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Abstract

Computing routing schemes that support both high throughput and low latency is one of the
core challenges of network optimization. Such routes can be formalized as h-length flows which
are defined as flows whose flow paths have length at most h. Many well-studied algorithmic
primitives—such as maximal and maximum length-constrained disjoint paths—are special cases
of h-length flows. Likewise the optimal h-length flow is a fundamental quantity in network
optimization, characterizing, up to poly-log factors, how quickly a network can accomplish
numerous distributed primitives.

In this work, we give the first efficient algorithms for computing (1 − ϵ)-approximate h-
length flows that are nearly “as integral as possible.” We give deterministic algorithms that take
Õ(poly(h, 1

ϵ )) parallel time and Õ(poly(h, 1
ϵ ) · 2

O(
√
logn)) distributed CONGEST time. We also

give a CONGEST algorithm that succeeds with high probability and only takes Õ(poly(h, 1
ϵ ))

time.
Using our h-length flow algorithms, we give the first efficient deterministic CONGEST al-

gorithms for the maximal length-constrained disjoint paths problem—settling an open question
of Chang and Saranurak (FOCS 2020)—as well as essentially-optimal parallel and distributed
approximation algorithms for maximum length-constrained disjoint paths. The former greatly
simplifies deterministic CONGEST algorithms for computing expander decompositions. We also
use our techniques to give the first efficient and deterministic (1− ϵ)-approximation algorithms
for bipartite b-matching in CONGEST. Lastly, using our flow algorithms, we give the first al-
gorithms to efficiently compute h-length cutmatches, an object at the heart of recent advances
in length-constrained expander decompositions.

ar
X

iv
:2

11
1.

01
42

2v
5 

 [c
s.D

S]
  1

6 
A

ug
 2

02
3



Contents

1 Introduction 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Algorithms for Length-Constrained Flows . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Applications of our Length-Constrained Flow Algorithms . . . . . . . . . . . 3

2 Notation and Conventions 4

3 Length-Constrained Flows, Moving Cuts and Main Result 6

4 Technical Highlights, Intuition and Overview of Approach 8
4.1 Using Lightest Path Blockers for Multiplicative Weights . . . . . . . . . . . . . . . . 8
4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest Paths . . . . . . 10
4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding . . . . . . . . . . . . 10
4.4 Summary of Our Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Preliminaries 12
5.1 Deterministic CONGEST Maximum Independent Set . . . . . . . . . . . . . . . . . 12
5.2 Deterministic Low Diameter Decompositions . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Sparse Neighborhood Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Cycle Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Path Counts for h-Layer S-T DAGs 15

7 Randomized Blocking Integral Flows in h-Layer DAGs 16

8 Deterministic and Distributed Near Eulerian Partitions 17
8.1 High-Girth Cycle Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2 Efficient Algorithms for Computing Near Eulerian Partitions . . . . . . . . . . . . . 20

9 Deterministic Blocking Integral Flows in h-Layer DAGs 21
9.1 Iterated Path Count Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.2 Deterministic Rounding of Flows in h-Layer DAGs . . . . . . . . . . . . . . . . . . . 25

9.2.1 Turning Flows on (1− ε)-Near Eulerian Partitions . . . . . . . . . . . . . . . 26
9.2.2 Extracting Integral S-T Subflows . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.2.3 Flow Rounding Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9.3 Deterministic Blocking Integral Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Sparse Decompositions of Acyclic Flows 31

11 h-Length (1 + ϵ)-Lightest Path Blockers 33
11.1 Length-Weight Expanded DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.2 Decongesting Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.3 Computing h-Length (1 + ε)-Lightest Path Blockers . . . . . . . . . . . . . . . . . . 39

12 Computing Length-Constrained Flows and Moving Cuts 41



13 Application: Maximal and Maximum Disjoint Paths 45
13.1 Maximal and Maximum Disjoint Path Variants . . . . . . . . . . . . . . . . . . . . . 45
13.2 Reducing Among Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
13.3 Maximal Disjoint Path Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
13.4 Maximum Disjoint Path Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
13.5 On the Hardness of Maximum Disjoint Paths . . . . . . . . . . . . . . . . . . . . . . 49

14 Application: Simple Distributed Expander Decompositions 50

15 Application: (1− ϵ)-Approximate Distributed Bipartite b-Matching 50

16 Application: Length-Constrained Cutmatches 51
16.1 Flow Mostly Covers δ±(S, T ) or Can Reduce Optimal by Cutting A \ δ±(S, T ) . . . 53
16.2 Decongesting our Flows on Arcs in δ±(S, T ) . . . . . . . . . . . . . . . . . . . . . . . 55
16.3 Our Length-Constrained Cutmatch Algorithm . . . . . . . . . . . . . . . . . . . . . . 57

17 Conclusion and Future Work 63

A Generalizing Our Results to Multi-Commodity 63
A.1 Multi-Commodity Flows, Cutmatches and Results . . . . . . . . . . . . . . . . . . . 63
A.2 Computing Multi-Commodity Length-Constrained Flows and Moving Cuts . . . . . 66
A.3 Computing Multi-Commodity Length-Constrained Cutmatches . . . . . . . . . . . . 70

B Deferred Proofs 70



1 Introduction

Throughput and latency are two of the most fundamental quantities in a communication network.
Given node sets S and T , throughput measures the rate at which bits can be delivered from S to
T while the worst-case latency measures the maximum time it takes for a bit sent from S to arrive
at T . Thus, a natural question in network optimization is:

How can we achieve high throughput while maintaining a low latency?

If we imagine that each edge in a graph incurs some latency and edges in a graph can only support
limited bandwidth, then achieving high throughput subject to a latency constraint reduces to
finding a large collection of paths that are both short and non-overlapping. One of the simplest and
most well-studied ways of formalizing this is the maximal edge-disjoint paths problems (henceforth
we use h-length to mean length at most h).

Maximal Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and two disjoint sets S, T ⊆ V , find a collection of h-length edge-disjoint S to T paths
P such that any h-length S to T path shares an edge with at least one path in P.

The simplicity of the maximal edge-disjoint paths problem has made it a crucial primitive in numer-
ous algorithms. For example, algorithms for maximal edge-disjoint paths are used in approximating
maximum matchings [48] and computing expander decompositions [21, 59]. While efficient random-
ized algorithms are known for maximal edge-disjoint paths in the CONGEST model of distributed
computation [18, 48], no deterministic CONGEST algorithms are known. Indeed, the existence of
such algorithms was stated as an open question by Chang and Saranurak [18].

Of course, a maximal collection of routing paths need not be near-optimal in terms of cardinality
and so a natural extension of the above problem is its maximum version.

Maximum Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length edge-disjoint S
to T paths.

First studied by Lovász et al. [49], this problem and its variants have received considerable at-
tention, especially for small constant h [12, 14, 16, 25, 34, 42, 45]. It is unfortunately known to
suffer from strong hardness results: the above problem has an Ω(h) integrality gap and is Ω(h)-
hard-to-approximate under standard complexity assumptions in the directed case [9, 35]. Indeed,
as observed in several works [3, 37, 45] adding length constraints can make otherwise tractable
problems computationally infeasible and render otherwise structured objects poorly behaved.

The above problems are common primitives because their solutions are special cases of a more
general class of routing schemes that are central to distributed computing, length-constrained flows.

Maximum Length-Constrained Flow: Given digraph D = (V,A), length constraint
h ≥ 1 and two disjoint sets S, T ⊆ V , find a collection of h-length S to T paths P and a
value fP ≥ 0 for P ∈ P where

∑
P∋a fP ≤ 1 for every a ∈ A and

∑
P fP is maximized.

In several formal senses, length-constrained flows are the problem that describes how to efficiently
communicate in a network. Haeupler et al. [36] showed that, up to poly-log factors, the maximum
length-constrained flow gives the minimum makespan of multiple unicasts in a network, even when
(network) coding is allowed. Even stronger, the “best” length-constrained flow gives, up to poly-log
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factors, the optimal running time of a CONGEST algorithm for numerous distributed optimization
problems, including minimum spanning tree (MST), approximate min-cut and approximate shortest
paths [38].

Correspondingly, there has been considerable work on centralized, parallel and distributed al-
gorithms for computing length-constrained flows, again especially for small constant h [2, 5, 6, 8, 9,
22, 24, 29, 51, 56]. Most notably for this work, Awerbuch and Khandekar [5] gave efficient (about
poly(h)) deterministic algorithms in the distributed ROUTERS model and Altmanová et al. [2]
gave sequential algorithms that take about O(m2 · poly(h)) time. The principal downside of the
former’s algorithms is that it may produce solutions that are arbitrarily fractional in the sense that
they are a convex combination of arbitrarily-many integral solutions. The latter does not do this
but does not clearly admit an efficient distributed or parallel implementation. Often, however, there
is a need for efficient algorithms that produce (nearly) integral length-constrained flows; in par-
ticular computing many classic integral objects (such as matchings) reduces to length-constrained
flows with h = O(1) and so, if we hope to use length-constrained flows for computing such objects
integrally, we often require that these flows be (nearly) integral.

Thus, in summary a well-studied class of routing problems aims to capture both latency and
throughput concerns. These problems are known to serve as important algorithmic primitives as
well as complete characterizations of the distributed complexity of many problems. However, the
simplest of these problems—maximal edge-disjoint paths—lacks good deterministic CONGEST
algorithms while the maximum version of this problem has no known efficient (distributed) ap-
proximation algorithms and its fractional generalization, length-constrained flows, lack efficient
algorithms with reasonable integrality guarantees.

1.1 Our Contributions

We give the first efficient algorithms for computing these objects in several models of computation.

1.1.1 Algorithms for Length-Constrained Flows

Given a digraph with n nodes and m arcs, our main theorem shows how to deterministically
compute h-length flows that are (1−ε)-approximate in Õ(poly(h, 1ε )) parallel time withm processors

and Õ(poly(h, 1ε ) · 2
O(

√
logn)) distributed CONGEST time. We additionally give a randomized

CONGEST algorithm that succeeds with high probability and runs in time Õ(poly(h, 1ε )). Our
distributed algorithms for length-constrained flows algorithms can be contrasted with the best
distributed algorithms for (non-length-constrained) flows which run in (d +

√
n) · no(1) time [33],

nearly matching an Ω̃(d+
√
n) lower bound of Sarma et al. [60].1

Our algorithms work for general arc capacities (i.e. connection bandwidths), general lengths
(i.e. connection latencies) and multi-commodity flow variants. Furthermore, they are are sparse
with support size poly(h, 1/ε) · |A| and also come with a certifying dual solution; a so-called moving
cut [5, 19, 38]. Lastly, and most critically, the flows we compute are nearly “as integral as possible”:

Optimal Integrality: for constant ε > 0 they are a convex combinations of Õ(h) sets
of arc-disjoint paths. No near-optimal h-length flow can be a convex combination of

1We use Õ notation to suppress dependence on poly(log n) factors, “with high probability” to mean with probability
at least 1− 1

poly(n)
and d for the diameter of the input graph.
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o(h) such sets since, by an averaging argument, this would violate the aforementioned
Ω(h) integrality gap.

As an immediate consequence of our parallel algorithms we also get deterministic sequential algo-
rithms running in Õ(m · poly(h, 1ε )) which improves upon the aforementioned O(m2)-dependence
of Altmanová et al. [2]. Thus our work can be understood as getting the best of prior works—the
(near)-integrality of Altmanová et al. [2] and the efficiency of Awerbuch and Khandekar [5]—both
of which are necessary for our applications. See Section 3 for a formal description.

1.1.2 Applications of our Length-Constrained Flow Algorithms

Using the optimal integrality of our solutions, we are able to achieve several new results.

Maximal and Maximum Edge-Disjoint Paths. First, as an almost immediate corollary of
our length-constrained flow algorithms and their near-optimal integrality, we derive the first efficient
deterministic CONGEST algorithms for maximal edge-disjoint paths. This settles the open question
of Chang and Saranurak [18].

Similarly, we give efficient parallel and distributed Õ(h)-approximation algorithms for the max-
imum edge-disjoint paths problem, nearly matching the known Ω(h) hardness. See Section 13 for
details as well and additional results on variants of these problems.

Simpler Distributed Expander Decompositions Deterministically. As a consequence of
our maximal edge-disjoint paths algorithms, we are able to greatly simplify known distributed
algorithms for deterministically computing expander decompositions.

We refer the reader to Chang and Saranurak [18] for a more thorough overview of the area,
but provide a brief synopsis here. An (ϵ, ϕ) expander decomposition removes an ϵ fraction of edges
from a graph so as to ensure that each remaining connected component has conductance at least
ϕ. Expander decompositions have led to many recent exciting breakthroughs, including in linear
systems [61], unique games [4, 57, 62], minimum cut [44], and dynamic algorithms [53].

Chang and Saranurak [18] gave the first deterministic CONGEST algorithms for constructing
expander decompositions. However, most existing paradigms for computing expander decomposi-
tions repeatedly find maximal disjoint paths. As a result of the lack of such algorithms, the authors
employ significant technical work-arounds, observing:

In the deterministic setting, we are not aware of an algorithm that can [efficiently] solve
[maximal disjoint paths]... [A solution to this problem would] simplify our deterministic
expander decomposition and routing quite a bit. [18]

Our deterministic CONGEST algorithms for maximal edge-disjoint paths when plugged into
Chang and Saranurak [18] provide a conceptual simplification of deterministic distributed algo-
rithms by bringing them in line with known paradigms. Additionally, we note that the algorithm
of Chang and Saranurak [18] incurs a 2O(

√
logn) overhead regardless of the maximal disjoint paths

algorithm used so further improvement requires a fundamentally different approach. See Section 14.

Bipartite b-Matching. Using our length-constrained flow algorithms, we give the first efficient
and deterministic (1 − ε)-approximations for bipartite b-matching in CONGEST. b-matching is a
classical problem in combinatorial optimization which generalizes matching where we are given a
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graph G = (V,E) and a function b : V → Z>0. Our goal is to assign integer values to edges so
that each vertex v has at most b(v) assigned value across its incident edges. b-matching and its
variants have been extensively studied in distributed settings [1, 10, 15, 26–28, 40, 46]. A standard
folklore reduction which replaces vertex v with b(v) non-adjacent copies and edge e = {u, v} with
a bipartite clique between the copies of u and v reduces b-matching to matching but requires
overhead max{u,v}∈E b(u)·b(v) to run in CONGEST. Thus, the non-trivial goal here is a CONGEST
algorithm whose running time does not depend on b. While b-matching has been extensively
studied in distributed settings, currently all that is known is either deterministic algorithms which
give (12 − ε)-approximations in Õ(poly(log 1

ε )) time [27] or randomized (1 − ε)-approximations in

Õ(poly(1ε )) time but which only allow for each edge to be chosen at most once [40].2

Similarly to classical matching, it is easy to reduce bipartite b-matching to O(1)-length flow.
Thus, applying our length-constrained flow algorithms and our flow rounding techniques allows us
to give the first (1−ε)-approximation for b-matching in bipartite graphs running in CONGEST time
Õ(poly(1ε ) · 2

O(
√
logn)). Our algorithms are deterministic and work for the more general problem

where each edge has some capacity indicating the number of times it may be chosen. See Section 15.

Length-Constrained Cutmatches. Our results allow us to give the first efficient constructions
of length-constrained cutmatches. Informally, an h-length cutmatch with congestion γ is a collection
of h-length γ-congestion paths between two vertex subsets along with a moving cut that shows that
adding any more h-length paths to this set would incur congestion greater than γ. Like our flows,
our cutmatches are also sparse. See Section 16.

A recent work [39] uses our length-constrained cutmatches algorithms to give the first efficient
constructions of length-constrained expander decompositions. This work uses these constructions
to give CONGEST algorithms for problems, including MST, (1 + ϵ)-min-cut and (1 + ϵ)-shortest
paths, that are guaranteed to run in sub-linear rounds if such algorithms exist on the network.

2 Notation and Conventions

Before moving on to a formal statement of length-constrained flows, moving cuts and our results
we introduce some notation and conventions. Suppose we are given a digraph D = (V,A).

Digraph Notation. We will associate three functions with the arcs of D. We clarify these here.

1. Lengths: We will let ℓ = {ℓa}a be the lengths of arcs in A. These lengths will be input to
our problem and determine the lengths of paths when we are computing length-constrained
flows. Throughout this work we imagine each ℓa is in Z>0. Informally, one may think of ℓ as
giving link latencies. We assume ℓa is poly(n).

2. Capacities: We will let U = {Ua}a be the capacities of arcs in A. These capacities will
specify a maximum amount of flow (either length-constrained or not) that is allowed over
each arc. Throughout this work we imagine each Ua is in Z≥0 and we let Umax give maxa Ua.
We assume Umax is poly(n). Informally, one may think of U as link bandwidths.

2The consensus in the literature generally seems to be that allowing for edges to be chosen multiple times is the
better generalization of matching: e.g. Gabow and Sankowski [30] state “The fact that b-matchings have an unlimited
number of copies of each edge makes them decidedly simpler. For instance b-matchings have essentially the same
blossom structure (and linear programming dual variables) as ordinary matching.”
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3. Weights: We will let w = {wa}a stand for the weights of arcs in A. These weights will be
given by our moving cut solutions. Throughout this work each wa will be in R>0.

In general we will treat a path P = ((v1, v2), (v2, v3), . . .) as series of consecutive arcs in A (all
oriented consistently towards one endpoint). For any one of these weighting functions ϕ ∈ {ℓ, U, w},
we will let dϕ(u, v) give the minimum value of a path in D that connects u and v where the value
of a path P is ϕ(P ) :=

∑
a∈P ϕ(a). That is, we think of dϕ(u, v) as the distance from u to v with

respect to ϕ. We will refer to paths which minimize w as lightest paths (so as to distinguish them
from e.g. shortest paths with respect to ℓ).

We let δ+(v) := {a : a = (v, u)} and N+(v) := {u : (v, u) ∈ A} give the out arcs and out
neighborhoods of vertex v. Likewise δ+(W ) :=

⋃
v∈W δ+(W ). δ−(v) := {a : a = (u, v)} and

N−(v) := {u : (u, v) ∈ A} are defined symmetrically. We let P(u, v) be all simple paths between u
and v and for W,W ′ ⊆ V , we let P(W,W ′) :=

⋃
w∈W,w′∈W ′ P(w,w′) give all paths between vertex

subsets W and W ′.
Given sources S ⊆ V and sinks T ⊆ V , we say that D is an S-T DAG if δ−(v) = ∅ iff v ∈ S

and δ+(v) = ∅ iff v ∈ T . We say that such an S-T DAG is an h-layer DAG if the vertex set V can
be partitioned into h+ 1 layers S = V1 ⊔ V2 ⊔ . . . ⊔ Vh+1 = T where any arc a = (u, v) is such that
u ∈ Vi and v ∈ Vj for some i and j > i. We say that D has diameter at most d if in the graph
where we forget arc directions every pair of vertices is connected by a path of at most d edges.
Notice that the diameter of an h-layer S-T DAG might be much larger than h.

For a (di)graph D = (V,A) and a collection of subgraphs H of D, we let D[H] be the graph
induced by the union of elements of H. A[H] is defined as all arcs contained in some element of H.

(Non-Length Constrained) Flow Notation and Conventions. We will make extensive use
of non-length constrained flows and so clarify our notation for such flows here.

Given a DAGD = (V,A) with capacities U we will let a flow f be any assignment of non-negative
values to arcs in a where fa gives the value that f assigns to a and fa ≤ Ua for every a. If it is ever
the case that fa > Ua for some a, we will explicitly state that this “flow” does not respect capacities.
We say that f is an integral flow if it assigns an integer value to each arc. We let f(A′) :=

∑
a∈A′ fa

for any A′ ⊆ A. We define the deficit of a vertex v as deficit(f, v) := |
∑

a∈δ+(f,v) fa−
∑

a∈δ−(v) fa|.
We will let supp(f ) := {a : fa > 0} give the support of flow f .

Given desired sources S and sinks T , we let deficit(f ) :=
∑

v ̸∈S∪T deficit(f, v) be the total
amount of flow produced but not at S plus the amount of flow consumed but not at T ; likewise,
we say that a flow f is an S-T flow if deficit(f) = 0. We let val(f ) =

⋃
s∈S f(δ+(s)) be the amount

of flow delivered by an S-T flow f and we say that f is α-approximate if val(f) ≥ α · val(f∗) where
f∗ is the S-T flow that maximizes val. We say that f is α-blocking for α ∈ [0, 1] if for every path
from S to T there is some a ∈ P where fa ≥ α · Ua. We say that a 1-blocking flow is blocking. We
say that flow f ′ is a subflow of f if f ′

a ≤ fa for every a.
Given a maximum capacity of Umax, we may assume that every flow f is of the form f =

∑
i f

(i)

where (f (i))a ∈ {0, 2log(Umax)−i} for every a and i; that is, a given flow can always be decomposed
into its values on each bit. We call f (i) the ith bit flow of f and call the decomposition of f into
these flows be the bitwise decomposition of f .

Length-Constrained Notation. Given a length function ℓ, vertices u, v ∈ V and length con-
straint h ≥ 1, we let Ph(u, v) := {P ∈ P(u, v) : ℓ(P ) ≤ h} be all paths between u and v which have
length at most h. For vertex sets W and W ′, we let Ph(W,W ′) := {P ∈ P(W,W ′) : ℓ(P ) ≤ h}.
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If G also has weights w then we let d
(h)
w (u, v) := minP∈Ph(u,v)w(P ) give the minimum weight of a

length at most h path connecting u and v. For vertex sets W,W ′ ⊆ V we define d
(h)
w (W,W ′) :=

minP∈Ph(W,W ′)w(P ) analogously. As mentioned an h-length path is a path of length at most h.

Parallel and Distributed Models. Throughout this work the parallel model of computation
we will use is the EREW PRAM model [43]. Here we are given some processors and shared random
access memory; every memory cell can be read or written to by one processor at a time.

The distributed model we will make use of is the CONGEST model, defined as follows [55]. The
network is modeled as a graph G = (V,E) with n = |V | nodes and m = |E| edges. Communication
is conducted over discrete, synchronous rounds. During each round each node can send an O(log n)-
bit message along each of its incident edges. Every node has an arbitrary and unique ID of O(log n)
bits, first only known to itself. The running time of a CONGEST algorithm is the number of
rounds it uses. We will slightly abuse terminology and talk about running a CONGEST algorithm
in digraph D; when we do so we mean that the algorithm runs in the (undirected) graph G which
is identical to D but where we forget the directions of arcs. In this work, we will assume that if an
arc a has capacity Ua then we allow nodes to send O(Ua · log n) bits over the corresponding edge,
though none of our applications rely on this assumption.3

3 Length-Constrained Flows, Moving Cuts and Main Result

We proceed to more formally define a length-constrained flow, moving cuts and our main result
which computes them. While we have defined length-constrained flows in Section 1 for unit capac-
ities, it will be convenient for us to formally define length-constrained flows for general lengths and
capacities in terms of a relevant linear program (LP). We do so now.

Suppose we are given a digraph D = (V,A) with arc capacities U , lengths ℓ and specified source
and sink vertices S and T . A maximum S to T flow in D in the classic sense can be defined as
a collection of paths between S and T where each path receives some value and the total value
incident to an edge does not exceed its capacity. This definition naturally extends to the length-
constrained setting where we imagine we are given some length constraint h ≥ 1 and define a
length-constrained flow as a collection of S to T paths each of length at most h where each such
path P receives some some value fP . Additionally, these values must respect the capacities of arcs.
More precisely, we have the following LP with a variable fP for each path P ∈ Ph(S, T ).

max
∑

P∈Ph(S,T )

fP s.t. (Length-Constrained Flow LP)

∑
P :a∈P

fP ≤ Ua ∀a ∈ A

0 ≤ fP ∀P ∈ Ph(S, T )

For a length-constrained flow f , we will use the shorthand f(a) :=
∑

P∋a fP and supp(f) := {P :
fP > 0} to give the support of f . We will let val(f) :=

∑
P∈Ph(S,T ) fP give the value of f . An

h-length flow, then, is simply a feasible solution to this LP.

3We only make use of this assumption once and only make use of it in our deterministic algorithms (in Lemma 11.3).
Furthermore, we do not require this assumption if the underlying digraph is a DAG.
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Definition 3.1 (h-Length Flow). Given digraph D = (V,A) with lengths ℓ, capacities U and
vertices S, T ⊆ V , an h-length S-T flow is any feasible solution to Length-Constrained Flow LP.

With the above definition of length-constrained flows we can now define moving cuts as the dual
of length-constrained flows with the following moving cut LP with a variable wa for each a ∈ A.

min
∑
a∈A

Ua · wa s.t. (Moving Cut LP)∑
a∈P

wa ≥ 1 ∀P ∈ Ph(S, T )

0 ≤ wa ∀a ∈ A

An h-length moving cut is simply a feasible solution to this LP.

Definition 3.2 (h-Length Moving Cut). Given digraph D = (V,A) with lengths ℓ, capacities U
and vertices S, T ⊆ V , an h-length moving cut is any feasible solution to Moving Cut LP.

We will use f and w to stand for solutions to Length-Constrained Flow LP and Moving Cut LP
respectively. We say that (f, w) is a feasible pair if both f and w are feasible for their respective
LPs and that (f, w) is (1 ± ϵ)-approximate for ϵ ≥ 0 if the moving cut certifies the value of the
length-constrained flow up to a (1 − ϵ); i.e. if (1− ϵ)

∑
a Ua · wa ≤

∑
P fP .

We clarify what it means to compute (f, w) in CONGEST. When we are working in CONGEST
we will say that f is computed if each vertex v stores the value fa(h

′) :=
∑

P∈Ph,h′ (s,a,t)
fP for

every a incident to v and h′ ≤ h. Here, we let Ph,h′(s, a, t) be all paths in Ph(S, T ) of the form
P ′ = (a1, a2, . . . a, b1, b2, . . .) where the path (a, b1, b2, . . .) has length exactly h′ according to ℓ. We
say moving cut w is computed if each vertex v knows the value of wa for its incident arcs. Likewise,
we imagine that each node initially knows the capacities and lengths of its incident arcs.

With the above notions, we can now state our main result. In the following we say f is integral
if fP is an integer for every path in Ph(S, T ). The notable aspect of our results is the polynomial
dependence on h and 1

ϵ ; the polynomials could be optimized to be much smaller.

Theorem 3.1. Given a digraph D = (V,A) with capacities U , lengths ℓ, length constraint h ≥ 1,
ε > 0 and source and sink vertices S, T ⊆ V , one can compute a feasible h-length flow, moving cut
pair (f, w) that is (1± ϵ)-approximate in:

1. Deterministic parallel time Õ( 1
ε9
· h17) with m processors where |supp(f)| ≤ Õ(h

10

ε7
· |A|);

2. Randomized CONGEST time Õ( 1
ε9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(

1
ε9
· h17 + 1

ε7
· h16 · (ρCC)

10
)
.

Also, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(
h
ϵ4

)
and each fj is an integral h-length S-T flow.

