IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 8, AUGUST 2024

9723

Secure Control Design for Cooperative Adaptive
Cruise Control Under False Data Injection Attack

Parisa Ansari-Bonab™, James C. Holland™, Graduate Student Member, IEEE, Jonas Cunningham-Rush,
Shirin Noei”, and Arman Sargolzaei ™, Senior Member, IEEE

Abstract— Cooperative adaptive cruise control (CACC) is one
of the many advanced driver assistance systems (ADAS) that
leverage communication between nearby vehicles to maintain
speed while ensuring safe following distances. The current CACC
algorithms are designed with the assumption that the commu-
nication channel is secure. However, the use of communication
channels makes CACC susceptible to attacks, such as False data
injection (FDI). This paper develops a novel secure nonlinear
controller and a nonlinear observer which can estimate FDI
attacks in real-time. Furthermore, this paper shows that the
developed controller and FDI attack estimation techniques ensure
semi-globally uniformly bounded tracking under FDI attacks,
noise, and disturbances. The efficaciousness of the proposed
CACC algorithm was demonstrated in simulation and through
experimental implementation. During testing using both method-
ologies, the controller was able to maintain a safe following
distance and estimate FDI attacks and noise in real-time.

Index Terms— Secure control design, nonlinear observer,
attack estimation, false data injection attack, Lyapunov stability,
cooperative adaptive cruise control.

I. INTRODUCTION

T IS estimated that an average of 6 million car collisions

occur every year in the United States [1]. The National
Highway and Traffic Safety Administration (NHTSA) also
estimated that human error contributes to 94%-96% of all
automobile accidents in the United States [2].

In recent years, technology has advanced in leaps and
bounds. Due to this, advanced driver assistance systems
(ADAS) have rapidly pervaded the automotive industry. Auto-
mated vehicles (AVs) use sensors to perceive the world around
them and support the driver to reduce the likelihood of a
crash. Further improvement of AVs can be achieved by adding
connectivity between vehicles, creating connected automated
vehicles (CAVs). CAVs are capable of communicating with
each other and infrastructure to maximize efficiency in terms
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of traffic, energy, and safety [3], [4], [5]. Furthermore, CAVs
possess the ability to identify roadway threats and hazards and
disseminate that information to other vehicles.

CAVs provide numerous benefits, the most prominent being
improved transportation that eases the driver’s task load. With
vehicles being able to send and receive information about the
environment ahead of it, they can better prepare themselves for
adjusting to the flow of traffic and possible obstructions. CAVs
reduce the energy consumption of vehicles by eliminating
excessive acceleration, deceleration, and aerodynamic drag [6].
Vehicle platoons have been proven to decrease the aerody-
namic drag of the entire convoy [7]. Another benefit of vehicle
strings is increasing the number of vehicles that a given high-
way can safely accommodate, improving the entire efficiency
of the roadway. Vehicles following at a closer distance reduce
the time delay between vehicles and maximizes the vehicle
capacity of the road. The final, and most important, benefit of
CAVs is the potential to drastically reduce crashes and traffic
fatalities [8]. A study by Papadoulis et. al [9] demonstrates
that as CAVs adoption rate increases, traffic conflicts could
decrease by as much as 94%, at full CAVs adoption.

Adaptive cruise control (ACC) is an ADAS that adjusts the
speed of a vehicle to maintain a safe following distance from
a lead vehicle on the roadway. This process is reliant strictly
upon onboard sensors, such as radar, lidar, and cameras. One
of the major drawbacks of ACC is its inability to form vehicle
strings, effectively; because of the transmission delay for
CAVs, which averages 1.5 seconds per vehicle length [10].
The reason is the lengthy perception and decision-making
pipeline through the onboard sensors, processors, control, and
actuators. To address this issue, cooperative adaptive cruise
control (CACC) was designed [11].

CACC builds upon the foundation of ACC by enabling
vehicle-to-everything (V2X) communication between vehicles
and intelligent transportation systems, allowing for advanced
traffic management [12]. This information is broadcast contin-
uously to provide other vehicles in the loop with real-time data
in order to improve performance [13]. Other benefits of CACC
include shorter following distances, time gaps, and improved
stability against oscillations in the flow of traffic [14]. ACC
is susceptible to oscillations in traffic flows that are com-
pounded further along the vehicle string. CACC mitigates the
majority of this problem as the vehicles resemble the leading
vehicle more closely [15]. In a favorable environment, CACC-
equipped vehicles will acquire information sent from the
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leading vehicle and adjust accordingly, which greatly reduces
the delay between vehicles, resulting in improved energy
efficiency, reduced travel time, and reduced collisions [16].

