximation ratio within n2−Ω(1) time. To compare
with Theorem 1.3, let us discuss only algorithms that use the adjacency matrix. Behnezhad et
al. [BRRS23] first broke the 2-approximation barrier by computing a (2−Ωγ(1), o(n))-approximate

matching in Õ(n1+γ) time. Then (3/2, ǫn)-approximation algorithms with n2−Θ(ǫ2) time were shown
independently in [BKS23, BRR23]. Behnezhad et al. [BRR23] improved this further to (3/2 −
Ω(1), o(n))-approximation in n2−Ω(1) time on bipartite graphs.5 We summarize the previous work
in Table 1.

By the first part of Theorem 1.3, we show that even (1, ǫn)-approximation is possible in n2−Ωǫ(1)

time. As we mentioned, this result addresses the open question of [RSW22]. It remains very
interesting to see an optimal approximation-time trade-off for this problem.

Matching Oracles. In the area of local computation algorithms (LCA), initiated by Robinfeld
et al. [RTVX11, ARVX12], we want a matching oracle for some fixed approximate matching M
such that, given any vertex v, return (v, v′) ∈ M or ⊥ if v /∈ V (M). The goal is to optimize the
approximation ratio of M and minimize the worst-case query time over all vertices. Note that, given
a matching oracle for an α-approximate matching, we can compute (α, ǫn)-approximation of µ(G)
by simply querying the oracle at O(1/ǫ2) random vertices. So this is stronger than the previous
goal.

The worst-case guarantee over all vertices is stronger than the expected query time for each
vertex [NO08] or for just a random vertex [YYI12, Beh22], which is even weaker. This strong
guarantee is useful for bounding the query time of adaptive queries, which depend on answers of
the previous queries, and is crucial in some applications [LRV22]. Our approach for “boosting” the
approximation ratio also requires adaptive queries and hence needs worst-case guarantees.

A long line of work [RTVX11, ARVX12, RV16, LRY15, Gha16, GU19, Gha22] focused on build-
ing an oracle for maximal independent sets (which implies a 2-approximate matching oracle) and
culminated in an oracle by Ghaffari [Gha22] that uses poly(∆ log n) query time with high probabil-
ity. Levi et al. [LRY15] also a showed (1+ ǫ)-approximate matching oracle with ∆O(1/ǫ2)polylog(n)
query complexity. However, all these algorithms are not sublinear in dense graphs. In this regime,
the only non-trivial matching oracle was by Kapralov et al. [KMNFT20] and has Õ(∆) query time,
but the approximation ratio is only a large constant and is in expectation. We summarize the
previous work in Table 2.

The second part of Theorem 1.3 gives the first non-trivial matching oracle on dense graphs whose
multiplicative approximation ratio is a small constant, which is 1 in our case, but we need to pay
additive approximation factor.

Summary. Our main result, Theorem 1.2, is the first dynamic (1+ ǫ)-approximate matching size
algorithm with m0.5−Ωǫ(1) update time, breaking through the naive yet long-standing O(n) barrier
by a polynomial factor. Our key technical component, Theorem 1.3, makes progress in the area of
sublinear-time matching algorithms on dense graphs. Among algorithms for approximating µ(G)
only, we improve the best approximation ratio from (3/2−Ω(1), o(n)) by [BRR23] to (1, ǫn). Among
LCAs, it is the first one on dense graphs whose multiplicative approximation is a small constant.

Organization. First, we give an overview of our algorithms in Section 2. Then, we set up notations
and give preliminaries in Section 3. In Section 4, we present a key building block which is a matching
oracle for an induced graph G[A] where A is unknown to us. Using this, we show in Section 5 how to
boost the approximation ratio of any matching oracle. By repeatedly boosting the approximation
ratio, we give a (1, ǫn)-approximate matching oracle (Theorem 1.3) in Section 6. Finally, we combine
this oracle with known techniques in dynamic algorithms to Theorem 1.2 in Section 7.

5[BRR23] also announced a Ω(n1.2)-time lower bound for (3/2− Ω(1), o(n))-approximation.

3

Acknowledgement
We would like to thank David Wajc for suggesting the implementation of McGregor’s algorithm

in the sub-linear model.

2 Technical Overview

Our high-level approach is based on the interconnection between dynamic, sublinear, and streaming
algorithms. This connection differs from the ones used in the recent results of [BKSW23, Beh23].
For example, the dynamic (2−Ω(1))-approximate algorithms in [BKSW23, Beh23] are inspired by
the two-pass streaming algorithms (e.g. [KMM12]). Then, they use sublinear algorithms [Beh22]
to implement this streaming algorithm in the dynamic setting efficiently.6 In contrast, it is our
sublinear algorithm, not dynamic algorithm, that is inspired by the O(1)-pass streaming algorithm
[McG05]. Below, we explain the overview of our sublinear algorithm, which consists of two key
ingredients, and then explain how our dynamic algorithm easily follows.

Ingredient I: Reduction from (1, γn)-Approximation to Arbitrarily Bad Approximation.

An initial observation is that the streaming algorithm by McGregor [McG05] can be viewed as the
following reduction: one can compute a (1 + γ)-approximate matching by making Oγ(1) calls to a
subroutine that, given S ⊆ V , returns a O(1)-approximate matching of the induced subgraph G[S].

We observe that a much weaker subroutine suffices when additive approximation is allowed.
Let LargeMatching(S, δ) be a subroutine that, given S ⊆ V and δ, returns a matching M in G[S]
such that if µ(G[S]) ≥ δn, then |M | ≥ Ω(poly(δ)n). Note that the approximation of M can be
arbitrarily bad depending of δ. By adapting McGregor’s algorithm, we show how to compute a
(1, γn)-approximate matching using only t = Oγ(1) calls to

LargeMatching(S1, δ1), . . . , LargeMatching(St, δt)

where each δi is a small constant depending on γ. This algorithm, denoted by Alg(γ), is our template
algorithm (detailed in Section 5.1), which we will try to implement in the sublinear setting.

Additionally, we observe that each vertex set Si can be determined in a very local manner. More
precisely, a membership-query of the form “is a vertex v ∈ Si?” can be answered by making only
q = Oγ(1) matching-queries of the form “is a vertex u ∈ V (Mj)? if so, return (u, u′) ∈ M ” where
j < i and Mj is the output of LargeMatching(Sj, δj) previously computed.

However, the big challenge in the sublinear model, unlike the streaming model, is that even the
weak subroutine like LargeMatching(·) is impossible.7 Even worse, if we could not compute each
matching Mj explicitly for j < i, then how can we answer a membership-query whether v ∈ Si?
Note that known sublinear algorithms for estimating the matching size of G[S] are not useful here.

The above obstacle leads us to our second ingredient. We show that at least the oracle version
of LargeMatching(·) can be implemented in the sublinear model. Later, we will explain why it is
strong enough for implementing the template algorithm Alg(γ) in the sublinear model.

6The dynamic (3/2 − Ω(1))-approximate algorithm in [Beh23] does not have explicit relationship to streaming
algorithms. It is obtained using sublinear algorithms to improve the (3/2)-approximation guarantee of the tight
instances of EDCS.

7Think of a n×n bipartite graph which consists only of a perfect matching. Using o(n2) adjacency-matrix queries,
it is not possible to out Ω(n) matching edges in this input instance. The lower bound can be extended even if we
allow adjacency-list queries by adding ǫn dummy vertices, each of which connects to every other vertex.

4

Ingredient II: Large Matching Oracles on Induced Subgraphs.

Suppose that a vertex set A ⊆ V is unknown to us but a membership-query of A, i.e., checking
if v ∈ A, can be done in n1+ǫ time. Given access to the adjacency matrix of G, we show how to
construct an oracle LargeMatchingOracle(A, δ, ǫ) with the following guarantee:

Using Õδ

(
n2−ǫ

)
preprocessing time, we obtain an oracle that supports matching-queries for a

matching M in G[A] with Õδ

(
n1+g(ǫ)

)
query time where ǫ ≤ g(ǫ) = O(ǫ). If µ(G[A]) ≥ δn,

then |M | = Ω(poly(δ)n) whp.

The main challenge of implementing LargeMatchingOracle(A, δ, ǫ) in the sublinear model is
that we want to find a large matching on the induced subgraph G[A]. The challenge comes from
possible Ω(n2) edges between A and V \A, and we must avoid reading these edges to get sublinear
time. It turns out that this challenge can be overcome. We use the idea that appeared before in
the algorithm of [BRR23] in a different context of estimating (3/2 − Ω(1))-approximation µ(G) on
bipartite graphs. See the details in Section 4.

Given the above two ingredients, we can combine them to get our main results in the sublinear
and dynamic settings, as follows.

Result I: (1, γn)-Approximate Matching Oracles in n2−Ωγ(1) Time.

Now, we show how to implement the template algorithm Alg(γ) in n2−Ωγ(1) time. Let ǫ ∈ (0, 1) be
a small constant where limγ→0 ǫ = 0. Let ǫ0 = ǫ and ǫi = g(ǫi−1) for all i ∈ [1, t] where g is the
function in the guarantee of Ingredient II. So ǫ = ǫ0 ≤ ǫ1 ≤ · · · ≤ ǫt and limγ→0 ǫt = 0.

We simply replace each call to LargeMatching(Si, δi) with LargeMatchingOracle(Si, δi, ǫi−1).
Now, by induction on i ∈ [1, t], we will show that we can support membership-queries for Si in
Õγ

(
n1+ǫi−1

)
time and matching-queries for Mi in Õγ

(
n1+ǫi

)
time. Let us ignore the base case as

it is trivial. For the induction step, we have the following:

1. To answer a membership-query for Si, the template algorithm only needs to make q = Oγ(1)
matching-queries to Mj where j < i. So the total query time is q · Õγ(n

1+ǫi−1) = Õγ(n
1+ǫi−1).

2. To answer a matching-query for Mi, the oracle LargeMatchingOracle(Si, δi, ǫi−1) for the
matching Mi has query time Õγ

(
n1+g(ǫi−1)

)
= Õγ

(
n1+ǫi

)
.

The total preprocessing time we need for LargeMatchingOracle(·) to implement all the t rounds is∑t
i=1 Õγ

(
n2−ǫi

)
= Õγ

(
n2−ǫ

)
= n2−Ωγ(1). At the end of the last round, we can support matching-

queries for the (1, γn)-approximate matching M returned by Alg(γ) in Õγ(n
1+ǫt) time, where

limγ→0 ǫt = 0.
To get a (1, γn)-approximate estimate µ̂ of µ(g), we sample Õ(1/γ2) vertices and check if they

are matched under M . Whp, this is a (1,Θ(γ)n)-approximation of µ(G) because M is (1, γn)-
approximate.

Result II: Dynamic (1 + γ)-Approximate Matching Size.

Our dynamic matching size algorithm now follows from standard techniques. Using the well-known
vertex reduction technique (see, for example, Corollary 4.9 of [Kis22]), we can assume that µ(G) ≥
γn at all times. We work in phases, where each phase lasts for γ2n updates. At the start of each
phase, we invoke the sublinear algorithm from Result I above, to obtain a (1, γ2n)-approximate

5

estimate µ̂ of µ(G), in n2−Ωγ(1) time. Since µ(G) ≥ γn and since the phase lasts for only γ2n
updates, this µ̂ continues to remain a purely multiplicative (1+Θ(γ))-approximate estimate of µ(G)
throughout the duration of the phase. This leads to an amortized update time of n2−Ωγ(1)/(γ2n) =
n1−Ωγ(1). In Section 7, we show how to extend this approach to prove Theorem 1.2.

3 Notations and Preliminaries

Unless speficied otherwise, the input graph G = (V,E) will have n nodes and m edges. A matching
M ⊆ E is a subset of edges that do not share any common endpoint. We use the symbol µ(G) to
denote the size of a maximum matching in G. We say that a pah p = (v0, v1, . . . , vi) is an alternating
path in G w.r.t. a matching M ⊆ E iff (vj , vj+1) ∈ E for all j ∈ [0, i− 1] and the edges in the path
p alternate between being in M and in E \M . We say that p is an augmenting path in G w.r.t. M
iff p is an alternating path whose first and the last edges are both unmatched in M . The length of
a path is the number of edges in it. We let V (M) denote the set of matched nodes in a matching
M ⊆ E. Consider any node v ∈ V (M) and suppose that (u, v) ∈ M . Then we say that u is the
mate of v in M . Given a subset of nodes S ⊆ V , G[S] denotes the subgraph of G induced by S.
Given any graph G′, the symbol E(G′) denotes the set of edges in G′.

Throughout the paper, the symbol Θk,γ(1) will denote any positive constant that depends only
on k and γ (where k and γ are constant parameters whose values will be chosen later on). We
analogously use the notation Θk(1) to denote a constant that depends only on k. Finally, the
symbol Õ(.) will be used to hide any polylog(n) factors.

Oracles. We have the adjacency matrix access to the input graph G. Each query takes O(1) time.
We do not have the adjacency list access to the input graph.

For any vertex set A ⊂ V , an A-membership oracle memA : V → {0, 1} indicates whether v ∈ A
for any v ∈ V . That is, we have

memA(v) = 1{v ∈ A}.
A matching oracle matchM : V →

(V
2

)
∪ {⊥} for a matching M is an oracle that, given a vertex

v ∈ V , returns

matchM (v) =

{
(v, v′) (v, v′) ∈ M

⊥ v /∈ V (M).

Similarly, a mate oracle mateM : V → V ∪ {⊥} for a matching M is an oracle that, given a vertex
v ∈ V , returns

mateM (v) =

{
v′ v ∈ V (M) and (v, v′) ∈ M

⊥ v /∈ V (M).

Concentration Bounds. We need standard concentration bounds as follows.

Proposition 3.1 (Hoeffding bound). Let X1, . . . ,Xn be independent random variables such that
a ≤ Xi ≤ b. Let X =

∑n
i=1 Xi. For any t > 0,

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2

n(b− a)2
).

Proposition 3.2 (Chernoff bound). Let X1, . . . ,Xn be independent {0, 1}-random variables. Let
X =

∑n
i=1Xi where E[X] ≤ µ For any t > 0 where t ≤ µ,

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− t2

3µ
).

6

Chernoff bound can be much stronger than Hoeffding bound when E[X] has small upper bound.
For example, if we applied Proposition 3.1 to the setting for Proposition 3.2, we would only get that
the bound of 2 exp(−2t2

3n) which is much weaker than 2 exp(− t2

3µ) when µ ≪ n.

4 Matching Oracles of Induced Subgraphs

In this section, we present the key subroutine of this paper. The goal is to construct a matching ora-
cle for an induced subgraph G[A] but A is unknown to us; we only have access to an A-membership
oracle memA.

Theorem 4.1. Let G = (V,E) be a graph, A ⊆ V be a vertex set. Suppose that we have access
to adjacency matrix of G and an A-membership oracle memA with tA query time. We are given as
input ǫ > 0 and δin > 0.

We can preprocess G in Õ((tA+n)(n1−ǫ+n4ǫ)/poly(δin)) time and either return ⊥ or construct
a matching oracle matchM (·) for a matching M ⊂ G[A] of size at least δoutn where δout = δ5in/10

8

that has Õ((tA+n)n4ǫ/poly(δin)) worst-case query time. If µ(G[A]) ≥ δinn, then ⊥ is not returned.
The guarantee holds with high probability.

The very important property of Theorem 4.1 is that it makes n1−ǫ oracle calls to memA during
preprocessing and only nO(ǫ) calls to memA on each query. The rest of this section is devoted for
proving Theorem 4.1.

