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ARTICLE INFO ABSTRACT

Keywords: Water infrastructure systems throughout the United States face compounding challenges due to aging infra-
Water infrastructure structure and increasingly extreme and more frequent weather events. Identifying vulnerabilities and assessing
Resilience

systems’ ability to withstand and recover from such events is a critical component of water infrastructure
planning and management. Pipe failures and system structure can substantially impact water infrastructure
resilience, but these two factors are often assessed separately. Here, we present a holistic assessment of system
performance that considers pipe failures, active water storage, and system structure utilizing data collected
during normal and emergency operating conditions. The four-step framework evaluates pipe failures spatially
and temporally to assess overall system performance, as measured by active storage, and identifies targeted areas
for improvements. Employing control charts, resilience curves, and spatial clustering analysis, our results
simultaneously reveal an agreement between trends in pipe failures during normal and emergency operating
conditions as well as unexpected discrepancies between pipe failures and system performance due to the water
system structure. Our results offer insights to utilities seeking to assess system vulnerabilities to increase water
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infrastructure resilience to extreme events.

1. Introduction

As infrastructure assets throughout the United States (U.S.) approach
the end of their service life, many water infrastructure systems are
increasingly operating outside of the conditions for which they were
designed. In 2021, U.S. drinking water infrastructure scored a C- on
America’s Infrastructure Report Card [1], while in 2022 water industry
professionals cited the renewal and replacement of aging infrastructure
as the water sector’s most pressing challenge [2]. The prevalence of
aging or outdated infrastructure in unprecedented contexts (e.g., climate
change, population increases) leaves water systems especially vulner-
able. For instance, in February 2021, a series of severe winter
storms—commonly referred to collectively as Winter Storm Uri, the
name we hereafter use [3]—crippled water infrastructure systems across
Texas, causing extensive pipe and equipment failures and widespread
service disruptions [4,5].

In the context of water infrastructure systems, resilience—“the
ability to prepare and plan for, absorb, recover from, or more success-
fully adapt to actual or potential adverse events” [6]—can be impacted
by numerous interacting factors. For instance, physical asset reliability,
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network structure, system design, management decisions, and customer
demands all contribute to system performance during normal operations
and extreme events like Winter Storm Uri [4,5]. Pipe failures, a common
problem in U.S. water distribution systems, reflect a lack of physical
asset reliability and can threaten both water supply and water quality
[7]. On the other hand, network structure—meaning topology, or the
way in which major system components such as water sources, pumping
facilities, transmission mains, and pressure zones are spatially arranged
and connected—determines how water moves through a system to ul-
timately provide adequate service to customers [8,9]. While these two
components of water infrastructure resilience—pipe failures and
network structure—are often analyzed individually, they are interre-
lated: network structure determines the impact of pipe failures on a
system-wide scale [10,11]. As such, when assessing water infrastructure
resilience, it is important to consider how these factors interact to
impact overall system performance, as measured by the capacity to
provide safe and reliable drinking water to customers.

Here, we present a system-wide assessment of water infrastructure
resilience that considers performance with regard to pipe failures and
network structure. We do so by comparing normal operating conditions
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(NOC) and emergency operating conditions (EOC), which can be
precipitated by natural disasters or other severe system disruptions.
Comparing these two operating scenarios is especially important
because systems often behave in unprecedented or unexpected ways
when acutely stressed, revealing or heightening vulnerabilities and de-
pendencies between system components. Our framework evaluates how
pipe failures and network structure interact to impact overall system
performance and identifies targeted areas for improvements such as pipe
rehabilitation and replacement projects. The results offer insights to
utilities seeking to identify both asset and network vulnerabilities as
they work to improve overall resilience to extreme events.

Given the importance of pipelines in overall water infrastructure sys-
tem resilience, researchers have extensively studied and modeled pipe
failures using various approaches [12]. Broadly, pipe failure research has
sought to identify drivers and trends and predict pipe failures, with the
overall goal of improving asset management to reduce costs, minimize
service disruptions, and protect public health and safety (e.g., [13,14]).
Descriptive analyses, which attempt to characterize pipe failure occur-
rence to reveal insights into spatial or temporal trends, have been con-
ducted both as stand-alone studies (e.g., [15]) and as precursors to
predictive models (e.g., [16]). For instance, researchers have applied
spatial statistics and clustering approaches to identify spatial patterns (e.g.,
hot- and cold-spots) in pipe failures (e.g., [15-18]). Predictive models, on
the other hand, use available historical data on past failures to anticipate
future pipe failures. Such approaches have included physical, statistical,
and data-driven models [12,19-23]. For a detailed review of the methods
used in pipe failure prediction modeling, see [12,24]. While these analyses
improve asset management practices by identifying patterns and helping
utilities anticipate future repair needs, focusing on failure prediction and
pipe condition assessment typically overlooks the system-wide impacts on
performance and serviceability that result from pipe failures. Further, the
long-term (typically multi-year) breadth of such studies can obscure rare
but severe individual events which produce substantial, unanticipated
numbers of pipe failures in a short period of time, impacting both system
performance and recovery time.