Despite all the benefits of CACC, since it uses communi-
cation channels to transmit data, it is vulnerable to different
types of attacks, such as false data injection (FDI), time delay
switch (TDS), and denial of service (DoS) [17]. In FDI attack,
an adversary can gain access to the communication channels
and inject FDI attacks into the transmitted information [18].

Each attack challenges the system in a different manner
depending on where the attack has been injected. This is
evident in [19] where the origin of the attack is at the
application-layer of the CACC system. They effectively miti-
gated DoS and FDI attacks through the use of a bi-objective
proportional-integral-derivative (PID) controller and a fuzzy
detector, to take specific actions against the attacks.

Further efforts into mitigating DoS attacks are shown
in [20], [21], and [22]. Research in [20] designed a system
that can identify the malicious vehicle in the loop and isolate
it by comparing the behaviors of a normal vehicle versus ones
with abnormal behavior, using fuzzy Petri nets to detect packet
drops. The detection of DoS attacks was also outlined in [21],
which used a scheme that logs the node at which a packet
drop occurred. The repetitive nature of packet drops indicated
an attack at that node. It is then isolated from the network,
rerouting information to its neighbors. This problem was also
solved similarly in [22], using a packet detection algorithm that
incorporated bandwidth and entropy and isolated the malicious
nodes, improving the network’s efficiency. Due to the nature
of TDS attacks, the above-mentioned techniques are unable
to detect and mitigate this form of attack. In the case of
TDS attacks, the research in [23], [24], and [25] has shown
effectiveness at detecting and mitigating TDS attacks. In [23],
a time delay estimator was used to detect the maximum
allowable delay to a system for it to remain stable. For a
delay beyond the allowed threshold, an emergency controller
is used until the attack subsides or stability is reached.
In [24] they devised an adaptive channel technique and a state
estimator to quickly stabilize the system under TDS attacks.
Authors in [25] devised a robust feedback controller that was
not affected by the distribution of out-of-order information,
a variation of the TDS attack.

Several studies focus on FDI attacks on a CACC system
during the past several years in [26], [27], [28], [29], [30],
[31], [32], and [33]. In [26], they designed a partial differential
equation (PDE) to detect the FDI attack on a platoon of
vehicles. An attack was determined by comparing its signature
in a no-attack and attack scenario. Differing strategies for
mitigating FDI attacks are studied in [27]. They compared
different approaches and determined that an attack-resilient
controller provided the best potential for mitigation. They did
not, however, develop a control or detection algorithm for
a CACC system. Additionally, in [28] they concluded that
a detection algorithm alone does not perform well enough
against FDI attacks, instead, showing that the combination of a
resilient controller and effective detection algorithm performs
the best at attack mitigation. In [29], only a detection algorithm
was developed. The algorithm is a cloud-based method that
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accurately detects an FDI attack in order to isolate the attacker.
This approach also did not create a resilient controller to
overcome the FDI attack once detected.

Another idea to mitigate FDI attacks that propagate through
communication channels is to disable the connectivity of
CACC and operate as purely ACC. However, in [32], their
approach was able to maintain CACC capabilities. This was
achieved by implementing a consensus-based control system
that checks each vehicle at every time step for anomalies to
identify and exclude a malicious vehicle from the loop upon
detection. This paper focused on designing a secure controller
and did not include a detection algorithm. In [33], they used
a neural network (NN) approach to detect and estimate the
FDI attack. The NN approach with their designed control
strategy proved effective against the injected attack. However,
the stability of the proposed method has not been investigated.