All of our algorithms compute and separately store each fj . The above result immediately gives
the deterministic parallel and randomized CONGEST algorithms running in time Õ(poly(h, 1ϵ ))
mentioned in Section 1.1. For our deterministic CONGEST algorithms, ρCC in the above gives
the quality of the optimal deterministic CONGEST cycle cover algorithm. We formally define
this parameter in Section 5 but for now we simply note that ρCC ≤ 2O(

√
logn) by known re-

sults [41, 54]. Applying this bound on ρCC gives deterministic CONGEST algorithms running in
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time Õ(poly(h, 1ϵ ) · 2
O(

√
logn)). If ρCC is shown to be poly(log n), we immediately would get an

Õ(poly(h, 1ϵ )) time deterministic algorithm for solving (1 − ϵ)-approximate h-length flow in CON-

GEST. As mentioned in Section 1.1, k in the above result is optimal up to Õ(1) factors [9, 35].

4 Technical Highlights, Intuition and Overview of Approach

Before moving on, we give an overview of our strategy for length-constrained flows. In the interest
of highlighting what is new in this work we begin by summarizing three key technical contributions.
To our knowledge these ideas are new in our work. We will then proceed to provide more detail on
how these ideas fit together. For simplicity, we assume the capacity Ua = 1 for all a in this section.

1. Batched Multiplicative Weights: First, the core idea of our algorithm will be a “batched”
version of the “multiplicative weights” framework. In particular, we will use what we call
“near-lightest path blockers” to perform many independent multiplicative weight updates in
parallel. Both this batched approach to multiplicative weights and our analysis showing that
it converges to a near-optimal solution quickly are new to our work.

2. Length-Weight Expanded DAG: Second, we provide a new approximate representation
of all near-lightest h-length paths by a “length-weight expanded DAG.” This representation
can be efficiently simulated in a distributed setting and serves as a provably good proxy for
flows on all near-lightest h-length paths by a DAG. It is a priori not clear such a DAG exists
since lightest h-length paths do not even induce a DAG. Even harder, this representation has
to summarize three arc values at once: lengths, weights and capacities.

3. Deterministic Integral Blocking Flows: Third, we give the first efficient distributed
deterministic algorithms for computing so-called integral blocking flows. In particular, we
show how to use flow rounding techniques to derandomize an approach of Lotker et al. [48];
previous works noted that this approach seems inherently randomized [18]. Our flow rounding
techniques are, in turn, built around a novel application of the recently introduced idea of
“cycle covers.” In particular, we will make use of a slight variant of cycle covers and show
how to use them to efficiently round flows in a distributed setting.

4.1 Using Lightest Path Blockers for Multiplicative Weights

Computing a length-constrained flow, moving cut pair is naturally suggestive of the following
multiplicative-weights-type approach. We initialize our moving cut value wa to some very small
value for every a. Then, we find a lightest h-length path from S to T according to w, send some
small (≈ ϵ) amount of flow along this path and multiplicatively increase the value of w on all arcs

in this path by ≈ (1+ ϵ). We repeat this until S and T are at least 1 apart according to d
(h)
w (where

d
(h)
w (u, v) gives the lightest according to w path from u to v with length at most h). This general

idea is an adaptation of ideas of Garg and Könemann [31].
The principle shortcoming of using such an algorithm for our setting is that it is easy to construct

examples where there are polynomially-many arc-disjoint h-length paths between S and T and so
we would clearly have to repeat the above process at least polynomially-many times until S and T

are at least 1 apart according to d
(h)
w . This is not consistent with our goal of poly(h) complexities

8



since h may be much smaller than n. To solve this issue, we use an algorithm similar to the above
but instead of sending flow along one path, we send it along a large batch of arc-disjoint paths.

What can we hope to say about how long such an algorithm takes to make S and T at least 1

apart according to d
(h)
w ? If it were the case that every lightest (according to w) h-length path from

S to T shared an arc with some path in our batch of paths then after each batch we would know

that we increased d
(h)
w (S, T ) by some non-zero amount. However, there is no way to lower bound

this amount; in principle we might only increase d
(h)
w (S, T ) by some tiny ϵ′ > 0. To solve this issue

we find a batch of arc-disjoint paths which have weight essentially d
(h)
w (S, T ) but which share an

arc with every h-length path with weight at most (1 + ϵ) · d(h)w (S, T ). Thus, when we increment
weights in a batch we know that all near -lightest h-length paths have their weights increased so we

can lower bound the rate at which d
(h)
w (S, T ) increases, meaning our algorithm completes quickly.

Thus, in summary we repeatedly find a batch of arc-disjoint h-length paths between S and T

which have weight about d
(h)
w (S, T ); these paths satisfy the property that every h-length path from

S to T with weight at most (1 + ϵ) · d(h)w (S, T ) shares an edge with at least one of these paths; we
call such a collection an h-length (1 + ϵ)-lightest path blocker. We then send a small amount of
flow along these paths and multiplicatively increase the weight of all incident edges, appreciably

increasing d
(h)
w (S, T ). We repeat this until our weights form a feasible moving cut. See Figure 1.
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Figure 1: An illustration of the first two iterations of our multiplicative-weights-type algorithm
where h = 5, S = {s} and T = {t} and capacities are all 1. Each arc is labelled with the value
we multiply its initial weight by (initialized to w0 := 1 + ϵ) then length then flow. Our h-length
shortest path blockers are in blue.
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(c) Lightest 5-length paths of D.

Figure 2: A digraph D with S = {s} and T = {t} where the 5-length lightest S-T paths do not
induce a DAG. 2a gives D where each arc is labeled with its weight (in black) and length (in
green). 2b shows how all lightest S-T paths have weight 2 and induce a DAG. 2c shows how the
two 5-length lightest S-T paths (in blue and red) have weight 6 and induce a digraph with a cycle.

4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest Paths

The above strategy relies on the computation of h-length lightest path blockers. Without the
presence of a weight constraint computing such an object easily reduces to computing an integral
blocking S-T flow on an h-layer S-T DAG. Specifically, consider the problem of computing a
collection of paths from S to T so that every lightest S to T path shares an arc with one path in
this collection. It is easy to see that all lightest paths between S and T induce an h′-layer S-T DAG
where h′ is the minimum weight of a path between S and T . One can then consider this DAG and
compute an integral blocking S-T flow in it—i.e. a maximal arc-disjoint collection of h′-length S-T
paths. By maximality of the flow, the paths corresponding to this flow will guarantee that every
h′-length S to T path shares an arc with one path in this collection.

However, the presence of a length constraint and a weight constraint make such an object much
tricker. Indeed, lightest paths subject to length constraints are known to be notoriously poorly
behaved; not only do lightest paths subject to a length constraint not induce a metric but they are
also arbitrarily far from any metric [3, 37]. As such, all S to T lightest paths subject to a length
constraint do not induce a DAG, much less an h-layer S to T DAG; e.g. see Figure 2.

Our solution is to observe that, if we are allowed to duplicate vertices, then we can construct an
S-T DAG with about h2 layers that approximately captures the structure of all h-length (1 + ε)-
lightest paths. Specifically, we discretize weights and then make a small number of copies of each
vertex to compute a DAG D(h,λ)—which we call the length-weight expanded DAG. D(h,λ) will
satisfy the property that if we compute an integral blocking flow and then project this back into D
as a set of paths P, then P is almost a (1+ ε)-lightest path blocker. In particular, P will guarantee

that some arc of any h-length path with weight at most (1+ε)·d(h)w (S, T ) is used by some path in P;
however, the paths of P may not be arc-disjoint as required of a lightest path blockers. Nonetheless,
by carefully setting capacities in D(h,λ), we will be able to argue that P is nearly arc-disjoint and
these violations of arc-disjointness can be repaired with small loss by a “decongesting” procedure.
It remains to understand how to compute integral blocking flows in layered S-T DAGs.

4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding

Lastly, we describe how we compute integral blocking flows in layered S-T DAGs.
A somewhat straightforward adaptation of a randomized algorithms of Lotker et al. [48] solves

this problem in Õ(poly(h)) time both in parallel and in CONGEST. This algorithm samples an
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integral S-T flow in D (i.e. a collection of arc-disjoint S to T paths) according to a carefully chosen
distribution based on “path counts”, deletes these paths and repeats. The returned solution is the
flow induced by all paths that were ever deleted. Unfortunately Lotker et al. [48]’s algorithm seems
inherently randomized and our goal is to solve this problem deterministically.

We derandomize the algorithm of Lotker et al. [48] in the following way. Rather than integrally
sampling according to Lotker et al. [48]’s distribution and then deleting arcs that appear in sampled
paths, we instead calculate the probability that an arc is in a path in this distribution and then
“fractionally delete” it to this extent. We repeat this until every path between S and T has some
arc which has been fully deleted. In other words, we run a smoothed version of Lotker et al. [48]
which behaves (deterministically) like the algorithm of Lotker et al. [48] does in expectation. The
fractional deletion values of arcs at the end of this process induce a blocking S-T flow but a blocking
flow that may be fractional. We call this flow the “iterated path count flow.”

However, recall that our goal is to compute an integral blocking flow in an S-T DAG. Thus, we
may naturally hope to round the iterated path count flow. Indeed, drawing on some flow rounding
techniques of Cohen [22], doing so is not too difficult in parallel. Unfortunately, it is less clear how
to do so in CONGEST. Indeed, Chang and Saranurak [18] state:

...Cohen’s algorithm that rounds a fractional flow into an integral flow does not seem
to have an efficient implementation in CONGEST...

Roughly, Cohen’s technique relies on partitioning edges in a graph into cycles and paths and then
rounding each cycle and path independently. The reason this seems infeasible in CONGEST is
that the cycles and paths that Cohen’s algorithm relies on can have unbounded diameter and so
communicating within one of these cycles or paths is prohibitively slow. To get around this, we
argue that, in fact, one may assume that these cycles and paths have low diameter if we allow
ourselves to discard some small number of arcs. This, in turn allows us to orient these cycles
and paths and use them in rounding flows. We formalize such a decomposition with the idea of a
(1 − ε)-near Eulerian partition.4 Arguing that discarding these arcs does bounded damage to our
rounding then allows us to make use of Cohen-type rounding to deterministically round the path
count flow, ultimately allowing us to compute h-length (1 + ϵ)-lightest path blockers.

4.4 Summary of Our Algorithm

We now summarize the above discussion with a bottom-up sketch of our algorithm and highlight
where each of these components appear in our paper.

The most basic primitive that we provide is an algorithm for efficiently computing blocking
integral flows in h-layer S-T DAGs. To do so we make use of path count flows (formally defined in
Section 6). In Section 7 we observe that, essentially by the ideas of Lotker et al. [48], sampling paths
proportional to the path count flows gives an efficient randomized algorithm for blocking integral
flows in such DAGs. In Section 9 we give a deterministic algorithm for computing such flows. This
algorithm relies on the idea of near Eulerian partitions (Section 8) which is an adaptation of recent
ideas in cycles covers for our purposes. Our deterministic algorithm takes the expected result of
Lotker et al. [48] and deterministically rounds it by “turning” flow along the components of a near
Eulerian partition and then repairs the resulting solution into a true flow by discarding flows not

4Somewhat similar to our approach, Chu et al. [20] showed how to partition all but O(n log n) edges of a graph
into short disjoint cycles. However, these guarantees are unsuitable for our us on e.g. graphs with Θ(n) edges since
we may only discard a small fraction of all edges.
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from S to T . More generally, we show how to efficiently round any fractional flow on such a DAG
with only a small loss in flow value.

Next, in Section 11 we use our algorithms for blocking integral flows in h-layer S-T DAGs to
show how to compute (1+ ε)-lightest path blockers which, informally, are a collection of paths that
share an edge with every h-length near-lightest path. We do this by constructing the length-weight
expanded DAG (Section 11.1), a DAG that approximates the structure of h-length near-lightest
paths. We then apply our blocking flow algorithms on this DAG, project the result back into our
original graph and then “decongest” the result by finding an appropriate subflow that respects
capacities. We use an algorithm from Section 10 to guarantee that the result is sparse (i.e. has
small support size).

Lastly, in Section 12 we plug our (1 + ε)-lightest path blocker algorithm into a multiplicative-
weights-type framework. In particular, we repeatedly compute a lightest path blocker, send some
small amount of flow along the paths of this blocker and then update the weight of all edges that
have flow sent along them by a multiplicative (1 + ε).

The remainder of our paper gives applications and extensions of our results. In Section 13
we observe that our main result solves the aforementioned problem of Chang and Saranurak [18]
by giving deterministic algorithms for many disjoint paths problems in CONGEST. We also ob-
serve that our algorithms give essentially optimal parallel and distributed algorithms for maximum
arc-disjoint paths. In Section 14 we give more details of how our results simplify expander decom-
position constructions. In Section 15 we give our new algorithms for bipartite b-matching based on
our flow algorithms and in Section 16 we show how to compute length-constrained cutmatches using
our main theorem. Lastly, in Appendix A we observe that our length-constrained flow algorithms
generalize to the multi-commodity setting.

5 Preliminaries

Before moving on to our own technical content, we briefly review some well-known algorithmic tools
and slight variants thereof (mostly for deterministic CONGEST).

5.1 Deterministic CONGEST Maximum Independent Set

We will rely on deterministic CONGEST primitives for maximal and maximum independent sets.
Given graph G = (V,E), a subset of vertices V ′ ⊆ V is independent if no two vertices in V ′ are
adjacent in G. A maximal independent set (MIS) is an independent set V ′ such that any w ∈ V \V ′

is adjacent to at least one node in V ′. If we are additionally given node weights {xv}v where xv > 0
for every v, then a maximum independent set is an independent set V ′ maximizing

∑
v∈V ′ xv; we

say that an independent set is α-approximate if its total weight is within α of that of the maximum
independent set.

The following gives the deterministic CONGEST algorithm we will use for maximum indepen-
dent set.

Theorem 5.1 (Bar-Yehuda et al. [11]). There is a deterministic CONGEST algorithm which given
an instance of maximum independent in a graph G = (V,E) with maximum degree ∆ and node
weights {xv}v, outputs a solution that is 1

∆ -approximate in time O(∆ + log∗ n).
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5.2 Deterministic Low Diameter Decompositions

A well-studied object in metric theory is the low diameter decomposition which is usually defined as
a distribution over vertex partitions [47, 52]. For our deterministic algorithms, we will make use of a
deterministic version of these objects defined as follows where G[Vi] := (Vi, {{u, v} ∈ E : u, v ∈ Vi})
gives the induced graph on Vi.

Definition 5.2 (Deterministic Low Diameter Decomposition). Given graph G = (V,E), a deter-
ministic low diameter decomposition (DLDD) with diameter d and cut fraction ϵ is a partition of
V into sets V1, V2, . . . where:

1. Low Diameter: G[Vi] has diameter at most d for every i;

2. Cut Edges: The number of cut edges is at most ϵ|E|; i.e. |{e = (u, v) : u ∈ Vi ∧ v ∈ Vj ∧ i ̸=
j}| ≤ ϵ|E|.

One can efficiently compute DLDDs deterministically in CONGEST as a consequence of many
well-known results in distributed computing. We will use a result of Chang and Ghaffari [17] to do
so.

Theorem 5.3. Given a graph G = (V,E) and desired diameter d, one can compute a DLDD with
diameter d and cut fraction ϵ = Õ(1d) in deterministic CONGEST time Õ(d).

Proof. Theorem 1.2 of Chang and Ghaffari [17] states that there is a deterministic CONGEST
algorithm which, given a graph G = (V,E) and desired diameter d′, computes a set V̄ ⊆ V where
|V̄ | ≤ 1

d′ · |V | and G[V \ V̄ ] has connected components C1, C2, . . . , Ck where each Ci has diameter

at most Õ(d′) in Õ(d′) rounds.
Given graph G = (V,E) we can compute a DLDD in G by applying the above result in a new

graph G′ = (V ′, E′). For each vertex v ∈ V , G′ will have a clique of ∆(v)-many vertices where
∆(v) is the degree of v in G. We then connect these cliques in the natural way. More formally,
to construct G′ we do the following. For each v with edges to vertices v1, v2, . . . , v∆(v) we create a
clique of vertices v(v1), v(v2), . . . , v(v∆(v)). Next, for each edge e = {u, v} in E, we add the edge
{v(u), u(v)} to G′. Observe that each vertex of G′ corresponds to exactly one edge in G; that is,
v(u) in V ′ corresponds to the edge {u, v} ∈ E.

Next, we apply the above theorem of Chang and Ghaffari [17] to G′ to get set V̄ . Let Ē ⊆ E
be the set of edges to which these vertices correspond. We return as our solution Ē. Observe that
the size of Ē is

|Ē| ≤ |V̄ |

≤ 1

d′
· |V ′|

=
2

d′
|E|.

Letting d′ = 1
Θ̃(1)
·d for an appropriately large hidden poly-log in Θ̃(1) gives us that each component

in G has diameter at most d since otherwise there would be a component in G′ after deleting v̄
with diameter more than d′. Likewise, the above gives us cut fraction at most Õ(1d).

Simulating a CONGEST algorithm on G′ on G is trivial since each vertex can simulate its
corresponding clique and so the entire algorithm runs in time Õ(d′) = Õ(d).
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5.3 Sparse Neighborhood Covers

A closely related notion to low diameter decompositions is that of the sparse neighborhood cover [7].
We use the following definition phrased in terms of partitions.

Definition 5.4 (Sparse Neighborhood Cover). Given a simple graph G = (V,E), an s-sparse
k-neighborhood cover with weak-diameter d and overlap o is a set of partitions V1,V2, . . . ,Vs of

V where each partition is a collection of disjoint vertex sets V
(j)
i ⊂ V whose union is V , i.e.,

Vi = {V (1)
i , V

(2)
i , . . .} and:

1. Weak-Diameter and Overlap: Each V
(j)
i comes with a rooted tree T

(j)
i in G of diameter

at most d that spans all nodes in V
(j)
i ; Any node in G is contained in at most o trees overall.

2. Neighborhood Covering: For every node v its k neighborhood Bk(v), containing all vertices

in G within distance k of v, is fully covered by at least one cluster, i.e., ∀v ∃i, j : Bk(v) ⊆ V
(j)
i .

The below summarizes the current state of the art in deterministic sparse neighborhood covers
in CONGEST.

Lemma 5.5 ([17, 32, 58]). There is a deterministic CONGEST algorithm which given any radius
k ≥ 1, computes an s-sparse k-neighborhood cover with s, o = Õ(1) and diameter at most Õ(k) in
Õ(k) time.

Furthermore, there is a deterministic CONGEST algorithm which given an O(l)-bit value xv
for every v computes xi,v for every v and i in Õ(k + l) rounds, where xi,v is the maximum x-value
among nodes in the same cluster as v in the partition Vi. That is, letting Vi(v) be the one cluster
in Vi containing v, we have

xi,v = max
u∈Vi(v)

xu.

5.4 Cycle Covers

Our flow rounding algorithm will make use of low diameter cycles. Thus, it will be useful for us to
make use of some recent insights into distributely and deterministically decomposing graphs into low
diameter cycles. We define the diameter of a cycle C as |C| and the diameter of a collection of cycles
C as the maximum diameter of any cycle in it. Likewise the congestion of C is maxe |{C : e ∈ C}|.

The idea of covering a graph with low congestion cycles is well-studied [20, 41, 54] and formalized
by the idea of a cycle cover.

Definition 5.6 (Cycle Cover). Given a simple graph G = (V,E) where E0 is the set of all non-
bridge edges5 of G, a (d, c) cycle cover is a collection of (simple) cycles C in G such that:

1. Covering: Every e ∈ E0 is contained in some cycle of C;

2. Low Diameter: maxC∈C |C| ≤ d;

3. Low Congestion: maxe∈E |{C : e ∈ C}| ≤ c.

5Recall that a bridge edge of a graph is one whose removal increases the number of connected components in the
graph.
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We now formally define the parameter ρCC ; recall that this parameter appears in the running
time of our deterministic CONGEST algorithm in our main theorem (Theorem 3.1).

Definition 5.7 (ρCC). Given a deterministic CONGEST algorithm that constructs a (d, c) cycle
cover in worst-case time T in graphs of diameter D, we say that the quality of this algorithm is
max{ d

D , c, T
D}. We let ρCC be the smallest quality of any deterministic CONGEST algorithm for

constructing cycle covers.

The following summarizes the current state-of-the-art in deterministic cycle cover computation
in CONGEST.

Theorem 5.8 ([41, 54]). There is a deterministic CONGEST algorithm that given a graph G
with diameter D computes a (d, c) cycle cover with d = 2O(

√
logn) · D and c = 2O(

√
logn) in time

2O(
√
logn) ·D. In other words, ρCC ≤ 2O(

√
logn)

6 Path Counts for h-Layer S-T DAGs

We begin by recounting the notion of path counts which we will use for our randomized algorithm
to sample flows and for our deterministic algorithms to compute the iterated path count flow. This
idea has been used in several prior works [18, 22, 48].

Suppose we are given an h-layer S-T DAG D with capacities U . We define these path counts as
follows. We define the capacity of a path as the product of its edge capacities, namely given a path
P we let U(P ) :=

∏
a∈P Ua. Recall that we use P(S, T ) to stand for all paths between S and T .

We will slightly abuse notation and let P(v, T ) = P({v}, T ) and P(S, v) = P(S, {v}). For vertex
v we let n+

v be the number of paths from v to T , weighted by U , namely n+
v :=

∑
P∈P(v,T ) U(P ).

Symmetrically, we let n−
v :=

∑
P∈P(S,v) U(P ). For any arc a = (u, v), we define na as

na := n−
u · Ua · n+

v .

Equivalently, we have that na is the number of paths in P(S, T ) that use a weighted by capacities:

na =
∑

P∈P(S,T ):a∈P

U(P ).

It may be useful to notice that if we replace each arc a with Ua-many parallel arcs then na exactly
counts the number of unique paths from S to T that use a in the resulting (multi) digraph. A
simple dynamic-programming type algorithms that does a “sweep” from S to T and T to S shows
that one can efficiently compute the path counts.

Lemma 6.1. Let D be a capacitated h-layer S-T DAG. Then one can compute n+
v and n−

v for
every vertex v and na for every arc a in:

1. Parallel time O(h) with m processors;

2. CONGEST time Õ
(
h2
)
.

Proof. To compute na it suffices to compute n+
v and n−

v . We proceed to describe how to compute
n−
v ; computing n+

v is symmetric.
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First, notice that n−
v can be described by the recurrence

n−
v :=

{
1 if v ∈ S∑

(u,v)∈δ−(v) Uuv · n−
u otherwise

We repeat the following for iteration i = 2, . . . , h + 1. Let Vi be all vertices in the ith layer of
our graph. In iteration i we will compute n−

v for every v ∈ Vi by applying the above recurrence.
Running one of the above iterations in parallel is trivial to do in O(1) parallel time with m

processors, leading to the above parallel runtime. Running one iteration of this algorithm in
CONGEST requires that every vertex in v ∈ Vj for j < i broadcast its n−

v to its neighbors. Since

n−
v ≤ (n · Umax)

h this can be done in h
(
1 + logUmax

logn

)
rounds of CONGEST, leading to the stated

CONGEST runtime.

7 Randomized Blocking Integral Flows in h-Layer DAGs

We now describe how to compute blocking integral flows in h-layer S-T DAGs with high probability
by using the path counts of the previous section. This is the general capacities version of the problem
described in Section 4.3. More or less, the algorithm we use is one of Chang and Saranurak [18]
adapted to the general capacities case; the algorithm of Chang and Saranurak [18] is itself an
adaptation of an algorithm of Lotker et al. [48]. As such, we defer the proofs in this section to
Appendix B; we mostly include these results for the sake of completeness.

Our randomized algorithm will repeatedly sample an integral flow proportional to the path
counts of Section 6, add this to our existing flow, reduce capacities and then repeat. We will argue
that we need only iterate this process a small number of times until we get a blocking integral
flow by appealing to the fact that “high degree” paths have their capacities reduced with decent
probability.

One can see this as essentially running the randomized MIS algorithm of Luby [50] but with two
caveats: (1) the underlying graph in which we compute an MIS has a node for every path between
S and T and so has up to O(nh)-many nodes; as such we cannot explicitly construct this graph but
rather can only implicitly run Luby’s algorithm on it; (2) Luby’s analysis assumes nodes attempt
to enter the MIS independently but our sampling will have some dependencies between nodes (i.e.
paths) entering the MIS which must be addressed in our analysis.

More formally, suppose we are given a capacitated S-T DAG D. For a given path P ∈ P(S, T )
we let ∆P be

∑
P ′
∏

a∈P ′\P Ua be the “degree” of path P where the sum over P ′ ranges over all

P ′ that share at least one arc with P and are in P(S, T ). We let ∆ = maxP∈P(S,T )∆P be the

maximum degree. Similarly, we let P≈max := {P : ∆P ≥ ∆
2 } be all paths with near-maximum

degree. The following summarizes the flow we repeatedly compute; in this lemma the constant 2046
2047

is arbitrary and could be optimized to be much smaller.

Lemma 7.1. Given a h-layer S-T DAG D with capacities U and ∆̃ satisfying ∆
2 ≤ ∆̃ ≤ ∆, one

can sample an integral S-T flow f where for each P ∈ P≈max we have
∏

a∈P (Ua−fa) ≤ 2047
2048 ·U(P )

with probability at least Ω(1). This can be done in:

1. Parallel time O(h) with m processors;

2. CONGEST time Õ
(
h2
)
with high probability.
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Repeatedly applying the above lemma gives our randomized algorithm for blocking integral S-T
flows.

Lemma 7.2. There is an algorithm which, given an h-layer S-T DAG D with capacities U , com-
putes an integral S-T flow that is blocking in:

1. Parallel time Õ(h3) with m processors with high probability;

2. CONGEST time Õ(h4) with high probability.

8 Deterministic and Distributed Near Eulerian Partitions

In the previous section we showed how to efficiently compute blocking integral flows in h-layer
DAGs with high probability. In this section, we introduce the key idea we make use of in doing so
deterministically, a near Eulerian partition.

Informally, a near Eulerian partition will discard a small number of edges and then partition
the remaining edges into cycles and paths. Because these cycles and paths will have small diameter
in our construction, we will be able to efficiently orient them in CONGEST. In Section 9 we will
see how to use these oriented cycles and paths to efficiently round flows in a distributed fashion in
order to computer a blocking integral flow in h-layer DAGs.

We now formalize the idea of a (1 − ε)-near Eulerian partition.

Definition 8.1 ((1−ε)-Near Eulerian Partition). Let G = (V,E) be an undirected graph and ϵ ≥ 0.
A (1− ε)-near Eulerian partition H is a collection of edge-disjoint cycles and paths in G, where

1. (1− ε)-Near Covering: The number of edges in E[H] is at least (1− ε) · |E|;

2. Eulerian Partition: Each vertex is the endpoint of at most one path in H.

The following is the main result of this section and summarizes our algorithms for construction
(1 − ε)-near Eulerian partitions. In what follows we say that a cycle is oriented if every edge is
directed so that every vertex in the cycle has in and out degree 1; a path P is oriented if it has some
designated source and sink sP and tP . We say that a collection of paths and cycles H is oriented if
each element of H is oriented. In CONGEST we will imagine that a cycle is oriented if each vertex
knows the orientation of its incident arcs and a path is oriented if every vertex knows which of its
neighbors are closer to sP .

Lemma 8.2. One can deterministically compute an oriented (1− ε)-near Eulerian partitions in:

1. Parallel time Õ(1) with m processors and ϵ = 0;

2. CONGEST time Õ( 1
ε5
· (ρCC)

10) for any ε > 0.