At the same time, network structure is a critical factor which con-
tributes to water infrastructure resilience. A separate, extensive body of
work exists around modeling water infrastructure systems to simulate
disruptions and identify network vulnerabilities. Researchers have
examined water system resilience to extreme events through the
development of methods such as global resilience analysis [8],
graph-theoretic approaches [25], and fragility curves [9]. Examples of
the types of extreme events that have been simulated and analyzed
include seismic activity (e.g., [9,26-28]), intentional/malicious attacks
(e.g., [29]), flood hazards (e.g., [28]), pipe failures (e.g., [30,311]), de-
mand increases (e.g., [8,31]), and contamination events (e.g., [8]). Pipe
failures have also been examined through the application of network
indices such as betweenness centrality [11] and fractality [10], and in
relation to variations in reliability and resilience over time as infra-
structure deteriorates [32]. Broadly, modeling-based network resilience
studies simulate a range of hypothetical disruptions or events occurring
in abstracted networks of synthetic or real-world systems and combine
hydraulic modeling with assessments of system vulnerability and re-
covery strategies. Studies in this arena often lack information about
actual extreme events and system responses to disruptions, relying on
simulated system behavior which might not be validated against
measured performance. Modeling exercises provide valuable insights
into potential system vulnerabilities in unknown contexts; however,
abstractions make assumptions about system behavior during NOC and
EOC and thus can have limited usability during an actual emergency.

Departing from literature, we identify three main gaps in the existing
body of work. First, pipe failures and network structure are critical
components of system performance, but these two factors are frequently
assessed independently without consideration for how they interact to
impact resilience during both NOC and EOC. Second, pipe failure ana-
lyses are long-term (multi-year) and typically do not considered the role
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of discrete extreme events, which can produce significant increases in
failures with system-wide impacts in a short period of time. It is espe-
cially critical to examine rare—but high impact—events because such
disruptions strain water systems and tend to occur when utility man-
agement resources are stressed in other ways. Finally, analyses consid-
ering network structure and resilience to extreme events often rely on
abstractions of systems and simulated disruptions, potentially missing
unexpected behaviors or responses that emerge during real events.
While many utilities collect pipe failure records and operational data,
such information is often not considered on shorter temporal scales (sub-
annual) or related to overall system performance. At the same time, real-
world system monitoring data has frequently been unavailable at the
high resolutions needed for detailed network resilience analyses. These
challenges surrounding temporal scales and data availability have thus
hindered the exploration of cumulative system-wide impacts of pipe
failures and network structure during EOC and NOC.

We address the above gaps by focusing on long- and short-term
system performance, with long-term representing multi-year NOC and
short-term focusing on a discrete EOC period caused by an extreme
event. Specifically, we analyze pipe failure records spanning 2004-2021
and storage data from a recent weather disaster in a major southern U.S.
city. Our research objectives are as follows: 1) identify outlier pipe
failure events in the data; 2) compare and contrast failure rates and
trends across the water system during NOC and EOC; 3) explore the
contribution of pipe failures and network structure to system perfor-
mance during EOC; and 4) identify the worst performing areas of the
system to inform targeted infrastructure improvements.

2. Methods

Fig. 1 summarizes the objectives, methods, and temporal and spatial
resolutions in each phase of the analysis, which is applied to a large,
urban water infrastructure system in the southern U.S. Our analysis
begins with a long-term, system-wide analysis of pipe failure data using
control charts. This is followed by an assessment of failure rates at the
pressure zone scale at both short- and long-term temporal scales. We
then focus on a period of EOC to assess technical system performance
and resilience, as measured by available stored water, and investigate
the impact of pipe failures and network structure. Finally, we narrow the
analysis to a single pressure zone and apply the density-based spatial
clustering of applications with noise (DBSCAN) algorithm [33] to
identify areas for targeted asset improvements and test NOC and EOC
hotspot agreement.

Objective Method Temporal & Spatial
Resolution
Identify outlier events in Control
pipe failure records Charts 18 Years
System-Wide

Determine worst
performing areas for
targeted improvements

DBSCAN

Future Improvements
1 Pressure Zone

Fig. 1. Study approach including the objective, method, and temporal and
spatial resolution for each phase of analysis.
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2.1. Study area and data

The study area is a large southern U.S. city that experiences long, hot
summers and short mild winters [34]. Section S1.1 in the Supplemental
Materials (SM) describes the local environmental conditions (average
temperature and precipitation) in the study area across the 18-year
study period. One of the most historically significant weather events
to impact the area occurred in February 2021 when Winter Storm Uri
devasted much of the southern U.S. [3]. The area experienced snow,
freezing rain, and multiple days of sub-freezing temperatures between
February 10-20, 2021 [3], which in turn led to widespread electrical
blackouts [35] and infrastructure failures across communication,
healthcare, and water systems [36,37]. Winter Storm Uri caused historic
levels of damage and impacts to communities; in Texas alone, 40 % of
community water systems declared boil water notices [38], and
approximately 49 % of residents lost access to running water for more
than two days [39].

The study area is served by a municipal water and wastewater utility
that is classified as “very large” by the U.S. EPA [40] and saw substantial
impacts from Winter Storm Uri. The water distribution system is sup-
plied by three water treatment facilities and consists of nine pressure
zones and approximately 9334 km (5800 miles) of pipes. System-wide,
the average daily water demand supplied is approximately 529,958
m® (140 millions gallons (MG)). Pressure zones are designated areas
within which a consistent hydraulic grade line is maintained and are the
primary spatial unit used by the utility for operations and management.
Figure S2 in the SM shows the layout of the distribution system,
including the three water treatment plants, nine pressure zones, and
ground elevation ranges of the served areas in each pressure zone. The
water utility provided the research team with approximately 18 years of
pipe failure repair records from 2004 to 2021 which included the date of
repair and pipe identification number; pipe failures refer to any leak,
break, or rupture requiring a repair by the utility. GIS files of the water
distribution system pipe network and pressure zone boundaries were
also provided, allowing repairs to be geolocated in the pipe network,
classified by pressure zone, and represented as point data. Hourly
discharge and storage tank volumes were provided by pressure zone (in
MG) for February 1, 2021-March 15, 2021, which included Winter
Storm Uri. Given the significant disruptions cause by Winter Storm Uri,
this time period (February 13-23, 2021) is considered in this study as an
example of EOC.

