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Abstract

We give the first almost-linear time algorithm for computing the maximal k-edge-connected
subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-
vertex m-edge graph G = (V,E) and a number k = logo(1) n, we can deterministically compute
in O(m+n1+o(1)) time the unique vertex partition {V1, . . . , Vz} such that, for every i, Vi induces
a k-edge-connected subgraph while every superset V ′

i ⊃ Vi does not. Previous algorithms with
linear time work only when k ≤ 2 [Tarjan SICOMP’72], otherwise they all require Ω(m+ n

√
n)

time even when k = 3 [Chechik et al. SODA’17; Forster et al. SODA’20].
Our algorithm also extends to the decremental graph setting; we can deterministically main-

tain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m1+o(1)

total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise
k-edge-connectivity queries [Jin and Sun FOCS’20].
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1 Introduction

We study the problem of efficiently computing the maximal k-edge-connected subgraphs. Given an
undirected unweighted graph G = (V,E) with n vertices and m edges, we say that G is k-edge-
connected if one needs to delete at least k edges to disconnect G. The maximal k-edge-connected
subgraphs of G is a unique vertex partition {V1, . . . , Vz} of V such that, for every i, the induced
subgraph G[Vi] is k-edge-connected and there is no strict superset V ′

i ⊃ Vi where G[V ′
i ] is k-edge-

connected.
This fundamental graph problem has been intensively studied. Since the 70’s, Tarjan [Tar72]

showed an optimal O(m)-time algorithm when k = 2. For larger k, the folklore recursive mincut
algorithm takes Õ(mn) time1 and there have been significant efforts from the database community in
devising faster heuristics [YZH05, ZLY+12, AIY13, SHB+16, YQL+16] but they all require Ω(mn)
time in the worst case. Eventually in 2017, Chechik et al. [CHI+17] broke the O(mn) bound to
Õ(m

√
nkO(k)) using a novel approach based on local cut algorithms. Forster et al. [FNS+20] then

improved the local cut algorithm and gave a faster Monte Carlo randomized algorithm with Õ(mk+
n3/2k3) running time. Very recently, Geogiadis et al. [GIKP22] showed a deterministic algorithm
with Õ(m + n3/2k8) time and also how to sparsify a graph to O(nk log n) edges while preserving
maximal k-edge-connected subgraphs in O(m) time. Thus, the factor m in the running time of
all algorithms can be improved to O(nk log n) while paying an O(m) additive term. The O(mn)
bound has also been improved even in more general settings such as directed graphs and/or vertex
connectivity [HRG00, CHI+17, FNS+20] as well as weighted undirected graphs [NS23]. Nonetheless,
in the simplest setting of undirected unweighted graphs where m = O(n) and k = O(1), the Ω(n

√
n)

bound remains the state of the art since 2017.
Let us discuss the closely related problem called k-edge-connected components. The goal of

this problem is to compute the unique vertex partition {V̂ 1, . . . , V̂ z′} of V such that, each vertex
pair (s, t) is in the same part V̂ i iff the (s, t)-minimum cut in G (not in G[V̂i]) is at least k. The
partition of the maximal k-edge-connected subgraphs is always a refinement of the k-edge-connected
components and the refinement can be strict. See Figure 1 for example. Very recently, the Gomory-
Hu tree algorithm by Abboud et al. [AKL+22] implies that k-edge-connected components can be
computed in m1+o(1) time in undirected unweighted graphs. This algorithm, however, does not
solve nor imply anything to our problem. See Appendix A for a more detailed discussion.

It is an intriguing question whether one can also obtain an almost-linear time algorithm for
maximal k-edge-connected subgraphs, or there is a separation between these two closely related
problems.

Our results. In this paper, we show the first almost-linear time algorithm when k = logo(1) n,
answering the above question affirmatively at least for small k.