Again, see Section 5.4 for a definition of ρCC .
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8.1 High-Girth Cycle Decompositions

In order to compute our near Eulerian partitions we will make use of a slight variant of cycle
covers which we call high-girth cycle decompositions (as introduced in Section 5.4). The ideas
underpinning these decompositions seem to be known in the literature but there does not seem to
be a readily citable version of quite what we need; hence we give details below.

To begin, in our near-Eulerian partitions we would like for our cycles to be edge-disjoint so that
each cycle can be rounded independently. Thus, we give a subroutine for taking a collection of
cycles and computing a large edge-disjoint subset of this collection. This result comes easily from
applying a deterministic approximation algorithm for maximum independent set (MIS). Congestion
and dilation in what follows are defined in Section 5.4.

Lemma 8.3. There is a deterministic CONGEST algorithm that, given a graph G = (V,E) and
a collection of (not necessarily edge-disjoint) cycles C with congestion c and diameter d, outputs a
set of edge disjoint cycles C′ ⊆ C which satisfies |E[C′]| ≥ 1

d2c2
· |E[C]| in time Õ(c3d3).

Proof. Our algorithm simply computes an approximately-maximum independent set in the conflict
graph which has a node for each cycle. In particular, we construct conflict graph G′ = (C, E′) as
follows. Our vertex set is C. We include edge {C,C ′} in E′ if C ∈ C and C ′ ∈ C overlap on an edge;
that is, if E[C] ∩ E[C ′] ̸= ∅.

Observe that since each cycle in C has at most d-many edges and since each edge is in at most
c-many cycles, we have that the maximum degree of G′ is cd. Next, we let the “node-weight” of
cycle C ∈ C be |C|. We apply Theorem 5.1 with these node-weights to compute a 1

cd -approximate
maximum independent set C′. We return C′ as our solution.

First, observe that since C′ is an independent set in G′, we have that the cycles of C′ are indeed
edge-disjoint.

Next, we claim that |E[C′]| ≥ 1
d2c2
· |E[C]|. Since Theorem 5.1 guarantees that C′ is a 1

dc -
approximate solution, to show this, it suffices to argue that |E[C∗]| ≥ 1

dc · |E[C]| where C∗ ⊆ C is the
set of edge-disjoint cycles of maximum edge cardinality, i.e. the maximum node-weight independent
set in G′. However, notice that since the total node weight in G′ is

∑
C∈C |E[C]| and the max degree

in G′ is at most cd, we have that the maximum node-weight independent set in G′ must have node-
weight at least 1

cd

∑
C∈C |E[C]| ≥ 1

cd |E[C]|. Thus, we conclude that |E[C′]| ≥ 1
d2c2
· |E[C]|.

Next, we argue that we can implement the above in the stated running times. Computing our
1
cd -approximate maximum independent set on G′ takes deterministic CONGEST time Õ(cd) on G′

by Theorem 5.1. Furthermore, we claim that we can simulate a CONGEST algorithm on G′ in G
with only an overhead of O(c2d2). In particular, since the maximum degree on G′ is cd, in each
CONGEST round on G′ each node (i.e. cycle in G) receives at most cd-many messages. Fix a single
round of CONGEST on G′. We will maintain the invariant that if v ∈ V is a node in a cycle C ∈ C,
then in our simulation v receives all the same messages as C in our CONGEST algorithm on G′.
We do so by broadcasting all messages that C receives in this one round on G′ to all nodes in C.
As a cycle in G′ receives at most cd messages in one round of CONGEST on G′ and each edge is
in at most c-many cycles, it follows that in such a broadcast the number of messages that need to
cross any one edge is at most c2d. Since the diameter of each cycle is at most d, we conclude that
this entire broadcast can be done deterministically in time O(c2d2), giving us our simulation.

Combining this O(c2d2)-overhead simulation with the Õ(cd) running time of our approximate
maximum independent set algorithm on G′ gives an overall running time of O(c3d3).
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Recall that the girth of a graph is the minimum length of a cycle in it. The following formalizes
the notion of high-girth cycle decompositions that we will need.

Definition 8.4 (High-Girth Cycle Decomposition). Given a graph G = (V,E) and ε > 0 where E0

are all non-bridge edges of G, a high-girth cycle decomposition with diameter d and deletion girth
k is a collection of edge-disjoint (simple) cycles C such that:

1. High Deletion Girth: The graph (V,E \ E[C]) has girth at least k.

2. Low Diameter: maxC∈C |C| ≤ d;

The following theorem gives the construction of high-girth cycle decompositions that we will
use.

Theorem 8.5. There is a deterministic CONGEST algorithm that, given a graph G = (V,E) and
desired girth k ≥ 0, computes a high-girth cycle decomposition with diameter Õ(k · ρCC) and girth
k in time Õ(k5 · (ρCC)

10).

Proof. The basic idea is: take a sparse neighborhood cover; compute cycle covers on each part of
our neighborhood cover; combine all of these into a single cycle cover; decongest this cycle cover
into a collection of edge-disjoint cycles; delete these cycles and; repeat.

More formally, our algorithm is as follows, We initialize our collection of cycles C to ∅.
Next, we repeat the following Θ̃

(
k2 · (ρCC)

4
)
times. Apply Lemma 5.5 to compute an Õ(1)-

sparse k-neighborhood cover of G with diameter Õ(k) and overlap Õ(1). Let V1,V2, . . . be the
partitions of this neighborhood cover. By definition of a neighborhood cover, for each Vi and each

V
(j)
i ∈ Vi, we have that V

(j)
i comes with a tree T

(j)
i where each node in the tree is in Õ(1) other

V
(j)
i . We let H

(j)
i := G[V

(j)
i ]∪T (j)

i be the union of this tree and the graph induced on V
(j)
i . By the

guarantees of our neighborhood cover we have that the diameter of H
(j)
i is at most Õ(k). We then

compute a cycle cover C(j)i of each H
(j)
i with diameter Õ(k · ρCC) and congestion ρCC (we may do

so by definition of ρCC). We let C0 =
⋃

i,j C
(j)
i be the union of all of these cycle covers. Next, we

apply Lemma 8.3 to compute a large edge-disjoint subset C′0 ⊆ C0 of C0. We add C′0 to C and delete
from G any edge that occurs in a cycle in C′0.

We first argue that the solution we return is indeed a high-girth cycle decomposition. Our solu-
tion consists of edge-disjoint cycles by construction. Next, consider one iteration of our algorithm.

Observe that since each C(j)i has congestion at most ρCC , it follows by the Õ(1) overlap and Õ(1)

sparsity of our neighborhood cover that C0 has congestion Õ(ρCC). Likewise, since each H
(j)
i has

diameter Õ(k), it follows that each C(j)i has diameter at most Õ(k · ρCC) and so C0 has diameter at
most Õ(k · ρCC). Thus, C0 has congestion at most Õ(ρCC) and diameter at most Õ(k · ρCC). Since
C′0 ⊆ C0, it immediately follows that the solution we return has diameter at most Õ(k · ρCC).

It remains to show that the deletion of our solution induces a graph with high girth. Towards
this, observe that applying the congestion and diameter of C0 and the guarantees of Lemma 8.3, it
follows that

|E[C′0]| ≥ Ω̃

(
1

k2(ρCC)4

)
· |E[C0]|. (1)

19



On the other hand, let E0 be all edges in cycle of diameter at most k at the beginning of this
iteration. Consider an e ∈ E0. Since V1,V2, . . . is a k-neighborhood cover we know that there is

some C(j)i which contains a cycle which contains e. Thus, we have

|E[C0]| ≥ |E0|. (2)

Combining Equation (1) and Equation (2), we conclude that

|E[C′0]| ≥ Ω̃

(
1

k2(ρCC)4

)
· |E0|.

However, since in this iteration we delete every edge in E[C′0], it follows that we reduce the number

of edges that are in a cycle of diameter at most k by at least a 1−Ω̃
(

1
k2(ρCC)4

)
multiplicative factor.

Since initially the number of such edges is at most |E|, it follows that after Õ(k2 · (ρCC)
4)-many

iterations we have reduced the number of edges in a cycle of diameter at most k to 0; in other words,
our graph has girth at most k. This shows the high girth of our solution, namely that (V,E \E[C])
has girth at least k after the last iteration of our algorithm.

Next, we argue that we achieve the stated running times. Fix an iteration.

• By the guarantees of Lemma 5.5, the sparse neighborhood cover that we compute takes time
Õ(k).

• We claim that by definition of ρCC , the Õ(k) diameter of each part in our sparse neighborhood

cover and the Õ(1) overlap of our sparse neighborhood cover, we can compute every C(j)i in
time Õ(k · ρCC). Specifically, for a fixed i we run the cycle cover algorithm simultaneously
in meta-rounds, each consisting of Θ̃(1) rounds. In each meta-round a node can send the

messages that it must send for the cycle cover algorithm of each of the H
(j)
i to which it

is incident by our overlap guarantees. Since the total number of i is Õ(1) by our sparsity

guarantee, we conclude that we can compute all C(j)i in a single iteration in at most Õ(k ·ρCC)
time.

• Lastly, by the guarantees of Lemma 8.3 and the fact that C0 has congestion at most Õ(ρCC)
and diameter at most Õ(k · ρCC), we can compute C′0 in time Õ(k3 · (ρCC)

6).

Combining the above running times with the fact that we have Θ̃
(
k2 · (ρCC)

4
)
-many iterations

gives us a running time of Õ(k5 · (ρCC)
10).

8.2 Efficient Algorithms for Computing Near Eulerian Partitions

We conclude by proving the main section of this theorem, namely the following which shows how
to efficiently compute near Eulerian partitions in deterministic CONGEST by making use of our
high-girth cycle decomposition construction and DLDDs.

Lemma 8.2. One can deterministically compute an oriented (1− ε)-near Eulerian partitions in:

1. Parallel time Õ(1) with m processors and ϵ = 0;

2. CONGEST time Õ( 1
ε5
· (ρCC)

10) for any ε > 0.

20



Proof. The parallel result is well-known since a 1-near Eulerian partition is just a so-called Eulerian
partition; see e.g. Karp and Ramachandran [43].

The rough idea of our CONGEST algorithm is as follows. First we compute a high-girth
cycle decomposition (Definition 8.4), orient these cycles and remove all edges covered by this
decomposition. The remaining graph has high girth by assumption. Next we compute a DLDD
(Definition 5.2) on the remaining graph; by the high girth of our graph each part of our DLDD is
a low diameter tree. Lastly, we decompose each such tree into a collection of paths.

More formally, our CONGEST algorithm to return cycles C and paths P is as follows. Apply
Theorem 8.5 to compute a high-girth cycle decomposition C with deletion girth Θ̃(1ε ) and diameter

Õ(1ε · ρCC). Orient each cycle in C and delete from G any edge in a cycle in C. Next, apply

Theorem 5.3 to compute a DLDD with diameter Θ̃(1ε ) and cut fraction ε. Delete all edges cut

by this DLDD. Since C has deletion girth Θ̃(1ε ), by appropriately setting our hidden constant and
poly-logs, it follows that no connected component in the remaining graph contains a cycle; in other
words, each connected component is a tree with diameter Θ̃(1ε ).

We decompose each tree T in the remaining forest as follows. Fix an arbitrary root r of T .
We imagine that each vertex of odd degree in T starts with a ball. Each vertex waits until it has
received a ball from each of its children. Once a vertex has received all such balls, it pairs off the
balls of its children arbitrarily, deletes these balls and adds to P the concatenation of the two paths
traced by these balls in the tree. It then passes its up to one remaining ball to its parent. Lastly,
we orient each path in P arbitrarily.

We begin by arguing that the above results in a (1− ε)-near Eulerian partition. Our paths and
cycles are edge-disjoint by construction. The only edges that are not included in some element of
C ⊔P are those that are cut by our DLDD; by our choice of parameters this is at most an ε fraction
of all edges in E. To see the Eulerian partition property, observe that every vertex of odd degree in
G[C ⊔ P ] is an endpoint of exactly one path in P since each odd degree vertex starts with exactly
one ball. Likewise, a vertex of even degree will never be the endpoint of a path since no such vertex
starts with a ball.

It remains to argue that the above algorithm achieves the stated CONGEST running time.

• Computing C takes time at most Õ( 1
ε5
· (ρCC)

10) by Theorem 8.5. Furthermore, by Theo-

rem 8.5, each cycle in C has diameter Õ(1ε · ρCC) and so can be oriented in time Õ(1ε · ρCC).

• Computing our DLDD takes time Õ(1ε ) by Theorem 5.3.

• Since our DLDD has diameter Õ(1ε ), we have that the above ball-passing to comptue P can

be implemented in time at most Õ(1ε ).

Thus, overall our CONGEST algorithm takes time Õ( 1
ε5
· (ρCC)

10).

9 Deterministic Blocking Integral Flows in h-Layer DAGs

In Section 7 we showed how to efficiently compute blocking integral flows in h-layer DAGs with
high probability. In this section, we show how to do so deterministically by making use of the near
Eulerian partitions of Section 8. Specifically, we show the following.

Lemma 9.1. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
computes an integral S-T flow that is blocking in:
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1. Deterministic parallel time Õ(h3) with m processors;

2. Deterministic CONGEST time Õ(h6 · (ρCC)
10).

The above parallel algorithm is more or less implied by the work of Cohen [22]. However,
the key technical challenge we solve in this section is a distributed implementation of the above.
Nonetheless, for the sake of completeness we will include the parallel result as well alongside our
distributed implementation.

Our strategy for showing the above lemma has two key ingredients.

Iterated Path Count Flow. First, we construct the iterated path count flow. This corresponds
to repeatedly taking the expected flow induced by the sampling of our randomized algorithm (as
given by Lemma 7.1). As the flow we compute is the expected flow of the aforementioned sampling,
this process is deterministic. The result of this is a Ω̃( 1h)-blocking but not necessarily integral flow.

We argue that any such flow is also Ω̃( 1
h2 )-approximate and so the iterated path count flow is nearly

optimal but fractional.

Flow Rounding. Next, we provide a generic way of rounding a fractional flow to be in integral in
an h-layer DAG while approximately preserving its value. Here, the main challenge is implementing
such a rounding in CONGEST; the key idea we use is that of a (1−ε)-near Eulerian partition from
Section 8 which discards a small number of edges and then partitions the remaining graph into
cycles and paths.

These partitions enables us to implement a rounding in the style of Cohen [22]. In particular,
we start with the least significant bit of our flow, compute a (1 − ε)-near Eulerian partition of the
graph induced by all arcs which set this bit to 1 and then use this partition to round all these bits
to 0. Working our way from least to most significant bit results in an integral flow. The last major
hurdle to this strategy is showing that discarding a small number of edges does not damage our
resulting integral flow too much; in particular discarding edges in the above way can increase the
deficit of our flow. However, by always discarding an appropriately small number of edges we show
that this deficit is small and so after deleting all flow that originates or ends at vertices not in S or
T , we are left with a flow of essentially the same value of the input fraction flow. The end result
of this is a rounding procedure which rounds the input fractional flow to an integral flow while
preserving the value of the flow up to a constant.

Our algorithm to compute blocking integral flows in h-layer DAGs deterministically combines
the above two tools. Specifically, we repeatedly compute the iterated path count flow, round it to
be integral and add the resulting flow to our output. As the iterated path count flow is Ω̃( 1

h2 )-
approximate, we can only repeat this about h2 time (otherwise we would end up with a flow of
value greater than that of the optimal flow).

9.1 Iterated Path Count Flows

In this section we define our iterated path count flows and prove that they are Ω̃( 1h)-approximate.
Specifically, the path counts of Section 6 naturally induce a flow. In particular, they induce

what we will call the path count flow where the flow on arc (u, v) is defined as:

fa = Ua ·
na

maxa∈A na
.
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It is easy to see these path counts induce an S-T flow.

Lemma 9.2. For a given capacitated S-T DAG the path count flow is an S-T flow.

Proof. The above flow does not violate capacities by construction. Moreover, it obeys flow conser-
vation for all vertices other than those in S and T since it is a convex combination of paths between
S and T . More formally, for any vertex v ̸∈ S ∪ T we have flow conservation by the calculation:∑

a=(u,v)∈δ−(v)

fa =
Ua

maxa∈A na

∑
a=(u,v)∈δ−(v)

∑
P∈P(S,T ):a∈P

U(P )

=
Ua

maxa∈A na

∑
a=(u,v)∈δ+(v)

∑
P∈P(S,T ):a∈P

U(P )

=
∑

a=(u,v)∈δ+(v)

fa

where the second line follows from the fact that every path from S to T which enters v must also
exit v.

Path count flows were first introduced by Cohen [22]. Our notion of an iterated path count flow
is closely related to Cohen [22]’s algorithm for computing blocking flows in parallel. In particular,
in order to compute an integral blocking flow, Cohen [22] iteratively computes a path count flow,
rounds it, decrements capacities and then iterates. For us it will be more convenient to do something
slightly different; namely, we will compute a path count flow, decrement capacities and iterate; once
we have a single blocking fractional flow we will apply our rounding once. Nonetheless, we note
that many of the ideas of this section appear implicitly in Cohen [22].

We proceed to define the iterated path count flow which is always guaranteed to be near-optimal.
The iterated path count flow will be a sum of several path count flows. More formally, suppose we
are given an h-layer capacitated S-T DAG D = (V,A) with capacities U . In such a DAG we have
na ≤ (n · Umax)

h. We initialize f0 to be the flow that assigns 0 to every arc and U0 = U . We then
let Di = (V,A) with capacities Ui where Ui = Ui−1 − fi−1 and fi−1 is the path count flow of Di−1.
Lastly, we define the iterated path count flow as a convex combination of these path count flows
iterated k = Θ(h · (log n) · log(n · Umax)) times. That is, the iterated path count flow is

f̃ :=
k∑

i=0

fi.

We begin by observing that the iterated path count flow is reasonably blocking.

Lemma 9.3. The iterated path count flow f̃ is a (not necessarily integral) blocking S-T flow.

Proof. Since each path count flow is an S-T flow by Lemma 9.2, by how we reduce capacities it
immediately follows that f̃ is an S-T flow.

Thus, it remains to argue that f̃ is blocking. Towards this, consider computing the ith path
count flow when the current path counts are {na}a and the flow over arc a is (fi)a = (Ui)a · na

maxa na
.

Letting A≈max be all arcs for which na ≥ 1
2 maxa na, we get that (Ui+1)a ≤ 1

2 ·(Ui)a for all a ∈ A≈max.
It follows that after Θ(log n) iterations we will reduce maxa na by at least a multiplicative factor of
2. Since initially na ≤ (n ·Umax)

h, it follows that after k = Θ(h · (log n) · log(n ·Umax)) iterations we
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have reduced na to 0 for every arc which is to say that for any path P between S and T we have
that there is some arc a ∈ P it holds that

∑
i(fi)a = Ua. Since f̃a =

∑
i(fi)a, we conclude that f̃

is blocking.

Next, we observe that any blocking flow is near-optimal.

Lemma 9.4. Any α-blocking S-T flow in an h-layer S-T DAG is
(
α
h

)
-approximate.

Proof. Let f be our α-blocking flow and let D be the input graph. Let f∗ be the optimal S-T
flow in the input DAG and let

∑
P fP be it’s flow decomposition into path flows where each P is a

directed path from S to T and (fP )a is 1 if a ∈ P and 0 otherwise.
Since f is blocking, for each such path there is some arc, aP where faP ≥ α · UaP ≥ α · f∗

aP
.

Let A′ = {aP : P in flow decomposition of f∗} be the union of all such blocked arcs. Thus,
val(f∗) ≤

∑
a∈A′ f∗

a ≤
∑

a∈A′
fa
α . However, since D is h-layered, by an averaging argument we

have that there must be some j such that f(δ+(Vj)∩A′) ≥ 1
h

∑
a∈A′ fa where Vj is the jth layer of

our digraph. On the other hand, val(f ) ≥ f(δ+(Vj)) ≥ f(δ+(Vj) ∩A′) and so we conclude that

val(f) ≥ f(δ+(Vj) ∩A′)

≥ 1

h
·
∑
a∈A′

fa

≥ α

h
· val(f∗),

showing that f is
(
α
h

)
-approximate as desired.

We conclude that the iterated path count flow is near-optimal and efficiently computable; our
CONGEST algorithm will make use of sparse neighborhood covers to deal with potentially large
diameter graphs.

Lemma 9.5. Let D be a capacitated h-layer S-T DAG with diameter at most Õ(h). Then one can
deterministically compute a (possibly non-integral) flow f̃ :

1. In parallel that is Ω
(
1
h

)
-approximate in time Õ(h2) with m processors;

2. In CONGEST that is Ω̃
(
1
h

)
-approximate in time Õ

(
h4
)
.

Proof. Combining Lemma 9.3 and Lemma 9.4 shows that the iterated path count flow is an S-T
flow that is Ω( 1h)-approximate.

For our parallel algorithm, we simply return the iterated path count flow. The iterated path
count flow is simply a sum of k = Θ(h · (log n) · log(n · Umax)-many path count flows. Thus, it
suffices to argue that we can compute path count flows in O(h) parallel time with m processors. By
Lemma 6.1 we can compute na for every a in these times and so to then compute the corresponding
path count flows we need only compute maxa na which is trivial to do in parallel in the stated time.

For our CONGEST algorithm we do something similar but must make use of sparse neighbor-
hood covers, because we cannot outright compute maxa na as the diameter of D might be very
large. Specifically, we do the following. Apply Lemma 5.5 to compute an s-sparse h-neighborhood
cover with diameter Õ(h) and partition V1,V2, . . . ,Vs for s = Õ(1). Then we iterate through each

of these partitions for i = 1, 2, . . . , s. For each part V
(j)
i ∈ Vi, we let f̃ (j)

i be the iterated path count
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flow of D[V
(j)
i ] with source set S ∩ V

(j)
i and sink set T ∩ V

(j)
i . We let f̃i :=

∑
j f

[j]
i be the path

count flows associated with the ith partition and return as our solution the average path count flow
across partitions; namely we return

f̃ =
1

s
·
∑
i

f̃i.

This flow is an S-T flow since it is a convex combination of S-T flows. We now argue that this

flow is Ω̃( 1h)-optimal. Let f̂
[j]
i be the optimal flow on D[V

(j)
i ] with source set S ∩ V (j)

i and sink set

T ∩ V
(j)
i . As our path count flows are Ω( 1h)-approximate, we know that

val(f̃
[j]
i ) ≥ Ω̃

(
1

h

)
· val(f̂ [j]

i ).

Moreover, since every h-neighborhood is contained in one of the V
[j]
i , it follows that

∑
i,j val(f̂

[j]
i ) ≥

val(f∗) where f∗ is the optimal S-T flow on D with source set S and sink set T . Thus, we conclude
that

val(f̃) =
1

s
·
∑
i,j

f̃
[j]
i

≥ Ω

(
1

h

)
· 1
s
·
∑
i,j

f̂
[j]
i

≥ Ω̃

(
1

h

)
· val(f∗).

Lastly, we argue the running time of our CONGEST algorithm. We describe how to compute
f̃i for a fixed i. Again, f̃i on each part is simply a sum of k = Θ̃(h)-many path count flows. To
compute one of these path count flows we first compute the path counts {na}a on each part by
applying Lemma 6.1 which takes Õ(h2) time. Next, we compute maxa na in Õ(h) time by appealing
to Lemma 5.5 and the fact that maxa na ≤ O(nh). Thus, computing each f̃i takes time Õ(h3) and
since there are Õ(h) of these, overall this takes Õ(h4) time.

9.2 Deterministic Rounding of Flows in h-Layer DAGs

In the previous section we showed how to construct our iterated path count flows and that they
were near-optimal but possibly fractional. In this section, we give the flow rounding algorithm that
we will use to round our iterated path count flows to be integral. Specifically, in this section we
show the following flow rounding algorithm.

Lemma 9.6. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
ε = Ω( 1

poly(n)) and (possibly fractional) flow f , computes an integral S-T flow f̂ in:

1. Parallel time Õ(h) with m processors;

2. CONGEST time Õ( 1
ε5
· h5 · (ρCC)

10).

Furthermore, val(f̂) ≥ (1− ε) · val(f).

Parts of the above parallel result are implied by the work of Cohen [22] while the CONGEST
result is entirely new.
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(a) Near Eulerian Partition H. (b) Orientation of H. (c) H+ for each H ∈ H.

Figure 3: An illustration of a near Eulerian partition H and H+ for each H ∈ H. 3a gives H which
consists of one cycle and two paths. 3b gives the orientation of H where the source of each path is
in blue. 3c gives H+ (in green) and H \H+ (in red) for each H ∈ H.

9.2.1 Turning Flows on (1− ε)-Near Eulerian Partitions

As discussed earlier, our rounding will round our flow from the least to most significant bit. To
round the input flow on a particular bit we will consider the graph induced by the arcs which set
this bit to 1. We then compute an oriented near-Eulerian partition of these edges and “turn” flow
along each cycle and path consistently with its orientation. We will always turn flow so as to not
increase the deficit of our flow.

We now formalize how we use our (1− ε)-near Eulerian partitions to update our flow. Given a
path or cycle H, our flow update will carefully choose a subset of arcs of H along which to increase
flow (denoted H+) and decrease flow along all other arcs of H. Specifically, let H be an oriented
cycle or path of a graph produced by forgetting about the directions in a digraph D = (V,A). Then
H+ is illustrated in Figure 3 and defined as follows:

• Suppose H is an oriented cycle. Then, we let H+ be all arcs of D in this cycle that point in
the same direction as their orientation.

• Suppose H = (sH = v0, v1, v2, . . .) is an oriented path. We let H+ be all arcs of D in this
path that point in the same direction as the one arc in D incident to sH (i.e. the designated
source of the path). That is either (v0, v1) or (v1, v0) are in D. In the former case we let H+

be all arcs in D of the form (vi, vi+1) for some i. In the latter case we let H+ be all arcs in
D of the form (vi+1, vi) for some i.

With our definition of H+ in hand, we now define our flow updates as follows.

Definition 9.7 ((1 − ε)-Near Eulerian Partition Flow Update). Let f be a flow in a capacitated
DAG for which fa ∈ {0, c} for every a ∈ A for some c and let H be an oriented (1−ε)-near Eulerian
partition of supp(f) after forgetting about edge directions. Then if H ∈ H, we define the flow fH
on arc a:

(fH)a :=

{
2c if a ∈ H+

0 otherwise

Likewise, we define the flow corresponding to (f,H) as

fH :=
∑
H∈H

fH .
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The following shows that our flow update will indeed zero out the value of each bit on each
edge while incurring a negligible deficit.

Lemma 9.8. Let f be a flow in a capacitated DAG D with specified source and sink vertices S
and T where fa ∈ {0, c} for every a ∈ A for some c. Let H be an oriented (1 − ε)-near Eulerian
partition of supp(f) after forgetting about edge directions. Then fH (as defined in Definition 9.7)
satisfies:

1. (fH)a ∈ {0, 2c} for every a ∈ A;

2. deficit(fH) ≤ deficit(f) + 2ϵ ·
∑

a fa.

Proof. (fH)a ∈ {0, 2c} holds by the definition of fH and the fact that the elements of H are
edge-disjoint.