2.2. Identifying extreme outlier events

To compare pipe failures during NOC and EOC, outlier events were
first identified based on available data. Control charts are an appropriate
tool for analyzing pipe failure occurrence over time as they are
frequently used to monitor processes with inherent variation and iden-
tify outliers or changing trends [41,42]. This analysis offers a variation
on control charts that can be replicated by utility managers interested in
identifying changing trends in pipe failures (e.g., gradual increases) or
acute events in which a large number of failures occur (e.g., isolated
changes).

Here, we apply the Shewhart-type control chart with three-sigma
control limits [41] to the pipe failure data to identify outlier events.
To identify distinct, multi-day extreme events, data were aggregated to a
weekly resolution, with each datapoint representing the number of pipe
failures per week across the entire water system. The control chart was
used to partition the dataset into two categories: failures occurring
during NOC (i.e., under the upper control limit (UCL)) and failures
occurring during outlier events (i.e., above the UCL), where UCL = u +

30, pu is the mean, and ¢ is the standard deviation of the failures.
Because pipe failure occurrence varies seasonally in many regions [43],
including in this study area, the data were split into summer and winter
samples, with winter defined as November-February and summer
defined as March-October based on typical seasonal patterns in the
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study area [34]. Separate summer and winter UCL values were calcu-
lated based on three-sigma control limits, and outlier events were
defined as two or more consecutive data points above the seasonal UCL.
See Section S1.2 in the SM for additional information about the control
chart analysis procedure.

2.3. Spatial comparison of pipe failures

After partitioning the dataset into NOC and outlier events, we
analyzed failure rates spatially to determine if pipe failures occur
consistently across the system. The pipe failure data were first aggre-
gated to the pressure zone scale to match the water storage data. For
each pressure zone and dataset (NOC and outlier events) the annual
failure rate (FR) was calculated as the number of pipe failures divided by
the total length of pipes in that pressure zone, with units of failures/
kilometer/year. Failure rates were also calculated for all pressure zones
during the EOC period. To compare pipe failure rates with other mea-
sures of system performance on a common scale (see Section 2.4), a
normalized pipe performance index (PPI) was calculated for each zone
as:

FR — FRy»,
PPI=1— ( >

FRmax - FRmin

where FRnax and FRp, refer to the highest and lowest failure rates,
respectively, among the nine pressure zones.

2.4. Analyzing system performance during EOC

To estimate the overall state of the water system during an acute
disaster, we examine the realized system performance and recovery
during the Winter Storm Uri EOC period using resilience curves and
recovery scenarios based on system-wide mass balance calculations. We
first use active storage to measure system performance during EOC and
compare across pressure zones. Active storage is calculated as the total
volume of water in all storage tanks in each pressure zone at an hourly
resolution. Active storage is a holistic indicator that reflects changes in
demands (e.g., increased consumption due to pipe failures), reductions
in supply (e.g., failures at the source or pumping stations that supply to
the storage tanks), and other failures throughout the distribution system
(e.g., leaks and fire flow). In other words, active storage represents the
system’s capacity to absorb disruptions or shocks in both supply and
demand. To compare system performance across different pressure
zones, normalized active storage curves were constructed for each
pressure zone and two resilience metrics adopted from literature were
calculated. See Section S1.3 in the SM for the procedure for creating the
storage curves.

We measure resilience using a resilience index (RI), a duration-based
metric that represents the proportion of time during a disruption in
which the system is performing above a specified critical threshold,
defined here by the utility as one-third of total storage capacity [44,45].
The second metric, absorptive capacity index (ACI), is magnitude-based
and indicates the severity of a disruption based on the area between
target and actual performance [45,46]. Similar to PPI, RI and ACI are
measured on a scale of 0-1, with 0 representing worst performance and
1 representing best performance.

To compute the resilience index (RI), we first evaluate the storage
state indicator (I;) to identify if the active storage (s;) at time t is greater
than the critical storage (s.), where the value of I is equal to 1 if the
storage is greater than the critical level and 0 otherwise, as follows:

1 ifs >s.
0 otherwise
Then, the RI for each pressure zone is calculated as the fraction of
time that active storage is greater than the critical storage (s.):

I =
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o Sl
T

where (T) is the duration of the event in hours.

To compute the absorptive capacity index (ACI), we first determine
the total potential magnitude of disruption (D), which represents an
active storage (s;) of O for full event duration and equals the entire area
under the target storage (s,) curve over duration T:

D=s,T

The actual magnitude of the disruption (M) is calculated by finding
the difference between the potential magnitude (D) and the area under
the active storage (s,) curve over the duration T:

S+ S
M=D — — At
2
where (At) is the resolution of the data. Then, ACI is calculated for each
pressure zone as a ratio of the actual magnitude (M) over potential
magnitude (D) of the disruption, subtracted from 1:

ACI =1 M
c=1-3

To further assess how network structure and pipe failures impact
system performance, we constructed and evaluated a mass balance
model of the system under different scenarios. The network mass bal-
ance model was constructed based on the flows between sources and
zones, discharge, and storage levels in each zone. For each Zone j at time
t, the daily flow (Q) into that zone is calculated as:

Qi = Sjrs1 — Sip + Dj + Z o
]

where Sj; and Sj.,; are the daily active storage in Zonejattand t + 1,
respectively; D, is the daily discharge in Zone j; Q; is the daily flow from
Zone j to Zone(s) i; and m is the number of Zone(s) i located directly
downstream of Zone j. Here, discharge refers to all water leaving the
distribution system in a pressure zone, which includes water consumed
by customers and any water lost via pipe failures and other losses. The
model is used to estimate the supply, discharge, storage, and flows be-
tween sources and zones under four scenarios: (A) NOC; (B) EOC, at the
point when the system was most vulnerable (i.e., the peak of the
disaster); (C) a recovery scenario that reflects the realized discharge in
Zone 1 during EOC; and (D) a hypothetical recovery with reduced pipe
failures, and therefore reduced discharge, in Zone 1. To discern the
impact of reducing pipe failures in Zone 1 on the rest of the system, the
two recovery scenarios (C and D) are modeled under the same simplified
operating rules with only Zone 1 discharge changing.

2.5. Identifying hotspots for targeted asset management

After evaluating system performance, our next objective is to identify
areas for targeted infrastructure improvements to increase resilience.
However, pressure zone-scale measurements do not provide a fine
enough resolution for utility managers to direct limited resources or
investigate sub-pressure zone problem areas during NOC and EOC.
Spatial analysis techniques enable us to identify areas within pressure
zones with the highest concentrations of failures (i.e., “hotspots™) and
compare temporally [15,17]. Here, we use the DBSCAN algorithm [33,
47] to identify clusters of pipe failures during NOC, focusing on the
pressure zone with the highest pipe failure rate. We then compare NOC
clustering results with pipe failures that occurred during EOC to deter-
mine how well the hotspots emerging during NOC align with, or predict,
EOC failures. Practically, these results can assist utilities in targeting the
worst performing areas and support decision making by indicating
whether upgrading pipes in NOC hotspots will also improve
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performance during EOC.

The DBSCAN algorithm has two parameter inputs, ¢ (radial distance)
and N; (minimum number of points), which determine the expected
density for cluster formation [33]. In our context, ¢ defines the radius of
a neighborhood with respect to a point representing the location of a
pipe failure, and N; determines the number of points, i.e., additional
pipe failures, that must exist within that radius to form a cluster. If the
number of points within the specified radius ¢ is greater than N, the
density is higher than expected, and a cluster, or hotspot, is formed. The
decision maker’s task then is to determine the appropriate ¢ and N; for
the context, ideally selecting values based on domain knowledge and
keeping one parameter constant while varying the other [48]. Here, we
apply an ¢ value of 300 m (~984 ft), which is approximately two average
city blocks in the study area’s downtown, an appropriate radius for
targeted asset management improvements based on utility practice.
With a set ¢ value of 300 m, we vary the N; parameter to present a range
of results. Finally, to quantify how well NOC clusters align with failures
that occurred during EOC, we apply the principles of classification
modeling to calculate precision (P) and recall (R) [49]. See Section S1.4
in the SM for additional information about the DBSCAN algorithm,
parameter selection, and precision and recall calculations in this
context.

3. Results

Here, we present the results of the four-step analysis approach. The
control chart identified seven outlier events which were used to delin-
eate the pipe failure data into NOC and outlier datasets. Failure rates
were calculated for the nine pressure zones during NOC, all outlier
events, and EOC (Winter Storm Uri) to assess spatial and temporal
variation in pipe failure occurrence. To explore the influence of pipe
failures and network structure on resilience during EOC, system per-
formance is then quantified and compared spatially by pressure zone.
Finally, we present a spatial clustering analysis of pipe failures in the
zone with the worst PPI to examine hotspot agreement between NOC
and EOC and identify areas for targeted asset management improve-
ments.

3.1. Identifying extreme outlier events

Fig. 2 shows the control chart of pipe failure data across the
approximately 18-year study period. For the summer dataset, y = 7.15,
o = 5.37, and UCL = 23.27 failures/week; for the winter dataset, y =
11.73, 0 = 9.13, and UCL = 39.12 failures/week. As reflected in the
mean, standard deviation, and UCL values, the data display a seasonal
trend, with more pipe failures and greater variability occurring during
winter, on average. Pipe failures typically peak in January or February
and also increase during summer months in some years, though to a
lesser extent than in winter (Fig. 2).

Using the control chart with seasonal UCLs, seven outlier events were
identified, with four occurring in summer and three in winter (Fig. 2).
Table 1 describes the seven events, including the start and end dates,
total duration, and total number of pipe failures. Event 4 was the most
prolonged and accounted for the greatest total number of breaks, with
248 failures occurring over 70 days. Event 7 was the most intense event
in terms of failures per day, with 148 failures occurring over the course
of 15 days. Notably, Event 4 corresponds to the region’s drought of re-
cord, which reached its height in the summer of 2011 [50]. Event 7
corresponds to Winter Storm Uri, which devastated the region in
February 2021 [3,36]. Both failure events significantly exceeded their
seasonal UCLs (Fig. 2), showing that the control chart method is effec-
tive at identifying failure events caused by the most extreme weather,
and can be seamlessly applied by other utilities to track various types of
asset failures.
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Seasonal Control Chart of Pipe Failures
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Fig. 2. Control chart of pipe failures showing seasonal UCLs and identified outlier events. The seasonal mean (solid) and UCL (dashed) are shown for summer (S,
orange) and winter (W, blue). Arrows point to events in which the number of pipe failures exceeded the seasonal UCL (i.e., outlier events). Winter is defined as
November-February and summer as March-October. Vertical shaded areas correspond to winter months. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 1
Outlier events identified via control chart based on consecutive weeks above the
UCL (Fig. 2).