Unlike other papers in the literature, this paper aims to
develop a novel secure Lyapunov-based controller. Our study
introduces a control and estimation technique that integrates
both model-based and learning-based approaches. The goal
is to improve accuracy and processing time. Unlike tradi-
tional methods that exclusively employ either learning-based
or model-based techniques, our proposed method strikes a
balance between processing time and accuracy.! The designed
novel controller and observer are able to maintain the real-time
tracking of the lead vehicle while the communication channel
is under FDI attacks and measurement noise. Additionally,
this paper, unlike others, will also validate its controller and
estimation accuracy in real-world. The contributions of this
paper are summarized as follows: (i) a novel control strategy
is developed which is resilient under FDI attacks and measure-
ment noise, (ii) FDI attacks and measurement noise estimation
technique is developed which is able to estimate FDI attacks
and measurement noise in real-time and with high accuracy,
and (iii) the stability of the developed nonlinear controller,
nonlinear observer, and FDI attacks and measurement noise
estimator is illustrated using Lyapunov stability, and finally
(iv) the effectiveness of the proposed resilient controller is
shown both in simulation and experimental setup.

The rest of the paper is organized as follows: mathematical
model of CACC under FDI attacks and measurement noise
is formulated in Section II, section III describes the problem
statement of the paper, section IV illustrates the proposed solu-
tion including controller design, FDI attacks and measurement
noise estimator, and observer design. The stability analysis
of the designed observer and controller, and FDI attacks
and measurement noise estimation is explained in section V.
Section VI shows the results. Finally, section VII explains the
conclusion of the paper.

II. MATHEMATICAL MODEL OF CACC UNDER FDI
ATTACKS AND MEASUREMENT NOISE

CACC-equipped string of vehicles are shown in Figure 1.
It is assumed that the control command, velocity, and position

IThere is a trade off between accuracy and processing time. Learning-
based method has computational time problem and model-based methods
needs highly accurate model of system. Using an integration of these two
methods could improve the accuracy and processing time.
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Fig. 1. CACC-equipped string of vehicles.

from the lead vehicle are relayed to the following vehicle.
For a string of homogeneous vehicles with the same models
and CACC capabilities, the dynamics model of the vehicles
is described as below which is the dynamic model of a real
vehicle and was derived through an experimental setup

xi(t) = v (1)

) )]
Vi (1) = —a;jv; (t) + bju;(t) +d; (1),

where i € {2, - - - n} denotes the follower vehicle, n is the num-
ber of vehicles, and i — 1 indicates the lead vehicle. It means
that each vehicle follows its own leader. The equations are for
follower i with the leader i — 1. In Equation (1), a; € R and
b; € R are the constant parameters which were obtained from
experimental analysis in VI. Also x; € R, v; € R, u; € R,
and d; € R represent the position, velocity, control input, and
external disturbance, respectively.

Assumption 1: It is assumed that the vehicles’ movement is
in one dimension and they are moving along x axis [14], [26],
[34], [35].2

Assumption 2: The disturbance is assumed to be continuous
and bounded by a known constant such that ||d; (t)| < d; for
t > to, where d; € Roq [36].

A. FDI Attacks and Measurement Noise Representation

FDI attacks and noise are injected into the communication
network of connected vehicles such that vehicles that access
that information are obtaining corrupted data. This causes
instability in a platoon of vehicles, resulting in possible
collisions. For this paper, we assume that control command
is the only parameter affected by the attack, interpreted as
equation (3). The attack and noise affect the output, which
transforms it into the observed output as

(i1 (1) 2 w1 (1) + Bi (1), )

where 7r; € R is the attack function, u;_1 is the leader control
command, and B; is defined as

Bi(t) 2 wi (1) + 6;(1), 3)

2Considering the close proximity in which vehicles operate under CACC,
it is reasonable to assume their movement along a singular dimension,
particularly the x-axis.
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where w; € R is the bounded, unknown, continuous, and
time-varying FDI attack, and 6; denotes a bounded Gaussian
measurement noise.

Assumption 3: Bi(t) is assumed to be bounded and differ-
entiable such that |Bi(t)| < Pi, where t > ty and B; is a
positive constant.

III. PROBLEM STATEMENT

The main objective of this paper is to design a secure
controller that guarantees a safe distance between vehicles is
maintained, even while under FDI attacks, measurement noise,
and disturbances. The CACC algorithm requires a control
signal from the lead vehicle in real-time. However, adversarial
manipulation challenges this process, which potentially leads
to collisions. Therefore, our second objective is to design
a nonlinear observer and FDI attacks and noise estimation
mechanism to estimate the FDI attacks and noise in real-time
and mitigate their effects on the controller. To quantify these
objectives we defined some error signals as distance error, state
estimation error, and FDI attacks and noise estimation error.
The distance error, ¢; : [, 00) — R is defined as

ei(t) 2 x;(t) — x;_1(t) + D + xq.(t), )

where D; € R is the length of vehicle;, and x4, € R is the
desired distance between vehicles.