We next argue that deficit(f ′) ≤ deficit(f) + 2ϵ ·
∑

a fa. The basic idea is that each edge in
the support of f which does not appear in A[H] contributes its value to the deficit but any way of
turning a cycle in H leaves the deficit unchanged and the way we chose to turn paths also leaves
the deficit unchanged.

We let f ′ be f projected onto the arcs in A[H]. That is, on arc a the flow f ′ takes value

f ′
a =:

{
fa if a ∈ A[H]
0 otherwise

We have that deficit(f ′) ≤ deficit(f) + 2ϵ ·
∑

a fa since each arc a ̸∈ A[H] increases the deficit
of f ′ by at most 2fa and, from Definition 8.1, there are at most ε-fraction of arcs not in A[H].
Thus, to show our claim it suffices to argue that deficit(fH) ≤ deficit(f ′). For a given vertex v, we
let ni(v) be the number of elements of H in which v has in-degree 2. Similarly, we let no(v) be
the number of elements of H for which v has out-degree 2. Lastly, we let s(v) be the indicator of
whether v is the source of some path in H and t(v) be the indicator of whether v is the sink of a
path in H. Thus, we have

deficit(f ′, v) = 2c · |ni(v)− no(v)|+ c · (s(v) + t(v))

and so

deficit(f ′) =
∑
v

2c · |ni(v)− no(v)|+ c · (s(v) + t(v))

= 2c|P|+
∑
v

2c · |ni(v)− no(v)|

On the other hand, we have

deficit(fH, v) ≤ 2c · |ni − no|+ 2c · t(v)

and so

deficit(fH) ≤
∑
v

2c · |ni(v)− no(v)|+ 2c · t(v)

= 2c|P|+
∑
v

2c · |ni(v)− no(v)|

showing deficit(fH) ≤ deficit(f ′) as required.
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9.2.2 Extracting Integral S-T Subflows

The last piece of our rounding deals with how to fix the damage that the accumulating deficit
incurs. Specifically, as we round each bit we discard some edges, increasing our deficit. This means
that after rounding all bits we are left with some (small) deficit. In this section we show how to
delete flows that originate or end at vertices not in S or T , thereby reducing the value of our flow
by the deficit but guaranteeing that we are left with a legitimate S-T flow.

Lemma 9.9. Let f̂ be an integral (not necessarily S-T ) flow on an h-layer S-T DAG. Then one
can compute an S-T integral flow f ′ which is a subflow of f̂ and satisfies val(f ′) ≥ val(f̂)−deficit(f̂)
in:

1. Parallel time O(h) with m processors;

2. CONGEST time Õ(h).

Proof. Our algorithm will simply delete out flow that originates not in S or ends at vertices not in
T . More formally, we do the following. We initialize our flow f ′ to f̂ . Let S = V1, V2, . . . , Vh+1 = T
be the vertices in each layer of our input S-T DAG D = (V,A). Recall that we defined a flow f̂ as
an arbitrary function on the arcs so that f̂a ≤ Ua for every a. The basic idea of our algorithm is to
first push all “positive” deficit from left to right and then to push all “negative” deficit from right
to left. The deficit will be non-increasing under both of these processes.

More formally, we push positive deficit as follows. For i = 2, 3, . . . h we do the following. For
each v ∈ Vi, let

deficit+(v) := max

0,
∑

a∈δ+(v)

f ′
a −

∑
a∈δ−(v)

f ′
a


be the positive deficit of v. Then, we reduce

∑
a∈δ+(v) f

′
a to be equal to

∑
a∈δ−(v) f

′
a by arbitrarily

(integrally) reducing f ′
a for some subset of a ∈ δ+(v).

It is easy to see by induction that at this point we have deficit+(v) = 0 for all v ̸∈ S ∪ T .
Likewise, we have that

∑
v ̸∈S∪T deficit+(v) is non-increasing each time we iterate the above. Thus,

if deficit+ is the initial value of
∑

v ̸∈S∪T deficit+(v) then in the last iteration of the above we may

decrease the flow into T by at most deficit(f̂).
Next, we do the same thing symmetrically to reduce the negative deficits. For i = h, h−1, . . . , 2

we do the following for each v ∈ Vi. Let

deficit−(v) := max

0,
∑

a∈δ−(v)

f ′
a −

∑
a∈δ+(v)

f ′
a


be the negative deficit of v. Then, we reduce

∑
a∈δ−(v) f

′
a to be equal to

∑
a∈δ+(v) f

′
a by arbitrarily

(integrally) reducing f ′
a for some subset of a ∈ δ−(v). Notice that this does not increase deficit+(v)

for any v ̸∈ S ∪ T .
Symmetrically to the positive deficit case, it is easy to see that at the end of this process we

have reduced deficit−(v) to 0 for every v ̸∈ S ∪ T while reducing the flow out of S by at most
deficit(f̂).

Thus, at the end of this process we have an S-T integral flow f ′ whose value is at least val(f̂)−
deficit(f̂). Implementing the above in the stated running times is trivial; the only caveat is that
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(f) Returned integral S-T flow.

Figure 4: An example of our flow rounding algorithm on digraph D with unit capacities. 4a gives
the input flow where arcs are labelled with their flow and vertices are labelled with their deficit.
4b gives D(2), the graph induced by all arcs with flow value .5. 4c gives our oriented near Eulerian
partition of D(2) (in blue). 4d shows how we update our flow based on the near Eulerian partition.
4e gives the result of this flow update; notice that some vertices not in S and T have non-zero
deficit. 4f gives the S-T subflow we return where only vertices in S and T have non-zero deficit.

updating a flow in CONGEST requires updating it for both endpoints but since the flow is integral
and we reduce it integrally, this can be done along a single arc in time O(logUmax) = Õ(1) by
assumption.

9.2.3 Flow Rounding Algorithm

Having defined the flow update we use for each (1− ε)-near Eulerian partition and how to extract
a legitimate S-T flow from the resulting rounding, we conclude with our algorithm for rounding
flows from least to most significant bit. Our algorithm is given in Algorithm 1 and illustrated in
Figure 4.

We conclude that the above rounding algorithm rounds with negligible loss in the value.

Lemma 9.6. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
ε = Ω( 1

poly(n)) and (possibly fractional) flow f , computes an integral S-T flow f̂ in:

1. Parallel time Õ(h) with m processors;
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Algorithm 1 Deterministic Flow Rounding

Input: h-layer DAG D, S-T flow f =
∑

i=0 f
(i) where (f (i))a ∈ {0, 2log(Umax)−i} for every a, i.

Output: integral S-T flow f̂ .
f̂ ←

∑k
i=0 f

(i) for k = Θ(log n+ log(Umax)). ▷ Truncate lower order bits of input flow
for i = k, . . . , log(Umax) do

Let f̂ =
∑

j f̂
(j) be the bitwise flow decomposition of f̂ (defined in Section 2) and let D(i) be

the undirected graph induced by the support of f (i).
Compute an oriented (1− ε′)-near Eulerian partition H of D(i) (using Lemma 8.2 with ϵ′ = 0

for the parallel algorithm and ϵ′ = Θ
(

ε
h·logn

)
for the CONGEST algorithm).

f̂ ← f̂
(i)
H +

∑
j<i f̂

(j) (as defined in Definition 9.7). ▷ Turn flow along H
Let f̂ be an S-T subflow of f̂ (compute using Lemma 9.9).
return f̂ .

2. CONGEST time Õ( 1
ε5
· h5 · (ρCC)

10).

Furthermore, val(f̂) ≥ (1− ε) · val(f).

Proof. We use Algorithm 1.
We first argue that the above algorithm returns an integral flow. Notice that by the fact that

we initialize f̂ to
∑k

i=0 it follows that for j > k on every a we have f̂
(j)
a = 0 just before the first

iteration of our algorithm. Thus, to argue that the returned flow is integral it suffices to argue that

if f̂ (j) is the jth bit flow of f̂ just after the ith iteration then for j ≤ i we have f
(j)
a = 0 for every

a. However, notice that, by Lemma 9.8, after we update f̂ each f̂
(i)
a value is either doubled or set

to 0, meaning that f̂
(i)
a = 0 after this update.

Next, we argue that val(f̂) ≥ (1 − ε) · val(f). By Lemma 9.9 it suffices to argue that just
before we compute our S-T subflow of f̂ we have deficit(f̂) ≤ ε · val(f). We may set the constant
in k = Θ(log n + log(Umax)) to be appropriately large so that when we initialize f̂ we reduce the
flow value on each arc by at most 1

poly(n) . It follows that at this point deficit(f̂) ≤ 2
poly(n)

∑
a fa.

Similarly, by Lemma 9.8 in the ith iteration of our algorithm we increase the deficit of f̂ by at most

2ϵ′
∑

a f̂
(i)
a ≤ 2ϵ′

∑
a fa.

For our parallel algorithm, since we have ϵ′ = 0, it immediately then follows that deficit(f̂) ≤
2

poly(n)

∑
a fa ≤ ε · val(f) by our assumption that ε = Ω( 1

poly(n)). For our CONGEST algorithm

we choose ε′ = Θ( ε
h logn) for some appropriately small constant. Since we have Θ(log n) iterations

it follows that after all of our iterations (but before we compute an S-T subflow) it holds that
deficit(f̂) ≤ ε

h ·
∑

a fa ≤ ε · val(f) where the last inequality follows from the fact that our flow is
h-length.

Lastly, we argue that the algorithm achieves the stated running times. The above algorithm
runs for k = Θ(log n) iterations. The computation in each iteration is dominated by computing a
(1− ε′)-near Eulerian partition. For our parallel algorithm, computing each (1 − ε′)-near Eulerian
partition takes time at most Õ(1) with m processors by Lemma 8.2. For our CONGEST algorithm
computing each (1−ε′)-near Eulerian partition takes time at most Õ( 1

ε5
·h5 ·(ρCC)

10) by Lemma 8.2.

Lastly, we must compute an S-T subflow of f̂ which by Lemma 9.9 takes O(h) parallel time with
m processors or Õ(h) CONGEST time.
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9.3 Deterministic Blocking Integral Flows

Having shown that the iterated path count flow is near-optimal and fractional but that we can
efficiently round fractional flows to be integral, we conclude with our algorithm to compute a
blocking integral flow by repeatedly rounding iterated path count flows.

Lemma 9.1. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
computes an integral S-T flow that is blocking in:

1. Deterministic parallel time Õ(h3) with m processors;

2. Deterministic CONGEST time Õ(h6 · (ρCC)
10).

Proof. We repeatedly compute the iterated path count flow, round it to be integral, reduce capac-
ities appropriately and repeat. We will return flow f initialized to 0 on all arcs.

Specifically, we repeat the following Θ̃(h) times. Apply Lemma 9.5 to compute a Ω̃(1/h)-
approximate (possibly fractional) flow f̃ . Next, apply Lemma 9.6 with ε = .5 to round this to an
integral flow f̂ where val(f̂) ≥ 1

2val(f̃). Next, we update f to f + f̂ and for each arc a we reduce

Ua by f̂a.
After each time we iterate the above Θ̃(h) times we must reduce the value of the optimal solution

by at least a multiplicative 1
2 since otherwise f would be a flow with value greater than the max

S-T flow in the graph at the beginning of these iterations. Since the optimal solution is at most
m · Umax, it follows that we need only iterate the above Θ̃(h) times until the value of the optimal
S-T flow is 0 which is to say that f is a blocking flow.

By Lemma 9.5 and Lemma 9.6 each of the above iterations takes parallel time Õ(h2) with m
processors and CONGEST time Õ(h5 · (ρCC)

10), giving the stated running times.

10 Sparse Decompositions of Acyclic Flows

In this section we show that any flow f̂ whose support induces an h-layer DAG can be decomposed
sparsely into an h-length flow f . In particular, it can be decomposed into an h-length flow that
sends flow along at most m paths. We will use this result to sparsify our lightest path blockers
and, by extension, the flows that we compute.

The basic idea of our algorithm is as follows. Given an h-layer DAG with sources S and sinks
T , we will sweep from S to T layer-by-layer and greedily build the support of f . Specifically, while
considering a vertex v in a particular layer we will have inductively constructed some number of
paths from S to v each with some associated f flow value. What we would like to do is simply
forward the flow of each of these paths along arcs in δ+(v). However, it may not be possible to do
this because the amount of flow supported on each of these arcs by f̂ might be much smaller than
the f flow of any one of the paths into v sends. In this case we appropriately duplicate paths into
v to more finely divide up the flow that f sends into v so that this flow can actually be forwarded
along arcs of δ+(v). The challenge then becomes to argue that we do not need to duplicate paths
too many times; we can bound the number of times we must duplicate a path in this way and
therefore the size of the support of f by uniquely charging each duplication to the moment the f̂
flow is fully decomposed along some arc.

We formalize this algorithm in Algorithm 2; recall that for an h-length flow f : Ph(S, T )→ R+

we let f(a) =
∑

a∋P fP and for a (non-length-constrained) flow f̂ : A → R+ we let f̂a be the flow
value along a.
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Algorithm 2 Sparse h-Length Flow Decomposition

Input: h-layer S-T digraph D = (V = V1⊔V2⊔. . .⊔Vh+1, A) and S-T flow f̂ where supp(f̂) = A.
Output: An h-length S-T flow f .
Initialize P: for each a ∈ δ+(S) add to P the path (a).
Initialize f : fP ← f̂a if P = (a) for some a ∈ δ+(S) and fP ← 0 otherwise.
Initialize i = 2.
while i ≤ h+ 1 do:

if ∃P ∈ P with an endpoint in Vi then
Let v ∈ Vi be an endpoint of P and let a be any arc in δ+(v) with f̂a − f(a) > 0.
Let xa := min(fP , f̂a − f(a)) be the flow of P that can be sent along a.
Add P ⊕ a to P and set fP⊕a ← xa and fP ← fP − xa.
if fP = 0 then

Remove P from P.
else

i← i+ 1.

return f .

The following gives the formal properties of Algorithm 2; note that in the following |supp(f)|
is the cardinality of a collection of paths.

Theorem 10.1 (Sparse Decomposition of Acyclic Flows). Given h-layer digraph D = (V,A) with
unit lengths and h ≥ 1, source and sink vertices S, T ⊆ V and an S-T flow f̂ where A = supp(f̂),
Algorithm 2 computes an h-length S-T flow f where:

• f Decomposes f̂ : f(a) = f̂a for every a ∈ A;

• f is Sparse: |supp(f)| ≤ m;

and can be implemented in deterministic parallel time Õ(h) with m processors.

Proof. Let S = V1 ⊔ V2 ⊔ . . . ⊔ Vh+1 = T be the h+ 1 layers of D. Likewise, let V≤i :=
⋃

j≤i Vj and
let V>i :=

⋃
j>i Vj be symmetric. A standard argument by induction and the flow conservation of

f shows that after the ith iteration we have:

1. Every path in P has one endpoint in S and one endpoint in V>i;

2. For every a with a source in V≤i we have f̂(a) = f̂a.

Observe that every S to T path has length at most h and so by 1 we know that f is indeed an
h-length S to T flow. Furthermore by 2 we have that f(a) = f̂a for every a ∈ A.

To see |supp(f)| ≤ m consider one iteration i of our while loop. It suffices to argue that at the
end of this iteration we have that |P| is at most the number of arcs with a source in V≤i. Observe
that as long as fP ̸= xa (before updating fP ) we have that |P| does not grow and so it suffices to
argue that the number of iterations of our while loop where fP = xa is at most this number of arcs.
To this end, observe that when fP = xa this means that at the end of this loop f̂a − f(a) = 0 and
so a will never again be considered by our while loop. Thus, we can map this increase in the size
of P to a where overall this mapping is injective.
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Lastly, it remains to argue that our algorithm can be implemented in parallel with the appro-
priate runtime. We will argue that one iteration of one loop of the while loop can be implemented
in Õ(1) parallel time with m processors, giving the claim. Fix an iteration i and a v ∈ Vi. We
initailize P ′ ← ∅.

The main challenge here is as follows. There might be an arc of δ+(v) that must have Ω(m)
paths’ flow forwarded along it; this suggests we cannot have a single processor responsible for each
arc of δ+(v) as they would have to forward too many paths. Symmetrically, there might be a path
of P which must be duplicated and have its flow split among Ω(m) different arcs of δ+(v); this
suggests we cannot have a single processor responsible for each path of P. In the former case we
would rather have a processor for each path and in the latter case we would like to have a processor
for each arc in δ+(v). Thus, the main trick we use here is to essentially have two types of processors:
each processor is either responsible for a path P ∈ P or an arc in δ+(v).

More formally, we do the following for each v ∈ Vi in parallel. Let P1, P2, . . . be an arbitrary
ordering of paths in P with v as an endpoint and let

p−j :=
∑
x≤j

fPx

be the jth prefix sum according to this ordering of f flow. Let a1, a2, . . . be an arbitrary ordering
of δ+(v) and let

p+j :=
∑
x≤j

f̂ax

be the jth prefix sum according to this ordering of f̂ flow. Lastly, let p1, p2, . . . be {p−j }j
⋃
{p+j }j

sorted in ascending order.
Then for each j we forward pj − pj−1 flow from an appropriate path along an appropriate arc.

Namely, by construction there must be some k and some l such that

[pj−1, pj ] ⊆ [p−k−1, p
−
k ] and [pj−1, pj ] ⊆ [p+l−1, p

+
l ]

and so we continue pj−pj−1 of Pk’s flow along arc al: add Pk⊕al to P ′ and set fP⊕al ← pj−pj−1.
At the end of this iteration we update by setting fP = 0 for each P ∈ P and then set P ← P ′. See
Figure 5 for an illustration.

It is easy to verify that this is equivalent to one iteration of our algorithm’s while loop where we
always choose the P which is earliest in the order P1, P2, P3, . . . and always choose the a ∈ δ+(v)
satisfying f̂a − f(a) that is earliest in the ordering a1, a2, . . ..

Furthermore, we have that the total number of intervals of the form pj that we must consider
across all vertices in layer Vi is at most m since the size of P is at most |δ+(V≤i−1)|, each path
in P contributes at most one such interval and each arc in δ+(Vi) also contributes at most one
such interval. Thus, computing {p−j }j , {p

+
j }j and {pj}j reduce to prefix sums and sorting at most

m numbers at most O(1) times which are well-known to be doable in Õ(1) parallel time with m
processors [13, 23]. Lastly, observe that for a given j, identifying the Pk and al to extend Pk along
and send pj − pj−1 flow across reduces to a binary search of {p+j }j and {p−j }j .

11 h-Length (1 + ϵ)-Lightest Path Blockers

In this section we show how to efficiently compute our main subroutine for our multiplicative-
weights-type algorithm; what we call h-length (1 + ϵ)-lightest path blockers. We will use the
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Figure 5: An illustration of how we forward flow from paths incoming into v along outgoing arcs.
Here, we imagine that P1, P2, . . . are labelled bottom-up with their f value in red and arcs a1, a2, . . .
are labelled in bottom-up order by their f̂ value in green.

blocking integral flow primitives of Section 7 for our randomized algorithm and that of Section 9
for our deterministic algorithm. Likewise, we will use the sparsification procedure from Section 10
(as formalized by Theorem 10.1) to guarantee that these (1 + ϵ)-lightest path blockers are sparse.

Our (1 + ϵ)-lightest path blockers are defined below. In what follows, λ is intuitively a guess of

d
(h)
w (S, T ). Also, in the following recall that if f is an h-length flow then f assigns flow values to

entire paths (rather than just arcs as a non-length-constrained flow does). As such the support of
f , supp(f), is a collection of paths. However, as mentioned earlier, for an h-length flow f , we will
use f(a) as shorthand for

∑
P∋a fP .

Definition 11.1 (h-length (1+ ϵ)-Lightest Path Blockers). Let G = (V,E) be a graph with lengths

ℓ, weights w and capacities U . Fix ϵ > 0, h ≥ 1, λ ≤ d
(h)
w (S, T ) and S, T ⊆ V . Let f be an h-length

integral S-T flow. f is an h-length (1 + ϵ)-lightest path blocker if:

1. Near-Lightest: P ∈ supp(f) has weight at most (1 + 2ϵ) · λ;

2. Near-Lightest Path Blocking: If P ′ ∈ Ph(S, T ) has weight at most (1 + ϵ) · λ then there
is some a ∈ P ′ where f(a) = Ua.

Our main theorem in this section shows how to compute (1+ϵ)-lightest path blockers efficiently.

Theorem 11.1. Given digraph D = (V,A) with lengths ℓ, weights w, capacities U , length constraint

h ≥ 1, ε > 0, S, T ⊆ V and λ ≤ d
(h)
w (S, T ), one can compute h-length (1 + ϵ)-lightest path blocker

f in:

1. Deterministic parallel time Õ( 1
ε5
· h16) with m processors where |supp(f)| ≤ Õ(h

9

ε3
· |A|);

2. Randomized CONGEST time Õ( 1
ε5
· h16) with high probability;

3. Deterministic CONGEST time Õ
(

1
ε5
· h16 + 1

ε3
· h15 · (ρCC)

10
)
.
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Figure 6: An illustration of how we round weights according to ε, λ and h. Here h = 5, λ = 6 and
ε = .5 and so we round to multiples of ε

hλ = 3
5 . 6a gives our input DAG where each arc is labeled

with its weight, then length, then capacity and 6b gives the weights after we round them where we
color each lightest 5-length path from s to t.

The main idea for computing these objects is to reduce finding them to computing a series of
blocking flows in a carefully constructed “length-weight expanded DAG.” In particular, by rounding
arc weights up to multiples of ε

hλ we can essentially discretize the space of weights. Since each
path has at most h arcs, it follows that this increases the weight of a path by at most only λε.
This discretization allows us to construct DAGs from which we may extract blocking flows which
we then project back into D and then “decongest” so as to ensure they are feasible flows.

11.1 Length-Weight Expanded DAG

We now formally define the length-weight-expanded DAGs on which we compute blocking integral
flows. Roughly, the length-weight expanded graph will create many copies of vertices and organize
them into a grid where moving further down in rows corresponds to increases in length and moving
further along in columns corresponds to increases in weight.

Let D = (V,A) be a digraph with specified source and sink vertices S and T , lengths ℓ, weights

w, capacities U and a parameter λ ≤ d
(h)
w (S, T ). We let w̃ be w but rounded up to the nearest

multiple of ε
h · λ. That is, for each a ∈ A we have

w̃a =
ε · λ
h
·
⌈
wa ·

h

ε · λ

⌉
See Figure 6 for an illustration of w̃.

Next, we define the length-weight expanded DAG D(h,λ) = (V ′, A′) with capacities U ′. See
Figure 7 for an illustration of D(h,λ).

• Vertices: We construct the vertices V ′ as follows. For each each vertex v ∈ V we make
κ = h · (hϵ + 2h) copies of v, where we let v(x, h′) be one of these vertices; here x ranges over

all multiples of ε
h · λ up to (1 + 2ε) · λ (of which there are h

ϵ + 2h) and h′ ≤ h. Intuitively,
there will be a path from a copy of a vertex s ∈ S to a vertex v(x, h′) iff there is a path with
exactly x weight (according to w̃) and h′-length from s to v in D.
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Figure 7: An illustration of D(h,λ) where D and the parameters we use are given by Figure 6,
κ = 100, S = {s} and T = {t}. Copy v(x, h′) of vertex v is in the (x, h′)th grid cell and each arc is
labelled with its capacity. We only illustrate the subgraph between s(0, 0) and t(335 , 5). Each path
is colored according to the path in Figure 6b of which it is a copy. Notice that the graph induced
by all 5-length lightest paths in Figure 6b is not a DAG but D(h,λ) is.

• Arcs: We construct the arcs A′ as follows. For each each vertex v �∈ T and each a = (v, u) ∈
δ+(v) we do the following. For each copy v(x, h′) of v we add an arc to A′ from v(x, h′) to
u(x + w̃a, h

′ + 	a) provided u(x + w̃a, h
′ + 	a) is actually a vertex in V ′. That is, provided

x+ w̃a ≤ (1 + 2ε) · λ and h′ + 	a ≤ h. We say that the arc v(x, h′) to u(x+ w̃a, h
′ + 	a) in A′

is a copy of arc a. For a given a ∈ A, we let A′(a) give all copies of arc a that are in A′.

• Capacities: We construct the capacities U ′ as follows. For low capacity arcs we set the
capacity of all copies to 1; for high capacity arcs we evenly distribute the capacity across all
copies. Specifically, suppose arc a′ ∈ A′ is a copy of arc a ∈ A. Then if 0 < Uuv ≤ κ we let
U ′
a′ = 1. Otherwise, we let U ′

a′ have capacity �Ua/κ�. As we will see later in our proofs, this
rebalancing of flows will guarantee that when we “project” a flow from D(h,λ) to D, the only
arcs that end up overcapacitated in D are arcs with capacity at most κ. This, in turn, will
allow us to argue that the conflict graph on which we compute an MIS is small.

We let V ′(S) and V ′(T ) be all copies of S and T in D(h,λ) and we delete any vertex from D(h,λ)

that does not lie on a V ′(S) to V ′(T ) path. This will guarantee that the resulting digraph is indeed
a V ′(S)-V ′(T ) DAG.

Lastly, we clarify what it means for a path to have its copy in D(h,λ). Suppose P = (a1, a2, . . .)
is a path in D that visits vertices s = v1, v2, . . . , vk = t in D and let w̃i and 	i be the weight
(according to w̃) and length of P summed up to the ith vertex it visits. Then we let a′i be the arc
from vi(w̃i, 	i) to vi+1(w̃i + w̃ai , 	i + 	ai). If a

′
i is in D(h,λ) for every i then we call P ′ = (a′1, a

′
2, . . .)

the copy of P in D(h,λ). Observe that a path in D has at most one copy in D(h,λ) but every path
in D(h,λ) is the copy of some path in D.

The following summarizes the key properties of our length-weight expanded digraphs.
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Lemma 11.2. Let D = (V,A) be a digraph with weights w, S, T ⊆ V and some λ ≤ d
(h)
w (S, T ). Let

D(h,λ) = (V ′, A) be the length-weight expanded digraph of D. Then D(h,λ) is an h-layer V ′(S)-V ′(T )
DAG which satisfies

1. Few Arc Copies: |A′(a)| ≤ O(h
2

ε ).

2. Forward Path Projection: For each path P in D from S to T of weight at most λ · (1+ ϵ)
according to w, there is a copy of P in D(h,λ) from V ′(S) to V ′(T ).

3. Backward Path Projection: If P ′ is a V ′(S) to V ′(T ) path in D(h,λ) then it is a copy of
a path with weight at most (1 + 2ϵ) · λ according to w.

4. Optimal Flow Preserving: the maximum V ′(S)-V ′(T ) flow on D(h,λ) has value at least
Ω( ε

h2 ) times that of the maximum h-length flow on D.

Proof. First, we argue that D(h,λ) is indeed a DAG. To see this, observe that if a′ is an arc in A′

from v(x1, h1) to v(x2, h2) then by construction it must be the case that h1 < h2. It follows that
D(h,λ) has no cycles and has at most h layers. Next, observe that D(h,λ) is a V ′(S)-V ′(T ) DAG by
construction since we deleted any any vertices that do not lie on a path between V ′(S) and V ′(T ).