To prove Theorem 4.1, we adapt the technique used inside the algorithm by Behnazhad et
al. [BRR23] for (3/2 − Ω(1))-approximating µ(G) on bipartite graphs. We observe that the idea
there has reach beyond (3/2 −Ω(1))-approximation algorithms. The abstraction of that idea leads
us to Theorem 4.1, the crucial subroutine for later parts of our paper.

This section is organized as follows. In Section 4.1, we show a weaker version of Theorem 4.1
that works well on low degree graphs. We will use this weaker version in the preprocessing step,
described in Section 4.2. Then, we complete the query algorithm in Section 4.3.

4.1 Oracles on Low Degree Graphs

Here, we show a similar result as Theorem 4.1, but it is efficient only when the maximum degree ∆
is small. In particular, the query algorithm makes nO(ǫ) calls to memA only when ∆ = nO(ǫ).

Lemma 4.2. Let G = (V,E) be a graph with maximum degree ∆ where ∆ is known and A ⊆ V be a
vertex set. Suppose that we have access to adjacency matrix of G and an A-membership oracle memA

with tA query time. We can construct in Õ((tA∆+n+tA/ǫ)∆/ǫ2) time a matching oracle matchlowM (·)
for a (2, ǫn)-approximate matching M in G[A] that has Õ(tA∆ + n + tA/ǫ)∆/ǫ) worst-case query
time with high probability.

The proof of Lemma 4.2 is based on the the following (2, ǫn)-approximate matching oracle given
access to adjacency list.

Lemma 4.3. Given the adjacency lists of a graph G = (V,E) with average degree d and a parameter
d ≥ d, we can in Õ(d/ǫ2) time construct a matching oracle matchM (·) for a (2, ǫn)-approximate
matching M in G with Õ(d/ǫ) worst-case query time with high probability.

Lemma 4.3 is proved by combining an improved analysis of randomized greedy maximal matching
of Behnezhad [Beh22] into a framework for constructing an LCA by [LRY15]. We do not claim any
novel contribution here and defer the proof to Appendix A.

7

Now, to prove Lemma 4.2, we need to strengthen Lemma 4.3 in two ways. First, it must work
with the adjacency matrix, not the adjacency lists. Second, it must return a large matching of an
induced subgraph G[A], not that of G. However, this can be done using a simple simulation.

Proof of Lemma 4.2. Let A denote the algorithm of Lemma 4.3. We simulate A on G[A] with
parameter d ← ∆ as follows.

Whenever A needs to sample a vertex, we sample O(log(n)/ǫ) vertices in G and call memA on
each of them. If one of them is in A, then we get a random vertex in G[A]. If none of them is in
A, then w.h.p. |A| ≤ ǫn. If this ever happens, even an empty matching is a (2, ǫn)-approximate
matching in G[A], and the problem becomes trivial.

Whenever A needs to make queries to the adjacency list of any vertex v, we can construct the
whole adjacency list of v in G[A] by first making n adjacency matrix queries to learn all neighbors
of v in G and then makes deg(v) ≤ ∆ oracles calls to memA to know which neighbors are in G[A].
This takes O(tA∆+ n) time. Every other computation can be simulated without the overhead.

Therefore, each step of A can be simulated with an extra (tA ·O(log(n)/ǫ)+ tA∆+n) factor.

4.2 Preprocessing

We describe the preprocessing algorithm in Algorithm 1 with the guarantees summarized in the
lemma below.

Lemma 4.4. In Õ((tA + n)(n1−ǫ + n4ǫ)/poly(δin)) time, Algorithm 1 outputs either ⊥ (indicating
an error) or the remaining set V ′ ⊆ V of vertices together with an explicit matching M ′ ⊆ G[V ′]
that satisfies one of the following:

1. |M ′[A]| ≥ 2δoutn, or

2. µ(G[A ∩ V ′ \ V (M ′)]) ≥ 4δoutn and G[V ′ \ V (M ′)] has maximum degree at most n2ǫ.

The algorithm also reports which properties above M ′ satisfies. If µ(G[A]) ≥ δinn, then ⊥ is not
returned with high probability.

In Algorithm 1, the remaining set V ′ is initialized as V and only shrinks. For convenience, we
let A′ := A ∩ V ′ and D′ := D ∩ V ′ denote the remaining alive and dead vertices.

4.2.1 Correctness

In this part, we prove the correctness of Algorithm 1 assuming that it does not return ⊥. We first
show that µ̃1 and µ̃2 are good approximation of M i[A] and M̂ i base on basic there definition and
Hoeffding’s bound.

Lemma 4.5. For every i, we have |M i[A]| − δoutn ≤ µ̃1 ≤ |M i[A]| w.h.p.

Proof. The probability that a random edge from M i is in G[A] is |M i[A]|
|M i| . So E[X] = r1

|M i[A]|
|M i| and

|M i[A]| = |M i|E[X]
r1

. By definition of µ̃1 = |M i|X
r1

− δoutn
2 and by Hoeffding bound Proposition 3.1,

we have

Pr[µ̃1 < |M i[A]| − δoutn or µ̃1 > |M i[A]|] = Pr[
|M i| · (X − E[X])

r1
>

δoutn

2
]

≤ 2 exp(−2(δoutn2)2

r1(
n
r1
)2

) = 2 exp(−δ2outr1/2)

≤ 1/n10.

8

Algorithm 1 Preprocess G.

p = 100n2−2ǫ log n, k = nǫ, η = δ2in log(n)/10, T = 100/δ2in, δout = δ3in/10
6T = δ5in/10

8.

r1 = r2 =
1000
δ2out

log n = Θ(logn
δ10in

), r3 = 1000δin
n
k log n.

V ′ ← V .
Repeat the following for T times:

1. Sample kp distinct pairs of vertices from V ′. Partition the sampled pairs into (P 1, . . . , P k)
where each P i is an ordered list containing p pairs of vertices.

2. For i ∈ [k]

(a) Let Ei = {(u, v) ∈ P i | (u, v) ∈ G[V ′]} be an ordered sublist of P i containing only pairs
which are edges of G[V ′].

(b) Let M i be the greedy maximal matching when scanning Ei in order.

\\Case 1:

(c) Sample r1 edges from M i.

(d) Let X count the sampled edges that are in G[A] (using the oracle memA)

(e) Set µ̃1 =
|M i|X

r1
− δoutn

2 .

(f) If µ̃1 ≥ 2δoutn, then set M ′ ← M i and report that M ′ satisfies Case 1.

\\Case 2:

(g) Let M̂ i be a (2, δoutn)-approximate matching in G[A′ \ V (M i)] that the matching oracle
match

low
M̂ i

(·) from Lemma 4.2 respects, given graph G[V ′ \ V (M i)] with vertex set A′ \
V (M i) as input.

(h) Sample r2 vertices from V ′ \ V (M i).

(i) Let Y count the sampled vertices that are matched in M̂ i (using the oracle match
low
M̂ i

(·)).

(j) Set µ̃2 =
|V ′\V (M i)|Y

2r2
− δoutn

2 .

(k) If µ̃2 ≥ 4δoutn, then set M ′ ← M i and report that M ′ satisfies Case 2.

3. Let A′
sp ⊆ A′ be obtained by sampling r3 vertices from A′.

4. Let G = (V ′,∪k
i=1M

i).

5. Let C = {v ∈ V ′ | NG(v,A
′
sp) ≥ η}, i.e., C contains remaining vertices that have at least η

neighbors from A′
sp in G.

6. Set V ′ ← V ′ \ C.

Return ⊥ (Error).

9

Lemma 4.6. For every i, we have |M̂ i| − δoutn ≤ µ̃2 ≤ |M̂ i| w.h.p.

Proof. The probability that a random vertex from V ′ \V (M i) is in V (M̂ i) is 2|M̂ i|
|V ′\V (M i)| . So E[Y] =

r2
2|M̂ i|

|V ′\V (M i)| and |M̂ i| = |V ′\V (M i)|E[Y]
2r2

. By definition of µ̃2 = |V ′\V (M i)|Y
2r2

− δoutn
2 and by Hoeffding

bound Proposition 3.1, we have

Pr[µ̃2 < |M̂ i| − δoutn or µ̃2 > |M̂ i|] = Pr[
|V ′ \ V (M i)| · (Y − E[Y])

2r2
>

δoutn

2
]

≤ 2 exp(−2(δoutn2)2

r2(
n
2r2

)2
) = 2 exp(−2δ2outr2)

≤ 1/n10.

Next, we show the “sparsification” property of randomized greedy maximal matching M i. That
is, G[V ′ \V (M i)] has low degree. The idea is that any high-degree vertex v in G[V ′ \V (M i)] should
not exist because it should have been matched by M i via one of the sampled edges. The proof is
similar to Lemma 3.1 of [BFS12], which considers this sparsification property of the randomized
greedy maximal independent set, instead of maximal matching.

Lemma 4.7. For every i, the maximum degree of G[V ′ \ V (M i)] is at most n2ǫ w.h.p.

Proof. Let us describe an equivalent way to construct M i. Initialize M i = ∅ and then sample p
pairs of vertices in V ′. For each sampled pair (u, v), if (u, v) ∈ G[V ′] and both u and v are not
matched by M i, then we add (u, v) into M i. At the end of this process, we will show that, for any
vertex v ∈ V ′, the degree of v in G[V ′ \ V (M i)] is at most n2ǫ w.h.p. (we use the convention that
if v /∈ V ′ \ V (M i), then the degree v is 0.)

For t ∈ [1, p], let M i
t denote the matching M i after we sampled the t-th pair. For convenience, we

denote degt(v) = degG[V ′\V (M i
t)]
(v) as the degree of v at time t. We want to show that Pr[degp(v) >

n2ǫ] ≤ 1/n10 for any v ∈ V ′.
Observe that if degp(v) > n2ǫ, then degt(v) > n2ǫ for all t ≤ p. Now, given that degt−1(v) > n2ǫ,

the probability that v remained at unmatched after time t is

1− degt−1(v)(|V ′|
2

) ≤ 1− n2ǫ

n2
.

In particular, the probability that degt(v) > nǫ is at most 1− n2ǫ

n2 . This implies that the probability
that degp(v) > n2ǫ is at most

(1− n2ǫ

n2
)p ≤ 1

n10

because p = 100n2−2ǫ log n.

From the above lemmas, we can conclude the correctness of the algorithm.

Corollary 4.8. If Algorithm 1 returns a matching M ′, then M ′ satisfies the guarantees from
Lemma 4.4 w.h.p.

Proof. If M ′ is returned under Case 1. Then, by Lemma 4.5, we have |M ′[A]| ≥ µ̃1 ≥ 2δoutn w.h.p.
Otherwise, in Case 2, we have µ(G[A ∩ V ′ \ V (M ′)]) ≥ |M ′| ≥ µ̃2 ≥ 4δoutn by Lemma 4.6 and also
maximum degree of G[V ′ \ V (M ′)] is at most n2ǫ by Lemma 4.7 w.h.p.

10

4.2.2 Termination without Error

In this part, we show that if µ(G[A]) ≥ δinn, then Algorithm 1 does not return ⊥ w.h.p. For any
graph G and U1, U2 ⊆ V (G), we let G[U1, U2] contains all edges of G whose one endpoint is in U1

and another in U2. Note that the induced subgraph G[U1] = G[U1, U1].
Our high-level plan is that we will show that D′ decreases its size by Θ(δ2inn) in each iteration

in the repeat loop. So D′ must become very small after T = Θ(1/δ2in) iterations. But when this
happens, we can show that either Case 1 or Case 2 must happen and so the algorithm must terminate
without error.

To carry out the above plan, we need a helper lemma (Lemma 4.9) which states that, even if V ′

keeps shrinking, the maximum matching in G[V ′] remains large, µ(G[A′]) ≥ δinn/2. We will need
this fact throughout the whole argument.

The high-level argument goes as follows. If the algorithm does not return M ′, then M i[A′] is
very small for all i and so G[A′] contains few edges. It follows that the set C of removed vertices
contains only few vertices in A′ because each vertex v ∈ C ∩ A′ has high degree of at least η in
G[A′]. Thus, we remove only few vertices from A′ and so the size of µ(G[A′]) cannot decrease too
much. The formal argument below goes through the set A′

sp and the above paragraph gives the
right intuition.

Lemma 4.9. Suppose µ(G[A]) ≥ δinn. For τ ∈ [0, T], at the end of the τ -th iteration of the repeat
loop in Algorithm 1, we have µ(G[A′]) ≥ (1 − τ

2T)δinn ≥ δinn/2 w.h.p., if the algorithm does not
terminate yet.

Proof. We prove by induction on τ . For τ = 0 (i.e. the beginning the algorithm), the claim holds
as µ(G[A]) ≥ δinn. Next, we consider τ ≥ 1. By induction hypothesis, at the beginning of the τ -th
iteration, we have µ(G[A′]) ≥ (1− τ−1

2T)δinn ≥ δinn/2.
At the end of the τ -th iteration, since Algorithm 1 did not terminate at Step 2f, by Lemma 4.5,

we have, w.h.p., |M i[A′]| ≤ 2δoutn+ δoutn ≤ 3δoutn for all i. So we have |E(G[A′])| ≤ 3δoutnk and
then the average degree of vertices in G[A′] is at most

2|E(G[A′])|
|A′| ≤ 6δoutk

δin

because |A′| ≥ 2µ(G[A′]) ≥ δinn.
Recall that A′

sp is obtained by sampling r3 vertices from A′. So

E[volG[A′](A
′
sp)] ≤

6δoutkr3
δin

≤ δ3inn log n

200T

because δout = δ3in/10
6T and kr3

δin
= 1000n log n. Furthermore, this bound is concentrated. Indeed,

since volG[A′](A
′
sp) is a sum of r3 independent random variable whose range is k (since the maximum

degree in G and G[A′] is k), by Hoeffding bound Proposition 3.1, we have

Pr[volG[A′](A
′
sp)− E[volG[A′](A

′
sp)] >

δ3inn log n

200T
] ≤ 2 exp(

−2(
δ3inn logn
200T)2

r3k2
) ≪ 1/n10.

So volG[A′](A
′
sp) ≤

δ3inn logn
100T w.h.p. Since every vertex v ∈ C is adjacent to at least η vertices in A′

sp

in G, we have |C ∩A′|η ≤ volG[A′](A
′
sp). Therefore,

|C ∩ A′| ≤ δ3inn log n

100Tη
≤ δinn

2T

11

because η = δ2in log(n)/10. This means that we remove at most δinn
2T vertices from A′ at the end of

the τ -th iteration. So the size of maximum matching in G[A′] may decrease by at most δinn
2T . Thus,

µ(G[A′]) ≥ (1− τ
2T)δinn which completes the induction.

Given Lemma 4.9, we will use the following lemma to argue that if Algorithm 1 does not return
M i, then then M i must match many vertices between A′ and D′.

Lemma 4.10. Suppose µ(G[A′]) ≥ δinn/2. For any matching M in G[V ′], if |M [A′]| < 3δoutn and
µ(G[A′ \ V (M)]) < 16δoutn, then M [A′,D′] ≥ δinn/3.