Event #  Start date End date Duration Number of pipe
(days) failures
1 2006-08- 2006-09- 41 119
13 24
2 2009-07- 2009-09- 42 125
26 06
3 2010-01- 2010-01- 15 85
03 17
4+ 2011-07- 2011-09- 70 248
17 25
5 2017-12- 2018-01- 22 108
31 21
6 2018-08- 2018-09- 34 99
05 09
75" 2021-02- 2021-02- 15 148
14 28

" Height of drought of record in study area.
" Winter Storm Uri.

3.2. Spatial comparison of pipe failure rates

Based on the control chart results (Fig. 2), the full dataset of 8010
total failures was divided into three datasets: NOC (i.e., datapoints
below the UCL; 7078 failures), all outlier events (i.e., the seven events
above the UCL, 932 failures), and EOC (Winter Storm Uri, i.e., outlier
Event 7; 148 failures). Notably, not all outlier failure events are extreme
events or cause a utility to enter EOC; systems are generally robust
enough to absorb a certain level of deviation from the norm. Of the seven
identified events, we specifically investigate Winter Storm Uri as an
example of EOC because utilities throughout the region were forced to
operate under emergency protocols and the disaster inflicted historic
impacts on infrastructure and communities [5]. Fig. 3 shows the failure
rates, by pressure zone, for these three timeframes. During NOC, the
failure rates for all pressure zones were below 0.2 failures/km/year,
with Zones 1, 2, and 3 having the highest failure rates and Zones 4-9
having failure rates of 0.02 failures/km/year or less. During the seven
identified outlier events, failure rates increased for all zones except 6
and 8 when compared to NOC. During EOC, failure rates for Zones 1, 2,
3, 4, 5, and 9 increased when compared to the full outlier dataset, while
failure rates for Zones 6, 7, and 8 were the same or lower. For all three
timeframes, Zones 1, 2, and 3 had the highest failure rates, with Zone 1
consistently highest. Zone 1 also experienced the greatest failure rate

Zone

0.8

0.6

0.4

Failure Rate (failures/km/year)

W

0.2

5
7
0.0 8

NOC Outlier Events EOC
(all) (Winter Storm Uri)

Fig. 3. Failure rates per pressure zone during NOC, outlier events, and EOC.
Delineations for the three datasets are based on the control chart anal-
ysis (Fig. 2).

increase during EOC compared to NOC and the full set of outlier events
(increases of 1.12 and 0.84 failures/km/year, respectively).

Examining failure rates across all pressure zones over the three
specified timeframes reveals spatial variability between zones in terms
of the reliability of pipe assets, as the nine pressure zones do not perform
equally (Fig. 3). While the magnitude of failure rates varied significantly
between NOC and EOC, the ranking from worst (highest failure rates) to
best (lowest failure rates) remained largely the same, especially for the
three worst performing zones (1, 2 and 3). This consistency across
different operating contexts shows that vulnerabilities present during
NOC (i.e., susceptibility to pipe failures) are exacerbated during EOC.

While Zones 1, 2, and 3 consistently performed worst in terms of
failure rates, failure rates alone do not measure actual system perfor-
mance (i.e., available water to be delivered to customers and continu-
ation of service). Though it is expected that the zones with the worst
failure rates would also exhibit the worst system performance due to
greater water loss via pipe failures, this assumption can only be tested in
a severe emergency. Generally, when pipe failures occur a water infra-
structure system is robust enough to continue providing service to cus-
tomers without disruption. However, Winter Storm Uri was such a
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severe disaster that serviceability was substantially compromised, as
indicated by a system-wide boil water notice, extensive depletion of
water storage, and water outages in large portions of the distribution
system. This acute disaster provides an opportunity to understand how
spatial variations in pipe failure rates contributed to performance across
the system.

3.3. Analyzing system performance during EOC

To examine whether zones with the highest pipe failure rates
perform worst, we examine the performance of each pressure zone
during EOC. Fig. 4 shows normalized active storage curves—based on
hourly storage measurements—for all nine pressures zones. During the
EOC period from February 13-23, 2021 (total duration T of 240 h), all
zones exhibited a substantial decrease in performance beyond typical
daily variability. Zones 1 and 3 showed the first signs of abnormal
behavior, with performance dipping below average mid-day on
February 13 and failing to recover. Zones 2, 4, 7, and 9 followed,
similarly dropping below average on February 15 (Zone 9 briefly
recovered on February 16 before dropping again). Zones 5, 6, and 8
followed on February 16. All zones remained below their average per-
formance for at least 5 days.

Fig. 5 compares the pipe performance index (PPI) (calculated based
on EOC failure rates, Fig. 3) with two active storage curve metri-
cs—absorptive capacity index (ACI) and resilience index (RI)—for each
pressure zone. The results show a notable discrepancy between pipe
performance and system performance during EOC. In terms of absorp-
tive capacity, Zones 4 and 1 performed best, with ACI scores of 0.73 and
0.71, respectively. Zones 7 and 9 performed worst, each with ACI scores
of 0.43, followed by Zones 8 (0.46), 6 (0.49), 5 (0.51), 3 (0.57), and 2
(0.63). In terms of resilience, Zones 4 and 1 again performed ahead of all
other zones, with RI scores of 0.81 and 0.80, respectively. Zone 6 per-
formed worst, with an RI score of 0.36, followed by Zones 9 (0.45), 8
(0.48), 7 (0.50), 5 (0.54), 2 (0.55), and 3 (0.61). Comparing these three
indices for each zone reveals that pipe failures did not correspond to
actual system performance during EOC. For instance, Zones 5-9 had the
highest PPI but the worst ACI and RI, while Zone 1 had the worst PPI by
far but ranked second best in ACI and RI. Zones 2 and 4 were the most
consistent across the three metrics, followed by Zone 3.