Assumption 4: The desired distance as well as its first and
second derivatives are assumed to be bounded by positive
known constants, xg;, X4;, X4, € Loo [37].

To facilitate the design process and stability analysis,
an auxiliary error equation is proposed as

rit) 2 6i(t) + ae; (1), )

where o; € R. g, is a user-specified known gain.

The follower vehicle are relayed false information from the
leader during FDI attacks and noise. Therefore, the accuracy
of the observer needs to be measured and maintained. A state
estimate error X;_| : [tg, 00) — R, is described as

B0 2 x () — fi1(0), 6)

where x;_; € R denotes the estimated position of the lead
vehicle.

To facilitate the stability analysis for the state estimation,
another auxiliary error signal r;_; : [fg,00) — R can be
defined as

ri—1(t) éJLCi—l(t)+0ti—1)?i—1(l)7 @)

where o;_1 € R.¢ is a user-defined gain.

For determining the accuracy of the control signal esti-
mation, an estimation error for the control signal, i;_;
[tg, 00) — R" is defined as

. A R
i1 =uj—1 — i1, ¥

where #;_; € R and u;—; € R are the estimated and actual
control signal of the leader, respectively.
Defining u;_ £ uj—1 + B; and i1 £ uj_1 — B yields

i1 =ui_y —iti—1 + B, &)
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Fig. 2. Proposed solution diagram.

where ,f?i € R is the estimated FDI attack and noise.

To measure the accuracy of the FDI attack and noise
estimation, the estimation error for the FDI attack and noise,
Bi : [tg, 00) — R"™, is defined as

Bi(t) & Bit) — Bi(0). (10)

IV. PROPOSED SOLUTION

In order to address problem statement, we proposed a
nonlinear Lyapunov based controller, a FDI attack and noise
estimator, and a nonlinear observer which will be discussed in
detail in the following subsections. Also, Figure 2 shows the
proposed solution diagram which is an integration of nonlinear
controller, observer, and FDI attack and noise estimator.

A. Controller Design

The control signal was designed using the Lyapunov stabil-
ity analysis in section V as

w0 2 o) — B )+ — B0 — i ()
i = bi i bi i—1 i—1 i bi d;

o al_2 1 K,
- ;ri(t) + —ei(t) — —ei(t) — —ri(1),
] ]

11
b bj b; an

where K, € R, is a gain specified by the user.

Time derivative of the error signals should be obtained to
be used in stability analysis section. Taking the derivative of
equation (5) and substituting (4) yields the closed loop form
of the system as

Fi() =% (t) — Xi—1(t) + Xg; (1) + e (2). (12)

Replacing ¥; and X;—; and (9) into (12) produces

Fi(t) = —a;vi(t) + biu;(t) +d;(t) + a;—1v;—1(t)
— biiti—1 (1) + biBi — di—y + F4, (1) + i é; (0).
(13)

Substituting (5) and (11) into (13) results in

;:‘l-:biﬂi—Kliri—ei+di_di—l' (14)
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B. FDI Attack and Measurement Noise Estimation

The detailed observer design in the subsequent subsection
includes a neural network-based FDI attack and noise esti-
mation algorithm and state estimator. The FDI attack and
noise, B;, occurs over a non-compact domain, so a nonlinear
mapping, Mg, : [fo, o0) — [0, 1] is required to map time to a
compact spatial domain given as

A Cﬁ,‘ (t - tO)

=2 7 rel0,1], t et 00),

. , 15
b et —10) +1 (15

where cg, € R describes a user-specified gain [38]. Con-
sequently the FDI attack and noise, B;(¢), is mapped into the
compact domain ¢ as

Bi(t) = Bi(M5 " (£)) = Buy, (£, (16)

where 'BMﬁ,- 1[0, 1] — R"™ is now defined.

Our developed neural network relies on real-time input data
to update its weights is used to estimate the FDI attacks which
is described as

Buy, (O) = W o (V'8 +vi, (17)

where §; € Ru+Dx! gionifies the inputs, vectors W; €
ROi+Dxni and v; e RWitD*m jndicate the unknown ideal
weights, and n, represents the number of neurons in the hidden
layer. Additionally, o(-) € R +D denotes an activation
function vector and y; € R™ signifies a bounded signal.