Proof. Let M∗ be the maximum matching in G[A′] of size at least δinn/2. We partition edges in
M∗ into two parts: M∗

0 and M∗
1 . For each (u, v) ∈ M∗, we add (u, v) into M∗

0 if both u, v /∈ V (M).
Otherwise, either u or v are matched by M and we add (u, v) into M∗

1 . Note that M∗
0 is a matching

in G[A′ \ V (M)]. So |M∗
0 | < 16δoutn and |M∗

1 | ≥ δinn/2− 16δoutn.
Observe that |V (M∗

1)| ≤ |M [A′,D′]| + 2|M [A′]| because we can charge vertices of V (M∗
1) to

either matched edges of M [A′,D′] or M [A′] such that each matched edge in M [A′,D′] is charged
once and each match edges in M [A′] is charged at most twice. Since |M [A′]| < 3δoutn, we have
|M [A′,D′]| ≥ δinn/2− 16δoutn− 2 · 3δoutn ≥ δinn/3.

Lemma 4.10 also says that once D′ become small enough, Algorithm 1 will not err w.h.p.

Corollary 4.11. If µ(G[A′]) ≥ δinn/2 and |D′| < δinn/3, then Algorithm 1 will return a matching
M ′ w.h.p.

Proof. For any i, note that |M i[A′,D′]| < |D′| < δinn/3. So by the contrapositive of Lemma 4.10,
we have that either |M i[A′]| ≥ 3δoutn or µ(G[A′ \ V (M i)]) ≥ 10δoutn. If |M i[A′]| ≥ 3δoutn, then

µ̃1 ≥ 2δoutn w.h.p. by Lemma 4.5. If µ(G[A′ \ V (M i)]) ≥ 10δoutn, then |M̂i| ≥ 16δoutn
2 − δoutn ≥

7δoutn because M̂i is (2, δoutn)-approximate matching. So µ̃2 ≥ 6δout w.h.p. by Lemma 4.6. In
either cases, so Algorithm 1 must return a matching M ′ at Line 2f or Line 2k.

Now, we are ready to show that D′ must shrink significantly after each iteration of the repeat
loop, which means that there cannot be too many iterations before the algorithm terminate by
Corollary 4.11.

Lemma 4.12. Supposeµ(G[A′]) ≥ δinn/2. If Algorithm 1 does not terminate until C is computed,

then |D′ ∩ C| ≥ δ2in
100n.

There are two main claims in the proof of Lemma 4.12. We suggest the reader to skip the proofs
of these claims and see how they are used to prove Lemma 4.12 first.

Claim 4.13. |E(G[A′
sp,D

′])| ≥ 100δ2inn log n w.h.p.

Proof. At the end of the τ -th iteration, since Algorithm 1 did not terminate at Step 2f nor Step 2k,
we have, w.h.p., that M [A′] < 3δoutn by Lemma 4.5 and |M̂ i| < 5δoutn by Lemma 4.6. Since M̂ i

is a (2, δoutn)-approximate matching in G[A′ \ V (M)], we have µ(G[A′ \ V (M)]) < 16δoutn. By
Lemma 4.10, we have |M i[A′,D′]| ≥ δinn/3.

Observe that |E(G[A′,D′])| = ∑
i |M i[A′,D′]| ≥ δinnk/3 because all M i are mutually disjoint.

Note that G[A′,D′] is a bipartite graph. So the average degree of vertices in A′ in G[A′,D′] is

|E(G[A′,D′])|
|A′| ≥ δink/3

12

and we have that
E[|E(G[A′

sp,D
′])|] ≥ δinkr3/3 ≥ 200δ2inn log n.

because r3 = 1000δin
n
k log n. Furthermore, this is concentrated. Indeed, since |E(G[A′

sp,D
′])| is a

sum of r3 independent random variable whose range is k (since the maximum degree in G and G[A′]
is k), by Hoeffding bound Proposition 3.1, we have

Pr[
∣∣|E(G[A′

sp,D
′])| − E[|E(G[A′

sp,D
′])]|]

∣∣ > 100δ2inn log n] ≤ 2 exp(
−2(100δ2inn log n)2

r3k2
) ≪ 1/n10.

So |E(G[A′
sp,D

′])| ≥ 100δ2inn log n w.h.p.

Claim 4.14. For each v ∈ D′, the number of neighbor of v from A′
sp in G is at most 2000 log n

w.h.p. That is, |NG(v,A
′
sp)| ≤ 2000 log n.

Proof. We have

E[NG(v,A
′
sp)] =

∑

u∈NG(v,A′)

Pr[u ∈ A′
sp]

≤ k · r3
|A′| ≤ 1000 log n

because r3k = 1000δinn log n and |A′| ≥ δinn since we assume µ(G[A′]) ≥ δinn/2. Moreover,
applying by Chernoff bound Proposition 3.2 where t = 1000 log n and µ = 1000 log n8, we have

Pr[|NG(v,A
′
sp)− E[NG(v,A

′
sp)| > 1000 log n] ≤ 2 exp(−(1000 log n)2

3 · 1000 log n) ≪ 1/n10.

So |NG(v,A
′
sp)| ≤ 2000 log n w.h.p.

Now, let us prove Lemma 4.12 using the above claims.

Proof of Lemma 4.12. Observe that

|E(G[A′
sp,D

′])| =
∑

v∈D′

|NG(v,A
′
sp)| ≤ |D′ ∩C| · 2000 log n+ |D′ \ C|η

where the inequality holds w.h.p. by Claim 4.14. Since |D′ \C| ≤ n and η = δ2in log(n)/10, we have
by Claim 4.13 that

100δ2inn log n ≤ |D′ ∩ C| · 2000 log n+ nδ2in log(n)/10

and so |D′ ∩ C| ≥ δ2in
100n as desired. �

Finally, we give the conclusion of this part.

Corollary 4.15. If µ(G[A]) ≥ δinn, then Algorithm 1 does not return ⊥ w.h.p.

Proof. First, µ(G[A]) ≥ δinn implies that µ(G[A′]) ≥ δinn/2 w.h.p. by Lemma 4.9. So, by
Lemma 4.12 D′ decreases its size by δ2inn/100 in each iteration in the repeat loop. Hence, we
have that |D′| ≤ δinn/3 before T = 100/δ2in iterations. Therefore, there is an iteration τ ∈ [1, T]
where Algorithm 1 will return a matching M ′ w.h.p. by Corollary 4.11.

8Note that Hoeffding bound Proposition 3.1 is not strong enough here.

13

4.2.3 Preprocessing Time

Consider the (2, δoutn)-approximate matching oracle match
low(·) in Line 2g, which is given graph

G[V ′ \ V (M i)] and vertex set A′ \ V (M i) as input.
By Lemma 4.7, we can assume w.h.p. that G[V ′ \ V (M i)] has degree at most n2ǫ. Lemma 4.2

implies the following:

Proposition 4.16. Both preprocessing and query time of matchlow(·) is at most Õ((tAn
2ǫ + n +

tA/δout)n
2ǫ/δ2out) = Õ((tA + n)n4ǫ/δ3out) with high probability.

Lemma 4.17. Algorithm 1 takes Õ((tA + n)(n1−ǫ + n4ǫ)/poly(δin)) total running time.

Proof. We will analyze the total running time for each iteration of the repeat-loop in Algorithm 1.
Since there are T = O(1/δ2in) iterations and we assume δin ≥ 1/poly log n, the running time is the
same up to polylogarithmic factor. Now, fix one iteration of the repeat-loop.

The total time to compute M i, for all i ≤ k, is Θ(kp) = Õ(n2−ǫ). For each for-loop iteration, to
compute µ̃1, we make Θ(r1) queries to memA taking Θ(r1) · tA = Õ(tA/δ

10
in) time. To compute µ̃2,

we make r2 queries to match
low(·). By Proposition 4.16, this takes time r2 · Õ((tA + n)n4ǫ/δ3out) =

Õ((tA + n)n4ǫ/δ25in) by Lemma 4.2.
Next, we analyze the time to compute A′

sp. Since |A′| ≥ δinn w.h.p. by Lemma 4.9, we can
sample a random vertex in A′ by sampling at most O(log n/δin) times in V ′ w.h.p. For each
sample, we need to make a query to memA, so we can compute A′

sp in time O(r3) ·O(tA log n/δin) =

Õ(tAn
1−ǫ/poly(δin)) because r3 = 1000δin

n
k log n and k = nǫ. Once A′

sp is computed, we can

compute C in |E(G)| = Θ(kp) = Õ(n2−ǫ). To conclude, the total running time in each iteration of
the repeat-loop at most

Õ(n2−ǫ + (tA + n)n4ǫ + tAn
1−ǫ)/poly(δin) = Õ((tA + n)(n1−ǫ + n4ǫ)/poly(δin)).

The main lemma on preprocessing, Lemma 4.4, is implied by combining Corollary 4.8, Corol-
lary 4.15 and Lemma 4.17

4.3 Query Algorithm

We define our matching oracle match depending on the cases from Lemma 4.4.
Suppose Lemma 4.4 returns M ′ that satisfies Case 1. Let M1 = M ′[A]. By Lemma 4.4, |M1| ≥

2δoutn. The algorithm for outputting match(v) with respect to M1 is described in Algorithm 2. The
correctness is straightforward and the worst-case query time is clearly 2tA +O(1).

Algorithm 2 Compute match(v) with respect to M1.

1. If v ∈ V (M ′), let v′ be such that (v, v′) ∈ M ′. Else, return ⊥.

2. If memA(v), memA(v
′) = 1, return (v, v′). Else, return ⊥.

Next, suppose Lemma 4.4 returns M ′ that satisfies Case 2. Let M2 be a (2, δoutn)-approximate
matching in G[A ∩ V ′ \ V (M ′)]. By Lemma 4.4, |M2| ≥ µ(G[A ∩ V ′ \ V (M ′)])/2 − δoutn ≥

14

δoutn.9 The algorithm for outputting match(v) with respect to M2 is described in Algorithm 3. The
correctness is straightforward. Let us analyze the query time. Step 1 takes tA +O(1) time. Step 2
takes Õ((tA + n)n4ǫ/δ3out) following the same proof as in Proposition 4.16 (the maximum degree of
G[V ′ \ V (M ′)] is at most n2ǫ w.h.p. by Lemma 4.7).

Algorithm 3 Compute match(v) with respect to M2.

Let matchlow be the (2, δoutn)-approximate matching oracle from Lemma 4.2 when given graph
G[V ′ \ V (M i)] with vertex set A ∩ V ′ as input.

1. Check if v ∈ A ∩ V ′ \ V (M ′). If not, return ⊥.

2. Using the oracle matchlow, if v ∈ V (M2), return (v, v′) ∈ M2. Else, return ⊥.

In both cases, the matching oracle match respects a matching of size at least δoutn and has
worst-case query time at most Õ((tA + n)n4ǫ/poly(δin)) w.h.p.

5 Boosting the Approximation Guarantee of a Matching Oracle

Recall the notations from Section 3. Throughout this section, we use the following parameters.

Definition 5.1. k ≥ 0 is an integral constant, γ ∈ (0, 1) is a constant, T = Θk,γ(1) is a sufficiently
large integral constant that depends only on k and γ (see Lemma 5.12), and ǫin > 0 is a sufficiently
small constant such that 9T · ǫin < 1/5.

We present an algorithm Augment(G,Min, k, γ, ǫin), which takes as input: a graph G = (V,E)
with n nodes, the parameters k, γ, ǫin as in Definition 5.1, and an oracle matchMin(.) for a matching
Min in G that has Õk,γ(n

1+ǫin) query time. The algorithm either returns an oracle matchMout(.) for
a matching Mout in G that is obtained by applying a sufficiently large number of length (2k + 1)-
augmenting paths to Min, or it returns Failure. We now state our main result in this section.

Theorem 5.2. Set ǫout := 9T · ǫin (see Definition 5.1). Given adjacency-matrix query access to
the input graph G = (V,E), the algorithm Augment(G,Min, k, γ, ǫin) runs in Õk,γ

(
n2−ǫin

)
time.

Further, either it returns an oracle matchMout(.) with query time Õk,γ(n
1+ǫout), for some matching

Mout in G of size |Mout| ≥ |Min|+Θk,γ(1) ·n (we say that it “succeeds” in this case), or it returns
Failure. Finally, if the matching Min admits a collection of γ · n many node-disjoint length
(2k + 1)-augmenting paths in G, then the algorithm succeeds whp.

In Section 5.1, we present a template algorithm for the task stated in Theorem 5.2. This is
inspired by an algorithm of McGregor [McG05] for computing a (1 + ǫ)-approximate matching in
the semi-streaming model.While describing the template algorithm, we assume that we are given
the matching Min explicitly as part of the input, and that we need to either construct the matching
Mout or return Failure. Note, however, that in the sublinear setting, we cannot assume this.

Subsequently, in Section 5.2, we show how to implement the template algorithm in the sublinear
setting under adjacency-matrix queries, which leads to the proof of Theorem 5.2.

Remark on Oracles: Throughout this section, we will treat the oracle matchM (.) as a data
structure in the sublinear model, which returns the appropriate answer upon receiving a query. In

9In fact, if we define M2 as M̂ i from Line 2g in Algorithm 1, we would even have that |M2| ≥ 4δinn w.h.p. But
we did use this bound just to avoid white-boxing the preprocessing algorithm and make the presentation of the query
algorithm more modular.

15

contrast, we will treat the oracle mateM (.) as simply an abstract function, so that mateM (v) simply
denotes the mate of v (if it exists) under M (see Section 3). Note that we can return the value of
mateM (v) by making a single query to matchM (v), without any additional overhead in time.

5.1 A Template Algorithm

We denote the template algorithm simply by Augment-Template(G,Min, k, γ), as we do not need
the parameter ǫin to describe it. The parameter ǫin will become relevant only in Section 5.2, when
we consider implementing this algorithm in the sublinear setting.

As part of the input to the template algorithm, the n-node graph G = (V,E) and the matching
Min are specified explicitly. The algorithm either returns an explicit matching Mout in G of size
|Mout| ≥ |Min|+Θk,γ(1) · n (we say that it “succeeds” in this case), or it returns Failure. If Min

admits a collection of γ · n many node-disjoint length (2k + 1)-augmenting paths in G, then the
template algorithm succeeds whp. This mimics Theorem 5.2. Furthermore, the template algorithm
has access to a subroutine LargeMatching(S, δ), which takes as input a subset of nodes S ⊆ V
and a small constant δ ∈ (0, 1), and either returns ⊥ or returns a matching M in G[S] such that
|M | ≥ 1

108
· δ5 · n. In addition, if µ(G) ≥ δ · n, then it is guaranteed that LargeMatching(G, δ) does

not return ⊥. This mimics Theorem 4.1, with δin = δ.

5.1.1 Algorithm Description

Random partitioning: We start by partitioning the node-set V into 2k+2 subsets L0, . . . , L2k+1,
as follows. For each v ∈ V , we place the node v into one of the subsets L0, . . . , L2k+1 chosen
uniformly and independently at random. We will refer to the subset Li as layer i of this partition.
If v ∈ Li, then we will write ℓ(v) = i and simply say that the node v belongs to layer i.

Let p be an augmenting path of length (2k + 1) in G w.r.t. Min. Assign an arbitrary direction
to this path, so that we can write p = (v0, v1, . . . , v2k+1) w.l.o.g. Specifically, we have (v2i, v2i+1) ∈
E \Min for all i ∈ [0, k], and (v2i−1, v2i) ∈ Min for all i ∈ [1, k]. We say that the path p survives
the random partitioning iff vi ∈ Li for all i ∈ [0, 2k + 1].

Lemma 5.3. Consider any collection P of node-disjoint length (2k + 1)-augmenting paths in G
w.r.t. Min. Let P∗ ⊆ P denote the subset of paths in P that survive the random partitioning. If
|P| ≥ γ · n, then |P∗| ≥ Θk,γ(1) · n whp.