Theorem 1.1. There is a deterministic algorithm that, given an undirected unweighted graph
G with n vertices and m edges, computes the maximal k-edge-connected subgraphs of G in
O(m+ n1+o(1)) time for any k = logo(1) n.

Our techniques naturally extend to the decremental graph setting.

1The algorithm computes a global minimum cut (A,B) (using e.g. Karger’s algorithm [Kar00]) and return {V }
if the cut size of (A,B) is at least k. Otherwise, recurse on both G[A] and G[B] and return the union of the answers
of the two recursions.
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Figure 1: A graph G where its maximal 3-edge-connected subgraphs are different from its 3-edge-
connected components.

Theorem 1.2. There is a deterministic algorithm that, given an undirected unweighted graph
G with n vertices and m edges undergoing a sequence of edge deletions, maintains the maximal
k-edge-connected subgraphs of G in m1+o(1) total update time for any k = logo(1) n.

Dynamic algorithms for maximal k-edge-connected subgraphs were recently studied in [GIKP22].
For comparison, their algorithm can handle both edge insertions and deletions but require O(n

√
n log n)

worst-case update time, which is significantly slower than our mo(1) amortized update time. When
k = 3, they also gave an algorithm that handles edge insertions only using Õ(n2) total update time.

Previous Approaches and Our Techniques. Our approach diverges significantly from the
local-cut-based approach in [CHI+17, FNS+20]. In these previous approaches, they call the local
cut subroutine Ω(n) times and each call takes Ω(

√
n) time. Hence, their running time is at least

Ω(n
√
n) and this seems inherent without significant modification. Recently, [GIKP22] took a dif-

ferent approach. Their Õ(m + n3/2k8)-time algorithm efficiently implements the folklore recursive
mincut algorithm by feeding O(nk) updates to the dynamic minimum cut algorithm by Thorup
[Tho07]. However, since Thorup’s algorithm has Ω(

√
n) update time, the final running time of

[GIKP22] is at least Ω(n
√
n) as well.

Our algorithm is similar to [GIKP22] in spirit but is much more efficient. We instead apply the
dynamic k-edge connectivity algorithms by Jin and Sun [JS22] that takes only no(1) update time
when k = logo(1) n. Our reduction is more complicated than the reduction in [GIKP22] to dynamic
minimum cut because the data structure by [JS22] only supports pairwise k-edge connectivity
queries, not a global minimum cut. Nonetheless, we show that Õ(nk) updates and queries to this
“weaker” data structure also suffice.

Our approach is quite generic. Our algorithm is carefully designed without the need to check
if the graph for which the recursive call is made is k-edge-connected. This allows us to extend our
algorithm to the dynamic case.
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Organization. We give preliminaries in Section 2. Then, we prove Theorem 1.1 and Theorem 1.2
in Section 3 and Section 4, respectively.

2 Preliminaries

Let G = (V,E) be an unweighted undirected graph. Let n = |V | and m = |E|, and assume
m = poly(n) and k = logo(1) n. For any S, T ⊆ V , let E(S, T ) = {(u, v) ∈ E | u ∈ S, v ∈ T}.
For every vertex u, the degree of u is deg(u) = |{(u, v) | (u, v) ∈ E}|. For every subset of vertices
S ⊆ V , the volume of S is vol(S) =

∑
u∈S deg(u). Denote G[S] as the induced graph of G on a

subset of vertices S ⊆ V .
Two vertices s and t are k-edge-connected in G if one needs to delete at least k edges to disconnect

s and t in G. A vertex set S is k-edge-connected if every pair of vertices in S is k-edge-connected.
We use the convention that S is k-edge-connected when |S| = 1. We say that a graph G = (V,E) is
k-edge-connected if V is k-edge-connected. A k-edge-connected component is an inclusion-maximal
vertex set S such that S is k-edge-connected. A whole vertex set can always be partitioned into
k-edge-connected components. We use kECC(u) to denote the unique k-edge-connected component
containing u. Note that a k-edge-connected component may not induce a connected graph when
k > 2. A vertex set S is a k-cut if |E(S, V \S)| < k. Note, however, we also count the whole vertex
set V as a trivial k-cut.