Additionally, we have |A′(a)| ≤ O(h
2

ε ) for every a since each vertex has at most O(h
2

ε )-many copies.
Next, consider an arc a with weight wa according to w and weight w̃a according to w̃. Observe

that since we are rounding arc weights up we have wa ≤ w̃a. Combining this with the fact that we
are rounding to multiples of ϵ

h · λ we have that

wa ≤ w̃a ≤ wa +
ϵ

h
· λ (3)

We next argue our forward path projection property. That is, for each h-length path P in D
from S to T of weight at most λ · (1 + ϵ) according to w, there is a copy of P in D(h,λ) from V ′(S)
to V ′(T ). First, observe that P consists of at most h-many edges and so applying Equation (3),
its weight according to w̃ is at most λ · (1 + ϵ) + h · ϵh · λ = λ · (1 + 2ϵ). Next, observe that since

P has weight at most λ · (1 + 2ϵ) according to w̃, it must have a copy in D(h,λ). In particular,
suppose P = (a1, a2, . . .) visits vertices s = v1, v2, . . . , vk = t in D and let w̃i and ℓi be the weight
(according to w̃) and length of P up to the ith vertex it visits. Then D(h,λ) always includes the arc
from vi(w̃i, ℓi) to vi+1(w̃i + w̃ai , ℓi + ℓai) since w̃i ≤ (1 + 2ϵ)λ and ℓi ≤ h for every i.

We argue our backward path projection property. That is, if P ′ is a V ′(S) to V ′(T ) path in
D(h,λ) then it is a copy of a path with weight at most (1+2ϵ) ·λ in D according to w. Since each arc
in D(h,λ) is a copy of some arc in D, we know that P ′ is a copy of some path in D. Moreover, since
we let v(x, h′) only range over x ∈ h

ϵ + 2h, it follows that the weight of this path according to w̃ is
at most (1+ 2ε) · λ. However, since weights according to w̃ are only larger than those according to
w by Equation (3), it follows that P ′ is a copy of a path with weight at most (1 + 2ε) · λ according
to w.

Lastly, to see the optimal flow preserving property notice that if f∗ is the optimal h-length flow
on D then by how chose the capacities of D(h,λ) we have that the flow that gives path P ′ in D(h,λ)

value Θ( ε
h2 ) · f∗

P where P ′ is the copy of P is indeed a feasible flow in D(h,λ).
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11.2 Decongesting Flows

Part of what makes using our length-weight expanded digraph non-trivial is that when we compute
a flow in it and then project this flow back into D, the projected flow might not respect capacities.
However, this flow will only violate capacities to a bounded extent and so in this section we show
how to resolve such flows at a bounded loss in the value of the flow. In the below we say that an
h-length flow f̂ is α-congested if any arc a where f̂(a) > Ua satisfies f̂(a) ≤ α.

Lemma 11.3. There is a deterministic algorithm that, given a digraph D = (V,A) with capacities
U , a length constraint h ≥ 1, S, T ⊆ V and an h-length α-congested S-T integral flow f̂ , computes
an S-T h-length integral flow f where val(f) ≥ 1

α2h2 · val(f̂) and |supp(f)| ≤ |supp(f ′)| in:

1. Deterministic parallel time Õ(α2 · h) with m processors;

2. Deterministic CONGEST time Õ(α3 · h3).

Proof. The basic idea is to consider the conflict graph induced by our flow paths and then to
compute a approximate maximum-weighted independent set among these flow paths where flow
paths are weighted according to their flow value.

Specifically, construct our conflict graph G′ = (V ′, E′) of supp(f̂) as follows. V ′ = supp(f̂) has
a vertex for each path in the support of f̂ . We say that P1 and P2 in supp(f̂) conflict if there is
some arc a in both P1 and P2 such that f̂(a) > Ua. Then we add edge {P1, P2} to E′ iff P1 and P2

conflict.
Observe that since each path in supp(f̂) consists of at most h arcs and since f̂ is α-congested,

we know that the maximum degree in G′ is at most h · α.
We then apply Theorem 5.1 to G′ to compute a 1

hα -approximate maximum independent set in

G′ in deterministic CONGEST time Õ(hα) with the node weight of P ∈ supp(f̂) as f̂P . Let I be
this independent set and let f =

∑
P∈I f̂P be the flow corresponding to this set. We return f .

We trivially have |supp(f)| ≤ |supp(f ′)| by construction of f .

We next argue that val(f) ≥ val(f̂)
α2h2 Since the total node weight in G′ is val(f̂) and the maximum

degree in G′ is α · h, it follows that the maximum independent set in G′ has node weight at least
val(f̂)
αh . Since I is 1

αh -approximate, we conclude that f has val(f) ≥ val(f̂)
α2h2 .

Lastly, we argue that we achieve the claimed running times. Notice that the total number of
vertices in G′ is at most m ·α because each congested arc a where Ua < f̂(a) ≤ α is contained in at
most α integral flow paths. Hence, we can simulate any CONGEST algorithm in G′ with at most
α overhead. Theorem 5.1 tells us that we can compute I in time at most Õ(α ·h) in G′, giving our
parallel running time.

It remains to describe how to simulate G′ in D in CONGEST. We keep the following invariant:
if a node P1 in G′ receives a message, we make sure that all vertices v ∈ P1 in G receive the same
message too. Because of this, any vertex v ∈ P1 in G can determine what P1 as a node in G′ will do
next. Let us assume that each message in G′ from P1 to P2 is of the form (msg, P1, P2). To simulate
sending (msg, P1, P2) in G, a vertex v1 ∈ P1 first forwards (msg, P1, P2) through P1 to make sure
that every node in P1 gets this message. Let v2 ∈ P1 ∩ P2 be a common vertex in both P1 and P2.
Then, v2 forwards (msg, P1, P2) through P2. After we are done simulating all messages sent in G′,
our invariant is maintained.

Now, we analyze the overhead of simulating one round of G′ in G. The dilation for simulating
sending each message in G′ is clearly O(h). Next, we analyze the congestion. Each arc a is contained
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in at most max{Ua, α} ≤ αUa paths. For each such path P , there are at most αh messages needed
to sent through a because the maximum degree in G′ at most αh. Therefore, the congestion is at
most αUa·αh

Ua
= α2h. Note that, here (and nowhere else in this work) we rely on the fact that we

may send O(Ua) messages over an arc a with capacity Ua in one round of CONGEST.
To conclude, the deterministic simulation overhead is at most dilation times congestion which

is at most O(h) ·α2h = O(α2h2). Combining this simulation with the Õ(α · h) running time of our
approximate maximum independent set algorithm gives our CONGEST running time.

11.3 Computing h-Length (1 + ε)-Lightest Path Blockers

Having described our length-weight expanded DAGs, their properties and how to decongest flows
that we compute using them, we now use these primitives to build our h-length (1+ϵ)-lightest path
blockers. Again, the basic idea is to compute the length-weight expanded DAG D(h,λ), compute
blocking flows in D(h,λ), project these back into D, decongest the resulting flows and then repeat.
Algorithm 3 gives our algorithm. We prove its properties below.

Algorithm 3 (1 + ϵ)-Lightest Path Blocker

Input: D = (V,A) with weights w, lengths ℓ, capacities U , h ≥ 1, S, T ⊆ V , λ > 0 and ε > 0.
Output: h-length (1 + ε)-lightest path blocker f .
Initialize solution f to be 0 on all paths.
Let D(h,λ) = (V ′, A′) be the length-weight expanded digraph of D with capacities Û = U

for Θ̃(h
7

ε2
) repetitions do

Blocking Flows: Let f ′ be a blocking integral flow in D(h,λ) with capacities Û (compute
using Lemma 7.2 with randomness or Lemma 9.1 deterministically).

Sparsify Flow: Sparsify f ′ so that |supp(f ′)| ≤ |A′| (only for parallel alg., use Theorem 10.1)
Project Into D: Let f̃ be the h-length flow that gives path P value f ′

P ′ where P ′ is the
copy of P in D(h,λ).

Decongest Flow: Let f̂ be the result of decongesting f̃ with Lemma 11.3.
For each copy a′ ∈ A′ of a ∈ A update capacities as Ûa′ = Ûa′ − f̂(a).
Update f = f + f̂ .

return f .

Theorem 11.1. Given digraph D = (V,A) with lengths ℓ, weights w, capacities U , length constraint

h ≥ 1, ε > 0, S, T ⊆ V and λ ≤ d
(h)
w (S, T ), one can compute h-length (1 + ϵ)-lightest path blocker

f in:

1. Deterministic parallel time Õ( 1
ε5
· h16) with m processors where |supp(f)| ≤ Õ(h

9

ε3
· |A|);

2. Randomized CONGEST time Õ( 1
ε5
· h16) with high probability;

3. Deterministic CONGEST time Õ
(

1
ε5
· h16 + 1

ε3
· h15 · (ρCC)

10
)
.

Proof. We first argue that f is a h-length (1 + ε)-lightest path blocker (Definition 11.1). f is an
integral h-length S-T flow by construction. Moreover, the support of f is near-lightest by the
backward path projection property of D(h,λ), as stated in Lemma 11.2.
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Also, notice that by the guarantees of Theorem 10.1 and Lemma 11.3 and the fact that projecting
into D does not increase the support size (i.e. |supp(f̃)| ≤ |supp(f ′)|) tells us that |supp(f̂)| ≤ |A′|
for each f̂ (where, as a reminder, A′ is the arcs of D(h,λ)) and so we know that

|supp(f)| ≤ Õ

(
h7

ε2
· |A′|

)
for our parallel algorithm. Applying the fact that |A′| ≤ O(h

2

ε ) · |A| by Lemma 11.2 gives our bound
on the support of f .

Thus, it remains to argue the near-lightest path blocking property of f and, in particular that
if P ∈ Ph(S, T ) is a path in D and P has weight at most (1 + ε) · λ according to w then there is
some a ∈ P where f(a) = Ua. Towards this, observe that by the forward path projection property
as stated in Lemma 11.2, such a path P has copy in D(h,λ). By how we construct f , it follows that
to show f(a) = Ua for some a, it suffices to show that Ûa = 0 by the end of our algorithm. To show
that such an a exists, it suffices to show that the maximum flow in D(h,λ) under the capacities Û
is 0 by the end of our algorithm.

We do so now. Our strategy will be to show that we have implicitly computed a flow on D(h,λ)

of near-optimal value and so after just a few iterations it must be the case that the optimal flow
on D(h,λ) is reduced to 0.

Consider a fixed iteration of our algorithm and let OPT(h,λ) be the value of the maximum
V ′(S)-V ′(T ) flow on D(h,λ). Since f ′ is a blocking flow in D(h,λ) and D(h,λ) is an h-layer DAG by
Lemma 11.2, it follows from Lemma 9.4 that

val(f ′) ≥ 1

h
·OPT(h,λ). (4)

Continuing, we claim that f̃ is an O(h
2

ε )-congested flow. In particular, any arc a with capacity

in D greater than O(h
2

ε ) is such that the sum of its capacities across copies in D(h,λ) is at most Ûa.

Thus, such an arc is never overcongested by f̃ . Any arc with capacity less than O(h
2

ε ) in D′ has up

to O(h
2

ε ) copies in D(h,λ) each of which has capacity 1; thus, such an arc may have flow value up

to O(h
2

ε ) in f̃ . Thus, by val(f̃) = val(f ′) and this bound on the congestedness of f̃ , we have from
Lemma 11.3 that

val(f̂) ≥ ε2

h6
· val(f̃)

=
ε2

h6
· val(f ′). (5)

Combining Equation (4) and Equation (5), we get

val(f̂) ≥ ε2

h7
·OPT(h,λ). (6)

Lastly, let f ′′ be f̂ projected back into D(h,λ). That is, if arc a′ is a copy of arc a then f ′′ assigns
to a′ the flow value

∑
P∋a f̂P . Observe that by construction of f̂ , we know that f ′′ is a V ′(S)-V ′(T )

flow in D(h,λ) of value val(f ′′) = val(f̂). Thus, applying this and Equation (6) we get

val(f ′′) ≥ ε2

h7
·OPT(h,λ).

40



Since we decrement the value of Ûa by f ′′
a in each iteration, it follows that after Õ(h

7

ε2
) many

repetitions of Algorithm 3, we must decrease the value of the optimal flow in D(h,λ) by at least a
constant fraction since otherwise we would have computed a flow with value greater than that of
the optimal flow. Since initially OPT(h,λ) ≤ poly(n), we get that after Õ(h

7

ε2
)-many repetitions we

have reduced the value of the optimal flow to 0 on D(h,λ), therefore showing that f satisfies the
near-lightest path blocking property.

It remains to show our running times. The computation in each of our iterations is dominated
by constructing the length-expanded digraph D(h,λ), computing our maximal integral flow f (h) in
D(h,λ) and decongesting our flow.

• We can construct D(h,λ) by e.g. Bellman-Ford for Õ(h) rounds for a total running time of
Õ(h) in either CONGEST or parallel. Likewise projecting flows back from D(h,λ) is trivial.

• It is is easy to simulate D(h,λ) in either CONGEST or in parallel with an overhead of O(h
2

ε )
since this is a bound on the number copies of each vertex.

With randomization, by Lemma 7.2 computing f ′ takes time Õ(h3) in parallel with m pro-

cessors or Õ(h4) in CONGEST on D(h,λ) and so Õ(h
5

ε ) in parallel or Õ(h
6

ε ) in CONGEST on
D.

For our deterministic algorithm, by Lemma 9.1 doing so takes Õ(h3) in parallel with m
processors and CONGEST time Õ(h6 · (ρCC)

10) on D(h,λ) and so Õ(1ε · h
5) parallel time on

D or Õ(1ε · h
8 · (ρCC)

10) CONGEST time on D.

• Lastly, decongesting our flow by Lemma 11.3 and the fact that f̃ is O(h
2

ε )-congested takes

deterministic parallel time Õ(h
5

ε2
) and deterministic CONGEST time Õ(h

9

ε3
).

Combining these running times with our Õ(h
7

ε2
)-many repetitions gives the stated running times.

12 Computing Length-Constrained Flows and Moving Cuts

Having shown how to compute an h-length (1 + ϵ)-lightest path blocker, we now use a series of
these as batches to which we apply multiplicative-weights-type updates. The result is our algorithm
which returns both a length-constrained flow and a (nearly) certifying moving cut.

As a reminder for an h-length flow f , we let f(a) :=
∑

P∋a fP . Throughout our analysis we
will refer to the innermost loop of Algorithm 4 as one “iteration.” We begin by observing that λ

always lower bounds d
(h)
w (S, T ) in our algorithm.

Lemma 12.1. At the beginning of each iteration of Algorithm 4 we have λ ≤ d
(h)
w (S, T )

Proof. Our proof is by induction. The statement trivially holds at the beginning of our algorithm.

Let λi be the value of λ at the beginning of the ith iteration. We argue that if d
(h)
w (S, T ) = λi

then after Θ
(
h log1+ϵ0

n

ϵ0

)
additional iterations we must have d

(h)
w (S, T ) ≥ (1 + ε0) · λi. Let λ′

i =

(1 + ϵ0) · λ be λ after these iterations. Let f̂j be our lightest path blocker in the jth iteration.

Assume for the sake of contradiction that d
(h)
w (S, T ) < λ′

i after i + Θ
(
h log1+ϵ0

n

ϵ0

)
iterations.

It follows that there is some path P ∈ Ph(S, T ) with weight at most λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
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Algorithm 4 Length-Constrained Flows and Moving Cuts

Input: digraph D = (V,A) with lengths ℓ, capacities U , h ≥ 1, S, T ⊆ V and ε ∈ (0, 1).
Output: (1± ε)-approximate h-length flow f and moving cut w.
Let ϵ0 =

ϵ
6 , let ζ = 1+2ε0

ε0
+ 1 and let η = ε0

(1+ε0)·ζ ·
1

logm .

Initialize wa ←
(
1
m

)ζ
for all a ∈ A.

Initialize λ←
(
1
m

)ζ
.

Initialize fP ← 0 for all P ∈ Ph(S, T ).
while λ < 1 do:

for Θ
(
h log1+ϵ0

n

ϵ0

)
iterations: do

Compute h-length (1 + ϵ0)-lightest path blocker f̂ (using Theorem 11.1 with current λ).
Length-Constrained Flow (Primal) Update: f ← f + η · f̂ .
Moving Cut (Dual) Update: wa ← (1 + ϵ0)

f̂(a)/Ua · wa for every a ∈ A.

λ← (1 + ε0) · λ
return (f, w).

many iterations. However, notice that by definition of an h-length (1 + ϵ0)-lightest path blocker

(Definition 11.1), we know that for every j ∈
[
i, i+Θ

(
h log1+ϵ0

n

ϵ0

)]
there is some a ∈ P for which

f̂j(a) = Ua. By averaging, it follows that there is some single arc a ∈ P for which f̂j(a) = Ua for

at least Θ
(
log1+ϵ0

n

ϵ0

)
of these j ∈ [i, i+Θ

(
h log1+ϵ0

n

ϵ0

)
]. Since every such arc starts with dual value

( 1
m)ζ and multiplicatively increases by a (1 + ϵ0) factor in each of these updates, such an arc after

i+Θ
(
h log1+ϵ0

n

ϵ0

)
many iterations must have wa value at least ( 1

m)ζ · (1 + ϵ0)
Θ

(
log1+ϵ0

n

ϵ0

)
≥ n2 for

an appropriately large hidden constant in our Θ. However, by assumption, the weight of P is at

most λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
iterations and this is at most 2 since λi < 1 since otherwise our

algorithm would have halted. But 2 < n2 and so we have arrived at a contradiction.
Repeatedly applying the fact that λ′

i = (1 + ϵ0)λi gives that λ is always a lower bound on

d
(h)
w (S, T ).

We next prove the feasibility of our solution.

Lemma 12.2. The pair (f, w) returned by Algorithm 4 are feasible for Length-Constrained Flow
LP and Moving Cut LP respectively.

Proof. First, observe that by Lemma 12.1 we know that λ is always a lower bound on d
(h)
w (S, T )

and so since we only return once λ > 1, the w we return is always feasible.
To see that f is feasible it suffices to argue that for each arc a, the number of times a path

containing a has its primal value increased is at most Ua
η . Notice that each time we increase

the primal value on a path containing arc a by η we increase the dual value of this edge by a
multiplicative (1 + ϵ0)

1/Ua . Since the weight of our arcs according to w start at ( 1
m)ζ , it follows

that if we increase the primal value of k paths incident to arc a then wa = (1 + ϵ0)
k/Ua · ( 1

m)ζ . On
the other hand, by assumption when we increase the dual value of an arc a it must be the case that

wa < 1 since otherwise d
(h)
w (S, T ) ≥ 1, contradicting the fact that λ always lower bounds d

(h)
w (S, T ).
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It follows that (1 + ϵ0)
k/Ua · ( 1

m)ζ ≤ 1 and so applying the fact that ln(1 + ϵ0) ≥ ϵ0
1+ϵ0

for ϵ0 > −1
and our definition of ζ and η we get

k ≤ ζ · (1 + ε0)

ε0
· Ua logm

=
Ua

η

as desired.

We next prove the near-optimality of our solution.

Lemma 12.3. The pair (f, w) returned by Algorithm 4 satisfies (1− ϵ)
∑

awa ≤
∑

P fP .

Proof. Fix an iteration i of the above while loop and let f̂ be our lightest path blocker in this
iteration. Let ki be val(f̂), let λi be λ at the start of this iteration and let Di :=

∑
awa be our

total dual value at the start of this iteration. Notice that 1
λi
·w is dual feasible and has cost Di

λi
by

Lemma 12.1. If β is the optimal dual value then by optimality it follows that β ≤ Di
λi
, giving us

the upper bound on λi of
Di
β . By how we update our dual, our bound on λi and (1 + x)r ≤ 1 + xr

for any x ≥ 0 and r ∈ (0, 1) we have that

Di+1 =
∑
a

(1 + ϵ0)
f̂(a)/Ua · wa · Ua

≤
∑
a

(
1 +

ϵ0f̂(a)

Ua

)
· wa · Ua

= Di + ϵ0
∑
a

f̂(a)wa

≤ Di + ϵ0(1 + 2ε0) · kiλi

≤ Di

(
1 +

(1 + 2ε0)ε0 · ki
β

)
≤ Di · exp

(
(1 + 2ε0)ε0 · ki

β

)
.

Let T − 1 be the index of the last iteration of our algorithm; notice that DT is the value of w in
our returned solution. Let K :=

∑
i ki. Then, repeatedly applying this recurrence gives us

DT ≤ D0 · exp
(
(1 + 2ε0)ε0 ·K

β

)
=

(
1

m

)ζ−1

exp

(
(1 + 2ε0)ε0 ·K

β

)
On the other hand, we know that w is dual feasible when we return it, so it must be the case that

DT ≥ 1. Combining this with the above upper bound on DT gives us 1 ≤
(
1
m

)ζ
exp

(
(1+2ε0)ε0·K

β

)
.

Solving for K and using our definition of ζ gives us

β logm · ζ − 1

(1 + 2ε0) · ε0
≤ K
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β logm · 1
ε20
≤ K.

However, notice that Kη is the primal value of our solution so using our choice of η and rewriting
this inequality in terms of Kη by multiplying by η = ε0

(1+ε0)·ζ ·
1

logm and applying our definition of

ζ = 1+2ε0
ε0

+ 1 gives us

β

ε0 · (1 + ε0) · ζ
≤ Kη

β

(1 + ε0)(1 + 3ε0)
≤ Kη. (7)

Moreover, by our choice of ε0 =
ε
6 and the fact that 1

1+x+x2 ≥ 1− x for x ∈ (0, 1) we get

1− ε ≤ 1

1 + ε+ ε2

≤ 1

(1 + 1
2ε)

2

≤ 1

(1 + 3ε0)2

≤ 1

(1 + ε0)(1 + 3ε0)
. (8)

Combining Equation (7) and Equation (8) we conclude that

(1− ε) · β ≤ Kη.

We conclude with our main theorem by proving that we need only iterate our algorithm Õ
(
h
ϵ4

)
times.

Theorem 3.1. Given a digraph D = (V,A) with capacities U , lengths ℓ, length constraint h ≥ 1,
ε > 0 and source and sink vertices S, T ⊆ V , one can compute a feasible h-length flow, moving cut
pair (f, w) that is (1± ϵ)-approximate in:

1. Deterministic parallel time Õ( 1
ε9
· h17) with m processors where |supp(f)| ≤ Õ(h

10

ε7
· |A|);

2. Randomized CONGEST time Õ( 1
ε9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(

1
ε9
· h17 + 1

ε7
· h16 · (ρCC)

10
)
.

Also, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(
h
ϵ4

)
and each fj is an integral h-length S-T flow.

Proof. We use Algorithm 4. By Lemma 12.2 and Lemma 12.3 we know that our solution is feasible
and (1± ϵ)-optimal so it only remains to argue the runtime of our algorithm and that the returned
flow decomposes in the stated way.

We argue that we must only run for O
(
h log2 n

ϵ4

)
total iterations. Since λ increases by a mul-

tiplicative (1 + ϵ0) after every Θ
(
h logn

ϵ20

)
iterations and starts at at least

(
1
m

)Θ(1/ε0), it follows
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by Lemma 12.1 that after y · Θ
(
h logn

ϵ20

)
total iterations the h-length distance between S and T

is at least (1 + ϵ0)
y ·
(
1
m

)Θ(1/ε0). Thus, for y ≥ Ω
(
log1+ϵ0

m

ϵ0

)
= Ω

(
logn
ϵ20

)
we have that S and

T are at least 1 apart in h-length distance. Consequently, our algorithm must run for at most

O
(
h log2 n

ϵ40

)
= O

(
h log2 n

ϵ4

)
many iterations.

Our running time is immediate from the the bound of O
(
h log2 n

ϵ4

)
on the number of iterations

of the while loop and the running times given in Theorem 11.1 for computing our h-length (1+ ϵ0)-
lightest path blocker.

Lastly, the flow decomposes in the stated way because we have at most O
(
h log2 n

ϵ4

)
iterations

and each fj is an integral S-T flow by Theorem 11.1. Thus, our final solution is η ·
∑k

j=1 fj

and k = Õ
(
h
ϵ4

)
. Likewise we have |supp(f)| ≤ Õ(h

10

ε7
) for our parallel algorithm since we have

O
(
h log2 n

ϵ4

)
iterations and the fact that Theorem 11.1 guarantees each (1+ε0)-lightest path blocker

has support size at most Õ(h
9

ε3
· |A|).

13 Application: Maximal and Maximum Disjoint Paths

In this section we show that our main theorem (Theorem 3.1) almost immediately gives deter-
ministic CONGEST algorithms for many varieties of maximal disjoint path problems as well as
essentially-optimal algorithms for many maximum disjoint path problems. In Section 13.1 we give
the variants we study. In Section 13.2 we observe that it suffices to solve the arc-disjoint directed
variants of these problems. Lastly, we give our results for maximal and maximum disjoint path
problems in Section 13.3 and Section 13.4 respectively where we observe in Section 13.5 that our
algorithms for the latter are essentially optimal.

13.1 Maximal and Maximum Disjoint Path Variants

We consider the following maximal disjoint path variants.

Maximal Vertex-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and two disjoint sets S, T ⊆ V , find a collection of h-length vertex-disjoint S to T paths
P such that any h-length S to T path shares a vertex with at least one path in P.

Maximal Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and two disjoint sets S, T ⊆ V , find a collection of h-length edge-disjoint S to T paths
P such that any h-length S to T path shares an edge with at least one path in P.

Maximal Vertex-Disjoint Directed Paths: Given digraph D = (V,A), length con-
straint h ≥ 1 and two disjoint sets S, T ⊆ V , find a collection of h-length vertex-disjoint
S to T paths P such that any h-length S to T path shares a vertex with at least one
path in P.

Maximal Arc-Disjoint Directed Paths: Given digraph D = (V,A), length con-
straint h ≥ 1 and two disjoint sets S, T ⊆ V , find a collection of h-length arc-disjoint S
to T paths P such that any h-length S to T path shares an arc with at least one path
in P.
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u v

u(o) v(o)

v(i)u(i)

(a) Vertex-disjoint paths.

u v u v

x(i)e

x(o)e

(b) Edge-disjoint paths.

u v

u(o) v(o)

v(i)u(i)

(c) Vertex-disjoint directed paths.

Figure 8: Illustration of our reduction on a single edge or arc between u and v for reducing
maximal or maximum vertex-disjoint paths, edge-disjoint paths or vertex-disjoint directed paths to
arc-disjoint directed paths.

As discussed in Section 1.1, the existence of efficient deterministic algorithms for the above
problems (specifically the maximal vertex-disjoint paths problem) in CONGEST was stated as an
open question by Chang and Saranurak [18] and the lack of these algorithms is a major barrier to
simple deterministic constructions of expander decompositions.

We consider the following maximum disjoint path variants.

Maximum Vertex-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length vertex-disjoint
S to T paths.

Maximum Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length edge-disjoint S
to T paths.

Maximum Vertex-Disjoint Directed Paths: Given digraph D = (V,A), length
constraint h ≥ 1 and disjoint sets S, T ⊆ V , find a max cardinality collection of h-
length vertex-disjoint S to T paths.