One potential explanation for this discrepancy between the pipe
performance index and the active storage curve metrics lies in the
network structure, as revealed through calculating changes in supply,
discharge, and storage in the system. Fig. 6 shows the network layout
and mass balance of supply, discharge, storage, and flows across the
system during both NOC (Fig. 6(A)) and EOC (Fig. 6(B)). The active
storage in each pressure zone is shown, with the discharge arrows
indicating the performance level: green/solid = healthy performance,
storage above critical threshold and discharge equal to or exceeding
NOC levels; yellow/dotted = poor performance, storage at or below
critical threshold and only partial NOC discharge met; red/dashed =
very poor, storage below critical threshold and no water discharged.
During NOC, the water treatment plants have a capacity of approxi-
mately 529,957 m>/day (140 MGD), with total discharge equaling
approximately 465,605 m3/day (123 MGD) (Fig. 6(A)). Water is pum-
ped from the treatment plants directly to Zones 1-4 and then pumped
out to Zones 5-9. Located in the core of the system, Zone 1 has the
highest level of connectivity to the sources and other zones with a degree
centrality of 4 [51] and receives the most water from the treatment
plants (166,558 m3/day, 44 MGD), while also pumping the most water
to other zones (68,137 m3/day, 18 MGD). Conversely, Zones 5-9 have
only one connection each and rely entirely on water pumped through
other zones.

Fig. 6(B) shows a system-wide snapshot from February 17-18, 2021,
when performance was worst (Fig. 4). Zones 1, 2, and 4 maintained low
levels of storage and were able to maintain partial discharge (catego-
rized as “poor” performance), while Zones 5-9 had fully depleted

Reliability Engineering and System Safety 244 (2024) 109910

storage, with no water discharged (categorized as “very poor” perfor-
mance). Notably, during this time discharge in Zone 1 was 273 % greater
than NOC discharge levels. With a substantially higher pipe failure rate
than all other zones during this EOC period (Fig. 3), this excess con-
sumption was primarily due to extensive pipe failures occurring
throughout the zone. Due to the network structure, even with increased
supply (the utility increased treatment capacity to 643,520 m®/day, 170
MGD), this extra supply was largely being discharged into Zone 1 and
not reaching Zones 5-9. In other words, the water that should have been
pumped from Zones 1-4 into Zones 5-9 was instead consumed in Zone 1,
much of it through water loss via broken pipes. As the negative impacts
of pipe failures in Zone 1 cascaded outward, Zones 2-4 continued to
receive partial supply due to their connection to the three water sources
(Fig. 6(B)), leading to less severe overall impacts on performance, as
reflected in their high ACI and RI scores (Fig. 5). Zones 5-9, which had
high PPI scores due to very few pipe failures, experienced the worst
performance with low ACI and RI scores (Fig. 5) due to the lack of
available water moving into these zones (Fig. 6(B)).

To better investigate how the network structure allowed the high
failure rate in Zone 1 to impact performance across the system, we
evaluated two recovery scenarios from the EOC point shown in Fig. 6(B).
Fig. 6(C) and (D) show how reducing the pipe failures in Zone 1, and
therefore reducing excess discharge, improves overall system recovery.
In Scenario C (Fig. 6(C)), representing the realized Zone 1 discharge
during the storm, Zone 1 discharge remains high: all of the 264,979 m>/
day (70 MGD) available to Zone 1 is consumed by that zone (a 253 %
increase from NOC discharge levels), and no water remains to be pum-
ped to other zones. Only Zones 1-3 have storage above the critical
threshold and meet NOC discharge levels, Zones 4 and 7 have storage
above the critical threshold but only meet partial NOC discharge, and
Zones 5, 6, 7, and 9 have depleted storage and no water discharged. In
hypothetical recovery Scenario D, Zone 1 discharge remains elevated,
but the excess consumption due to pipe failures is reduced by approxi-
mately 50 %: only 189,270 m® (50 MGD) of the available 264,979 m3/
day (70 MGD) is consumed in Zone 1 (a 192 % increase from NOC),
leaving 17 MGD available to be pumped to other zones. As a result,
Zones 7-9 are able to meet 100 % of NOC discharge levels while
maintaining storage above the critical threshold, Zone 5 storage is above
the critical threshold and partial NOC discharge levels are met, and only
Zone 6 remains in “very poor” status. The result is a more equitable
allocation of water across zones and more distributed, system-wide re-
covery, with only 1/9 pressure zones performing at “very poor” in
Scenario D, compared to 4/9 zones in Scenario C. Overall, the perfor-
mance metrics and network mass balance model indicate that improving
the reliability of pipes in Zone 1 to reduce failures has system-wide
benefits by preventing detrimental impacts from cascading down-
stream and improving recovery when supply to the external zones is
disrupted.

3.4. Identifying hotspots for targeted asset management

With pipe failures in Zone 1 having a significant impact on perfor-
mance throughout the entire system, the next objective is to determine
which areas in this zone warrant infrastructure investments. Given its
size (approximately 1800 km of pipeline over 240 km?), targeting the
entire pressure zone for pipe improvements is not logistically or finan-
cially feasible. It is also important to understand prior to investing in a
given area if the locations that perform poorly during NOC align with
high failure areas during EOC. With most utilities having limited re-
sources to repair or replace waterlines, spatial analysis using DBSCAN
offers a solution for assessing this agreement and pinpointing locations
for targeted asset management strategies.