We will crucially exploit the following dynamic algorithm in our paper.

Theorem 2.1 (Dynamic pairwise k-edge connectivity [JS22]). There is a deterministic algorithm
that maintains a graph G with n vertices undergoing edge insertions and deletions using no(1) update
time and, given any vertex pair (s, t), reports whether s and t are k-edge-connected in the current
graph G in no(1) time where k = logo(1) n.

For the maximal k-edge-connected subgraph problem, we can assume that the graph is sparse
using the forest decomposition.

Definition 2.2 (Forest decomposition [NI08]). A t-forest decomposition of a graph G is a collection
of forests F1, . . . , Ft, such that Fi is a spanning forest of G \

⋃i−1
j=1 Fj, for every 1 ≤ i ≤ t.

Theorem 2.3 (Lemma 8.3 of [GIKP22]). Any O(k log n)-forest decomposition of a graph has the
same maximal k-edge-connected subgraphs as the original graph. Moreover, there is an algorithm
for constructing such a O(k log n)-forest decomposition in O(m) time.

3 The Static Algorithm

In this section, we prove our main result, Theorem 1.1. The key idea is the following reduction:

Lemma 3.1. Suppose there is a deterministic decremental algorithm supporting pairwise k-edge-
connectivity that has tp ·m total preprocessing and update time on an initial graph with n vertices
and m edges and query time tq.

Then, there is a deterministic algorithm for computing the maximal k-edge-connected subgraphs
in O(m+ (tp + tq) · kn log2 n) time.

By plugging in theorem 2.1, we get theorem 1.1. The rest of this section is for proving Lemma 3.1.
Throughout this section, we let tq denote the query time of the decremental pairwise k-edge con-
nectivity data structure that Lemma 3.1 assumes.
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Recall again that, for any vertex u, u’s k-edge-connected component, kECC(u), might not
induce a connected graph. The first tool for proving Lemma 3.1 is a “local” algorithm for finding a
connected component of G[kECC(u)].

Lemma 3.2. Given a graph G and a vertex u, there is a deterministic algorithm for finding the
connected component U containing u of G[kECC(u)] in O(tq · vol(U)) time.

Proof. We run BFS from u to explore every vertex in the connected component U containing u of
kECC(u). During the BFS process, we only visit the vertices in kECC(u) by checking if the newly
found vertex is k-edge-connected to u. Since each edge incident to U is visited at most twice, the
total running time is O(tq · vol(U)).

Below, we describe the algorithm for Lemma 3.1 in Algorithm 1 and then give the analysis.

Algorithm 1: Main(G,L): compute the maximal k-edge-connected subgraphs
Input: An undirected connected graph G = (V,E), and a list of vertices L (initially

L = V ). Note that the parameters are passed by value.
Output: The maximal k-edge-connected subgraphs of G.

1 S ← ∅.
2 while |L| > 1 do
3 Choose an arbitrary pair (u, v) ∈ L.
4 if u and v are k-edge-connected in G then
5 L← L \ {v}.
6 else
7 Simultaneously compute the u’s connected component of G[kECC(u)] and the v’s

connected component of G[kECC(v)], until the one with the smaller volume
(denoted by U) is found.

8 S ← S ∪Main(G[U ], U).
9 G← G \ U .

10 L← (L \ U) ∪ {w /∈ U | (x,w) ∈ E(U, V (G) \ U)}.
11 end
12 end
13 S ← S ∪ {V (G)}.
14 return S.

Correctness. We start with the following structural lemma.

Lemma 3.3 (Lemma 5.6 of [CHI+17]). Let T be a k-cut in G[C] for some vertex set C. Then,
either

• T is a k-cut in G as well, or

• T contains an endpoint of E(C, V (G) \ C).

Next, the crucial observation of our algorithm is captured by the following invariant.