Maximum Arc-Disjoint Directed Paths: Given digraph D = (V,A), length con-
straint h ≥ 1 and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length
arc-disjoint S to T paths.

13.2 Reducing Among Variants

We begin by observing that the arc-disjoint directed paths problem is the hardest of the above
variants and so it will suffice to solve this problem. The reductions we use are illustrated in
Figure 8.

Lemma 13.1. If there is a deterministic algorithm for maximal arc-disjoint directed paths in
CONGEST running in time T then there are deterministic CONGEST algorithms for maximal
vertex-disjoint paths, edge-disjoint paths and vertex-disjoint directed paths all running in time O(T ).

Likewise, if there is a deterministic (resp. randomized) parallel with m processors or CONGEST
algorithm for maximum arc-disjoint directed paths in CONGEST running in time T with approxi-
mation ratio Õ(h) then there are deterministic (resp. randomized) parallel with m processors and
CONGEST algorithms for maximum vertex-disjoint paths, edge-disjoint paths and vertex-disjoint
directed paths all running in time O(T ) with approximation ratio Õ(h).

Proof. We reduce each of maximal vertex-disjoint paths, maximal edge-disjoint paths and maximal
vertex-disjoint directed paths to maximal arc-disjoint directed paths and do the same for the
maximum variants of these problems.
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Reducing from maximal/maximum vertex-disjoint paths. Consider an instance of max-
imal or maximum vertex-disjoint paths on graph G = (V,E) with length constraint h and vertex
sets S and T . We create a digraph D = (V ′, A) as follows:

• Vertices: V ′ is constructed as follows: for each v ∈ V we add to V ′ vertex v(i) and v(o).

• Arcs: For each v ∈ V we add an arc from v(i) to v(o). Furthermore, for each e = {u, v} ∈ E
we add to A the arcs (u(o), v(i)) and (v(o), u(i)).

A collection of arc-disjoint paths in D from S′ = {s(i) : s ∈ S} to T ′ = {t(o) : t ∈ T} with length
constraint 2h − 1 uniquely corresponds to an equal cardinality collection of S-T vertex-disjoint
paths in G with length constraint h. Thus, an Õ(h) approximation on D for the maximum S′-T ′

arc-disjoint directed paths problem gives an Õ(h) approximation for the maximum vertex-disjoint
paths problem on G. Likewise, a maximal collection of arc-disjoint S′-T ′ paths on D with length
constraint 2h − 1 corresponds to a maximal collection of vertex-disjoint S-T paths with length
constraint h. Lastly, a T -time CONGEST algorithm on D can be simulated on G in time O(T )
since each v ∈ V can simulate v(o) and v(i).

Reducing from maximal/maximum edge-disjoint paths. Consider an instance of maximal
or maximum edge-disjoint paths on graph G = (V,E) with length constraint h and vertex sets S
and T . We create a digraph D = (V ′, A) as follows:

• Vertices: V ′ consists of V along with two vertices for each edge e, namely x
(i)
e and v

(o)
e for

each e ∈ E.

• Arcs: For each e ∈ {u, v} ∈ E we add to A an arc from x
(i)
e to x

(o)
e as well as an arc from u

and v to x
(i)
e and an arc from x

(o)
e to u and v.

A collection of arc-disjoint S-T paths in D with length constraint 3h uniquely corresponds to an
equal cardinality collection of S-T edge-disjoint paths in G with length constraint h. Thus, an
Õ(h) approximation on D for the maximum S-T arc-disjoint directed paths problem gives an Õ(h)
approximation for the maximum edge-disjoint paths problem on G. Likewise, a maximal collection
of arc-disjoint S-T paths on D with length constraint 3h corresponds to a maximal collection of
edge-disjoint S-T paths with length constraint h on G. Lastly, a T -time CONGEST algorithm on

D can be simulated on G in time O(T ) since the endpoints of e ∈ E can simulate x
(i)
e and x

(o)
e with

constant overhead.

Reducing from maximal/maximum vertex-disjoint directed paths. Consider an instance
of maximal or maximum vertex-disjoint directed paths on graph D = (V,A) with length constraint
h and vertex sets S and T . We create a digraph D′ = (V ′, A′) as follows:

• Vertices: V ′ consists of vertices v(o) and v(i) for each v ∈ V .

• Arcs: For each v ∈ V we add to A′ the arc (v(i), v(o)). For each arc a = (u, v) ∈ A we add
to A′ the arc (u(o), v(i)).

A collection of arc-disjoint paths in D′ from S′ = {s(i) : s ∈ S} to T ′ = {t(o) : t ∈ T} with length
constraint 2h − 1 uniquely corresponds to an equal cardinality collection of S-T vertex-disjoint
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paths in D with length constraint h. Thus, an Õ(h) approximation on D′ for the maximum S′-T ′

arc-disjoint directed paths problem gives an Õ(h) approximation for the maximum S-T vertex-
disjoint directed paths problem on D. Likewise, a maximal collection of arc-disjoint S′-T ′ paths on
D′ with length constraint 2h − 1 corresponds to a maximal collection of vertex-disjoint S-T paths
with length constraint h on D. Lastly, a T -time CONGEST algorithm on D′ can be simulated on
D in time T each v ∈ V can simulate v(i) and v(o).

13.3 Maximal Disjoint Path Algorithms

We now observe that our length-constrained flow algorithms allow us to solve maximal arc-disjoint
directed paths and therefore all of the above variants efficiently.

Theorem 13.2. There are deterministic CONGEST algorithms for maximal vertex-disjoint paths,
edge-disjoint paths, vertex-disjoint directed paths and arc-disjoint directed paths running in time
Õ
(
h18 + h17 · (ρCC)

10
)
.

Proof. By Lemma 13.1, it suffices to show that maximal arc-disjoint directed paths can be solved
in time Õ

(
h18 + h17 · (ρCC)

10
)
. We proceed to do so on digraph D with length constraint h and

vertex sets S and T for the rest of this proof.
Specifically, we repeat the following until no path between S and T consists of h or fewer edges.

Apply Theorem 3.1 to compute a (1 − ϵ)-approximate h-length S-T flow f in D for ϵ = .5 (any
constant would suffice) with unit capacities. By the properties of f as guaranteed by Theorem 3.1,
we have that f = η ·

∑k
j=1 fj for η = Θ̃(1) and k = Õ (h) where each fj is an integral flow. For each

vertex v we let f
(v)
j be fj restricted to its flow paths out of v and let f

(v)
j∗ := argmax

f
(v)
j

val(f
(v)
j ).

Then, we let fj∗ :=
∑

v f
(v)
j∗ (notice that we cannot simply define fj∗ as argmaxfj val(fj) since

we cannot compute val(fj) efficiently in CONGEST because D may have diameter much larger
than h). Observe that since fj∗ is integral and h-length, it exactly corresponds to an arc-disjoint
collection of S-T paths P ′ in D each of which consists of at most h edges. We add P ′ to P, delete
from D any arc incident to a path of P ′ and continue to the next iteration.

As the above algorithm removes at least one path from S to T each time, it clearly terminates
with a feasible solution for the maximal arc-disjoint directed paths problem.

Stronger, though, we claim that we need only iterate the above Õ(h)-many times until S and T
are disconnected. Specifically, fix one iteration and let P∗ be the collection of vertex-disjoint paths
from S to T of maximum cardinality at the beginning of this iteration. By the (1 − ϵ)-optimality
of our flow and an averaging argument we have that val(fj∗) ≥ Ω̃

(
1
h

)
· |P∗| which is to say that

|P ′| ≥ Ω̃
(
1
h

)
· |P∗|. However, it follows that after Θ̃(h)-many iterations for a large hidden constant

we must at least halve |P ∗| since otherwise we would have computed a collection of vertex-disjoint
S-T paths whose cardinality is larger than the largest cardinality of any set of vertex-disjoint S-T
paths. Since initially |P ∗| ≤ n, it follows that after iterating the above Õ(h)-many times we have
reduced |P ∗| to 0 which is to say we have solved the maximal arc-disjoint directed paths problem.

Our running time is immediate from Theorem 3.1 and the above bound we provide on the

number of required iterations of Õ(h) as well as the fact that each vertex can easily compute f
(v)
j∗

and P deterministically in parallel or CONGEST time Õ(h) since our flows are h-length.

Applying the fact that it is known that ρCC ≤ 2O(
√
logn) (see Section 5.4), the above gives

deterministic CONGEST algorithms running in time Õ(poly(h) ·2O(
√
logn)). If ρCC where improved
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to be poly-log in n then we would get a Õ(poly(h)) running time.

13.4 Maximum Disjoint Path Algorithms

Lastly, we observe that our length-constrained flow algorithms allow us to Õ(h)-approximate max-
imum arc-disjoint directed paths and therefore all of the above variants efficiently.

Theorem 13.3. There are Õ(h)-approximation algorithms for maximum vertex-disjoint paths,
edge-disjoint paths, vertex-disjoint directed paths and arc-disjoint directed paths running in:

• Deterministic parallel time Õ(h17) with m processors;

• Randomized CONGEST time Õ(h17) with high probability;

• Deterministic CONGEST time Õ
(
h17 + h16 · (ρCC)

10
)
.

Proof. By Lemma 13.1, it suffices to provide a Õ(h)-approximate algorithm for maximum arc-
disjoint directed paths with the stated running times. We do so for the rest of this proof. Let the
input be digraph D = (V,A) with length constraint h ≥ 1 and disjoint sets S, T ⊆ V .

We apply Theorem 3.1 to compute an ϵ-approximate h-length constrained flow f in D for ϵ = .5
(any constant would suffice) and capacities Ua = 1 for every a. By the properties of f as guaranteed
by Theorem 3.1, we have that f = η ·

∑k
j=1 fj for η = Θ(1) and k = Õ (h) where each fj is an

integral flow. For each vertex v we let f
(v)
j be fj restricted to its flow paths out of v and let

f
(v)
j∗ := argmax

f
(v)
j

val(f
(v)
j ). Then, we let fj∗ :=

∑
v f

(v)
j∗ . Observe that since fj∗ is integral and

h-length, it exactly corresponds to an arc-disjoint collection of paths P in D each of which consists
of at most h edges. We return P as our solution.

Letting P∗ be the optimal solution to the input problem we have by k = Õ(h) and an averaging
argument that

|P| = val(fj∗) ≥ Ω̃

(
1

h

)
· |P∗|

and so our solution is Ω̃( 1h)-approximate.

For our running time, observe that each vertex can easily compute f
(v)
j∗ and P deterministically

in parallel or CONGEST time Õ(h) since our flows are h-length. Thus, our running time is
dominated by Theorem 3.1.

13.5 On the Hardness of Maximum Disjoint Paths

Guruswami et al. [35] give hardness results for a variety of length-constrained maximum disjoint
path problems. In their work they state hardness of approximation result in terms of m, the
number of edges in the graph. In the following we restate these results but in terms of h, the
length-constraint.

Theorem 13.4 (Adaptation of Theorem 1 of Guruswami et al. [35]). Assume the strong exponential
time hypothesis (SETH). Then there does not exist a polynomial-time O(h)-approximation algorithm
solving the maximum arc-disjoint directed paths problem for instances where h = Ω(log n).

Observe that it follows that assuming SETH, the parallel algorithm in Theorem 13.3 is optimal up
to poly-logs.
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14 Application: Simple Distributed Expander Decompositions

In this section, we explain how our maximal disjoint path algorithm can significantly simplify the
distributed deterministic expander decomposition of Chang and Saranurak [18].

The key algorithmic primitive of [18] in their distributed deterministic expander decomposition
is their Lemma D.8. Instead of computing maximal bounded-hop disjoint paths, they were only be
able to compute a set of paths that are “nearly maximal”. The formal statement is as follows:

Lemma 14.1 (Nearly maximal disjoint paths (Lemma D.8 of [18]). Consider a graph G = (V,E)
of maximum degree ∆. Let S ⊆ V and T ⊆ V be two subsets. There is an O(d3β−1 log2∆ log n)-
round deterministic algorithm that finds a set P of S − T vertex-disjoint paths of length at most d,
together with a vertex set B of size at most β|V \ T | < β|V |, such that any S − T path of length at
most d that is vertex-disjoint to all paths in P must contain a vertex in B.

The set P from the lemma is nearly maximal in the sense that if B is deleted from G, then
P would be maximal. However, we can see that there might possibly be many additional disjoint
paths that go through B. This set B complicates all of their later algorithmic steps.

The high-level summary of the issue is that all their flow primitives that are based on Lemma
D.8 must work with source/sink sets that are very big only. Otherwise, the guarantee becomes
meaningless or the running time becomes very slow.

Now, we explain in more details. Given two sets S and T where |S| ≤ |T |, normally if the
matching player from the cut-matching game does not return a sparse cut, then it returns an
embedding of a matching where every vertex in S is matched to some vertex in T . However, in
Lemma D.9 of [18], the matching player based on Lemma D.8 may return an embedding that leaves
as many as ≈ β|V \ T | vertices in S unmatched. This is called the “left-over” set. We think of
β ≥ 1/no(1) as the round complexity of Lemma D.8 is proportional to β−1. Therefore, it is only
when |S|, |T | ≥ 2β|V | ≥ |V |/no(1) that Lemma D.9 in [18] may give some meaningful guarantee,
yet this is still weaker than normal.

The same issue holds for their multi-commodity version of the matching player (i.e. Lemma
D.11 of [18]). For the same reasoning, the lemma is meaningful only when the total number of
source and sink is at least Ω(β|V |). The issue propagates to their important subroutine (Theorem
4.1 of [18]) for computing most balanced sparse cut. The guarantee holds when only the returned
cut C is such that |C| ≥ Ω(β|V |). At the end, they managed to obtain an deterministic expander
decomposition (just treat the edges incident to the left-over part as inter-cluster edges at the end).
However, they need to keep track of this left-over parameter from the first basic primitive until the
end result.

In contrast, in their randomized algorithm for computing expander decomposition, this issues
does not appear anyway because of the randomized maximal disjoint path algorithm. Therefore,
by plugging in our deterministic maximal disjoint path algorithm into the expander decomposition
of [18], all these issue will be resolved immediately.

15 Application: (1−ϵ)-Approximate Distributed Bipartite b-Matching

In this section we give the first efficient (1−ϵ)-approximate CONGEST algorithms for maximum car-
dinality bipartite b-matching. In fact, our results are for the slightly more general edge-capacitated
maximum bipartite b-matching problem, defined as follow.
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Edge-Capacitated Maximum Bipartite b-Matching: Given bipartite graph G =
(V,E), edge capacities U and function b : V → Z>0 compute an integer xe ∈ [0, Ue] for
each e ∈ E maximizing

∑
e xe so that for each v ∈ V we have

∑
e∈δ(v) xe ≤ b(v).

Notice that the case where b(v) = 1 for every v is just the classic maximum cardinality matching
problem. “b-matching” seems to refer to two different problems in the literature depending on
whether edges can be chosen with multiplicity: either it is the above problem where Ue = 1 for
every e ∈ E or it is the above problem where Ue = maxv bv for each e ∈ E. Our algorithms will
work for both of these variants since they solve the above problem which generalizes both of these
problems.

The following theorem summarizes our main result for bipartite b-matching in CONGEST.
Again, recall that ρCC is defined in Definition 5.7 and is known to be at most 2O(

√
logn).

Theorem 15.1. There is a deterministic (1 − ϵ)-approximation for edge-capacitated maximum
bipartite b-matching running in CONGEST time Õ

(
1
ε9

+ 1
ε7
· (ρCC)

10
)
.

Proof. Our algorithm works in two steps. First, we reduce edge-capacitated b-matching to length-
constrained flow and use our length constrained flow algorithm to efficiently compute a fractional
flow. Then, we apply the flow rounding technology we developed in Section 9.2 to round this flow
to an integral flow which, in turn, corresponds to an integral b-matching.

More formally our algorithm is as follows. Suppose we are given an instance of edge-capacitated
b-matching on bipartite graph G = (V,E). Let L and R be the corresponding bipartition of vertices
of G. We construct the following instance of length-constrained flow on digraph D = (V ′, A) with
h = 3 as follows. Each v ∈ V has two copies v(i) and v(o) in V ′. We add arc (v(i), v(o)) to A with
capacity b(v). If {u, v} ∈ E where u ∈ L and v ∈ R then we add arc (u(o), v(i)) with capacity Ue

to A. Lastly, we let S = {u(i) : u ∈ L}, T = {v(o) : v ∈ R} and the length of each arc in D be 1.
Next, we apply Theorem 3.1 to compute a (1− ε1)-approximate maximum 3-length S-T flow f on
D for some small ε1 to be chosen later. Since D is a 3-layer S-T DAG we may interpret this as a
(non-length-constrained) flow where the flow value on arc a is f(a).

We then apply Lemma 9.6 to this non-length-constrained flow to get integral S-T flow f ′

satisfying val(f ′) ≥ (1− ε2) · val(f) for some small ε2 to be chosen later. We return as our solution
the b-matching which naturally corresponds to f ′. Namely, if e = {u, v} then since f ′ is integral it
assigns arc (u(o), v(i)) a value in {0, 1, . . . , Ue}. We let xe be this value for e = {u, v} and we return
as our b-matching solution {xe}e.

f ′ is a (1 − ε1)(1 − ε2)-approximate maximum S-T flow. Letting OPT be the value of the
optimal b-matching solution, it is easy to see that the maximum S-T flow has value OPT and so
the solution we return has value at least (1 − ε1)(1 − ε2) · OPT. Letting ε1 = ε2 = Θ(ε) for an
appropriately small hidden constant we get that (1 − ε1)(1− ε2) ·OPT ≥ (1− ε) ·OPT.

Lastly, we argue our running time. Our running time is dominated by one call to Theorem 3.1
with ε1 = Θ(ε) which takes Õ

(
1
ε9

+ 1
ε7
· (ρCC)

10
)
and one call to Lemma 9.6 with ε2 = Θ(ε)

which takes Õ( 1
ε5
· (ρCC)

10). Combining these running times gives the overall running time of our
algorithm.

16 Application: Length-Constrained Cutmatches

As it captures low-latency communication subject to bandwidth constraints, the problem of com-
puting low-congestion h-length paths between two set of nodes S and T occurs often in network
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optimization.
In this section we give algorithms that find a low-congestion h-length collection of paths between

two sets of nodes and certify that there is no low-congestion way of extending the current collection
of paths with a moving cut. Such a construction is called a length-constrained cutmatch. A recent
work [39] uses the algorithms we give for cutmatches to give the first efficient constructions of a
length-constrained version of expander decompositions. These constructions were then used to give
the first distributed CONGEST algorithms for many problems including MST, (1+ ϵ)-min-cut and
(1 + ϵ)-lightest paths that are guaranteed to run in sub-linear rounds as long as such algorithms
exist on the input network.

We now formalize cutmatches. In what follows, for a vertex subset W ⊆ V we let U+(W ) =∑
v∈W

∑
a∈δ+(v) Ua and U−(W ) =

∑
v∈W

∑
a∈δ−(v) Ua. We also let δ±(S, T ) :=

⋃
v∈S δ+(v) ∪⋃

v∈T δ−(T ). Note that throughout this section we assume that each S-T path in the support of
an h-length flow contains exactly one vertex from S and one vertex from T (this is without loss of
generality since any such flow can be made to satisfy this property without changing its value).

Definition 16.1 (h-Length Cutmatch). Given digraph D = (V,A) with capacities U and lengths
ℓ, an h-length ϕ-sparse cutmatch of congestion γ between disjoint node sets S, T ⊆ V consists of:

• An integral h-length S-T flow f in D with capacities {Ua}a∈δ±(S,T ) ∪ {γ · Ua}a̸∈δ±(S,T ) and
lengths ℓ;

• A moving cut w of value
∑

awa · Ua ≤ ϕ (U+(S)− val(f)) such that dℓ′(S, T ) > h where

ℓ′a :=

{
h+ 1 if a ∈ δ±(S, T ) and f(a) = Ua

ℓa + h · wa otherwise

Our main theorem of this sections shows how to efficiently compute length-constrained cut-
matches.

Theorem 16.1. Suppose we are given a digraph D = (V,A) with capacities U and lengths ℓ. There
is an algorithm that, given two node sets S, T ⊆ V , h ≥ 1 and ϕ ≤ 1, outputs an h-length ϕ-sparse
cutmatch (f̂ , ŵ) of congestion γ between S and T , where γ = Õ( 1ϕ). This algorithm runs in:

1. Deterministic parallel time Õ(h17) with m processors where |supp(f̂)| ≤ Õ(h10 · |A|);

2. Randomized CONGEST time Õ(h17) with high probability.

Before moving onto details of the algorithm, we give a high level description of how we prove
the above. Our proof is based on a structural result which may be interesting in its own right. This
structural result shows that one can always substantially reduce the value of an optimal length-
constrained flow through one of two operations. Specifically, given an optimal flow and certifying
moving cut pair (f, w), either:

1. The flow f covers most of the cut mass of w on arcs in δ±(S, T ). Consequently, if we
reduce the capacities of arcs in δ±(S, T ) by the amount of flow that f sends over them,
then we substantially reduce the cost of w. Since w is a feasible moving cut this, in turn,
multiplicatively reduces the value of the optimal flow by a constant; or
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2. One can apply the cut w on arcs not in δ±(S, T ) (increasing the length of a ̸∈ δ±(S, T ) by
about h · wa) to reduce the optimal flow by a constant.

This result is formalized by Lemma 16.4 in Section 16.1; there, we show that this holds even for
approximately-optimal length-constrained flow, moving cut pairs.

Our algorithm for length-constrained cutmatches scales the capacities of all arcs in A\ δ±(S, T )
up by about 1

ϕ , computes a series of flows and moving cuts and then adds to our cutmatch from
the computed flow or the computed moving cut depending on which of the two operations reduces
the optimal value by a constant. This allows us to compute a cutmatch because: (1) scaling back
down these capacities guarantees that the moving cut we compute is sufficiently cheap; and (2)
we only have to do the above Õ(1)-many times since each time we reduce the optimal value by a
multiplicative constant which, in turn, allows us to argue our low congestion. We note, however,
that the fact that we must scale capacities prevents us from using our deterministic flow algorithms.
Implementing this in CONGEST requires using a sparse neighborhood cover.

The above strategy is slightly complicated by the fact that we would like our flows in our
cutmatches to be integral but each flow we compute is fractional. Crucially, however, by the
properties of the flows we compute, if we compute an O(1)-approximate flow, then scale up this
flow by Θ(1) the result becomes integral while increasing congestion by at most an O(1) factor. In
Section 16.2 we show how to eliminate this congestion on arcs in δ±(S, T ) while only reducing the
value of our flow by a bounded amount. We do not need to resolve this extra congestion on arcs
not in δ±(S, T ) since our cutmatches may have large congestion on such arcs. We describe this in
more detail in Section 16.2.

16.1 Flow Mostly Covers δ±(S, T ) or Can Reduce Optimal by Cutting A\δ±(S, T )

In this section we show the main structural result on which our cutmatch algorithm relies: given a
flow, moving cut pair (f, w), either f covers most of w on arcs in δ±(S, T ) or w can be applied to
arcs in A \ δ±(S, T ) to reduce the optimal flow value by a constant.

The sense of f covering w will makes use of the following notion of saturated arcs.

Definition 16.2 (Saturated Arcs). Let (f, w) be an h-length S-T flow, moving cut pair. We say
that arc a ∈ A is c-saturated for c ∈ [0, 1] with respect to (f, w) if

c · Ua ≤ f(a).

The following simple helper lemma shows that any near-optimal length-constrained flow, moving
cut pair must be such that most of w’s mass lies on saturated arcs.

Lemma 16.3 (h-Length Flows Saturate Moving Cuts). Let (f, w) be a (1±ε)-approximate h-length
S-T flow, moving cut pair. Fix any c1 ∈ [0, 1] and let c2 ∈ [0, 1] be

c2 :=
∑

c1-saturated a

Ua · wa

/∑
a

Ua · wa.

Then c2 ≥ 1− ε
1−c1

.

Proof. The proof is by a simple averaging argument. Recall that the fact that (f, w) is (1 ± ε)-
approximate means

(1− ε) ·
∑
a

Ua · wa ≤ val(f). (9)
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Next, applying the feasibility of w, f(a) ≤ Ua for every a and the definition of c1-saturated arcs
and c2, we have

val(f) =
∑
P

fP

≤
∑
P

fP
∑
a∈P

wa

=
∑
a

f(a) · wa

=
∑

c1-saturated a

f(a) · wa +
∑

not c1-saturated a

f(a) · wa

≤
∑

c1-saturated a

Ua · wa + c1 ·
∑

not c1-saturated a

Ua · wa

= (c2 + (1− c2) · c1) ·
∑
a

Ua · wa.

and so val(f) < (c2 + (1 − c2) · c1) ·
∑

a Ua · wa which when combined with Equation (9) implies
c2 + (1− c2) · c1 ≥ 1− ε.

We now show the main structural result of this section.

Lemma 16.4. Let (f, w) be a (1 ± ε)-approximate h-length S-T flow, moving cut pair in digraph
D = (V,A) with capacities U and lengths ℓ. Then either:

1. Flow Mostly Covers Cut on δ±(S, T ):
∑

a∈A′ Ua · wa ≥
(
1
2 − 3ε

)
·
∑

a Ua · wa where
A′ = {a ∈ δ±(S, T ) : a is 1

2 -saturated by f};

2. Reduce Optimal with Moving Cut on A \ δ±(S, T ): OPTw ≤ 1
2 · OPT where OPTw

is the maximum value of an h-length S-T flow in D with capacities U and lengths ℓ′ :=
{ℓa}a∈δ±(S,T ) ∪ {ℓa + 1

ε · h · wa}a̸∈δ±(S,T ).

Proof. The proof idea is as follows. We case on whether most of the cut mass of w lies in δ±(S, T )
or not. If it does then by Lemma 16.3 arcs in δ±(S, T ) have a lot of flow over them. On the
other hand, if most of the cut mass of w does not lie in δ±(S, T ) then increasing lengths of arcs
in A \ δ±(S, T ) according to w greatly reduces the maximum h-length flow; in particular, any flow
which is h-length after these increases must be incident to a lot of mass of w on arcs in δ±(S, T )
but by assumption this mass is bounded and so we can bound the total size of said flow. More

formally, we case on whether or not
∑

a∈δ±(S,T ) Ua · wa ≥ (1−ε)2

2 ·
∑

a Ua · wa.

Suppose that
∑

a∈δ±(S,T ) Ua ·wa ≥ (1−ε)2

2 ·
∑

a Ua ·wa. Letting c1 :=
1
2 and applying Lemma 16.3

we know that ∑
a c1-saturated

Ua · wa ≥ (1− 2ε) ·
∑
a

Ua · wa. (10)

On the other hand applying Equation (10) and our assumption that
∑

a∈δ±(S,T ) Ua · wa ≥ (1−ε)2

2 ·∑
a Ua · wa, it follows that∑

a∈A′

Ua · wa ≥
(
(1− ε)2

2
− 2ε

)
·
∑
a

Ua · wa ≥
(
1

2
− 3ε

)
·
∑
a

Ua · wa
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as required.