Considering respect to the spatial domain, the NN output
which is the estimation of the FDI attack and noise can be
described as

B =Wl (V] s, (18)

where W; € R@ithxni y. e ROi+Dxnn represent the esti-
mated ideals weights, and §; is given as

5= 11,901 (19)
where ¢; is defined as
¢i = bi(r — Fi1). (20)
Substituting (16), (17), and (18) into (10) yields
Bi=wloWTs) — Wl oVIs) + v @1
A Taylor’s series approximation is applied resulting
Bi=Wlo(V s+ W o' (VI sV si+ Ny, (22)
given
No, 2 WEo' (VT8 VEsi + Wo (VT s + v, (23)

where \71 = V,-—Vi is the inner NN weight error, Wi = Wi—Wi
is the outer NN weight error, % denotes higher order terms,
and N, is bounded such that ”Nn,- || < ny,, where n,, € R.g.

Resulting from the upcoming stability analysis, the updating
laws for the NN weights are described as

Wi = proj (T1,0 (VT 8)4il), (24)
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Fig. 3. Neural network diagram.

and

Vi = proj(ry 1 Wl o (V7 81)), (25)

where the function proj denotes a Lipschitz continuous pro-
jection operator defined in [39], and T'y;, 'y, € R™>*™ are
definite positive matrices.

Figure 3 which shows the diagram of NN is a clear
demonstration of input, output, layers, and weights of layers.

C. Observer Design
Based on the stability analysis in Section V, the nonlinear
observer for vehicle i is designed as
Xio1(t) = —ai i1 (t) + bi_yiti_1 (t) — bi_1 i + Ly;7i—1
+aiifio — o Fio1 + Fim1, (26)

where L, represents a user-defined gain
Taking the derivative of (7) with respect to time yields

Fio(t) = X1 () + i1 %51 (0). 27)

After substituting (27) and (7) with simplification, the
equation becomes
Fi1(t) = %1 (t) — Ki1(6) + a1 Fi1 (1) — R R (3)
(28)

Further simplification and variable substitution yields
Fio1 () = —ai—1vi1 (1) + bii 1 () + di1 (1) — %y
+aiiFioi (1) — o K1), (29)
Substituting (26), the final error equation can be further
simplified into
Fim1(t) = =bi—1Bi = Ly Fim1 (1) = i1 (1) + di1 (1), (30)

which will be used in stability analysis section.

V. STABILITY ANALYSIS

For the sake of simplicity () was dropped in further
calculations. Consider Vi, : RS x [0, 00) — Rso, a radi-
ally unbounded, positive definite, continuously differentiable
Lyapunov function displayed as

1 1 1. 1.
Vi =€l +or) + o5 STy BD)
where H; : [tp, 00) — Rx¢ is defined as

Al - o~ 1 1~
H 2 Etr(WiTFliIWi) + Etr(V,-Tle.lVi). (32)
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Since Wi and ‘7, are bounded, H; is bounded by |Hi| < H; max
where H; max € R-o. Furthermore, let p; € R* be defined
as

AT T =T

pi=lel il Fl x0T, (33)
and let vy, and v, be defined as

Al
v, = < pill?, (34)

2

and
A

¥y, = lpill®. (35)

Let the following be the sufficient conditions that are
obtained from (51) to

a1 >0,
o >0,
1 1
Ly, > —+ —
! 281 2e4
1 1
K >—4+— 36
i~ 282 + 28() ( )

where ¢, €1, €2, €3, and &4 denote positive known constants.
Based on the sufficient conditions in (36), positive constants,
oy, and oy, can be written as

A 1 1 37)
o, =L, —— — —,
I I 281 2e4
2K ! ! (38)
oy, = - — = —
2 i 280 2gp
where «3; is defined under (52).
Consequently ¢; is defined as
A €0 - &1 _ & -2 &3 5 &4 =
g = Enﬁ[_ + ?nil_ +dim + 361,.2_1 + 742_1. (39)

Theorem 1: For the nonlinear controller given in (11),
nonlinear observer in (26), FDI attack and noise estima-
tor in (18), dynamics in (1) ensure semi-globally uniformly
bounded tracking such that

1/’2,- (2 )

o3

; (40)