Lemma 3.4. At any step of Algorithm 1, every k-cut T in G is such that T ∩ L ̸= ∅.
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Proof. The base case is trivial because L ← V initially. Next, we prove the inductive step. L can
change in Line 5 or Line 8.

In the first case, the algorithm finds that u and v are k-edge-connected and removes v from
L. For any k-cut T where v ∈ T , an important observation is that kECC(v) ⊆ T as well. But
kECC(u) = kECC(v) and so u ∈ T too. So the invariant still holds even after removing v from L.

In the second case, the algorithm removes U from G. Let us denote G′ = G \ U . Since the
algorithm adds the endpoints of cut edges crossing U to L, it suffices to consider a k-cut T in G′

that is disjoint from the endpoints of the cut edges of U . By Lemma 3.3, T was a k-cut in G.
Since the changes in L occur only at U and neighbors of U , while T is disjoint from both U and all
neighbors of U , we have T ∩ L ̸= ∅ by the induction hypothesis.

Corollary 3.5. When |L| = 1, then G is k-edge-connected.

Proof. Otherwise, there is a partition (A,B) of V where |E(A,B)| < k. So both A and B are k-cuts
in G. By Lemma 3.4, A ∩ L ̸= ∅ and B ∩ L ̸= ∅ which contradicts that |L| = 1.

We are ready to conclude the correctness of Algorithm 1. At a high level, the algorithm finds
the set U and “cuts along” U at Lines 7. Then, on one hand, recurse on U at Line 8 and, on the
other hand, continue on V (G) \ U . We say that the cut edges E(U, V (G) \ U) are “deleted”.

Now, since U is the connected component of G[kECC(u)] for some vertex u. We have that, for
every edge (x, y) ∈ E(U, V (G) \ U), the pair x and y are not k-edge-connected in G. In particular,
x and y are not k-edge-connected in G[V ′] for every V ′ ⊆ V .

Thus, the algorithm never deletes edges inside any maximal k-edge-connected subgraph Vi.
Since the algorithm stops only when the remaining graph is k-edge-connected, the algorithm indeed
returns the maximal k-edge-connected subgraphs of the whole graph.

Running Time.
Consider the time spent on each recursive call. Let G′ be the graph for which the recursive call

is made and m′ = vol(G′). Every vertex is inserted to L initially or as an endpoint of some removed
edge, so the total number of vertices added to L is O(m′). In each iteration, either we remove a
vertex from L, or remove a subgraph from G. Hence we check pairwise k-edge-connectivity O(m′)
times, so the running time of checking pairwise k-edge-connectivity is O(tq ·m′). For the time of
finding connected components of k-edge-connected components, since we spend O(tq · vol(U)) time
to find some U and remove U from G, the total cost is O(tq ·m′). Plus, initializing the dynamic
pairwise k-edge connectivity algorithm on G′ takes O(tp ·m′) time. Thus the total running time of
each recursive call is O((tp + tq) ·m′).

For the recursion depth, since each U found has the smaller volume of the two, vol(U) ≤ m′/2.
Hence the recursion depth is O(logm0), where n0 and m0 are the numbers of vertices and edges of
the initial graph. Thus the total running time of Algorithm 1 is O((tp + tq) ·m0 log n0).

By applying theorem 2.3 to the initial graph G and invoking Algorithm 1 on the resulting
graph, the number of edges in the resulting graph is O(kn0 log n0), so the running time is improved
to O(m0 + (tp + tq) · kn0 log

2 n0). This completes the proof of Lemma 3.1.

4 The Decremental Algorithm

Our static algorithm can be naturally extended to a decremental dynamic algorithm. To prove
Theorem 1.2, we prove the following reduction. By combining Lemma 4.1 and Theorem 2.1, we are
done.
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Lemma 4.1. Suppose there is a deterministic decremental algorithm supporting pairwise k-edge-
connectivity that has tp ·m total preprocessing and update time on an initial graph with n vertices
and m edges and query time tq.