Proof. Each path p ∈ P survives the random partitioning with probability (2k + 2)−(2k+2). Since
|P| ≥ γ ·n, by linearity of expectation, we get: E[|P∗|] ≥

(
(2k + 2)−(2k+2)γ

)
·n = Θk,γ(1)·n. Finally,

we note that whether a given path p ∈ P survives the random partitioning or not is independent of
the fate of the other paths in P. The lemma now follows from a Chernoff bound.

Motivated by Lemma 5.3, the template algorithm will only attempt to augment Min along those
augmenting paths that survive the random partitioning. This leads us to introduce the notion of
layered subgraphs of G, as described below. Intuitively, although the template algorithm does not
know the set P∗ in advance, it can be certain that the sequence of edges in any length (2k + 1)-
augmenting path in P∗ appears in successive layered subgraphs (see Observation 5.6).

Layered subgraphs of G: First, we define a set VH ⊆ V . A node v ∈ V belongs to VH iff either

1. ℓ(v) ∈ {0, 2k + 1} and mateMin(v) =⊥, or

2. ℓ(v) = 2j − 1 for some j ∈ [1, k] and ℓ (mateMin(v)) = 2j, or

16

3. ℓ(v) = 2j for some j ∈ [1, k] and ℓ (mateMin(v)) = 2j − 1.

Given the nodes in VH , the edge-set EH ⊆ E is defined as follows. An edge (u, v) ∈ E belongs to
EH iff u, v ∈ VH , |ℓ(u)− ℓ(v)| = 1, and either

1. min(ℓ(u), ℓ(v)) is even and (u, v) /∈ Min, or

2. min(ℓ(u), ℓ(v)) is odd and (u, v) ∈ Min

We next define the subgraph H := (VH , EH). Finally, for each i ∈ [0, 2k], let Gi := (V,Ei) be a
bipartite subgraph of G, where Ei := {(u, v) ∈ EH : ℓ(u) = i, ℓ(v) = i + 1} is the set of edges in
EH between layer i and layer i+ 1. Note that we have defined the subgraphs {Gi} over the entire
node-set V , although every edge in these subgraphs has both its endpoints in VH . This is done to
simplify notations, as will become evident when we describe how to implement our algorithm in the
sublinear setting. For each i ∈ [0, 2k + 1], we refer to the nodes in Vi := Li ∩ VH as being relevant
for the concerned layer.

We now state some key observations, which immediately follow from the description above.

Observation 5.4. For all i ∈ [1, 2k], we have Vi ⊆ V (Min).

Observation 5.5. For all i ∈ [0, k], we have E2i = E (G[V2i ∪ V2i+1]). Furthermore, for all i ∈
[1, k], we have E2i−1 = Min ∩ (V2i−1 × V2i). Thus, if i is even, then Gi consists of all the edges
from G that connect two relevant nodes across the concerned layers. In constrast, if i is odd, then
Gi consists of the edges from Min that connect two relevant nodes across the concerned layers.

Observation 5.6. Consider any augmenting path p = (v0, v1, . . . , v2k+1) w.r.t. Min in G that
survives the random partitioning. Then we have (vi, vi+1) ∈ Ei for all i ∈ [0, 2k].

Nested matchings: Fix any j ∈ [0, k], and for each i ∈ [0, j] consider a matching M2i ⊆ E2i in
G2i. We say that the sequence of matchings M0,M2, . . .M2j is nested iff for all i ∈ [1, j] and all
v ∈ V (M2i) ∩ V2i, we have mateMin(v) ∈ V (M2i−2).

Observation 5.7. Consider any sequence of nested matchings M0,M2, . . . ,M2k. Then there exists
a collection of node-disjoint length (2k + 1)-augmenting paths of size |M2k| w.r.t. Min in G.

Proof. Consider any node v ∈ V (M2k) ∩ V2k+1. Consider the path p(v) = (v0, v1, . . . , v2k+1) in G,
which is constructed according to the following procedure.

• v2k+1 ← v, and i ← 2k. (Note that v2k+1 is at layer 2k + 1 and is matched under M2k.)

• While i ≥ 0:

– If i is even, then vi ← mateMi(vi+1).

– If i is odd, then vi ← mateMin(vi+1).

– i ← i− 1.

Since the sequence M0,M2, . . . ,M2k is nested, applying Observation 5.4 and Observation 5.5, we can
show (by an induction on the number of iterations of the While loop) that p(v) is a length (2k+1)-
augmenting path in G w.r.t. Min. Furthermore, it is easy to see that the paths {p(v)}v∈V (M2k)∩V2k+1

constructed in this manner are mutually node-disjoint. This implies the observation.

17

Important parameters: We fix a constant ψ ∈ (0, 1), which depends on k and γ, i.e., ψ = Θk,γ(1),
and is chosen to be sufficiently small (see Corollary 5.16). Next, for each i ∈ [0, k], we define:

ψi :=
1

108
· ψ54i+3

and δi := ψ54i+1
. (1)

Consider any matching M ′ between the nodes at layers 2i and 2i+1, where i ∈ [0, k]. Intuitively,
the parameters ψi and δi will determine how large M ′ needs to be so as to make us “happy”. Note
that the values of δi and ψi decrease in a doubly exponential manner with i. This fact will be
crucially used during the analysis in Section 5.1.2.

A relatively informal summary of the algorithm: Motivated by Observation 5.7, the template
algorithm attempts to find a sequence of nested matchings ending at layer 2k. Specifically, the
algorithm runs in iterations. At the start of a given iteration, we maintain a sequence of nested
matchings M0,M2, . . . ,M2i up to some layer 2i, such that |M2j | ≥ ψj · n for all j ∈ [0, i]. If i = k,
then by Observation 5.7 we can already identify a collection of ψk ·n = Θk,γ(1)·n many node-disjoint
length (2k + 1)-augmenting paths in G w.r.t. Min, and so we just apply those augmenting paths
to Min and return the resulting matching Mout. Henceforth, assume that i < k. We classify each
node in VH as either alive or dead (at the start of the first iteration every node was alive). We also
enforce the invariant that all the nodes currently matched in M0 ∪M2 ∪ · · · ∪M2i are alive. During
the current iteration, we attempt to find a large matching M ′ between the alive nodes in G2i+2,
while ensuring that the sequence M0,M2, . . . ,M2i,M

′ remains nested. Specifically, we make a call
to the subroutine LargeMatching(S, δi+1), for an appropriate S ⊆ V2i+2 ∪ V2i+3. Depending on the
outcome of this call, we now fork into one of the following three cases.

Case (a): The call to LargeMatching(S, δi+1) returns a matching M ′. Thus, we are guaranteed
that |M ′| ≥ 1

108
· (δi+1)

5 · n ≥ ψi+1 · n. We set M2i+2 := M ′, i := i + 1, and proceed to the
next iteration.

Case (b): The call to LargeMatching(S, δi+1) returns ⊥, and i = −1 (i.e., the sequence of match-
ings M0,M2, . . . ,M2i was empty). Here, we terminate the template algorithm and return
Failure.

Case (c): The call to LargeMatching(S, δi+1) returns ⊥, and i ≥ 0. Here, we change the status of
all the nodes in V (M2i) ∩ V2i+1, along with their matched neighbors under Min (who are at
layer 2i+2), from alive to dead. We then delete the matching M2i, set i := i−1, and proceed
to the next iteration.

We will need some more notations while working with this algorithm in Section 5.2. Accordingly,
below we present a more detailed and technical description of the template algorithm, along with
these additional notations. While going through the rest of this section, the reader will find it
helpful to refer back to the informal description above, whenever necessary.

Iterations: In each iteration t ≥ 1, we will compute a matching M (t) in the subgraph Gσ(t),
where σ(t) ∈ {0, 2, 4, . . . , 2k}. The mapping σ : T → {0, 2, . . . , 2k} will be constructed in an online
manner, i.e., we will assign the value σ(t) only during the tth iteration. We now describe the state
of the algorithm at the end of any given iteration.

At the end of an iteration t, a subset of past iterations Λ(t) ⊆ [t] are designated as being active

w.r.t. t. If Λ(t) 6= ∅, then we write Λ(t) :=
{
λ
(t)
0 , λ

(t)
1 , . . . , λ

(t)
stack(t)

}
, where stack(t) :=

∣∣Λ(t)
∣∣ − 1

and λ
(t)
0 < λ

(t)
1 < · · · < λ

(t)
stack(t). The sequence of matchings M

(
λ
(t)
0

)

,M

(
λ
(t)
1

)

, . . . ,M

(
λ
(t)
stack(t)

)

corresponds to the sequence M0,M2, . . . ,M2i in the discussion immediately after Observation 5.7.
Thus, the algorithm satisfies the following invariants.

18

Invariant 5.8. We have stack(t) ≤ k, and σ
(
λ
(t)
j

)
= 2j for all j ∈ [0, stack(t)].

Invariant 5.9. The sequence of matchings M

(
λ
(t)
0

)

,M

(
λ
(t)
1

)

, . . . ,M

(
λ
(t)
stack(t)

)

is nested.

Invariant 5.10.

∣∣∣∣M
(
λ
(t)
j

)∣∣∣∣ ≥ ψj · n for all j ∈ [0, stack(t)].

For each layer i ∈ [0, 2k+1], the set of relevant nodes Vi is partitioned into two subsets: Ai and
Di. We refer to the nodes in Ai as alive, and the nodes in Di as dead. We let A :=

⋃2k+1
i=0 Ai and

D :=
⋃2k+1

i=0 Di respectively denote the set of all alive and dead nodes, across all the layers. The
next invariant states that every matched node in an active iteration is alive.

Invariant 5.11. A ⊇ V

(
M

(
λ
(t)
j

))
for all j ∈ [0, stack(t)].

At the start of the first iteration (when t = 1), every relevant node is alive (i.e., Ai = Vi and
Di = ∅ for all i ∈ [0, 2k+1]). Subsequently, over time the status of a relevant node can only change
from being alive to being dead, but not the other way round. Thus, with time, the set D keeps
growing, where the set A keeps shrinking. We now explain how to implement a given iteration t.

Implementing iteration t: Let i = stack(t − 1). If Λ(t−1) = ∅, then we set i = −1. If i = k,
then there will be no more iterations, i.e., the algorithm will last for only t − 1 iterations. In this

scenario, we know that the sequence of matchings M

(
λ
(t−1)
0

)

,M

(
λ
(t−1)
1

)

, · · · ,M
(
λ
(t−1)
k

)

is nested.

Based on this sequence, we identify a collection of |M
(
λ
(t−1)
k

)

| many node-disjoint augmenting paths
w.r.t. Min in G, augment Min along those paths (see Observation 5.7), and return the resulting
matching Mout. Accordingly, from now on we assume that i ≤ k − 1.

During iteration t, we will attempt to find a large matching M ′ in G2i+2 between two sets of
nodes: A2i+3 and C2i+2. Recall that A2i+3 denotes the alive nodes at layer 2i+3. We refer to C2i+2

as the set of candidate nodes for iteration t. Intuitively, we pick as many nodes from V2i+2 into the
set C2i+2 as possible, subject to two constraints: (i) if we append M ′ at the end of the sequence of
matchings from the currently active iterations, then the resulting sequence will continue to remain
nested, and (ii) the nodes in C2i+2 are currently alive. This leads us to the following definition.

C2i+2 :=





{
v ∈ A2i+2 : mateMin(v) ∈ V

(
M

(
λ
(t−1)
i

))}
if i ≥ 0;

A2i+2 else if i = −1.

We now call the subroutine LargeMatching(C2i+2 ∪ A2i+3, δi+1), in an attempt to obtain a
large matching in G [C2i+2 ∪ A2i+3] = G2i+2 [C2i+2 ∪ A2i+3]. The last equality holds because of
Observation 5.5, and since C2i+2 ⊆ V2i+2 and A2i+3 ⊆ V2i+3. We set σ(t) := 2i + 2. Now, we fork
into one of the following three cases.

Case (a): The call to LargeMatching(C2i+2 ∪ A2i+3, δi+1) returns a matching M ′. Thus, we are
guaranteed that |M ′| ≥ 1

108
· (δi+1)

5 · n ≥ ψi+1 · n. We set M (t) := M ′, Λ(t) := Λ(t−1) ∪ {t}
and stack(t) := stack(t− 1) + 1. This implies that λ

(t)
j := λ

(t−1)
j for all j ∈ [0, stack(t− 1)],

and λ
(t)
stack(t) := t. Henceforth, we refer to this iteration t as a forwarding iteration at layer

(2i + 2). We now move on to the next iteration (t+ 1).

Case (b): The call to LargeMatching(C2i+2 ∪ A2i+3, δi+1) returns ⊥, and i = −1. Here, the
algorithm terminates and returns Failure.

19

Case (c): The call to LargeMatching(C2i+2 ∪ A2i+3, δi+1) returns ⊥, and i ≥ 0. Here, we set
M (t) := ∅. We also change the status of all the nodes in C2i+2, along with their matched
neighbors under Min (who are at layer 2i+1), from alive to dead, and respectively move these

nodes from A2i+1 to D2i+1 and from A2i+2 to D2i+2. Next, we set Λ(t) := Λ(t−1) \ {λ(t−1)
i }

and stack(t) := stack(t − 1) − 1. This implies that λ
(t)
j := λ

(t−1)
j for all j ∈ [0, stack(t)].

Henceforth, we refer to this iteration t as a backtracking iteration for layer 2i. We now move
on to the next iteration (t+ 1).

Remark: From the above description of the template algorithm, it immediately follows that In-
variants 5.8, 5.9, 5.10 and 5.11 continue to hold at the end of each iteration t.

5.1.2 Analysis

In this section, we analyze the template algorithm, and prove the following lemma.

Lemma 5.12. The algorithm Augment-Template(G,Min, k, γ) runs for at most T = Θk,γ(1) iter-
ations. It either returns a matching Mout in G of size |Mout| ≥ |Min|+Θk,γ(1) ·n (we say that the
algorithm “succeeds” in this case), or it returns Failure. Furthermore, if Min admits a collection
of γ ·n many node-disjoint length (2k+1)-augmenting paths in G, then the algorithm succeeds whp.

We start by focusing on bounding the number of iterations (see Corollary 5.14).

Claim 5.13. There can be at most 1/(ψi) backtracking iterations for layer 2i, where i ∈ [0, k − 1].

Proof. Consider any backtracking iteration t for layer 2i. Then we have σ(t − 1) = i, and Invari-
ant 5.10 implies that ∣∣∣∣V

(
M

(
λ
(t−1)
i

))
∩ V2i+1

∣∣∣∣ =
∣∣∣∣M

(
λ
(t−1)
i

)∣∣∣∣ ≥ ψi · n.

Thus, during iteration t, at least ψi ·n nodes at layer (2i+1) change their status from alive to dead.
Since there are at most n nodes at layer (2i+1), such an event can occur at most 1/(ψi) times.

Corollary 5.14. The algorithm Augment-Template(G,Min, k, γ) has at most Θk,γ(1) iterations.

Proof. Let Tf , Tb and T0 respectively denote the total number of forwarding iterations across all
layers, the total number of backtracking iterations across all layers, and the total number of iterations
across all layers that are neither forwarding nor backtracking.We have T0 = 1 if the template
algorithm returns Failure, and T0 = 0 otherwise.