1

. 1
lim sup ||Pi (t)” = \/_(Hi,max +
100 Y,

given that assumptions 2-4 are satisfied and the sufficient
conditions in (36) are satisfied.
Proof: Taking the derivative of (31) yields
Vi, = eiéi + rifi + Xio1Xioy + Fio1Fio
—tr(W; T ' W) — tr (ViT5; ' Vp). 41)

The Lyapunov function satisfies the following inequality

Vi, < Vi, < Y2, + Himax- (42)
Substituting (5) and (14) into (41) yields
Vi, =ei(ri —aie;) +ri(biBi — Ki,ri — ei +di —di—1)
+ Fi1Xi1 + Fim1Fiog — tV(WiFfilVi’i)
— tr(ViT5, ' Vi). (43)
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Further simplification by distributing variable e; is given as
di—1) + Fi_1 %y

(44)

Vi, = —ajel +ri(bifi — Ki,ri +di —
+Fioifiog — tr (WD W) — tr (T3 V).
Plugging in (7) and (30) into (44) yields
Vi, = —aiel +ri(bifi — Kyri +di — di—1) + 51 (i
— X 1)+rl 1 (=bi—1Bi —L1 Fio1 — Xi—1 +di-1)
— tr(WiT W) — er (VT3 V). (45)
Simplification results in
Vi, = —aie? +ri(bifi i-1) —
— Ly,7E 1—19: 1Fi1Bi + Fioidi—y — tr(WiT )
—tr(V;T'y;! V). (46)

— Ky,ri +di —d

Substituting in ¢; from (20) yields
Vi, = —aie] + Bigi +ri(—Kyri + di — di1) —
— Ly, rl |+ Fic1di —tr(WF W) —tr(VlF Vl)
47)
Further substitution of (22) in (47) results in
Vi, = —aief + (W o (V1 80) + W o' (VT 8) V] 81)
+riN,, — Fi—i Ny, +1i(—=Ky,ri +di —di—1)
— ;X Llrl ]+rl 1di—1
—tr(WF W)—tr(VF V) (48)

Young’s Inequality is applied to select terms in (48) and
given as

1
riNp, < — ||Vi||2 + 8—0 | N, ”2

I A

3

Fi*an,'

| A

—||rl 12 +3H Nt |)?

- . = d ,
5 Irill? + = > JPAE

s

r,-d,-

A

ridi 1

IA

1 2, &3 2
— 5y Zdi_
263 lri 1~ + > ld;i 11l

1
— i1l (49)

ri—1di—1
2&4

A

4
2+ 5 lld;—11I?.

Weights of NN, Wi, \7, in (48) could be designed in the way
that last two terms of (48) could remove the (WiTo(‘A/iTSi) +
W' (VT8;)VT8;);. Then by designing the weights as (24)
and (25), and applying Young’s Inequality the equation (48)
becomes

: , 1 T
Vi, < —ajlleill” + =— llrill” + @i + =— lIri-1l
280 281

1 1
— Ky 72+ — el 4 — ]2
1 llrill” + % il + 25 lIrill

N N 1
— i IFi1 11> = Ly, IFi—1 11> + =— 7111 (50)

284
Combining similar terms results in

2
[

Vi, < —(@i—1) IZi-111* — (@) lle;
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TABLE I
SPECIFIC PARAMETERS

FDI Estimation Parameters
Activation Function: Sigmoid
ni=1,n,=1

Observer Gains
Q-1 = 0.01
Ly, =1

Controller Gains
o = 1
Ky, =2
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Fig. 4. Distance between Follower and Lead Vehicles.
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Knowing that the Lyapunov function is bounded, (51) can
be written as

a3, as;
__VL,- + _Hi,max + Di,
Vo,

¥,
where a3, £ min{e;_1, i, @1, @2, }.

Stability is assured given the sufficient equations provided
in (36) are satisfied.

Vi, <

(52)

VI. RESULTS

This section presents and discusses the results of testing
the proposed resilient nonlinear controller, nonlinear observer,
and FDI attack and noise estimator using MATLAB Simulink
and Experimental setup. The following subsections explain the
tests in details.

A. Simulink Results

In this section, MATLAB Simulink was employed to
validate the effectiveness of the proposed control method.
The results encompass representations of critical parameters,
including the distance between vehicles, the speed of both the
lead and follower vehicles, and plot depicting the estimation of
FDI attack and measurement noise. Design specific parameters
including controller and observer gains, activation function and
neurons numbers used in the neural network section are added
to the table 1.