Then there is a deterministic decremental dynamic algorithm for maintaining the maximal k-
edge-connected subgraphs on an undirected graph of n vertices and m edges with O((tp+ tq) ·m log n)
total preprocessing and update time, and O(1) query time.

The algorithm for Lemma 4.1 as is follows. First, we preprocess the initial graph G0 using
Algorithm 1 and obtain the maximal k-edge-connected subgraphs {V1, . . . , Vz} of G0.

Next, given an edge e to be deleted, if e is in a maximal k-edge-connected subgraph Vi of G,
then we invoke Update(G[Vi], e) and update the set of the maximal k-edge-connected subgraphs
of G; otherwise we ignore e. The subroutine Update(H, e) is described in Algorithm 2.

Algorithm 2: Update(H, e)
Input: A k-edge-connected subgraph H and an edge e = (x, y) ∈ H to be deleted.
Output: The k-edge-connected subgraphs of H after deletion.

1 H ← H \ {(x, y)}.
2 return Main(H, {x, y}).

Correctness.
Let H = (V ′, E′) be the maximal k-edge-connected subgraph containing edge (x, y) before

deletion. It suffices to prove that Lemma 3.4 holds when we invoke Algorithm 1. Suppose there is
a k-cut C in H \ {(x, y)} such that C ∩ {x, y} = ∅, then C is also a k-cut in H, a contradiction.
Hence the correctness follows from the correctness of Algorithm 1.

Running Time.
In the case that H \ {(x, y)} is still k-edge-connected, the running time is tq. We charge this

time tq to the deleted edge (x, y).
Otherwise, consider the time spend on each recursive call of Main. Assume that the total

volume of the subgraphs removed and passed to another recursive call in a recursive call is ν. The
total number of vertices added to L is O(ν). In each iteration, we either remove a vertex from L or
remove a subgraph. Hence we check pairwise k-edge-connectivity O(ν) times, so the running time
of checking pairwise k-edge-connectivity is O(tq · ν). Since we spend O(tq · vol(U)) time to find U ,
the total cost is O(tq · ν). Plus, it takes O((tp + tq) · m′) time to initialize the dynamic pairwise
k-edge connectivity algorithm and check pairwise k-edge-connectivity on a graph H ′ with m′ edges
for the first time we invoke Main on H ′. Also, removing all edges from H ′ takes tp ·m′ time. We
charge O(tp + tq) to each of the removed edges in each recursive call.

The recursion depth is O(logm0) by Lemma 3.1, where n0 and m0 are the numbers of vertices
and edges of the initial graph. Hence each edge will be charged O(logm0) times, so the total
preprocessing and update time is O((tp + tq) ·m0 log n0).

A Relationship with k-Edge-Connected Components

The reason why a subroutine for computing k-edge-connected components is not useful for comput-
ing maximal k-edge-connected subgraphs is as follows. Given a graph G = (V,E), we can artificially
create a supergraph G′ = (V ′ ⊇ V,E′ ⊇ E) where the whole set V is k-edge-connected, but the
maximal k-edge-connected subgraphs of G′ will reveal the maximal k-edge-connected subgraphs of
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G. So given a subroutine for computing the k-edge-connected components of G′, we know nothing
about the maximal k-edge-connected subgraphs of G. The construction of G′ is as follows.

First, we set G′ ← G. Assume V = {1, 2, . . . , n}. For every 1 ≤ i < n, add k parallel dummy
length-2 paths (i, di,1, i + 1), . . . , (i, di,k, i + 1). Thus i and i + 1 are k-edge-connected, so V is
k-edge-connected at the end. When we compute the maximal k-edge-connected subgraphs of G′,
we know that we will first remove all dummy vertices di,j because they all have degree 2 (assuming
that k > 2). We will obtain G and so we will obtain the maximal k-edge-connected subgraphs of G
from this process.
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