We now observe that: there cannot exist a sequence of more than (k+1) consecutive forwarding
iterations, for otherwise, the (k+2)th forwarding iteration in this sequence would have to take place
at a layer ≥ (2k + 2), which does not exist. Hence, we have: Tf ≤ (k + 1) · (Tb + T0) + (k+ 1), and
the total number of iterations is bounded by:

T = Tf + Tb + T0 ≤ (k + 1) · (Tb + T0) + (k + 1) + Tb + T0 = Θ(k) · Tb ≤ Θ(k) ·
k−1∑

i=0

1

ψi
= Θk,γ(1).

The second inequality follows from Claim 5.13, and the last equality follows from (1).

We now move on to showing that if Min admits a collection γ · n many node-disjoint length
(2k + 1)-augmenting paths in G, then the template algorithm succeeds whp. Towards this end,
let P denote a maximum-sized collection of node-disjoint length (2k + 1)-augmenting paths in G

20

w.r.t. Min. Let P∗ ⊆ P be the subset of paths in P that survive the random partitioning. If
|P| ≥ γ · n, then Lemma 5.3 guarantees that whp:

|P∗| ≥ Θk,γ(1) · n. (2)

At any point in time during the execution of the algorithm Augment-Template(G,Min, k, γ), we
say that a path p ∈ P∗ is alive if all the nodes on p are alive, and we say that the path p is dead
otherwise. Let P∗

A ⊆ P∗ and P∗
D = P∗ \ P∗

A respectively denote the set of alive and dead paths at
any point in time. Just before the start of iteration 1, we have P∗

A = P∗ and P∗
D = ∅. Subsequently,

a path p ∈ P∗ can change its status from alive to dead only during a backtracking iteration (note
that this change occurs in only one direction, i.e., a dead path will never become alive). The next
claim upper bounds the number of such changes.

Claim 5.15. During a backtracking iteration for layer 2i, where i ∈ [0, k−1], at most δi+1 ·n many
paths in P∗ moves from P∗

A to P∗
D.

Proof. Let t ≥ 1 denote a backtracking iteration for layer 2i. During iteration t, the algorithm calls
LargeMatching(C2i+2∪A2i+3, δi+1), which returns ⊥. Consider the subgraph G′ = G[C2i+2∪A2i+3].
We have: µ(G′) < δi+1 ·n, for otherwise the call to LargeMatching(., .) would not have returned ⊥.

Just before iteration t, let P ′ ⊆ P∗
A denote the subset of paths in P∗

A that pass through some
node in C2i+2. Only the paths in P ′ move from P∗

A to P∗
D at the end of iteration t. We can,

however, form a matching in G′ which contains one edge from each path in P ′. Hence, we have
|P ′| ≤ µ(G′) < δi+1 · n. This concludes the proof of the claim.

Corollary 5.16. Let ψ = Θk,γ(1) be a sufficiently small constant depending on k and γ, and suppose
that (2) holds. Then throughout the entire duration of the algorithm, we have:

|P∗
A| ≥ |P∗| −

k−1∑

i=0

δi+1

ψi
· n ≥ δ0 · n.

Proof. From (1), Claim 5.13 and Claim 5.15, we infer that:

|P∗
A| ≥ |P∗| −

k−1∑

i=0

δi+1

ψi
· n ≥ |P∗| − k · (108ψ) · n. (3)

Now, since we can set ψ to be any sufficiently small constant value depending on k and γ, and since
δ0 ≤ ψ according to (1), from (2) we get: |P∗|− k · (108ψ) ·n ≥ δ0 ·n. This concludes the proof.

Corollary 5.17. If (2) holds, then the algorithm does not return Failure.

Proof. For contradiction, suppose that the algorithm returns Failure at the end of an iteration t.
Let i = σ(t− 1). Since the algorithm returns Failure after iteration t, we must have i = −1.

Furthermore, during iteration t, the call to LargeMatching(C0 ∪A1, δ0) must have returned ⊥. Let
G′ = G[C0 ∪ A1]. It follows that:

µ(G′) < δ0 · n. (4)

Next, observe that C0 = A0. Hence, just before the start of iteration t, we could have formed a
matching in G′ by taking the first edge of each path in P∗

A. Thus, from Corollary 5.16, we get:

µ(G′) ≥ |P∗
A| ≥ δ0 · n. (5)

However, both (4) and (5) cannot simultaneously be true. This leads to a contradiction.

21

Note that if the template algorithm does not return Failure, then it necessarily returns a
matching Mout of size |Mout| ≥ |Min| + ψk · n (this holds because of Invariant 5.9, Invariant 5.10
and Observation 5.7). Finally, recall that ψk = Θk,γ(1) as per (1). Lemma 5.12 now follows from
Corollary 5.14, Lemma 5.3 and Corollary 5.17.

5.2 Implementation in Sublinear Models

In this section, we show how to implement the template algorithm from Section 5.1, when we are
allowed access to the input graph G only via adjacency-matrix queries. Throughout this section,
we use the following parameters (recall Definition 5.1).

ǫ0 := ǫin, and ǫt := 9 · ǫt−1 for all t ∈ [1, T]. (6)

In Section 5.1.1, the template algorithm starts with iteration t = 1. Here, we use the phrase
“iteration t = 0” to refer to the scenario just before the start of the first iteration. Towards this
end, for consistency of notations, we define ǫ−1 := 2, M (0) := Min, σ(0) :=⊥, stack(0) := −1 and
Λ(0) := ∅. Further, we define an oracle alive0(v) that is supposed to return Yes if v is alive at the
end of iteration 0 (i.e., just before the start of iteration 1), and return No otherwise.

The rest of this section is organized as follows. Lemma 5.18 shows how to implement each
iteration of the template algorithm, under adjacency-matrix query access to the input graph G.
Its proof appears at the end of this section. Theorem 5.2 now follows from Lemma 5.12 and
Corollary 5.19.

Lemma 5.18. Suppose that we can access the input graph G only via adjacency-matrix queries, and
we have an oracle matchMin(.) with Õk,γ(n

1+ǫin) query time. Then we can implement each iteration
t ≥ 0 of the algorithm Augment-Template(G,Min, k, γ), as described in Section 5.1, in Õk,γ(n

2−ǫt−1)
time. Furthermore, if the concerned iteration t does not result in the algorithm returning Failure,
then we can ensure that we have access to the following data structures at the end of iteration t.

• An oracle matchM (t)(.) for the matching M (t), that has a query time of Õk,γ(n
1+ǫt).

• An oracle alivet(.) that has a query time of Õk,γ(n
1+ǫt). When queried with a node v ∈ V ,

this oracle returns Yes if v is alive at the end of iteration t, and returns No otherwise.

• The values σ(t) and stack(t), and the contents of the set Λ(t).

Corollary 5.19. Let ǫout := 9T · ǫin, where T = Θk,γ(1) is the maximum possible number of
iterations of the template algorithm (see Lemma 5.12). Then it takes Õk,γ(n

2−ǫin) time to implement
the template algorithm, under adjacency-matrix query access to G. Further, if the template algorithm
does not return Failure, then at the end of our implementation we have an oracle matchMout(.) for
the matching Mout returned by it, with query time Õk,γ(n

1+ǫout).

Proof. By Lemma 5.18, each iteration t of the template algorithm can be implemented in time
Õk,γ(n

2−ǫt−1) = Õk,γ(n
2−ǫin), since ǫin ≤ ǫt−1. Thus, the total time taken to implement the

template algorithm is at most Õk,γ(T · n2−ǫin) = Õk,γ(n
2−ǫin).

Suppose that the template algorithm terminates at the end of iteration t, and returns a matching
Mout. Then, at the end of iteration t of our sublinear implementation, the situation is as follows.

22

σ(t) = k, and Λ(t) =
{
λ
(t)
0 , λ

(t)
1 , · · · , λ(t)

k

}
,where σ

(
λ
(t)
j

)
= 2j for each j ∈ [0, k] (see Invari-

ant 5.8). The sequence of matchings in Λ(t) is nested (see Invariant 5.9). Thus, from this

sequence of nested matchings we can extract a set of at least

∣∣∣∣M
(
λ
(t)
k

)∣∣∣∣ many node-disjoint

length (2k + 1)-augmenting paths w.r.t. Min in G (see Observation 5.7). The template algo-
rithm obtains the matching Mout by applying these augmenting paths to Min. In our sublinear
implementation of the template algorithm, however, we can access each matching M ∈ Λ(t)

only via an oracle matchM (.), which has a query time of at most Õk,γ(n
1+ǫt) (see (6) and

Lemma 5.18). Furthermore, we can access the matching Min only via the oracle matchMin(.),
which also has a query time of at most Õk,γ(n

1+ǫin) = Õk,γ(n
1+ǫt).

We now show how to answer a query to the oracle matchMout(v). The key observation is this:

Let E∗ := (Min ∩ EH)
⋃

M∈Λ(t) M (see the discussion on layered subgraphs in Section 5.1.1).
Then the graph G∗ = (V,E∗) consists of a collection of node-disjoint alternating paths
w.r.t. Min. We say that a path in G∗ is complete iff it has one endpoint at layer 0 and
the other endpoint at layer (2k + 1). Now, a node v ∈ V is matched in Mout iff: either
v ∈ V (Min), or v /∈ V (Min) and v is the starting/end point of a complete path in G∗.

Using this observation, we now describe how to answer queries of the form: “Is matchMout(v) =⊥
for a given node v ∈ V ?”. To answer such a query, we apply the procedure below.

If matchMin(v) 6=⊥, then we return that matchMout(v) 6=⊥. Else if matchMin(v) =⊥ and ℓ(v) /∈
{0, 2k+1}, then we return that matchMout(v) =⊥. Finally, if matchMin(v) =⊥ and w.l.o.g. ℓ(v) = 0,
then we perform the following steps.

• v0 ← v.

• For i = 1 to 2k + 1:

– If i is odd, then vi ← mate
M

(

λ
(t)
(i−1)/2

)(vi−1).

– Else if i is even, then vi ← mateMin(vi−1).

– If vi =⊥, then return that matchMout(v) =⊥.

• Return that matchMout(v) 6=⊥.

It is easy to verify that the above procedure correctly returns whether or not matchMout(v) =⊥.
We can extend this procedure in a natural manner, which would also allow us to answer the query
matchMout(v). To summarize, we can answer a query matchMout(v) by making at most one call to
each of the oracles matchM (.), for M ∈ Λ(t), and at most Θ(k) calls to the oracle matchMin(.). Each
of these oracle calls take at most Õk,γ(n

1+ǫt) time, as ǫt′ ≤ ǫt for all t′ ∈ [1, t]. Since
∣∣Λ(t)

∣∣ = k,

the oracle matchMout(.) has a query time of Õk,γ(k ·n1+ǫt) = Õk,γ(n
1+ǫt) = Õk,γ(n

1+ǫout), where the
last equality holds since ǫt ≤ ǫT = ǫout. This concludes the proof.

23

Proof of Lemma 5.18

We prove the lemma by induction on t.

Base case (t = 0):

We already have the oracle matchM (0)(.) with query time Õk,γ(n
1+ǫ0), since ǫ0 = ǫin and M (0) =

Min. We set σ(t) ←⊥, stack(t) ← −1 and Λ(0) ← ∅. We now claim that we already have the
oracle alive0(.). This is because a node v ∈ V is alive just before the start of iteration 1 if and only
if v ∈ VH . Furthermore, given a query alive0(v), we can determine whether v is in VH by checking
the value of ℓ(v), setting u ← mateM (0)(v), and then checking the value of ℓ(u) if u 6=⊥. Thus,
answering a query to the oracle alive0(.) takes Õk,γ(n

1+ǫ0) time. So, we can implement iteration
0 in O(1) time, and Lemma 5.18 holds for t = 0.

Inductive case (t ≥ 1):

We assume that Lemma 5.18 holds for all t′ ∈ [0, t−1], and that we have access to the data structures
constructed during all these past iterations. We now focus on implementing the current iteration t
(see Section 5.1.1) under adjacency-matrix query access to G. Let i = stack(t− 1). If i = k, then
the algorithm would terminate after iteration (t − 1). Henceforth, we assume that i ∈ [−1, k − 1].
In the current iteration t, the template algorithm wants to first compute a matching M (t) by calling
the subroutine LargeMatching(C2i+2 ∪ A2i+3, δi+1). We first show that we can efficiently query
whether or not a given node in V belongs to the set C2i+2 ∪ A2i+3. Subsequently, we split up our
implementation of iteration t into two steps, as described below.

Claim 5.20. Given any node v ∈ V , we can determine if v ∈ C2i+2 in Õk,γ(n
1+ǫt−1) time.

Proof. We first check the value of ℓ(v) and call alivet−1(v). Now, we consider the following cases.

(i) ℓ(v) 6= 2i+ 2. Here, we return that v /∈ C2i+2.

(ii) ℓ(v) = 2i+ 2 and alivet−1(v) = No. Here, we also return that v /∈ C2i+2.

(iii) ℓ(v) = 2i+ 2, alivet−1(v) = Yes, and i = −1. Here, we return that v ∈ C2i+2.

(iv) ℓ(v) = 2i+ 2, alivet−1(v) = Yes and i ≥ 0. Here, we first set uv ← mateMin(v), which takes
Õk,γ(n

1+ǫin) = Õk,γ(n
1+ǫt−1) time. Next, we call match

M

(

λ
(t−1)
i

)(uv), which also takes at most

Õk,γ(n
1+ǫt−1) time. Finally, we return that v ∈ C2i+2 iff match

M

(

λ
(t−1)
i

)(uv) 6=⊥.

The correctness of the above procedure follows from the definition of the set C2i+2. Furthermore,
the preceding discussion implies that this procedure overall takes at most Õk,γ(n

1+ǫt−1) time.

Corollary 5.21. Given any v ∈ V , we can determine if v ∈ C2i+2 ∪ A2i+3 in Õk,γ(n
1+ǫt−1) time.

Proof. We can determine if v ∈ A2i+3 by checking the value of ℓ(v) and making a query alivet−1(v),
which takes Õk,γ(n

1+ǫt−1) time. The corollary now follows from Claim 5.20.

Step I: Constructing the oracle matchM (t)(.). Armed with Corollary 5.21, we mimic the call
to LargeMatching(C2i+2 ∪ A2i+3, δi+1) in the template algorithm, by invoking Theorem 4.1 with
A = C2i+2∪A2i+3, δin = δi+1, ǫ = 2 ·ǫt−1 and tA = Õk,γ(n

1+ǫt−1).10 If Theorem 4.1 returns ⊥, then

10The reader should keep in mind that in the current section (Section 6), we are using the symbol A to denote the
set of alive nodes across all the layers. This is different from the way the symbol A is being used in the statement of
Theorem 4.1, where it refers to any arbitrary subset of nodes.

24

we set M (t) := ∅, and the trivial oracle matchM (t)(.) has O(1) = Õk,γ(n
1+ǫt) query time. Otherwise,

Theorem 4.1 returns an oracle matchM (.) for a matching M , and we set M (t) := M . By (6) and
Theorem 4.1, this oracle matchM (t)(.) has query time:

Õ

(
(tA + n) · n4ǫ

poly(δi+1)

)
= Õk,γ

(
(tA + n) · n4ǫ

)
= Õk,γ

(
n1+ǫt−1+4ǫ

)
= Õk,γ

(
n1+ǫt

)
.

Finally, from (6) and Theorem 4.1, we infer that overall Step I takes time:

Õ

(
(tA + n) · (n1−ǫ + n4ǫ)

poly(δi+1)

)
= Õk,γ

(
(tA + n) · (n1−ǫ + n4ǫ)

)

= Õk,γ((tA + n) · n1−ǫ)

= Õk,γ

(
n2+ǫt−1−ǫ

)

= Õk,γ

(
n2−ǫt−1

)
.