As depicted in Figure 4, the distance in resilient controller
reflects the distance between the follower and lead vehicles
when utilizing the proposed resilient controller. This controller
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TABLE I

ROOT MEAN SQUARE ERROR OF DISTANCE

FDI Attack and Noise Injected

Resilient Controller

Baseline Controller

0.5 0.2386 4.0288
0.6 0.2874 4.4739
0.75 0.3611 5.1212
0.9 0.4381 5.5581
8
— — — Leader Speed

Follower Speed (Resilient Controller)

A S Follower Speed (Baseline Controller)

Speed (m/s)
N

0 I I I I
0 20 40 60 80 100 120 140 160 180 200

Time (Sec)
Fig. 5. Follower and lead vehicles’ speed profile.
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Fig. 6. FDI attack and measurement noise estimation (,3,-).

TABLE III
ROOT MEAN SQUARE ERROR OF FDI ATTACK AND NOISE ESTIMATION

FDI Attack and Noise Injected  Root Mean Square Error

0.5 0.1091
0.6 0.1310
0.75 0.1632
0.9 0.1940

ensures the consistent maintenance of a safe distance, 5
meters—the predefined desired distance between the vehicles.
Notably, the singular undershoot observed in the resilient
distance, occurring during the presence of the FDI attack and
noise, remains well within safe parameters, eliminating the
possibility of a collision. However, the distance in baseline
controller, representing the distance between vehicles in the
absence of FDI attack and noise estimation and compensation
in the controller, reveals a critical scenario where a crash and
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accident occur as the distance between the vehicles converges
to zero. To be more specific, table II provides the Root Mean
Square Error (RMSE) values between the actual distance and
the desired distance (5 meters). The first column presents the
values of the defined FDI attack and noise, with the second
and last columns displaying the RMSE for distance and desired
distance under the proposed resilient controller and baseline
controller, respectively. It is clear that there is a significant
difference between values in second and third columns. Errors
are smaller in resilient RMSE and it shows that distance is
converging to desired distance using proposed controller.

Figure 5 depicts the velocity profiles of both the lead and
follower vehicles. In the resilient scenario, the follower’s speed
follows the leader’s velocity, showcasing adherence to the
safety even in the presence of FDI attack and noise. Contrast-
ingly, the follower speed in baseline controller diverges from
the leader’s velocity. During the occurrence of an FDI attack
and noise, the follower accelerates, surpassing the leader’s
speed and resulting in a collision.

Finally, Figure 6 presents the estimation of the FDI attack
utilizing the proposed method detailed in IV-B. Also, table III
provides the Root Mean Square Error (RMSE) values associ-
ated with FDI attack estimation. The value of the error shows
the effectiveness of the estimator method as they are small
values. Notably, the table highlights a proportional increase
in the estimation error corresponding to the magnitude of the
step FDI attack. Also, the injected disturbance in dynamic
models of vehicles in Simulink is defined as d; (t) = d;_1(t) =
0.01sin(t/8).

To verify our assertion that the integration of learning-based
and model-based methodologies enhances both accuracy and
processing time, we conducted a precise evaluation of the
computational time in Simulink across two distinct scenarios:
our proposed method and the other relying solely on a model-
based strategy. The results showed that our hybrid method took
43.4720 seconds to complete, compared to the model-based
(baseline) approach, which required only 30.7659 seconds.
The additional time observed in our approach is attributed to
the integration of the learning-based component (NN), which
inherently adds to the processing time due to its complex-
ity. In a broader comparison encompassing learning-based,
model-based, and hybrid methodologies, the learning-based
method takes the longest time to compute, followed by our
hybrid method. The model-based strategy is the most efficient,
exhibiting the shortest computational time. Despite the longer
computational time, our analysis supports the use of the hybrid
approach that integrates both learning-based and model-based
techniques. Considering RMSE values in table II, the proposed
method strikes an optimal balance between improved accuracy
and a reasonable increase in processing time.