Here, we conduct a spatial analysis within Zone 1 to identify high
density pipe failure areas and test whether NOC failures predict EOC
failures. Fig. 7 shows the resulting clusters (shaded areas) from four
DBSCAN analysis runs using the 18-year pipe failure dataset (excluding
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Fig. 5. Heatmap comparing three performance indices across nine pressure zones during EOC: pipe performance index (PPI), absorptive capacity index (ACI), and
resilience index (RI). For all indices, 0 (dark blue) indicates worst performance, and 1 (light blue) indicates best performance. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

EOC failures) where ¢é= 300 m and Nj is varied at 6, 10, 13 and 21. N;
values were selected based on the distribution of the number of pipe
failures across the entire zone (see Section S1.4 in the SM for the
parameter selection process). Pipe failures that occurred during EOC
(red circles) are overlaid on top of the clusters, showing the level of
agreement between NOC cluster formation and EOC failures for each
run. Table 2 provides summary statistics for each analysis run (A) in
addition to the classification results (B) which quantify how well the
clustering algorithm captured, or predicted, EOC failures.

While the four runs result in clusters of different shapes and sizes, a
quick visual inspection of Fig. 7 shows the clustering algorithm (based
on NOC failures) was largely successful at capturing EOC failures. As
expected, loosening the constraints around cluster formation by
decreasing the number of points required (N;) results in more total
clusters and larger average cluster size, whereas tightening constraints
with a higher N; value results in fewer total clusters and smaller average
cluster size (Table 2). With a lower number of required points, more of
the EOC failures fall within established clusters, and this amount de-
creases as N; is increased (Fig. 7). There is also general agreement be-
tween the four runs that a hotspot of pipe failures exists in the center/
northeast quadrant of the map area. In other words, there is an area in
this pressure zone that is consistently identified, across all runs, as a
problem area based on significantly higher densities of pipe failures.
While utility managers might vary the exact scope of their work (e.g.,
total area targeted for repairs and replacement) based on available funds
and other logistical factors, these results indicate that this area would be
a reasonable place to begin planning for infrastructure improvements.

Precision and recall were used to quantify the agreement between
clusters and EOC failures and evaluate the algorithm’s performance at
each value of N; (Table 2). Fig. 8 plots the precision and recall curve over
the four runs, showing a clear bend at Ny = 13, where P =0.7 and R =
0.8. From a classification modeling perspective, a N; value around 13 is
therefore the optimal choice for capturing the most EOC failures without
creating an unnecessary number of clusters that are larger in size (i.e.,
overfitting the model). Overall, the results show strong hotspot agree-
ment between NOC and EOC. In addition, this analysis offers a
demonstration of a flexible application of the DBSCAN algorithm that
can be recreated by utilities for asset management and fine-tuned based
on the needs and constraints of the utility.

4. Discussion
Our results have several implications for how utilities consider sys-
tem behavior and planning for extreme events. Below, we outline how

these insights might be generalized to other utilities and sectors seeking
to improve resilience.

4.1. Comanaging stressed water and utility resources

The cooccurrence of outlier failure events with natural disasters, as

revealed in the control chart and failure rates (Figs. 2 and 3), highlights
the need to examine system behavior during these events more exten-
sively. During extreme events, utility resources are already heavily
stressed in a number of ways. For instance, during the drought of record
(Table 1, Event 4), utilities were attempting to conserve water and most
of the region was under water use restrictions [52-54]. A significant
increase in pipe failures meant additional water loss (via breaks and
leaks) at a time when water resources were extremely limited. Similarly,
during the Winter Storm Uri emergency (Table 1, Event 7), utility re-
sources across the region were stressed as crews contended with power
outages, poor road conditions, and increased water demands due to
private side leaks and customer usage [4,5]. Understanding that these
outlier pipe failure events can occur during disasters when water
infrastructure systems are simultaneously stressed in other ways points
to the need for further investigation to increase resilience when systems
are pushed beyond NOC.

4.2. The case for holistic analysis of pipe and system failures

Overall, our analysis of pipe and system performance using PPI, ACI,
RI, and network mass balance empirically shows that zones with the
worst performance in terms of pipe failures do not necessarily experi-
ence the worst system performance during an emergency event. Rather,
these results support an alternate conclusion that pipe failures impacted
performance system-wide, and the effects were not localized or con-
tained to individual zones. Though other factors can impact perfor-
mance, in this disaster the network structure of the overall system
allowed impacts to cascade from the zones with the worst PPI to the
zones that were most vulnerable in terms of network connectivity. As a
result, zones with the fewest pipe failures—which happened to be
furthest from sources and reliant on single inputs—ultimately experi-
enced the worst system performance. Importantly, this understanding of
system behavior would have been overlooked had pipe failures and
network structure not been considered holistically with system perfor-
mance. These results indicate that investments made to improve pipe
failure rates in the highest failing areas (e.g., through asset management
repair or replacement efforts) could have system-wide benefits,
depending on a system’s structure and vulnerabilities.