In the above derivation, the second equality holds since ǫ = 2ǫt−1 ≤ 9T ǫin ≤ 1/5 (see (6) and
Definition 5.1), whereas the third equality holds since tA = Õk,γ(n

1+ǫt−1).

Step II: Determining σ(t), stack(t), Λ(t), and the oracle alive(t)(.). We set σ(t) ← 2i + 2.
We now fork into one of the following three cases.

Case (a) In Step I, the invocation of Theorem 4.1 returned an oracle matchM (.) for a matching
M , and we set M (t) := M . This will be referred to as a forwarding iteration at layer 2i+2. In
this case, we set Λ(t) ← Λ(t−1) ∪ {t} and stack(t) ← stack(t− 1) + 1. Now, we observe that
the set of alive nodes does not change during such a forwarding iteration, and so we already
have the oracle alivet(.), because alivet(v) = alive(t−1)(v) for all v ∈ V . Accordingly, the

oracle alivet(.) has query time Õk,γ(n
1+ǫt−1) = Õk,γ(n

1+ǫt).

Case (b): In Step I, the invocation of Theorem 4.1 returned ⊥, and i = −1. Here, the algorithm
terminates and returns Failure.

Case (c): In Step I, the invocation of Theorem 4.1 returned ⊥, and i ≥ 0. This will be referred

to as a backtracking iteration at layer 2i. In this case, we set Λ(t) ← Λ(t−1) \ {λ(t−1)
i } and

stack(t) ← stack(t−1)−1. Now, we observe that due to iteration t, only the nodes in C2i+2

and their matched neighbors under Min (who are at layer 2i + 1), change their status from
alive to dead. The status of every other node remains unchanged. Thus, we can answer a
query alivet(v), in Õk,γ(n

1+ǫt) time, as follows.

We first check the value of ℓ(v), query alivet−1(v) and matchMin(v), and determine whether
or not v ∈ C2i+2 by invoking Claim 5.20. Overall, this takes Õk,γ(n

1+ǫt−1) + Õk,γ(n
1+ǫin) =

Õk,γ(n
1+ǫt) time. Next, we consider three cases.

(i) ℓ(v) /∈ {2i + 1, 2i+ 2}. Here, we return alivet(v) = alive(t−1)(v).

(ii) ℓ(v) = 2i + 2. Here, if v ∈ C2i+2 then we return alivet(v) = No; otherwise we return
alivet(v) = alivet−1(v).

(iii) ℓ(v) = 2i + 1. Here, we set uv ← mateMin(v). Now, if uv ∈ C2i+2 then we return
alivet(v) = No; otherwise we return alivet(v) = alivet−1(v).

To summarize, Step I takes Õk,γ(n
2−ǫt−1) time, whereas Step II takes only O(k) = Ok,γ(1) time.

Furthermore, at the end of Step II we have all the desired data structures for iteration t, and both

25

the oracles matchM (t)(.) and alivet(.) have a query time of at most Õ(n1+ǫt). Finally, Theorem 4.1
ensures that whp, the way we decide whether we are in case (a), case (b) or case (c) is consistent with
the choice made by the template algorithm in the same scenario (see the discussion on “implementing
iteration t” in Section 5.1.1, and how the subroutine LargeMatching(S, δ) is defined in the second
paragraph of Section 5.1). This concludes the proof of Lemma 5.18.

6 (1, ǫn)-Approximate Matching Oracle

In this section, starting from an empty matching, we repeatedly apply Theorem 5.2 to obtain our
main results in the sublinear setting. They are summarized in the theorem and the corollary below,
which are restatements of Theorem 1.3.

Theorem 6.1. Let γ, ǫ′′ ∈ (0, 1) be any two small constants, and let G be the input graph with
n nodes which we can access via adjacency-matrix queries. Then for a sufficiently small constant
ǫ′ ∈ (0, ǫ′′), there exists an algorithm which: In Õγ(n

2−ǫ′) time, returns an oracle matchM (.) for a
(1, 3γn)-approximate matching M in G, where the oracle matchM (.) has Õγ(n

1+ǫ′′) query time.

Corollary 6.2. Given adjacency-matrix query access to an n-node graph G and any constant γ ∈
(0, 1), in Õγ(n

2−ǫ) time we can return a (1, 4γn)-approximation to the value of µ(G), whp. Here,
ǫ ∈ (0, 1) is a sufficiently small constant depending on γ.

Proof. First, we apply Theorem 6.1, with ǫ = ǫ′, to get the oracle matchM (.) in Õγ(n
2−ǫ) time. Note

that M is a (1, 3γn)-approximate matching in G = (V,E). Using Chernoff bound, we now compute
a (1, γn)-approximate estimate µ̂ of |M | by sampling, uniformly at random, a set S of Õγ(1) nodes
from V and querying matchM (v) for each node v ∈ S. This takes Õγ(n

1+ǫ′′) = Õγ(n
2−ǫ) time. The

last inequality holds since ǫ = ǫ′ and ǫ′′ are chosen to be sufficiently small, so that 1 + ǫ′′ ≤ 2 − ǫ.
It is now easy to observe that µ̂ is a (1, 4γn)-approximation to the value of µ(G).

Proof of Theorem 6.1

Algorithm 4 contains the relevant pseudocode. We slightly abuse the notation in step 2-(b) of Algo-
rithm 4, when we write Z = (Mout, ǫout). Here, we essentially mean that Augment(G,Min, i, γ2, ǫin)
returns the oracle matchMout(.) with query time Õγ(n

1+ǫout). Similarly, in step 2-(b), when we write
Min ← Mout, this means that henceforth we will refer to the oracle matchMout(.) as matchMin(.).

The idea behind Algorithm 4 is simple and intuitive. We start by initializing Min ← ∅, k ←
⌈1/γ⌉ and ǫin ← ǫ′, where ǫ′ ∈ (0, 1) is a sufficiently small constant. At this point, we trivially have
the oracle matchMin(.) with query time Õγ(n

1+ǫin). The algorithm now runs in rounds. In each
round, it repeatedly tries to augment the matching Min along small-length augmenting paths, by
successively calling Augment(G,Min, i, γ2, ǫin) for i ∈ [0, k]. Whenever a call to Augment(·) succeeds,
the algorithm feeds its output into the next call to Augment(·). The algorithm terminates whenever
it encounters a round where every call to Augment(·) returns Failure.

Claim 6.3. Algorithm 4 runs for Õγ(1) rounds, and makes Õγ(1) calls to Augment(·).

Proof. Say that a given round of Algorithm 4 is successful iff during that round: for some i ∈ [0, k],
the call to Augment(G,Min, i, γ2, ǫin) succeeded (see Theorem 5.2 and step 2-(a) of Algorithm 4).
By Theorem 5.2, each time a call to Augment(G,Min, i, γ2, ǫin) succeeds, it increases the size of the
matching Min (see step 2-(b) of Algorithm 4) by at least Θγ(1) · n. Since µ(G) ≤ n, such an event
can occur at most Θγ(1) times. Finally, each round of Algorithm 4 consists of (k+1) = Θγ(1) calls
to Augment(·), and all but the last round is successful. This implies the claim.

26

Algorithm 4 Near-optimal-matching-oracle (G = (V,E), γ).

Choose ǫ′ ∈ (0, 1) to be a sufficiently small constant.
ǫin ← ǫ′, k ← ⌈1/γ⌉, Min ← ∅.
τ ← True.
While τ = True: // Start of a new round

1. τ ← False.

2. For i = 0 to k:

(a) Z ← Augment(G,Min, i, γ2, ǫin). // See Theorem 5.2

(b) If Z 6= Failure, then

• Suppose that Z = (Mout, ǫout).

• Min ← Mout, ǫin ← ǫout.

• τ ← True.

M ← Min, ǫ
′′ ← ǫout.

Return the oracle matchM (·), which has query time Õγ(n
1+ǫ′′).

Claim 6.4. Suppose that at the start of a given round of Algorithm 4, there exists a collection of at
least γ2 ·n many node-disjoint length (2i+1)-augmenting paths w.r.t. Min in G, for some i ∈ [0, k].
Then whp, Algorithm 4 does not terminate at the end of the given round.

Proof. If there exists some j ∈ [0, i − 1] such that the call to Augment(G,Min, j, γ2, ǫin) succeeds
during the given round, then it immediately implies the claim (since we would have τ = True when
the round ends and so the While loop in Algorithm 4 will run for at least one more iteration).

For the rest of the proof assume that during the given round, for all j ∈ [0, i − 1] the call to
Augment(G,Min, j, γ2, ǫin) returns Failure, and hence the matching Min does not change during
iterations j = 0 to i − 1 of the For loop. Accordingly, at the start of the concerned iteration i of
the For loop, the matching Min still admits a collection of at least γ2 ·n many node-disjoint length
(2i + 1)-augmenting paths in G. Thus, by Theorem 5.2, the call to Augment(G,Min, i, γ2, ǫinp)
succeeds whp. So, it follows that Algorithm 4 does not end after the given round, whp.

Corollary 6.5. When Algorithm 4 terminates, whp Min is a (1, 3γn)-approximate matching in G.

Proof. Let M∗ be a maximum matching in G. By Claims 6.3 and 6.4, the following holds whp
when the algorithm terminates: For all i ∈ [0, k], there exists at most γ2 · n many length-(2i + 1)
augmenting paths in Min ∪M∗.

As k = ⌈1/γ⌉, the augmenting paths in Min∪M∗ that are of length ≤ 2k+1 contribute at most
(k + 1) · γ2n ≤ 2γn extra edges to M∗ compared to Min. On the other hand, augmenting paths

Min ∪M∗ that are of length > (2k + 1) contribute at most (k+2)−(k+1)
k+1 · |Min| ≤ γ · |Min| ≤ γn

extra edges to M∗ compared to Min. Thus, we get: |M∗| ≤ |Min|+ 3γn.

Since Algorithm 4 makes only constantly many calls to Augment(·), we can choose ǫ′ > 0 to be
sufficiently small so as to guarantee that 0 < ǫ′′ ≪ 1 (see Claim 6.3 and Theorem 5.2). Further,
during the execution of Algorithm 4, each call to Augment(·) takes Õγ(n

2−ǫin) = Õγ(n
2−ǫ′) time.

Theorem 6.1 now follows from Claim 6.3 and Corollary 6.5.

27

7 Dynamic (1 + ǫ)-Approximate Matching Size

We now prove our main result in the dynamic setting; as summarized in the theorem below. Note
that Theorem 7.1 is a restatement of Theorem 1.2.

Theorem 7.1. There is a dynamic (1 + ǫ)-approximate matching size algorithm with m0.5−Ωǫ(1)

worst-case update time, where m is the number of edges in the dynamic input graph G = (V,E) with
n nodes. The algorithm is randomized and works against an adaptive adversary whp. Moreover, the
algorithm maintains an oracle matchM (.) with query time Õ(m0.5+ǫ′) (for a small constant ǫ′ > 0
which depends on ǫ), where M is a (1 + ǫ)-approximate maximum matching of G.

To highlight the main idea behind the proof of Theorem 7.1, first we recall that using techniques
presented in a series of papers [AKL19, Beh23, BDH20, BKSW23, Kis22], we can assume: µ(G) =
Ω(n) throughout the sequence of updates. Accordingly, consider the following dynamic matching
size algorithm, which runs in phases, where each phase lasts for ǫn updates. At the start of a phase,
we compute a (1 + ǫ)-approximate estimate µ∗ of µ(G), by invoking Corollary 6.2, in Õǫ(n

2−ǫ)
time. Sine µ(G) = Ω(n), the value of µ∗ continues to remain a (1 + Θ(ǫ))-approximate estimate
of µ(G) throughout the duration of the phase. This already leads to an amortized update time of:
Õǫ(n

2−ǫ)/(ǫn) = Õǫ(n
1−ǫ), which is sublinear in n. We now show how to extend this idea to get an

update time that is sublinear in
√
m, and how to answer queries in m0.5+ǫ′ time.

Proof of Theorem 7.1

For ease of exposition, we first focus on proving an amortized update time bound. We start by
recalling a useful technique for sparsifying G, which allows us to assume that µ(G) = Ω(n).

Contractions: Consider a function φ : V → Vφ which maps every node in V to some element
in the set Vφ. We say that φ is a contraction of G iff |Vφ| ≤ |V |. Define the multiset of edges
Eφ := {(u, v) ∈ E : φ(u) 6= φ(v)}, and consider the multigraph Gφ := (Vφ, Eφ). From every
matching in Gφ, we can recover a matching in G of same size. Hence, we have: µ(Gφ) ≤ µ(G).

The next theorem follows immediately from past work on the maximum matching problem
across a range of computational models [AKL19, Beh23, BDH20, BKSW23, Kis22]. For the sake of
completeness, however, we outline the proof of Lemma 7.2 in Appendix B.

Lemma 7.2. There exists a dynamic algorithm A with Õ(1) worst-case update time, which main-
tains: a set of K = Õ(1) contractions {φ1, . . . , φK} of G, the corresponding graphs {GΦ1 , . . . , GΦK

},
and a subset I ⊆ [1,K]. Throughout the sequence of updates (whp against an adaptive adversary)

the algorithm ensures that: (i) |Vφi
| = Θ

(
µ(G)
ǫ

)
for all i ∈ I, and (ii) there is an index i∗ ∈ I such

that (1− ǫ) · µ(G) ≤ µ(Gφi∗
) ≤ µ(G).

Description of our dynamic algorithm: We maintain a (2 + ǫ)-approximate estimate µ̂ of
µ(G), in Õ(1) worst-case update time, using an existing deterministic dynamic matching algorithm
as a subroutine [BCH17]. We also use the algorithm A, as in Theorem 7.2, as a subroutine. Let
ǫ0 ∈ (0, 1) be a sufficiently small constant, depending on ǫ.

Our dynamic algorithm partitions the update sequence into phases. We now explain how the
algorithm works during a given phase, which can be of two types.

Type-I Phase: At the start of a type-I phase, we have µ̂ ≥ |E|0.5+ǫ0 . Let minit denote the value of
|E| at the start of the phase. Then the phase will last for the next ǫ · (minit)

0.5+ǫ0 updates. At the
start of the phase, we call an existing static algorithm to compute a (1 + ǫ)-approximate maximum

28

matching M of G, which takes Oǫ(minit) time [DP14]. Define µ∗ = |M |. Throughout the phase, µ∗

continues to remain a (1 + 2ǫ)-approximate estimate of µ(G), and we continue to output the same
value µ∗. This leads to an amortized update time of:

Oǫ(minit)

ǫ · (minit)0.5+ǫ0
= Oǫ

(
(minit)

0.5−ǫ0
)
= m0.5−Ωǫ(1).

The last equality holds since |E| = m = Θ(minit) throughout the phase. We can ensure that
throughout the phase, the algorithm explicitly maintains M , which remains a (1+ 2ǫ)-approximate
maximum matching of G. This gives us the matching oracle matchM (.), with constant query time.

Type-II Phase: At the start of a type-II phase, we have µ̂ < |E|0.5+ǫ0 . Let µ̂init and minit

respectively denote the value of µ̂ and |E| at the start of the phase. The phase will last for the next
ǫµ̂init updates. Hence, µ(G) can change by at most a multiplicative (1+ ǫ) factor during the phase.