B. Vehicle Model Through Experimental Analysis

The dynamic model of the vehicle, as elucidated in
section II, was derived from an experimental setup featuring
a 2017 Ford Fusion Hybrid, research vehicle, Figure 7. In this
practical test, the first-order transfer function of the i’ h vehicle
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Fig. 7. Experimental setup.
is as
Vi(s
T(5) = 2, (53)
Ui(s)

where T;(s) is the first order transfer function of the vehicle
in the Laplace domain, s is the variable of Laplace domain,
Vi(s) is the Laplace form of the actual velocity, and U;(s) is
the Laplace form of control command which is the provided
pedal percentage which transmitted to the vehicle as an input.
To derive the transfer function of the vehicle, a series of
real-world tests were conducted, varying the pedal percentage,
and subsequently measuring the average actual velocity. The
calculation of the time constant (c;) from the averaged velocity
enabled the determination of the transfer function as

b;
T (s) = , 54
i(s) T+ a (54)
where a; € R is a constant value obtained as below
1
a = —, (55)
Ci
and b; € R is obtained from below equation
b. .
Ao S (56)
a; ui”

where v;; € R is the steady state value of the actual velocity
in the time domain, and u;; € R is the steady state value of
the provided input. Using Laplace inverse transform, dynamic
model of the i" vehicle is obtained from (53) and (54) which
has been explained in section II. The values of parameters
in (1) were obtained as b; = 6.6870 and a; = 0.1413.

C. Experimental Setup Test

The obtained real model of the Ford Fusion was used in
both Simulink test and experimental setup test. Experimental
setup test was employed to validate the results obtained
from MATLAB Simulink. The test configuration involves
the integration of the lead vehicle, the designed controller,
observer, and FDI attack estimator within MATLAB Simulink,
and a real-world passenger vehicle, specifically a 2017 Ford
Fusion Hybrid research vehicle as follower. During the test,
the resilient control signal is designed in MATLAB Simulink.
Through specific blocks within Simulink, the designed signal
is converted into a Controller Area Network (CAN) message.
This message is then transmitted to the real vehicle via CAN
communication. The interface within the vehicle that both
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Fig. 10. FDI attack estimation.

receives and sends CAN messages is known as the CAN
bus interface. To establish a connection between the Simulink
environment on the computer and the CAN bus interface in the
vehicle, we utilized Kvaser USB interfaces. After transmitting
the control signal to the vehicle, we obtained the vehicle’s
velocity as CAN messages. These messages are then sent
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back to MATLAB Simulink, enabling real-time monitoring
and adjustments as needed.

The results of the experimental setup test are depicted
in the following figures. Figure 8 showcases the distance
between the lead and follower vehicles, maintaining a safe
distance even during periods when a FDI attack is injected to
the communication channel. Despite the attack, the distance
is only momentarily reduced to 3.5 meters, still within the
predefined safe distance. Furthermore, Figure 9 illustrates
the velocity profiles of both the lead and follower vehicles,
demonstrating the follower’s synchronization with the leader’s
speed. Follower’s velocity obtained using proposed resilient
controller. This emphasizes the robust performance of the
control system in adapting to dynamic scenarios and mitigating
the effect of FDI attack. Finally, Figure 10 provides the
estimation of the injected FDI attack. Together, these figures
affirm the effectiveness of the proposed control method in
maintaining safety and resilience in the face of real-world
experimental conditions.

VII. CONCLUSION
A. Conclusion

CACC is an ADAS that collects data from a leading car,
along with its own onboard sensor data to adjust the vehicle’s
speed in order to maintain a safe distance between both
vehicles. An FDI attack and noise occur when incorrect data
is injected into the transmitted data, with the goal of causing
instability and collisions. In order to negate the effects of an
FDI attack and noise on a CACC system, both a secure and
resilient controller and estimation algorithm were designed.
The proposed designs accurately estimated the FDI attack
and noise and negated their effects on the vehicle, causing
it to maintain a safe distance throughout the entire tests.
The simulation was run through MATLAB/Simulink, and a
passenger vehicle was utilized in experimental setup test.
In this paper, we assumed that the lead and follower vehicles
have the same dynamic models, which are the real vehicle
model and obtained through experimental setup.

B. Future Work

Additional research could be focused on designing a secure
controller with an unknown leader dynamic model. Further
research into this area could outline the effects that an FDI
attack has on other communication signals, primarily velocity
and position. Also, another research could be considered
as using optimization algorithms to select optimal values
for controller and observer parameters. Additional research
focusing on negating the effects of different types of attacks,
TDS, and DoS, would prove beneficial because they are the
most common adversarial attacks on CAVs.
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