4.3. Extreme event preparation informed by past failures

This work sought to assess the agreement between performance is-
sues in NOC and EOC and determine how past failures could improve
preparation for future events. In practical terms, the results of the spatial
analysis show overall that most EOC failures occurred in areas that were
already hotspots for pipe failures during NOC (Fig. 7). Therefore, tar-
geting clusters identified by the DBSCAN algorithm should also improve
asset performance during future extreme events. While this agreement
may be expected, it offers utility managers concrete evidence that asset
management improvements targeting NOC hotspots of poor pipe failures
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Fig. 7. DBSCAN results for a portion of Zone 1 overlaid with pipe failures that occurred during EOC, as indicated by red circles. For all runs, ¢ = 300 m. The
minimum points required (N;) within distance ¢ is equal to 6 (A), 10 (B), 13 (C), and 21 (D).

have the potential to bring system-wide benefits. However, these types
of improvements are largely reactive, meaning the utility is responding
to infrastructure that is already failing or underperforming. Utilities
seeking to improve overall resilience might also consider changes to
network structure (e.g., transmission between sources and zones) and
facility siting (e.g., storage tanks) which can help to address network
vulnerabilities. Such interventions are proactive investments which seek
to improve systems overall or prevent failures from occurring in the first
place. Inherent to the challenge of upgrading aging infrastructure and

10

implementing capital improvement projects to increase resilience are
the financial constraints facing most water utilities [2]. Notably, pro-
active infrastructure investments are costly and sometimes garner less
organizational and public support because they lack the urgency and
visibility of problems requiring reactive interventions (e.g., main breaks,
equipment failures). While proactive projects can be difficult to imple-
ment due to lack of funds and the prevalence of more pressing problems,
they are critical for building long-term system resilience.
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Table 2
Clustering results for Zone 1 showing (A) summary statistics for DSCAN with ¢ = 300 m, and (B) EOC pipe failure classification results.
Percentile (failures per 300 x 300 m cell) 75th 90th 95th 99th
Expected failures (N;) 6 10 13 21
A. Clustering results
Number of clusters 55 47 41 29
Percentage of noise points 8% 15 % 13 % 21 %
Cluster size (km?):
Maximum 36.4 29.6 17.6 5.8
Mean 1.2 1.0 1.0 0.8
Standard deviation 5.3 4.4 2.9 1.3
Pipe failures per cluster:
Maximum 1943 1733 1125 485
Mean 64.5 69.5 73.9 80.3
Standard deviation 261.4 247.9 117.1 104.8
B. EOC classification results
EOC failures per cluster:
Maximum 67 59 35 17
Mean 2.2 2.1 2.1 1.7
Standard deviation 10.8 9.8 6.2 3.5
Total EOC pipe failures captured by clusters (true positive) 86 77 74 48
EOC pipe failures not captured by clusters (false negative) 6 15 18 44
Clusters not containing any EOC pipe failures (false positive) 50 43 31 16
Precision (P) 0.63 0.64 0.70 0.75
Recall (R) 0.93 0.84 0.80 0.52
individual pressure zones more than others. Observed disparities in
21 system performance between pressure zones are, therefore, attributed
0.74+ largely to known differences (i.e., pipe failures and network
connectivity).
0.724 This analysis highlights the importance of having reliable data dur-
ing emergencies, and additional data such as high-resolution demands
070 and pressure sensor readings could provide an even more nuanced un-
§ 7 13 derstanding of system behavior during extreme events. While the data
S employed here do not provide a complete picture of system behavior
o 0.68 during an emergency, they still offer valuable insights into the ways in
which physical asset failures and system design impact system perfor-
0.66- mance. Finally, this work was enabled by a close partnership between
the research team and utility, who provided data, guidance, and support
throughout the study. This work highlights the mutual benefits of such
0.64+ 10 6 collaborations and shows the value of establishing rigorous data
collection and management practices, which support these types of
T y T T T system-wide analyses.
0.5 0.6 0.7 0.8 0.9
Recall

Fig. 8. Precision and recall results for DBSCAN analysis where ¢ = 300 m.
Labels indicate N; value (minimum points required within distance ¢ for clus-
ter formation).

4.4. Data adequacy for assessing and improving resilience

Water distribution networks are complex systems whose perfor-
mance may be impacted by a variety of factors, particularly during an
emergency. Our analysis utilized pipe repair records, available stored
water measurements, and discharge volumes to relate pipe failure rates
and network structure to system performance during Winter Storm Uri.
However, it must be acknowledged that other factors might have
contributed to the depletion of water storage observed throughout the
event. For instance, across the entire region, water utilities’ ability to
continuously meet demands was impacted by plumbing failures in
homes and businesses, increased customer water usage (e.g., dripping
faucets, storing water), and power outages at treatment and pumping
facilities [4,5]. Identifying specific factors, such as private or public
systems and human behavior, that contributed to lost reservoir storage is
challenging due to the lack of available data and the simultaneous
occurrence of multiple incidents during a chaotic emergency period. As
such, we assume that impacts from these additional factors on storage
were distributed evenly across the entire system and did not affect
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5. Conclusions

This study evaluated the role of pipe failures and network structure
on system resilience. Most interestingly, our analysis revealed that pipe
failures did not correspond to system performance on a pressure zone
scale. Rather, the high-level network structure appears to have allowed
negative impacts of pipe failures in the central zones to cascade to the
outer portions of system. This study also confirmed a spatial agreement
between failures that occurred in NOC and EOC. Using data that is
commonly available at many municipal utilities (pipe failure records
and storage tank levels), this approach may be adopted by other utilities
wishing to evaluate system vulnerabilities and build long-term system
resilience. Future analyses would benefit from additional sources of
high-resolution data capable of capturing system behavior during an
emergency, such as Advanced Metering Infrastructure and distributed
pressure sensors. Additional studies should also work to better evaluate
the role of human behavior and public perceptions on system perfor-
mance by considering customer communication with utilities during
emergencies and trends in reporting (e.g., 3-1-1 calls and service re-
quests). Continuing to explore system behavior during extreme events is
critical for building water system resilience to future disasters and the
infrastructure challenges of the 21st century.
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