At the start of the phase, for each i ∈ I, we find a (1, 4γ)-approximate estimate µ∗
i of µ(Gφi

).
We obtain µ∗

i by invoking Corollary 6.2 on Gφi
, with γ = ǫ2.11 This takes time:

Õ
(
|Vφi

|2−ǫ∗
)
= Õǫ

(
(µ(G))2−ǫ∗

)
= Õǫ

(
(µ̂init)

2−ǫ∗
)
,

where ǫ∗ ∈ (0, 1) is a sufficiently small constant depending on ǫ. Since |I| = Õ(1), overall we spend
Õǫ

(
(µ̂init)

2−ǫ∗
)

time to compute µ∗
i for all i ∈ I. Next, in |I| = Õ(1) time, we find an index j ∈ I

which maximizes the value µ∗
j . From Theorem 7.2, it follows that:

(1− ǫ) · µ(G)−Θ(γ) ·Θ
(
µ(G)

ǫ

)
≤ µ∗

j ≤ µ(G). (7)

As γ = ǫ2, we infer that µ∗
j is a purely multiplicative (1 +Θ(ǫ))-approximate estimate of µ(G). We

continue to output the same value µ∗
j throughout the phase, since we have already observed that

during the phase µ(G) changes by at most a multiplicative (1 + ǫ) factor.
The phase lasts for ǫµ̂init updates. Accordingly, this leads to an amortized update time of:

Õǫ

(
(µ̂init)

2−ǫ∗
)

ǫµ̂init
= Õǫ

(
(µ̂init)

1−ǫ∗
)
= Õǫ

(
(minit)

0.5+ǫ0−ǫ∗
)
= m0.5−Ωǫ(1).

The last equality holds because we can ensure that ǫ0 is sufficiently small compared to ǫ∗ (which,
in turn, depends on ǫ), and since |E| = m = Θ(minit) throughout the duration of the phase.

Because of (7), at the start of the phase we can construct the oracle matchM (.) by invoking
Theorem 6.1 on the graph Gφj∗

. Over the ǫµ̂init edge updates of the phase, M continues to remain
a (1 + O(ǫ))-approximate maximum matching in G. Finally, to maintain the oracle under edge
insertions/deletions during the phase, we simply ignore edge deletions and assume that if a vertex
is matched by a deleted edge of M then it is unmatched.

Improving the update time bound to worst-case: Recall that µ̂init denotes the value of µ̂
at the beginning of a phase. As observed after the initialization of a phase the output maintained
by the algorithm remains (1 + O(ǫ))-approximate for the next O(ǫ · µ̂init) updates. Furthermore,
the total computational work done by the algorithm in both types of phases is upper bounded by
Õ(µ̂2−ǫ∗

init) for some small constant ǫ∗ ∈ (0, 1) depending on the parameters of the algorithm. Let Gi

stand for the state of the input graph at the beginning of phase i and let A(Gi) stand for the output

11It is trivial to verify that Corollary 6.2 holds even when applied on a multigraph.

29

of the previously described algorithm initialized on Gi. Let µ̂init,i stand for the value of µ̂init at the
beginning of phase i. We will now describe the behaviour of the worst-case update time algorithm.

The improved algorithm similarly initializes it’s output to be A(G1). Throughout the first
three phases it does not alter it’s output and during the first two phases it doesn’t complete any
background computation. During phase i for i > 2 the algorithm calculates A(Gi−2) distributing
the work evenly throughout the phase. Note that by phase i the algorithm has complete knowledge
of Gi−2. At the end of the same phase it switches it’s output to be A(Gi−2).

As the algorithm only outputs a matching size estimate and an oracle and not an actual matching
this switch is done in constant time. Computing A(Gi−2) takes time proportional to Õ(µ̂2−ǫ∗

init,i−2)
and is distributed over ǫ · µ̂init,i updates. As during a phase µ(G) may change by at most a 1 +
O(ǫ) multiplicative factor we must have that µ̂init,i = Θ(µ̂init,i−2). The amortized implementation
amortizes the work of computing A(Gi−2) over ǫ · µ̂init,i−2 updates. This implies that the worst-
case update time guarantee of the delayed rebuild based algorithm matches the amortized versions
update time within a constant factor.

References

[ABKL23] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. On regularity
lemma and barriers in streaming and dynamic matching. In STOC, 2023. ↑1

[ACC+18] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic match-
ing: Reducing integral algorithms to approximately-maximal fractional algorithms.
In Proceedings of the 45th International Colloquium on Automata, Languages and
Programming (ICALP), pages 79:1–79:16, 2018. ↑1

[AKL19] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem with
(very) few queries. ACM Trans. Economics and Comput., 7(3):16:1–16:19, 2019. ↑28,
↑37

[ARVX12] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local compu-
tation algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pages 1132–1139. SIAM, 2012. ↑3, ↑40

[ARW17] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for
hardness of approximation in p. In 2017 IEEE 58th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 25–36. IEEE, 2017. ↑1

[BCH17] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic
fully dynamic approximate vertex cover and fractional matching in O(1) amortized
update time. In Proceedings of the 19th Conference on Integer Programming and
Combinatorial Optimization (IPCO), pages 86–98, 2017. ↑28

[BDH20] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Stochastic
matching with few queries: (1-ǫ) approximation. In Proccedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1111–1124.
ACM, 2020. ↑28, ↑37

[Beh22] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover.
In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 873–884. IEEE, 2022. ↑2, ↑3, ↑4, ↑7, ↑35, ↑39

30

[Beh23] Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceedings
of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), page
To appear in, 2023. ↑1, ↑2, ↑4, ↑28, ↑37

[BFH19] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization ap-
proach for dynamic spanner and dynamic maximal matching. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1899–
1918, 2019. ↑1

[BFS12] Guy E Blelloch, Jeremy T Fineman, and Julian Shun. Greedy sequential maximal
independent set and matching are parallel on average. In Proceedings of the twenty-
fourth annual ACM symposium on Parallelism in algorithms and architectures, pages
308–317, 2012. ↑10

[BGS11] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal match-
ing in O(log n) update time. In Proceedings of the 52nd Symposium on Foundations
of Computer Science (FOCS), pages 383–392, 2011. ↑1

[BGS20] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. De-
terministic decremental reachability, scc, and shortest paths via directed expanders
and congestion balancing. In Proceedings of the 61st Symposium on Foundations of
Computer Science (FOCS), pages 1123–1134, 2020. ↑1

[BHN16] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic
approximation algorithms for fully dynamic matching. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC), pages 398–411, 2016. ↑1

[BK19] Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2+ǫ)-
approximate minimum vertex cover in O(1/ǫ2) amortized update time. In Proceedings
of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1872–1885, 2019. ↑1

[BK21] Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic fractional
matchings. In Proceedings of the 48th International Colloquium on Automata, Lan-
guages and Programming (ICALP), 2021. ↑1

[BK22] Soheil Behnezhad and Sanjeev Khanna. New trade-offs for fully dynamic matching
via hierarchical edcs. In Proceedings of the 33rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 3529–3566, 2022. ↑1

[BKS23] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Sublinear algorithms
for (1.5 + ǫ)-approximate matching. In STOC, 2023. ↑3, ↑39

[BKSW23] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. Dynamic
matching with better-than-2 approximation in polylogarithmic update time. In Pro-
ceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 100–128. SIAM, 2023. ↑1, ↑2, ↑4, ↑28, ↑37

[BLM20] Soheil Behnezhad, Jakub Łącki, and Vahab Mirrokni. Fully dynamic matching: Beat-
ing 2-approximation in ∆ǫ update time. In Proceedings of the 31st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2492–2508, 2020. ↑1

31

[BNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic
matrix inverse: Improved algorithms and matching conditional lower bounds. In
Proceedings of the 60th Symposium on Foundations of Computer Science (FOCS),
pages 456–480, 2019. ↑1

[BRR23] Soheil Behnezhad, Mohammad Roghani, and Aviad Rubinstein. Sublinear time algo-
rithms and complexity of approximate maximum matching. In STOC, 2023. ↑3, ↑5,
↑7, ↑39

[BRRS23] Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Beating
greedy matching in sublinear time. arXiv preprint arXiv:2206.13057, 2023. To appear
at SODA’23. ↑2, ↑3, ↑39

[BS15] Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In
International Colloquium on Automata, Languages, and Programming, pages 167–
179. Springer, 2015. ↑1, ↑2

[BS16] Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approx-
imation ratios. In Proceedings of the twenty-seventh annual ACM-SIAM symposium
on Discrete algorithms, pages 692–711. SIAM, 2016. ↑1, ↑2

[CKK20] Yu Chen, Sampath Kannan, and Sanjeev Khanna. Sublinear algorithms and lower
bounds for metric tsp cost estimation. In 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020. ↑2, ↑39

[CS18] Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Break-
ing the polynomial barrier for worst-case time bounds. In Proceedings of the 45th In-
ternational Colloquium on Automata, Languages and Programming (ICALP), pages
33:1–33:14, 2018. ↑1

[DP14] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight match-
ing. Journal of the ACM (JACM), 61(1):1, 2014. ↑1, ↑29, ↑39

[Edm65a] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
research of the National Bureau of Standards B, 69(125-130):55–56, 1965. ↑1

[Edm65b] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965. ↑1

[Gha16] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete al-
gorithms, pages 270–277. SIAM, 2016. ↑3, ↑40

[Gha22] Mohsen Ghaffari. Local computation of maximal independent set. arXiv preprint
arXiv:2210.01104, 2022. Announced at FOCS’22. ↑3, ↑40

[GLS+19] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and
Shay Solomon. (1 + ǫ)-approximate incremental matching in constant deterministic
amortized time. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1886–1898. SIAM, 2019. ↑1

32

[GP13] Manoj Gupta and Richard Peng. Fully dynamic (1 + ǫ)-approximate matchings. In
Proceedings of the 54th Symposium on Foundations of Computer Science (FOCS),
pages 548–557, 2013. ↑1, ↑2

[GRS14] Manoj Gupta, Venkatesh Raman, and SP Suresh. Maintaining approximate maxi-
mum matching in an incremental bipartite graph in polylogarithmic update time. In
Conference on Foundation of Software Technology and Theoretical Computer Science
(FSTTCS), volume 29, pages 227–239, 2014. ↑1

[GSSU22] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. Main-
taining an edcs in general graphs: Simpler, density-sensitive and with worst-case
time bounds. Proceedings of the 5th Symposium on Simplicity in Algorithms (SOSA),
pages 12–23, 2022. ↑1

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifica-
tions in massively parallel computation and centralized local computation. In Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1636–1653. SIAM, 2019. ↑3, ↑40

[JJST22] Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Regularized box-
simplex games and dynamic decremental bipartite matching. In International Collo-
quium on Automata, Languages, and Programming (ICALP), 2022. ↑1

[Kis22] Peter Kiss. Improving update times of dynamic matching algorithms from amortized
to worst case. Proceedings of the 13th Innovations in Theoretical Computer Science
Conference (ITCS), pages 94:1–94:21, 2022. ↑1, ↑5, ↑28, ↑37, ↑38

[KMM12] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in
semi-streaming with few passes. In Proceedings of the 15th International Conference
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
pages 231–242, 2012. ↑4

[KMNFT20] Michael Kapralov, Slobodan Mitrović, Ashkan Norouzi-Fard, and Jakab Tardos.
Space efficient approximation to maximum matching size from uniform edge sam-
ples. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1753–1772. SIAM, 2020. ↑2, ↑3, ↑40

[Kuh55] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955. ↑1

[LRV22] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly learning monotone
functions via local correction. In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS), pages 75–86. IEEE, 2022. ↑3

[LRY15] Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local computation algorithms
for graphs of non-constant degrees. In Proceedings of the 27th ACM symposium on
Parallelism in Algorithms and Architectures, pages 59–61, 2015. ↑3, ↑7, ↑40

[McG05] Andrew McGregor. Finding graph matchings in data streams. In Proceedings of
the 8th International Conference on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), pages 170–181. 2005. ↑4, ↑15

33

[MR09] Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-
degree and general sparse graphs. ACM Transactions on Algorithms (TALG), 5(2):1–
28, 2009. ↑40

[NO08] Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via
local improvements. In 2008 49th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 327–336. IEEE, 2008. ↑2, ↑3, ↑39

[OR10] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small
vertex cover. In Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing (STOC), pages 457–464, 2010. ↑1

[ORRR12] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal
sublinear-time algorithm for approximating the minimum vertex cover size. In Pro-
ceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 1123–1131. SIAM, 2012. ↑2, ↑39

[PGVWW20] Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New
algorithms and hardness for incremental single-source shortest paths in directed
graphs. In Proceedings of the 52nd Annual ACM Symposium on Theory of Com-
puting (STOC), pages 153–166, 2020. ↑1

[PR07] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear
time and a connection to distributed algorithms. Theoretical Computer Science,
381(1-3):183–196, 2007. ↑2, ↑39, ↑40

[RSW22] Mohammad Roghani, Amin Saberi, and David Wajc. Beating the folklore algorithm
for dynamic matching. In Proceedings of the 13th Innovations in Theoretical Com-
puter Science Conference (ITCS), pages 111:1–111:23, 2022. ↑1, ↑2, ↑3

[RTVX11] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation
algorithms. arXiv preprint arXiv:1104.1377, 2011. ↑3, ↑40

[RV16] Omer Reingold and Shai Vardi. New techniques and tighter bounds for local compu-
tation algorithms. Journal of Computer and System Sciences, 82(7):1180–1200, 2016.
↑3, ↑40

[San07] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
118–126, 2007. ↑1

[Sol16] Shay Solomon. Fully dynamic maximal matching in constant update time. In Pro-
ceedings of the 57th Symposium on Foundations of Computer Science (FOCS), pages
325–334, 2016. ↑1

[Waj20] David Wajc. Rounding dynamic matchings against an adaptive adversary. In Pro-
ceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC),
pages 194–207, 2020. ↑1

[YYI09] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time ap-
proximation algorithm for maximum˜ matchings. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pages 225–234, 2009. ↑39

34

[YYI12] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approxi-
mation algorithms for maximum matchings and other optimization problems. SIAM
Journal on Computing (SICOMP), 41(4):1074–1093, 2012. ↑2, ↑3

A Matching Oracles on Low Degree Graphs

In this section, we prove Lemma 4.3.

Preliminaries on Randomized Greedy Matching. A greedy maximal matching in G with
respect to an edge permutation π, denoted by M = GMM(G,π) is a maximal matching obtained
by scanning through edges with ordering defined by π, and for each edge e, include the edge e
into the matching if both of its end point are not matched. The matching oracle matchM (v) of
Lemma 4.3 simply returns VO(v) where the vertex oracle VO and the edge oracle EO are defined in
[Beh22] follows.

Algorithm 5 VO(v, π)

1. Let e1 = (v, u1), . . . , ek = (v, uk) be the edges incident to v where π(e1) < · · · < π(ek).

2. for i = 1, . . . , k: if EO(ei, ui, π) = TRUE, then return (v, ui).

3. return ⊥

Algorithm 6 EO(e, u, π)

1. if EO(e, u, π) is computed, then return the computed answer.

2. Let e1 = (u,w1), . . . , ek = (u,wk) be the edges incident to u where π(ei) < π(e) and π(e1) <
· · · < π(ek).

3. for i = 1, . . . , k: if EO(ei, wi, π) = TRUE, then return FALSE.

4. return TRUE.

Let T (v, π) denote the number of recursive calls EO(·, ·, π) over the course of answering VO(v, π).
The main theorem of [Beh22] is as follows.