Next, suppose that
∑

a∈δ±(S,T ) Ua ·wa < (1−ε)2

2 ·
∑

a Ua ·wa. Let f
′ be an optimal h-length S-T

flow in D with capacities U and lengths ℓ′. Observe that since f ′ is h-length according to ℓ′ we
know that every path P ∈ supp(f) satisfies

∑
a∈P∩A\δ±(S,T )wa ≤ ε. On the other hand, since w

is a feasible moving cut we know that
∑

a∈P wa ≥ 1 for any P ∈ supp(f). It follows that for each
P ∈ supp(f ′) we know that ∑

a∈P∩δ±(S,T )

wa ≥ 1− ε. (11)

Thus, applying Equation (11) and our assumption that
∑

a∈δ±(S,T ) Ua ·wa < (1−ε)2

2 ·
∑

a Ua ·wa

we have

val(f ′) =
∑

P∈supp(f ′)

fP

≤ 1

1− ε

∑
P∈supp(f ′)

fP
∑

a∈P∩δ±(S,T )

wa

=
1

1− ε
·

∑
a∈δ±(S,T )

wa · f(a)

≤ 1

1− ε
·

∑
a∈δ±(S,T )

wa · Ua

≤ 1− ε

2
·
∑
a

Ua · wa.

Lastly, by our assumption that (f, w) is (1±ε)-approximate, we know that (1−ε) ·
∑

a Ua ·wa ≤
val(f) ≤ OPT meaning

∑
a Ua · wa ≤ 1

1−ε ·OPT and so

val(f ′) ≤ 1

2
·OPT

as required.

16.2 Decongesting our Flows on Arcs in δ±(S, T )

We now introduce a helper procedure which will allow us to turn our computed fractional flows into
integral flows that respect the capacities of arcs in δ±(S, T ) (while maybe violating the capacities
of arcs not in δ±(S, T )).

Lemma 16.5. Suppose we are given a digraph D = (V,A) with capacities U and lengths ℓ. Fix
η > 0, S, T ⊆ V and h ≥ 1. Let f = η ·

∑
j fj where each fj is an integral h-length S-T flow in D

with capacities U and lengths ℓ. Fix A′ ⊆ δ±(S, T ) and a moving cut w. Then one can compute an
h-length S-T flow f ′ on D with lengths ℓ and capacities {Ua}a∈δ±(S,T ) ∪ {η ·Ua}a̸∈δ±(S,T ) such that∑

a∈A′ f ′(a) · wa ≥ η
8 ·
∑

a∈A′ f(a) · wa in:

1. Deterministic parallel time O(h) with m processors;
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2. Deterministic CONGEST time O(h).

Proof. The basic idea is to scale up the input flow f by η and then remove flow paths that overca-
pacitate edges in δ±(S, T ). In particular, we first resolve over capacitated arcs in δ+(S) by greedily
choosing flows that send the most over each edge in δ+(S) and then do the same for δ−(T ) but
using the remaining flow.

More formally, we begin by describing how to construct f ′. We begin by dealing with over
capacitated arcs in δ+(S). For arc a ∈ δ+(S) order the fj in descending order according to fj(a) as

f
(1)
a , f

(2)
a , . . .. Let ka be the largest integer such that

∑
i≤ka

f
(i)
a (a) ≤ Ua and if fj ∈ {f (i)

a : i ≤ ka}
then say that a prefers flow fj . Lastly, let f

|a
j be fj restricted to paths going through a. That is,

the value of f
|a
j on path P is

(
f
|a
j

)
P
:=

{
(fj)P if P ∩ a ̸= ∅
0 otherwise

Then, we resolve congestion on arcs in δ+(S) by turning each fj into another flow f ′
j . Specifically,

let f ′
j be fj restricted only to paths where fj is preferred. That is, f ′

j is

f ′
j :=

∑
a∈δ+(S):a prefers fj

f
|a
j .

We now resolve over capacitated edges in δ−(T ) in a symmetric way but using the f ′
j flows

rather than the fj flows and taking the w values into account. Specifically, fix a ∈ δ−(T ) and let
xj,a be the amount of flow sent over arc a by fj , scaled appropriately by w. That is, we let

xa,j :=
∑

P=(a′,...,a)

(fj)P · wa′ .

Then, order the f ′
j in descending order according to xa,j as f

(1)
a , f

(2)
a , . . .. Let ka be the largest

integer such that
∑

i≤k f
(i)
a (a) ≤ Ua and if f ′

j ∈ {f
(i)
a : i ≤ k} then say that a prefers flow f ′

j .

Lastly, let f
|a
j be f ′

j restricted to paths going through a. That is, the value of f
|a
j on path P is

(
f
|a
j

)
P
:=


(
f ′
j

)
P

if P ∩ a ̸= ∅

0 otherwise

Then, we let f ′
S be the flow which is all of our f ′

j flows appropriately restricted and preferred by
arcs in δ−(T )

f ′
S :=

∑
a∈δ−(T )

∑
f ′
j : preferred by a

f
|a
j .

We construct flow f ′
T symmetrically to f ′

S (switching the roles of S and T ) and let our final flow f ′

be

f ′ :=
1

2

(
f ′
S + f ′

T

)
.
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f ′ is trivially h-length (according to ℓ) and from S to T since f is such a flow. Similarly, f ′
S

and f ′
T are each feasible for capacities {Ua}a∈δ±(S,T ) ∪ {η · Ua}a̸∈δ±(S,T ): arcs not in δ±(S, T ) are

not over capacitated since
∑

j fj is feasible for capacities η · U and arcs in δ±(S, T ) are not over
capacitated by construction of f ′. It follows that f ′ is also feasible for these capacities.

We now argue that
∑

a∈A′ f ′(a) · wa ≥ η
8 ·
∑

a∈A′ f(a) · wa. To do so, observe that it suffices to
show that∑

a∈A′

f ′
S(a) ≥

η

4
·

∑
a∈A′∩δ+(S)

f(a) · wa and symmetrically
∑
a∈A′

f ′
T (a) ≥

η

4
·

∑
a∈A′∩δ−(T )

f(a) · wa

We will argue
∑

a∈A′ f ′
S(a) ≥

η
4 ·
∑

a∈A′∩δ+(S) f(a) · wa (the other inequality for f ′
T is symmetric).

Let f̂ :=
∑

j fj and let f̂ ′ :=
∑

j f
′
j . We begin by arguing that our f ′

j retain η/2 of the mass of

f̂ . Observe that by definition we have

η ·
∑

a∈A′∩δ+(S)

f̂(a) · wa =
∑

a∈A′∩δ+(S)

f(a) · wa

Furthermore, observe by a standard bin-packing-type argument we know that∑
a∈A′∩δ+(S)

f̂ ′(a) · wa ≥
η

2

∑
a∈A′∩δ+(S)

f̂(a) · wa

and so it follows that ∑
a∈A′∩δ+(S)

f̂ ′(a) · wa ≥
1

2
·

∑
a∈A′∩δ+(S)

f(a) · wa (12)

Likewise, by another standard bin-packing-type argument we know that∑
a∈A′

f ′
S(a) ≥

η

2
·

∑
a∈A′∩δ+(S)

f̂ ′(a) · wa

which when combined with Equation (12) shows
∑

a∈A′ f ′
S(a) ≥

η
4 ·
∑

a∈A′∩δ+(S) f(a)·wa as required.

We now argue the runtime. Observe that each f ′
j can be computed in a distributed manner by

iterating over each fj , having each arc a ∈ δ+(S) decide if it prefers this flow and then forwarding the

value of f
|a
j along its flow paths. Since all fj are h-length by assumption this takes at most h rounds

of forwarding. This forwarding takes O(h) rounds of CONGEST or parallel time. Computing f ′
S

and f ′
T from the f ′

j is symmetric. Lastly, computing f ′ is trivial to do from f ′
S and f ′

T .

16.3 Our Length-Constrained Cutmatch Algorithm

We conclude this section by giving our length-constrained cutmatch algorithm and its guarantees.

Theorem 16.1. Suppose we are given a digraph D = (V,A) with capacities U and lengths ℓ. There
is an algorithm that, given two node sets S, T ⊆ V , h ≥ 1 and ϕ ≤ 1, outputs an h-length ϕ-sparse
cutmatch (f̂ , ŵ) of congestion γ between S and T , where γ = Õ( 1ϕ). This algorithm runs in:

1. Deterministic parallel time Õ(h17) with m processors where |supp(f̂)| ≤ Õ(h10 · |A|);
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2. Randomized CONGEST time Õ(h17) with high probability.

Proof. We iteratively build up the flow f̂ and cut ŵ for our cutmatch as follows. The basic idea is
to use Theorem 3.1 to compute moving cuts and length-constrained flows and then to either add to
ŵ using our moving cut or to add our flow to f̂ depending on which case of Lemma 16.4 we are in.
Getting this to run in CONGEST will require using sparse neighborhood covers since we cannot
efficiently check which of the two cases of Lemma 16.4 we are in in CONGEST.

More formally, we initialize as follows.

• We fix ε = .01 for the course of our algorithm.

• We initialize f̂ to assign 0 to every path and ŵ to assign 0 to every arc. We will update these
values over the course of our algorithm.

• We initialize the capacities we work with U ′ to scale all arcs in A\δ±(S, T ) by γ′ for γ′ ≤ γ to
be described later. That is, initially U ′ := {Ua}a∈δ±(S,T ) ∪ {γ′ · Ua}a̸∈δ±(S,T ). We will update
U ′ over the course of our algorithm.

• Given ŵ we will always let ℓ′ := {ℓa}a∈δ±(S,T ) ∪ {ℓa + h · ŵa}a̸∈δ±(S,T ) be the lengths that we
work with. Note that initially ℓ = ℓ′.

Next, our algorithm runs in phases each of which consists of iterations. At the beginning of each
phase we compute a moving cut w using Theorem 3.1 with the above value of ε so that η = Θ̃(1).
In each iteration of our phase we apply Theorem 3.1 to compute an h-length flow f using lengths
ℓ′ and capacities U ′ with ε as above. We next check if (f, w) is a (1 ± 2ε)-approximate h-length
S-T flow, moving cut pair in D with capacities U ′ and lengths ℓ′ (note that the w we are using
here is the one from the beginning of the phase, not the one we compute when we also compute f
using Theorem 3.1). If it is not then we move onto the next phase. If it is then by Lemma 16.4
we know one of two things must be true. Specifically, letting OPT be the maximum value of an
h-length S-T flow in D with capacities U ′ and lengths ℓ′ at the beginning of our iteration then we
have either:

1. Flow Mostly Covers Cut on δ±(S, T ):
∑

a∈A′ U ′
a · wa ≥

(
1
2 − 6ε

)
·
∑

a U
′
a · wa where

A′ = {a ∈ δ±(S, T ) : a is 1
2 -saturated by f}; or

2. Reduce Optimal with Moving Cut on A\δ±(S, T ): OPTw ≤ 1
2 ·OPT where OPTw is the

maximum value of an h-length S-T flow in D with capacities U ′ and lengths {ℓa}a∈δ±(S,T ) ∪
{ℓ′a + 1

2ε · h · wa}a̸∈δ±(S,T ).

If the former case (1) is true then we add to our flow f̂ and in the latter case (2) we add to ŵ using
w and move onto the next phase. More formally, in the former case (1) we apply Lemma 16.5 to f
to get integral flow f ′ using A′ = {a ∈ δ±(S, T ) : a is 1

2 -saturated by f} as above. We then update

f̂ to f̂ + f ′. Likewise, for each arc a ∈ δ±(S, T ) we update U ′
a to U ′

a − f ′(a) and delete a if we now
have U ′

a = 0; for each arc a ̸∈ δ±(S, T ) we let U ′
a be unchanged (observe that it follows for each arc

a ̸∈ δ±(S, T ) we always have U ′
a = Ua). In the former case we stay in this phase. In the latter case

(2), we let

w′
a =

{
1
2ε · wa if a ̸∈ δ±(S, T )

0 otherwise
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and then update ŵ to be ŵ + w′. In the latter case we then move onto the next phase. We repeat
this until the optimal h-length S-T flow has value 0.

We now analyze this process. First, we claim that the number of iterations in each phase is at
most Õ(1). To do so, it suffices to show that in (1) we reduce the cost of w by a multiplicative
1− 1/Õ(1); this is because the cost of w is polynomially-bounded and so this can happen at most
Õ(1)-many times. Towards this, fix an iteration and let U ′ and U ′′ be our working capacities before
and after updating for (1) in this iteration. We claim that w has its cost reduced by a multiplicative(
1− 1/Õ(1)

)
, namely

∑
a

U ′′
a · wa ≤

(
1− 1/Õ(1)

)
·
∑
a

U ′
a · wa. (13)

To see why this holds, observe that combining the guarantees of Lemma 16.5 and the fact that
η = Θ̃(1) by Theorem 3.1 we know that∑

a∈A′

f(a) · wa ≤ Õ(1) ·
∑
a∈A′

f ′(a) · wa.

But by definition of A′ and the fact that we are in (1) for every a we know that(
1

2
− 6ε

)
·
∑
a

U ′
a · wa ≤

∑
a∈A′

U ′
a · wa ≤ 2

∑
a∈A′

f(a) · wa.

Combining these inequalities and our choice of ε, we get that

1

Õ(1)
·
∑
a

U ′
a · wa ≤

∑
a∈A′

f ′(a) · wa.

Thus we get, ∑
a

U ′′
a · wa =

∑
a

(
U ′
a − f ′(a)

)
· wa

≤
∑
a̸∈A′

U ′
a · wa +

∑
a∈A′

(
U ′
a − f ′(a)

)
· wa

=
∑
a

U ′
a · wa −

∑
a∈A′

f ′(a) · wa

≤
(
1− 1/Õ(1)

)
·
∑
a

U ′
a · wa

as desired.
We now claim that the number of phases is at most Õ(1). Specifically, recall that a phase ends

when either (f, w) is not a (1 ± 2ε)-approximate h-length S-T flow, moving cut pair or we are in
(2). We claim that in either case we multiplicatively reduce the value of the optimal h-length S-T
flow by at least a fixed constant strictly larger than 0.

1. Suppose (f, w) is not a (1± 2ε)-approximate h-length S-T flow. Let U ′ and ℓ′ be the capac-
ities and lengths when w is computed and let U ′′ be the capacities according to which f is
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computed. Let OPT0 be the the value of the optimal h-length S-T flow when w is computed
and let OPT′

0 be the optimal such length-constrained flow when f is computed. Since f is
part of a (1± ε)-approximate pair we know that

(1− ε) ·OPT′
0 ≤ val(f)

On the other hand, since (f, w) is not a (1± 2ε)-approximate pair we know that

val(f) < (1− 2ε) ·
∑
a

U ′′
a · wa

and so combining these inequalities we get

OPT′
0 ≤

1− 2ε

1− ε
·
∑
a

U ′′
a · wa. (14)

Furthermore, recall that when w was computed it was part of a (1±ε)-approximate pair with
capacities U ′ and ℓ′, meaning that∑

a

U ′
a · wa ≤

1

1− ε
·OPT0 (15)

Combining Equations 14 and 15 along with the fact that U ′′
a ≤ U ′

a for every a since we only
decrease capacities over the course of a phase, we get

OPT′
0 ≤

1− 2ε

(1− ε)2
·OPT0.

By our choice of ε we have 1−2ε
(1−ε)2

∈ (0, 1) as required.

2. Suppose that a phase ends because we are in (2). Recall that, as described above, in (2)
we know that we reduce the optimal flow by a multiplicative 1

2 ; that is, as described above,
OPTw ≤ 1

2 ·OPT0.

Since the number of phases is at most Õ(1) and the number of iterations in each phase is at
most Õ(1), we have that the maximum number of iterations across all phases is at most Õ(1).

Letting x be this upper bound on the number of possible iteration, we now set γ′ be Θ
(
x · 1ϕ

)
for

a sufficiently large hidden constant.
The fact that f̂ is feasible for capacities {Ua}a∈δ±(S,T )∪{γ ·Ua}a̸∈δ±(S,T ) where γ = Õ(γ′) = Õ( 1ϕ)

is then immediate: arcs in δ±(S, T ) are not over capacitated by construction of f̂ and arcs not
in δ±(S, T ) are not over capacitated since each f ′ is feasible for capacities {Ua}a∈δ±(S,T ) ∪ {γ′ ·
Ua}a̸∈δ±(S,T ) and we add such a flow to f̂ at most the total-number-of-iterations-times, which, as

argued above, is Õ(1). Likewise, f̂ is trivially h-length according to ℓ since we only increase the
lengths of arcs. Next, observe that our bound on the support size of f̂ of |supp(f̂)| ≤ Õ(h10 · |A|)
for our parallel algorithm is immediate from the support size bound of Theorem 3.1 and the fact
that we have Õ(1)-many iterations.
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We now argue that ŵ satisfies the required properties. Specifically, we argue that ŵ is indeed

a moving cut of value
∑

a ŵa · Ua ≤ ϕ
(
U+(S)− val(f̂)

)
such that dℓ′(S, T ) > h where

ℓ′a :=

{
ℓa + h · ŵa if f(a) < Ua

0 otherwise.

Observe that since our algorithm runs until the optimal h-length S-T flow has value 0, we know
that when our algorithm completes we indeed have dℓ′(S, T ) > h. It remains to argue that∑

a

ŵa · Ua ≤ ϕ
(
U+(S)− val(f̂)

)
. (16)

Towards showing Equation (16), we define the following quantities for the ith iteration. Let f̂i be
f̂ in the ith iteration and let w(i) be w′ in the ith iteration (recall w′ is equal to 1

2ε ·w on arcs not
in δ±(S, T ) and 0 otherwise). Let OPTi be the maximum h-length S-T in the ith iteration and let
U (i) be our capacities in this iteration.

Observe that we trivially have

OPTi ≤
∑

a∈δ+(S)

U (i)
a =

∑
a∈δ+(S)

Ua − f̂i(a) (17)

since the maximum value of a flow is at most the total capacity of arcs leaving S. We also trivially
have f̂(a) ≤

∑
i f̂i(a) for any arc a and, in particular, it follows that

1− 2ε

2ε · γ′
·
∑
i

∑
a∈δ+(S)

f̂i(a) ≥ ϕ ·
∑

a∈δ+(S)

f̂(a) (18)

Similarly, since in each iteration we reduce the optimal value by a constant and since we do not
scale arcs in δ±(S, T ) we have

1− 2ε

2ε · γ′
·
∑
i

∑
a∈δ+(S)

U (i)
a =

1− 2ε

γ′
·
∑
i

∑
a∈δ+(S)

Ua ≤ ϕ ·
∑

a∈δ+(S)

Ua. (19)

Applying Equations 17, 18 and 19, the fact that the support of ŵ is contained in A \ δ±(S, T ), w
is part of a (1± 2ε)-approximate pair when we apply it and how we initially scaled the capacity of
arcs in A \ δ±(S, T ) by γ′ we get that∑

a

ŵa · Ua =
1

γ′
·
∑
i

∑
a̸∈δ±(S,T )

w(i)
a · U (i)

a

≤ 1− 2ε

2ε · γ′
·
∑
i

OPTi

≤ 1− 2ε

2ε · γ′
·
∑
i

∑
a∈δ+(S)

U (i)
a − f̂i(a)

≤ ϕ ·
∑

a∈δ+(S)

Ua − f̂(a),
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showing Equation (16) as required.
It remains to discuss how to implement our algorithm in the stated times. Implementing the

above algorithm in parallel in the stated running time is trivial by Lemma 16.5 and Theorem 3.1
and the fact that we have Õ(1) total iterations.

Our CONGEST algorithm requires more work and, in particular, the use of sparse neighbor-
hood covers. Specifically, we first apply Lemma 5.5 to compute a sparse h-neighborhood cover
V1,V2, . . . ,Vs. For j ∈ [s], we let Sj be a set of nodes whose h-neighborhood is contained in a
single part of Vj (where we put each v ∈ S in exactly one Sj). Then, we run the above algorithm

to compute an h-length Sj-T cutmatch (f̂j , ŵj) in D with S \ Sj deleted for j = 1, . . . , s where for

each cutmatch we keep the length increases of the previous cutmatch. That is, we compute (f̂j , ŵj)
with initial capacities U (j) and lengths ℓ(j) where U (1) = U and ℓ(1) = ℓ and for j > 1 and each a
we have

U (j)
a =

{
Ua if a ̸∈ δ±(S, T )

U
(j−1)
a − f̂j(a) otherwise

and

ℓ(j)a = ℓa + h ·
∑
j′<j

(ŵj′)a.

(f̂ , ŵ) is an h-length S-T cutmatch by construction. Furthermore, it is easy to verify that
the above process increases the congestion of this cutmatch and the support size of f̂ by at most
s = Õ(1). To bound the cost of ŵ observe that applying our guarantees on each ŵj from above
and the fact that the Sj partition S we get that the cost of ŵ is∑

j

∑
a

(ŵj)a · Ua ≤
∑
j

ϕ

((
U (j)

)+
(Sj)− val(f̂j)

)
=
∑
j

ϕ
(
U+(Sj)− val(f̂j)

)
= ϕ ·

(
U+(S)− val(f̂)

)
as required.

We now discuss how to compute one of the cutmatches in the above process. Updating ŵj and

f̂j in each iteration is trivial. The non-trivial steps to implement our algorithm are:

• Computing moving cut w at the beginning of the phase;

• Computing flow f in each iteration of the phase and decongested flow f ′ from f ;

• Checking if (f, w) is a (1± 2ε)-approximate pair; and

• Checking which of (1) and (2) holds.

Computing each moving cut w and each length-constrained flow f can be done by Theorem 3.1
in Õ(h17) randomized CONGEST time. Computing f ′ from f can be done in deterministic O(h)
CONGEST time by Lemma 16.5. Checking if (f, w) is a (1 ± 2ε)-approximate pair and checking
which of which of (1) and (2) we are in can be done in time Õ(h) by Lemma 5.5. Thus, each of
our Õ(1) iterations has its running time dominated by our call to Theorem 3.1, giving the stated
running times.

62



17 Conclusion and Future Work

In this work we gave the first efficient randomized and deterministic algorithms for computing (1−ϵ)-
approximate length-constrained flows both in parallel and in the CONGEST model of distributed
computation. We used these algorithms to give new results in maximal and maximum disjoint path
problems, expander decompositions, bipartite b-matching and length-constrained cutmatches. We
conclude with several open questions and directions for future work.

1. Our length-constrained flow algorithms have a dependence of poly(h) which when plugged
into the techniques of Haeupler et al. [39] give CONGEST algorithms for many distributed
problems, e.g. MST, whose running time is poly(OPT) (up to sub-linear factors) where OPT
is the optimal CONGEST running time for the input problem. It would be exciting to improve
the dependence on h of our algorithms to, say, O(h) as this result when combined with those
of Haeupler et al. [39] would give CONGEST algorithms running in time O(OPT) (up to
sub-linear factors).

2. The running time of many of our algorithms depends on ρCC , the best quality of a CONGEST
algorithm for cycle cover (as defined in Definition 5.7). It is known that ρCC ≤ 2O(

√
logn)

but it would be extremely interesting to show that ρCC ≤ Õ(1). Such an improvement
would immediately improve the dependency on n from no(1) to Õ(1) for our CONGEST
algorithms for deterministic length-constrained flows, deterministic maximal and maximum
disjoint paths, (1 − ϵ)-approximate b-matching and length-constrained cutmatches. Such a
result does not seem to be known even for the randomized case.

3. Lastly, many classic problems can be efficiently solved by reducing to flows but, in particular,
by reducing to length-constrained flows with a length-constraint h = O(1). Indeed this is
how we were able to give new algorithms for b-matching in this work. It would be interesting
to understand which additional classic problems our length-constrained flow algorithms give
new algorithms for in CONGEST.

A Generalizing Our Results to Multi-Commodity

In this section we generalize our main result for computing length-constrained flows and moving
cuts to the setting where have many source sink pairs and we are trying to maximize the total flow
between corresponding pairs subject to congestion constraints. We also generalize our cutmatch
algorithms to the multi-commodity setting.

A.1 Multi-Commodity Flows, Cutmatches and Results

We now more formally define a multi-commodity length-constrained flow and moving cut. Suppose
we are given a digraph D = (V,A) with arc capacities U , lengths ℓ and κ source set, sink set pairs

{(Si, Ti)}i. Then, we have the following LP with a variable f
{i}
P for each i and path P ∈ Ph(Si, Ti).

We let f{i} gives the entire flow for commodity i.

max
∑
i

∑
P∈Ph(Si,Ti)

f
{i}
P s.t. (Multi Length-Constrained Flow LP)
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∑
i

∑
P∋a

f
{i}
P ≤ Ua ∀a ∈ A

0 ≤ f
{i}
P ∀i ∈ [κ], P ∈ Ph(Si, Ti)

For a multi-commodity length-constrained flow f , we will use the shorthand f(a) =
∑

i

∑
P∋a f

{i}
P .

Likewise we let val(f ) =
∑

i val(f
{i}) be the total flow we send. An h-length multi-commodity flow,

then, is simply a feasible solution to this LP.

Definition A.1 (Multi-Commodity h-Length Flow). Given digraph D = (V,A) with lengths ℓ,
capacities U and source, sink pairs {(Si, Ti)}i, an h-length {(Si, Ti)}i flow is any feasible solution
to Multi Length-Constrained Flow LP.

With the above definition of multi-commodity length-constrained flows we can now define mov-
ing cuts as the dual of length-constrained flows. In particular, taking the dual of the above LP we
get the multi-commodity moving cut LP with a variable wa for each a ∈ A and a variable yi for
every i ∈ [κ].

min
∑
a∈A

Ua · wa s.t. (Multi Moving Cut LP)∑
a∈P

wa ≥ 1 ∀i ∈ [κ], P ∈ Ph(Si, Ti)

0 ≤ wa ∀a ∈ A, i ∈ [κ]

A multi-commodity h-length moving cut is simply a feasible solution to this LP.

Definition A.2 (Multi-Commodity h-Length Moving Cut). Given digraph D = (V,A) with lengths
ℓ, capacities U and source, sink pairs {(Si, Ti)}i, a multi-commodity h-length moving cut is any
feasible solution to Multi Moving Cut LP.

We will use f and w to stand for solutions to Multi Length-Constrained Flow LP and Multi
Moving Cut LP respectively. We say that (f, w) is a feasible pair if both f and w are feasible for
their respective LPs and that (f, w) is (1± ϵ)-approximate for ϵ > 0 if the moving cut certifies the
value of the length-constrained flow up to a (1 − ϵ); i.e. if (1− ϵ)

∑
a Ua · wa ≤ mini val(f

{i}).
When we are working in CONGEST we will say that f is computed if each vertex v stores the

value f
(h′,i)
a :=

∑
P∈Ph,h′ (s,a,t)

f
{i}
P . Here, we let Ph,h′(s, a, t) be all paths in Ph(S, T ) of the form

P ′ = (a1, a2, . . . a, b1, b2, . . .) where the path (a, b1, b2, . . .) has length exactly h′ according to l. We
say multi-commodity moving cut w is computed in CONGEST if each vertex v knows the value of
wa for every arc incident to v. Likewise, we imagine that each node in the first round knows the
capacities and lengths of its incident edges.