Lemma A.1 (Theorem 3.5 of [Beh22]). Let v be a random vertex and π be a random permutation
over edges, independent from v.

Ev,π[T (v, π)] = α , O(d log n).

Given access to adjacency list, we can execute VO(v, π) using O(T (v, π)∆) time straightfor-
wardly. But Behnezhad [Beh22] also showed that we can think of T (v, π) as the running time, given
access to the adjacency lists:

Lemma A.2 (Lemma 4.1 of [Beh22]). Let v be an arbitrary vertex in a graph G = (V,E). There
is an algorithm that draws a random permutation π over E, and determines whether v is matched
in GMM(G,π) in time Õ(T (v, π) + 1) having query access to the adjacency lists. The algorithm
succeeds w.h.p.

35

Basic Properties of Randomized Greedy Matching. Recall that d is the given parameter
where d ≥ d. We set the threshold ℓ = Θ(d log(n)/ǫ) such that ℓ ≥ α · 8

ǫ . We have by Markov’s
inequality that

Pr
v,π

[T (v, π) > ℓ] ≤ ǫ/8. (8)

For any edge permutation π, let f(π) = Prv∼V [T (v, π) > ℓ] measure the fraction of vertices such
that randomized greedy matching w.r.t. π makes many recursive calls exceeding the threshold ℓ.
We say that π ∈ Π is great if f(π) ≤ ǫ/2. Observe that

Pr
π
[π is great] ≥ 1/4 (9)

Otherwise, Prv,π[T (v, π) > ℓ] ≥ Prv,π[T (v, π) > ℓ | π is not great] Prπ[π is not great] > (ǫ/2) · (1/4)
which contradicts Equation (8). We also say that π ∈ Π is good if f(π) ≤ ǫ, otherwise we say that
it is bad.

Algorithm 7 TestPerm(π)

1. Sample r = 1000 log(n)/ǫ vertices independently: v1, . . . , vr.

2. Let X = |i | {T (vi, π) > ℓ}| and f̃ = X/r.

3. If f̃ ≤ 3
4ǫ, return “yes”. Otherwise, return “no”.

A simple procedure in Algorithm 7 accepts a great permutation and rejects a bad permutation
with high probability.

Lemma A.3. If π is great, then TestPerm(π) returns “yes” with high probability. If π is bad,
then TestPerm(π) returns “no” with high probability.

Proof. If π is great but TestPerm(π) returns “no”, then we have f(π) ≤ ǫ/2 but f̃ > 3ǫ/4. Since
E[X] = ǫ · f(π) and X = ǫ · f̃ , we have

X − E[X] > rǫ/4.

Applying Chernoff bound Proposition 3.2 with t = rǫ/4 and µ = rǫ/2 ≥ E[X], we have

Pr[X − E[X] > rǫ/4] ≤ exp(−(rǫ/4)2

3µ
) ≤ exp(− rǫ

24
) ≤ 1/n10.

If π is bad but TestPerm(π) returns “yes”, then we have f(π) ≥ ǫ but f̃ < 3ǫ/4. This means

that X < 3
4E[X]. Applying the standard Chernoff bound, i.e.,Pr[X < (1− δ)E[X]] ≤ exp(− δ2E[X]

2)
for δ ∈ [0, 1], we have

Pr[X <
3

4
E[X]] ≤ exp(−(14)

2
E[X]

2
) ≤ exp(− rǫ

32
) ≤ 1/n10.

Now, we are ready to prove Lemma 4.3.

Preprocessing. The preprocessing algorithm is as follows. First, independently sample O(log n)
random edge-permutations π1, . . . , πO(log n). For any i, if TestPerm(πi) returns “yes”, then set
π∗ ← πi.

36

We claim that π∗ is good w.h.p. Recall that each πi is great with probability at least 1/4 by
Equation (9). So w.h.p. one of the permutation πi is great and so, by Lemma A.3, TestPerm(πi)
must return “yes” w.h.p. Moreover, also by Lemma A.3, the returned permutation π∗is not bad
w.h.p. That is, π∗ is good.

Query. Given a vertex v, we simply execute VO(v, π∗) except that we return ⊥ if it makes more
than ℓ recursive calls. If VO(v, π∗) = (v, v′) returns a matched edge, to make sure that the answers
on v and v′ are consistent, we also call VO(v′, π∗). If it turns out that VO(v′, π∗) makes more than ℓ
recursive calls, then we return ⊥. Otherwise, VO(v′, π∗) must also return (v, v′) and then we return
(v, v′).

By construction, we obtain a matching oracle whose answers are consistent w.r.t. some fixed
matching M . If ℓ = ∞, then M would be a normal randomized greedy maximal matching of size
|M | ≥ µ(G)/2. This might not be true in reality as we set ℓ = Θ(d log(n)/ǫ). But since π∗ is good,
i.e., f(π∗) = Prv∼V [T (v, π) > ℓ] ≤ ǫ. So

|M | ≥ µ(G)/2 − ǫn.

This completes the correctness of Lemma 4.3. It remains to analyze the running time.

Time analysis. Step Item 1 of TestPerm(·) takes O(r) time as we just sample r vertices in G.
Step Item 2 takes time r · Õ(ℓ) time where the factor Õ(ℓ) is by Lemma A.2. Since r = Θ(log(n)/ǫ)
and ℓ = Θ(d log(n)/ǫ), each TestPerm takes Õ(d/ǫ2). We call TestPerm O(log n) times. So the
total preprocessing time is Õ(d/ǫ2). For the query time, we run VO and makes O(ℓ) recursive calls.
Therefore, the total query time is Õ(ℓ) = Õ(d/ǫ) time by Lemma A.2.

B Vertex Reduction for Dynamic Matching: Proof of Lemma 7.2

This algorithm description is analogous to the algorithm in [Kis22] which extends previous algo-
rithms from [AKL19, Beh23, BDH20, BKSW23] to function against an adaptive adversary. Assume
we are given G = (V,E). Using a Õ(1) worst-case update time deterministic algorithm from liter-
ature we maintain an α = O(1)-approximate estimate µ̂ of µ(G). We make Õ(1) guesses of µ(G),

1, α, α2, . . . , αk. For µ(G) guess αi we will define T = ln(n)·512
ǫ2 = Õ(1) contractions of V φi

j : j ∈ [T]

and contracted graphs Gφi
j
. If µ̂ ∈ [αi, αi+1) we define µ(G) guess αi to be the accurate guess

at the given time. If guess αi is currently the accurate guess then the algorithm will maintain
that i) for all j ∈ [T] we have that |Vφi

j
| = Θ(µ(G)

ǫ) and ii) there exists some j ∈ [T] such that

(1− ǫ) · µ(G) ≤ µ(Gφi
j
) ≤ µ(G).

We will now define how φi
j is generated. We define a set of vertices |Vφi

j
| = 8·αi+1

ǫ and map

vertices of V to Vφi
j

uniformly at random. Note that property i) holds as for the accurate guess we

must have that µ(G) = Θ(αi). From the definition of vertex contractions for any contracted graph
Gφi

j
we must have that µ(Gφi

j
) ≤ µ(G). Therefore, it remains to show that if αi is the currently

accurate guess of µ(G) then there exists some j ∈ [T] such that (1− ǫ) · µ(G) ≤ µ(Gφi
j
).

Let’s assume that αi is the currently accurate guess of µ(G). Note that this implies that
µ(G)/α ≤ αi ≤ µ(G) · α. Let S be an arbitrary subset of V of size 2 · µ(G) representing the
possible endpoints of a maximum matching. There can be

(n
2µ(G)

)
≤ n2·µ(G) ≤ exp(ln(n) · 2µ(G))

such chooses of S.Fix some j ∈ [T]. For all v vertices of Vφi
j

define the event Xv
j to be the indicator

variable of the event φ−1(v) ∩ S 6= ∅ and define X̄j =
∑

v∈V
φi
j

Xv
j .

37

Claim B.1. For a fixed j events Xv
j are negatively associated random variables.

The proof of Claim B.1 appears in the appendix of [Kis22]. Let β = αi+1/µ(G) ∈ [1, α]. We
first lower bound the expectation of X̂j :

E[Xj
i] = 1− Pr[S ∩ V j

i = ∅]

= 1−
(
1− 1

|Vφi
j
|

)2µ(G)

= 1−
(
1− ǫ

8 · µ(G) · β

)2µ(G)

≥ 1− exp

(
− ǫ

4 · β

)

≥ ǫ · (1− ǫ/(8 · β))
4 · β (10)

Inequality 10 holds for small values of ǫ. Therefore,

E[X̄j] ≥ |V
φj
i
| · ǫ · (1− ǫ/(8 · β))

4 · β ≥ 2µ(G) · (1− ǫ/(8 · β))

.
Now we apply Chernoff’s bound on the sum of negatively associated random variables X̄j to get

that:

Pr

(
X̄j ≤ 2µ(G) · (1− ǫ

4 · β)
)

≤ Pr
(
X̄j ≤ E[X̄j] · (1−

ǫ

8

)

≤ exp

(
−E[X̄j] ·

(
ǫ
8

)2

2

)

≤ exp

(
−µ(G) · ǫ2

64

)

Recall that we construct T = ln(n)·512
ǫ2

contracted G
φj
i

for µ(G) guess αi.

Pr

(
min
j∈[T]

X̄j ≤ 2 · µ(G) · (1− ǫ

4
)

)
≤

(
1− exp

(
−µ(G) · ǫ2

64

))T

≤ exp(−16 ln(n) · µ(G))

Further recall that S may be selected at most exp(2 ln(n) · µ(G)) different ways. Hence, taking
a union bound over the possible choices of S we can say that regardless how S was chosen there
is a vertex contraction φi

j such that X̄j ≥ 2 · µ(G) · (1 − ǫ/4). Fix any maximum matching M∗ of
G. By this argument we know that with high probability there must be some j ∈ [T] such that
φi
j(V [M∗]) ≥ 2µ(G) · (1 − ǫ/4) (here V [M∗] stands for the set of endpoints of M∗). This implies

that there might be at most µ(G) · ǫ/2 vertices of V [M∗] which are mapped not mapped to a unique
vertex of Vφi

j
by φi

j amongst other vertices of V [M∗]. In turn this implies that µ(G) · (1− ǫ) edges

of M∗ have both their endpoints mapped to unique vertices of Vφi
j

by φi
j amongst other endpoints

of µ(G) hence µ(G
φj
i
) ≥ µ(G) · (1− ǫ).

38

Observe that this argument holds regardless of the choice of M∗ the statement remains true as G
undergoes updates even when the updates are made by an adaptive adversary. The contractions φi

j

are fixed at initialization. The task of the algorithm is to maintain maximum matching size estimate
ˆµ(G) and hence maintain the accurate guess of µ(G) and to update the contracted graphs. Each

contracted graph may undergoes a single update per update to G and there are Õ(1) contracted
graphs. All parts included the worst-case update time of the algorithm is Õ(1).

C Dynamic (1 + ǫ)-Approximate Matching in O(n) Update Time

Consider the following folklore algorithm for explicitly maintaining a matching: recompute a (1+ǫ)-
approximate matching M from scratch in O(mǫ−1 log ǫ−1) time [DP14] every after ǫm/2n edge
updates. Before recomputation, if any edge of M is deleted from the graph, we delete it from M .

The amortized update time is clearly O(mǫ−1 log ǫ−1)
ǫm/2n = O(nǫ−2 log ǫ−1) = O(n). Also, we have

|M | ≥ µ(G)/(1 + ǫ)− ǫm/2n where the term ǫm/2n is because we might decrease the size of M by
ǫm/2n before we recompute a new (1+ ǫ)-approximate matching. But since µ(G) ≥ m/2n, we have

|M | ≥ µ(G)/(1 + ǫ)− ǫµ(G) ≥ µ(G)/(1 +O(ǫ))

implying that M is always a (1 +O(ǫ))-approximate matching.
To see why µ(G) ≥ m/2n, consider the process where we repeatedly choose an edge e and delete

both endpoints of e from the graph until no edge is left. Since the set of deleted edges forms a
matching, we may repeat at most µ(G) times. Also, each deletion removes at most 2∆ edges from
the graph. Therefore, m ≤ µ(G) · 2∆ ≤ µ(G) · 2n.

D Tables

Model Adjacency List Adjacency List Adjacency Matrix

Guarantee Approx Time Approx Time Approx Time

[PR07] (2, ǫn) ∆O(log(∆/ǫ))

[NO08]
(2, ǫn) 2O(∆)/ǫ2

(1, ǫn) 2∆
O(1/ǫ)

[YYI09]
(2, ǫn) ∆4/ǫ2

(1, ǫn) ∆O(1/ǫ2)

[ORRR12,
CKK20]

(2, ǫn) (d+1)∆/ǫ2 (2, ǫn) n
√
n/ǫ2

[Beh22] (2, ǫn) (d+ 1)/ǫ2 2 + ǫ n+∆/ǫ2 (2, ǫn) n/ǫ3

[BRRS23] (2− 1

2O(1/γ) , o(n)) (d+ 1)∆γ 2− 1

2O(1/γ) n+∆1+γ (2− 1

2O(1/γ) , o(n)) n1+γ

[BKS23,
BRR23]

(1.5, ǫn) nd1−Ω(ǫ2) 1.5 + ǫ n∆1−Ω(ǫ2) (1.5, ǫn) n2−Ω(ǫ2)

[BRR23]
bipartite
graph only

(1.5− Ω(1), o(n)) n2−Ω(1) 1.5− Ω(1) n2−Ω(1) (1.5− Ω(1), o(n)) n2−Ω(1)

Our (1, ǫn) n2−Ωǫ(1)

Table 1: Summary of sublinear-time algorithms for estimating the size of maximum matching.
We omit polylog(n/ǫ) factors. ∆ and d denote the maximum and average degree of the graph,
respectively.

39

Reference Approximation Query time

[PR07, MR09] 2 + ǫ ∆O(log(∆/ǫ))

[RTVX11, ARVX12] 2 ∆O(∆ log∆)

[RV16] 2 2O(∆)

[LRY15]
2 ∆O(log2 ∆)

2 + ǫ ∆4

1 + ǫ ∆O(1/ǫ2)

[Gha16] 2 ∆O(log∆)

[GU19] 2 ∆O(log log∆)

[Gha22] 2 ∆O(1)

[KMNFT20] O(1) in expectation ∆

Our (1, ǫn) n2−Ωǫ(1)

Table 2: Summary of local computation algorithms for matching oracles. We omit polylog(n/ǫ)
factors. All 2-approximation algorithms actually compute a maximal independent set. ∆ and d
denote the maximum and average degree of the graph, respectively.

40

	1 Introduction
	2 Technical Overview
	3 Notations and Preliminaries
	4 Matching Oracles of Induced Subgraphs
	4.1 Oracles on Low Degree Graphs
	4.2 Preprocessing
	4.2.1 Correctness
	4.2.2 Termination without Error
	4.2.3 Preprocessing Time

	4.3 Query Algorithm

	5 Boosting the Approximation Guarantee of a Matching Oracle
	5.1 A Template Algorithm
	5.1.1 Algorithm Description
	5.1.2 Analysis

	5.2 Implementation in Sublinear Models

	6 (1, n)-Approximate Matching Oracle
	7 Dynamic (1+)-Approximate Matching Size
	A Matching Oracles on Low Degree Graphs
	B Vertex Reduction for Dynamic Matching: Proof of thm:contraction
	C Dynamic (1+)-Approximate Matching in O(n) Update Time
	D Tables