With the above notions, we can now state our main result for multi-commodity length-constrained
flows and moving cuts which say that one can compute a feasible pair (f, w) in parallel and dis-

tributedly. In the following we say that length-constrained flow f is integral if f
{i}
P is an integer for

every path in Ph(Si, Ti) for every i.
More generally than κ commodities, we solve the problem provided our commodoties can be

grouped into κ batches that are far apart.
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Definition A.3 (κ-Batchable). Given digraph D with lengths ℓ and source, sink set pairs {Si, Ti}i
we say that a {Si, Ti}i is κ-batchable if the pairs of {Si, Ti}i can be partitioned into batches {Sj , Tj}j
if

1. Covering: For each i there some j such that Si ∈ Sj and Ti ∈ Tj;

2. Well-Separated: For each i and i′, if v ∈ Si ∪Ti and v′ ∈ Si′ ∪Ti′ and Si, Si′ ∈ Sj for some
j then dℓ(v, v

′) > 2h.

Observe that if the number of commodities is κ then the set of source, sink pairs is trivially
κ-batchable.

The following summarizes our main result for computing multi-commodity length-constrained
flows and moving cuts.

Theorem A.1. Given a digraph D = (V,A) with capacities U , lengths ℓ, length constraint h ≥ 1,
0 < ε < 1 and source and sink vertices S, T ⊆ V , and κ-batchable source, sink pairs {Si, Ti}i,
one can compute a feasible multi-commodity h-length flow, moving cut pair (f, w) that is (1 ± ϵ)-
approximate in:

1. Deterministic parallel time Õ(κ · 1
ε9
· h17) with m processors where |supp(f)| ≤ Õ(κ · h9

ε3
· |A|);

2. Randomized CONGEST time Õ(κ · 1
ε9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(
κ · 1

ε9
· h17 + κ · 1

ε7
· h16 · (ρCC)

10
)
.

Furthermore, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(
κ · h

ϵ4

)
and fj is an integral h-length Si-Ti

flow for some i.

Using the above algorithm, we can compute a multi-commodity version of cutmatches. As be-
fore, for a vertex subsetW ⊆ V we let U+(W ) =

∑
v∈W

∑
a∈δ+(v) Ua and U−(W ) =

∑
v∈W

∑
a∈δ−(v) Ua.

We also let δ±(S, T ) :=
⋃

v∈S δ+(v)∪
⋃

v∈T δ−(T ). The following formalizes the object we compute.
Symmetrically to the single-commodity setting, below we assume that each path in the support of
each fi contains exactly one vertex of Si and one vertex of Ti.

Definition A.4 (Multi-Commodity h-Length Cutmatch). Given digraph D = (V,A) with capaci-
ties U and lengths ℓ, an h-length ϕ-sparse cutmatch of congestion γ between disjoint source, sink
node set pairs {(Si, Ti)}i where Si, Ti ⊆ V for each i consists of:

• An integral h-length flow f =
∑

i fi in D with capacities γ · U and lengths ℓ where each fi is
an Si-Ti flow satisfying fi(a) ≤ Ua for each a ∈ δ±(Si, Ti);

• A moving cut w in D of value
∑

awa · Ua ≤ ϕ · (
∑

i U
+(Si)− val(fi)) such that for every i

we have dℓi(Si, Ti) > h where

(ℓi)a :=

{
h+ 1 if a ∈ δ±(Si, Ti) and fi(a) = Ua

ℓa + h · wa otherwise

Using the above algorithm for multi-commodity h-length flows, we can efficiently compute
multi-commodity h-length cutmatches.
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Theorem A.2. Suppose we are given a digraph D = (V,A) with capacities U and lengths ℓ. There
is an algorithm that, given κ-batchable source sink pairs {(Si, Ti)}i where Si, Ti ⊆ V for every i and
two integer parameters h ≥ 1 and ϕ ≤ 1, outputs a multi-commodity h-length ϕ-sparse cutmatch
(f̂ , ŵ) of congestion γ between S and T , where γ = Õ( 1ϕ). This algorithm runs in:

1. Deterministic parallel time Õ(κ · h17) with m processors with |supp(f̂)| ≤ Õ(κ · h10 · |A|);

2. Randomized CONGEST time Õ(κ · h17) with high probability;

A.2 Computing Multi-Commodity Length-Constrained Flows andMoving Cuts

We proceed to use our (1 + ϵ)-lightest path blockers and multiplicative weights to compute multi-
commodity length-constrained flows and moving cuts. Our strategy is more or less that of Section 12
but now we iterate through our batches of commodities; our analysis is mostly unchanged but we
include it here for completeness.

Formally, our algorithm is given in Algorithm 5. Throughout our analysis we will refer to the
innermost loop of Algorithm 5 as one “iteration.”

Algorithm 5 Multi-Commodity Length-Constrained Flows and Moving Cuts

Input: digraph D = (V,A) with lengths ℓ, capacities U , length constraint h and κ-batchable
source, sink pairs {Si, Ti}i where Si, Ti ⊆ V for every i and an ε ∈ (0, 1).
Output: (1± ϵ)-approximate h-length multi-commodity flow f and moving cut w.
Let ϵ0 =

ϵ
6 , let ζ = 1+2ε0

ε0
+ 1 and let η = ε0

(1+ε0)·ζ ·
1

logm .

Initialize wa ←
(
1
m

)ζ
for all a ∈ A.

Initialize λ←
(
1
m

)ζ
.

Initialize f
{i}
P ← 0 for all i and P ∈ Ph(Si, Ti).

while λ < 1 do:
for j ∈ [κ] and each batch (Sj ,Sj) do

for each (Si, Ti) with Si ∈ Sj and Ti ∈ Tj in parallel do

for Θ
(
h log1+ϵ0

n

ϵ0

)
repetitions do

Compute an h-length (1+ ϵ0)-lightest path blocker f̂ (using Theorem 11.1 with λ).
Length-Constrained Flow (Primal) Update: f{i} ← f{i} + η · f̂ .
Moving Cut (Dual) Update: wa ← (1 + ϵ0)

f̂(a)/Ua · wa for every a ∈ A.

λ← (1 + ϵ0) · λ
return (f, w).

We begin by observing that λ always lower bounds d
(h)
w (Si, Ti) for every i.

Lemma A.5. It always holds that λ ≤ d
(h)
w (Sx, Tx) for every x in Algorithm 5.

Proof. Fix an x and a value of λ and let S = Sx and T = Tx. Our proof is by induction. The
statement trivially holds at the beginning of our algorithm.

Let λi be the value of λ at the beginning of the ith iteration. We argue that if d
(h)
w (S, T ) = λi

then after Θ
(
h log1+ϵ0

n

ϵ0

)
additional iterations we must have d

(h)
w (S, T ) ≥ (1 + ε0) · λi. Let λ′

i =
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(1 + ϵ0) · λ be λ after these iterations. Let f̂j be our lightest path blocker in the jth iteration for
(Sx, Tx).

Assume for the sake of contradiction that d
(h)
w (S, T ) < λ′

i after i + Θ
(
h log1+ϵ0

n

ϵ0

)
iterations.

It follows that there is some path P ∈ Ph(S, T ) with weight at most λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
many iterations. However, notice that by definition of an h-length (1+ ϵ0)-lightest path blocker f̂j

(Definition 11.1), we know that for every j ∈
[
i, i+Θ

(
h log1+ϵ0

n

ϵ0

)]
there is some a ∈ P for which

f̂j(a) = Ua. By averaging, it follows that there is some single arc a ∈ P for which f̂j(a) = Ua for

at least Θ
(
log1+ϵ0

n

ϵ0

)
of these j ∈ [i, i+Θ

(
h log1+ϵ0

n

ϵ0

)
]. Since every such arc starts with dual value

( 1
m)ζ and multiplicatively increases by a (1 + ϵ0) factor in each of these updates, such an arc after

i+Θ
(
h log1+ϵ0

n

ϵ0

)
many iterations must have wa value at least ( 1

m)ζ · (1 + ϵ0)
Θ

(
log1+ϵ0

n

ϵ0

)
≥ n2 for

an appropriately large hidden constant in our Θ. However, by assumption, the weight of P is at

most λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
iterations and this is at most 2 since λi < 1 since otherwise our

algorithm would have halted. But 2 < n2 and so we have arrived at a contradiction.
Repeatedly applying the fact that λ′

i = (1 + ϵ0)λi gives that λ is always a lower bound on

d
(h)
w (S, T ).

We next prove the feasibility of our solution.

Lemma A.6. The pair (f, w) returned by Algorithm 5 are feasible for Multi Length-Constrained
Flow LP and Multi Moving Cut LP respectively.

Proof. First, observe that by Lemma A.5 we know that λ is always a lower bound on d
(h)
w (Si, Ti)

for every i and so since we only return once λ > 1, the w we return is always feasible.
To see that f is feasible it suffices to argue that for each arc a, the number of times a path

containing a has its primal value increased is at most Ua
η . Notice that each time we increase

the primal value on a path containing arc a by η we increase the dual value of this edge by a
multiplicative (1 + ϵ0)

1/Ua . Since the weight of our arcs according to w start at ( 1
m)ζ , it follows

that if we increase the primal value of k paths incident to arc a then wa = (1 + ϵ0)
k/Ua · ( 1

m)ζ . On
the other hand, by assumption when we increase the dual value of an arc a it must be the case that

wa < 1 since otherwise d
(h)
w (S, T ) ≥ 1, contradicting the fact that λ always lower bounds d

(h)
w (S, T ).

It follows that (1 + ϵ0)
k/Ua · ( 1

m)ζ ≤ 1 and so applying the fact that ln(1 + ϵ0) ≥ ϵ0
1+ϵ0

for ϵ0 > −1
and our definition of ζ and η we get

k ≤ ζ · (1 + ε0)

ε0
· Ua logm

=
Ua

η

as desired.

We next prove the near-optimality of our solution.

Lemma A.7. The pair (f, w) returned by Algorithm 5 satisfies (1−ϵ)
∑

awa ≤
∑

i

∑
P∈Ph(Si,Ti)

fP .
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Proof. Fix an iteration i which is an iteration for the jth batch and let f̂ be the sum of all lightest
path blockers that we compute in parallel for each (Si, Ti) ∈ (Sj , Tj) in this iteration. Let ki be

val(f̂), let λi be λ at the start of this iteration and let Di :=
∑

awa be our total dual value at the
start of this iteration. Notice that 1

λi
· w is dual feasible and has cost Di

λi
by Lemma A.5. If β is

the optimal dual value then by optimality it follows that β ≤ Di
λi
, giving us the upper bound on

λi of
Di
β . By how we update our dual, our bound on λi and (1 + x)r ≤ 1 + xr for any x ≥ 0 and

r ∈ (0, 1) we have that

Di+1 =
∑
a

(1 + ϵ0)
f̂(a)/Ua · wa · Ua

≤
∑
a

(
1 +

ϵ0f̂(a)

Ua

)
· wa · Ua

= Di + ϵ0
∑
a

f̂(a)wa

≤ Di + ϵ0(1 + 2ε0) · kiλi

≤ Di

(
1 +

(1 + 2ε0)ε0 · ki
β

)
≤ Di · exp

(
(1 + 2ε0)ε0 · ki

β

)
.

Let T − 1 be the index of the last iteration of our algorithm; notice that DT is the value of w in
our returned solution. Let K :=

∑
i ki. Then, repeatedly applying this recurrence gives us

DT ≤ D0 · exp
(
(1 + 2ε0)ε0 ·K

β

)
=

(
1

m

)ζ−1

exp

(
(1 + 2ε0)ε0 ·K

β

)
On the other hand, we know that w is dual feasible when we return it, so it must be the case that

DT ≥ 1. Combining this with the above upper bound on DT gives us 1 ≤
(
1
m

)ζ
exp

(
(1+2ε0)ε0·K

β

)
.

Solving for K and using our definition of ζ gives us

β logm · ζ − 1

(1 + 2ε0) · ε0
≤ K

β logm · 1
ε20
≤ K.

However, notice that Kη is the primal value of our solution so using our choice of η and rewriting
this inequality in terms of Kη by multiplying by η = ε0

(1+ε0)·ζ ·
1

logm and applying our definition of

ζ = 1+2ε0
ε0

+ 1 gives us

β

ε0 · (1 + ε0) · ζ
≤ Kη

β

(1 + ε0)(1 + 3ε0)
≤ Kη. (20)
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Moreover, by our choice of ε0 =
ε
6 and the fact that 1

1+x+x2 ≥ 1− x for x ∈ (0, 1) we get

1− ε ≤ 1

1 + ε+ ε2

≤ 1

(1 + 1
2ε)

2

≤ 1

(1 + 3ε0)2

≤ 1

(1 + ε0)(1 + 3ε0)
. (21)

Combining Equation (20) and Equation (21) we conclude that

(1− ε) · β ≤ Kη.

We conclude with our main theorem by proving that we need only iterate our algorithm
Õ
(
κ · h

ϵ4

)
times.

Theorem A.1. Given a digraph D = (V,A) with capacities U , lengths ℓ, length constraint h ≥ 1,
0 < ε < 1 and source and sink vertices S, T ⊆ V , and κ-batchable source, sink pairs {Si, Ti}i,
one can compute a feasible multi-commodity h-length flow, moving cut pair (f, w) that is (1 ± ϵ)-
approximate in:

1. Deterministic parallel time Õ(κ · 1
ε9
· h17) with m processors where |supp(f)| ≤ Õ(κ · h9

ε3
· |A|);

2. Randomized CONGEST time Õ(κ · 1
ε9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(
κ · 1

ε9
· h17 + κ · 1

ε7
· h16 · (ρCC)

10
)
.

Furthermore, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(
κ · h

ϵ4

)
and fj is an integral h-length Si-Ti

flow for some i.

Proof. By Lemma A.6 and Lemma A.7 we know that our solution is feasible and (1 ± ϵ)-optimal
so it only remains to argue the runtime of our algorithm and that the returned flow decomposes in
the stated way.

We argue that we must only run for O
(
κ · h log2 n

ϵ4

)
total iterations. Since λ increases by a

multiplicative (1 + ϵ0) after every Θ
(
κ · h logn

ϵ20

)
iterations and starts at least

(
1
m

)Θ( 1
ϵ0

)
, it follows

by Lemma A.5 that after y · Θ
(
κ · h logn

ϵ20

)
total iterations the h-length distance between every Si

and Ti is at least (1 + ϵ0)
y ·
(
1
m

)Θ(1/ϵ0). Thus, for y ≥ Ω
(
ln1+ϵ0 m

ϵ0

)
= Ω

(
lnn
ϵ20

)
we have that every

Si and Ti are at least 1 apart in h-length distance. Consequently, our algorithm must run for at

most O
(
κ · h log2 n

ϵ40

)
= O

(
κ · h log2 n

ϵ4

)
many iterations.

Our running time is immediate from the the bound of O
(
κ · h log2 n

ϵ4

)
on the number of iterations

of the while loop, the fact that commodities in the same batch can be updated in parallel and the
running times given in Theorem 11.1 for computing our h-length (1 + ϵ0)-lightest path blocker.

69



Lastly, the flow decomposes in the stated way because we have at most O
(
κ · h log2 n

ϵ4

)
iterations

and each fj is an integral S-T flow by Theorem 11.1. Thus, our final solution is η ·
∑k

j=1 fj and

k = Õ
(
h
ϵ4

)
. Likewise we have |supp(f)| ≤ Õ(κ · h10

ε7
) for our parallel algorithm since we have

O
(
κ · h log2 n

ϵ4

)
iterations and the fact that Theorem 11.1 guarantees each (1 + ε0)-lightest path

blocker has support size at most Õ(h
9

ε3
· |A|).

A.3 Computing Multi-Commodity Length-Constrained Cutmatches

We proceed to compute multi-commodity length-constrained cutmatches.

Theorem A.2. Suppose we are given a digraph D = (V,A) with capacities U and lengths ℓ. There
is an algorithm that, given κ-batchable source sink pairs {(Si, Ti)}i where Si, Ti ⊆ V for every i and
two integer parameters h ≥ 1 and ϕ ≤ 1, outputs a multi-commodity h-length ϕ-sparse cutmatch
(f̂ , ŵ) of congestion γ between S and T , where γ = Õ( 1ϕ). This algorithm runs in:

1. Deterministic parallel time Õ(κ · h17) with m processors with |supp(f̂)| ≤ Õ(κ · h10 · |A|);

2. Randomized CONGEST time Õ(κ · h17) with high probability;

Proof. The proof is entirely analogous to that of Theorem 16.1 except we use Theorem A.1 instead
of Theorem 3.1 to compute our flows and moving cuts. The only very minor difference is in order
to ensure that fi(a) ≤ Ua for every a ∈ δ±(Si, Ti) we must slightly change the graph in which we
work. Specifically, for each Si and each s ∈ Si where δ

+(s) = {(s, t1), (s, t2), . . .} we add new vertices
s1, s2, . . . and new arcs (s1, s), (s2, s) each of length 0 and respective capacities U(s,t1), U(s,t2), . . ..
We then replace s in S1 with s1, s2, . . .. We do the same symmetric thing for each Ti. As a result
of this we know that every set in {Si}i ∪ {Ti}i is pairwise vertex disjoint. Also note that we can
simulate any parallel or CONGEST algorithm on D in this new graph with O(1) time overhead.
It is easy to verify that running the algorithm from Theorem 16.1 on the resulting graph using
Theorem A.1 instead of Theorem 3.1 then gives the result.

B Deferred Proofs

Lemma 7.1. Given a h-layer S-T DAG D with capacities U and ∆̃ satisfying ∆
2 ≤ ∆̃ ≤ ∆, one

can sample an integral S-T flow f where for each P ∈ P≈max we have
∏

a∈P (Ua−fa) ≤ 2047
2048 ·U(P )

with probability at least Ω(1). This can be done in:

1. Parallel time O(h) with m processors;

2. CONGEST time Õ
(
h2
)
with high probability.

Proof. The basic idea is to have each path P sample about U(P )/∆̃ copies of itself.
More formally, we do the following. Consider the (multi) digraph D′ that is created by starting

with D and replacing each arc a with Ua copies. For a given path P in D′ from S to T , we let
∆′

P be the number of distinct S to T paths in D′ which share an arc with P . Likewise, we let
∆′ = maxP ∆′

P where this max is taken over all S to T paths in D′. We let P ′
≈max be all paths P

for which ∆′
P ≥ ∆′/2. By how we defined the degree of paths in D, if a given path P is in P ′

≈max
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then so too is its corresponding path in D in P≈max. Lastly, we let N(P ) be all paths from S to T
in D′ which share an arc with P other than P itself and let N+(P ) := N(P ) ∪ {P}.

In what follows we show how to sample a collection of arc-disjoint paths P2 in D′ where each
P ∈ P ′

≈max is such that with probability at least 1
1024 the set P2 ∩ N+(P ) is non-empty. Before

doing so, we observe that this suffices to show our claim. In particular, we can construct a flow f
by setting its value on arc a to be |{P ∈ P2 : a ∈ P}|. Observe that by the arc-disjointness of P2
and how we constructed D′, f is indeed a feasible S-T flow. Moreover, we claim that for a given
P̃ ∈ P≈max in D we have

∏
a∈P̃ (Ua − fa) ≤ 1

2U(P̃ ) with probability Ω(1). In particular, let XP be
the indicator of whether a given path P in D′ from S to T is such that N+(P ) ∩ P2 = ∅ so that
E[XP ] ≤ 1023

1024 . Also, let P̃ be all the paths in D′ that visit the same vertices as P̃ in D. Then we
have ∏

a∈P̃

(Ua − fa) =
∑
P∈P̃

XP .

But, looking at the expectation of this, we have

E

∑
P∈P̃

XP

 ≤∑
P∈P̃

1023

1024

=
1023

1024
· U(P̃ )

Thus, by Markov’s inequality we have that
∑

P∈P̃ XP ≥ 2047
2046 · E

[∑
P∈P̃ XP

]
with probability at

most 2046
2047 and so with probability Ω(1) we get that

∑
P∈P̃ XP ≤ 2047

2046 ·E
[∑

P∈P̃ XP

]
≤ 2047

2048 ·U(P̃ ).
Thus, it remains to show how to sample our collection of arc-disjoint paths P2 in D′ where

each P ∈ P ′
≈max is such that with probability at least 1

1024 the set P2 ∩N+(P ) is non-empty. We

will sample P2 as follows. Imagine that s initially receives B
(
n+
s ,

1
64∆̃

)
-many balls where B(n, p)

is a binomial with n trials each with probability of success p. We let na and n+
v be as defined in

Section 6 for D′ where Ua′ = 1 for every arc a′ in D′.
When a vertex v receives a ball, it tosses it to vertex u ∈ N+(v) with probability n+

u /n
+
v . As

n+
v =

∑
w∈N+(v) n

+
w this induces a valid probability distribution. Let P1 be the (multi) set of all

paths traced out by balls. We will let P2 be all paths in P1 which are arc-disjoint (in D′) from all
other paths in P1.

We first consider this process from the perspective of a single path P from S to T in D′.
Specifically, notice that the probability that a ball traces out a path P = (s = v1, v2, . . . , vh+1 = t)
where s ∈ S and t ∈ T is uniform over paths. In particular, the probability that a given ball traces
out path P in D′ from s to t nicely telescopes as

n+
v2

n+
v1

·
n+
v3

n+
v2

· . . . ·
n+
vh+1

n+
vh

=
n+
vh+1

n+
v1

=
1

n+
s
.

Thus, each ball that starts at s traces out a uniformly random path incident to s in P(S, T ).
Applying the parameters of our binomial distribution, it follows that the expected number of times
a given path P is included in P1 is 1

64·∆̃ . Markov’s inequality then shows that a given path has
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some copy in P1 with probability at most 1
64·∆̃ ≤

1
32·∆ . On the other hand, P has exactly one copy

included in P1 with probability 1
64∆̃

n+
s · 1

n+
s

(
1− 1

n+
s

)n+−1
≥ 1

128∆̃
. Thus, P has at least one copy

in P1 with probability at least 1
128∆̃

≥ 1
128∆ .

We proceed to bound two simple probabilities regarding how paths are sampled. In particular,
fix a path P ∈ P ′

≈max in D′ from S to T . Next, fix a P ′ ∈ N+(P ). Then, let E1(P ′) be the event
that some copy of P ′ is in P1 and no other path in N+(P ) has a copy in P1. Likewise, let E2(P ′)
be the event that no path in N(P ′) is in P1. Notice that if E1(P ′) and E2(P ′) hold then we have
P ′ ∈ P2.

• Bounding Pr(E1(P ′)). We will argue that Pr(E1(P ′)) ≥ 1
256∆ .

Notice that since N+(P ) \ {P ′} consists of at most ∆-many paths, the expected number of
copies of paths in N+(P ) \ {P ′} in P1 is at most 1

32 . It follows by a Markov bound that with
probability at least 1

2 we have N+(P ) \ {P ′} ∩ P1 = ∅.
Next, imagine that we condition on the event N+(P ) \ {P ′} ∩ P1 = ∅. Conditioning on this
event can only increase the probability that a ball traces out P ′. Since some copy of P ′

is included in P1 with probability at least 1
128∆ when we don’t condition on this event, we

conclude that

Pr(E1(P ′)) = Pr(N+(P ) \ {P ′} ∩ P1 = ∅) · Pr(P ′ ∈ P1 | N+(P ) \ {P ′} ∩ P1 = ∅)
≥ Pr(N+(P ) \ {P ′} ∩ P1 = ∅) · Pr(P ′ ∈ P1)

≥ 1

256∆
.

• Bounding Pr(E2(P ′) | E1(P ′)). We argue that Pr(E2(P ′) | E1(P ′)) ≥ 1
2 .

Notice that Pr(E2(P ′) | E1(P ′)) is minimized when N+(P ) is of size exactly ∆+ 1. However,
in this case we have Pr(E2(P ′) | E1(P ′)) ≥ Pr(E2(P ′)). Thus, we conclude by a union bound
that in general Pr(E2(P ′) | E1(P ′)) ≥ Pr(E2(P ′)) ≥ 1−∆ · 1

32∆ ≥
1
2 .

Putting these facts together and applying the fact that P ∈ P ′
≈max, we have that there is path

in N+(P ) included in P2 with probability at least∑
P ′∈N+(P )

Pr(E1(P ′)) · Pr(E2(P ′) | E2(P ′)) ≥
∑

P ′∈N+(P )

1

512∆

≥ 1

1024
.

as required.
It remains to argue that we can accomplish the above sampling of P1 and the construction of

our flow f in the stated times. Constructing f from P1 is trivial to do in parallel and CONGEST
so we focus on sampling P1. By Lemma 6.1 we can compute n+

v in the stated times. Passing
balls to construct P1 and then P2 and constructing the above flow is trivial to do in the stated
parallel time. For the CONGEST algorithm, we note that expected number of balls to cross any
one arc in D′ when constructing P1 is at most 1 and so a Chernoff and union bound shows that
with high probability we never need to transmit more than O(log n) balls across an arc in D′
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when constructing P1, with high probability. It follows that we never need to transmit more than
Õ(Umax) balls across any one arc in D. Since it suffices to just transmit the number of balls, this
can be done in Õ(logUmax) = Õ(1) rounds with high probability. Thus we can pass all balls from
one layer to the next in Õ(1) rounds of CONGEST with high probability. Lastly, constructing P2
from P1 is trivial to do in O(h) rounds of CONGEST.

Lemma 7.2. There is an algorithm which, given an h-layer S-T DAG D with capacities U , com-
putes an integral S-T flow that is blocking in:

1. Parallel time Õ(h3) with m processors with high probability;

2. CONGEST time Õ(h4) with high probability.

Proof. Our algorithm simply repeatedly calls Lemma 7.1. In particular we initialize our output
flow f̂ to be 0 on all arcs and our working capacities on D to be Û = U . Then for each ∆̃ =
(n ·Umax)

h, (n ·Umax)
h/2, (n ·Umax)

h/4, . . . we repeat the following Θ(h · log n · logUmax) times. Let
f be the flow computed according to Lemma 7.1. Update Ûa = Ûa − fa for every a and update
f̂ = f̂ + f . Clearly f̂ is an integral S-T flow.

We need only verify that f̂ is blocking. Since initially ∆ ≤ (n · Umax)
h, to do so it suffices

to argue that when we fix a value of ∆̃ for which ∆
2 ≤ ∆̃ ≤ ∆, then over the course of the

Θ(h · log n · logUmax) iterations where we use this value of ∆̃ we have that ∆ decreases by at least
a factor of 2 with high probability.

Consider Θ(h · log n · logUmax) contiguous iterations of the above with a ∆̃ that satisfies ∆
2 ≤

∆̃ ≤ ∆ at the beginning of these iterations. Let P0 be P≈max at the beginning of these iterations.
To show that ∆ decreases by at least a factor of 2 over the course of these Θ(h · log n · logUmax)
iterations it suffices to show that no path in P0 is in P≈max for all of these iterations. Suppose
for the sake of contradiction that some path P ∈ P0 is in P≈max for all of these iterations. Then,
applying the guarantees of Lemma 7.1, we get that with high probability U(P ) decreases by a 2047

2048
factor at least Θ(h · logUmax)) times. However, since U(P ) ≤ O((Umax)

h), we get that after these
iterations we would have reduced U(P ) to 0 with high probability by a union bound, i.e. ∆ must
have reduced by at least a factor of 2.

The running time of our algorithm is immediate from the fact that we simply invoke Lemma 7.1
Õ(h2) times.
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