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Abstract—Temporal sharing of spectrum as in the CBRS
system provides wireless service providers (SPs) with spectrum
that is intermittently available. This intermittency can decrease
the value of the spectrum to a SP. In this paper we consider
a setting where a SP can pool multiple intermittent bands of
spectrum with independent availability. We find that pooling can
achieve a higher spectrum efficiency in terms of the congestion
incurred by users compared to using a single intermittent band
(with the same total bandwidth). We show that this efficiency
gain can be achieved with a relatively small pool of bands and
it quickly converges to the optimal case as the number of bands
increases. We also observe that pooled intermittency has a lesser
impact on bids if spectrum is auctioned.

Index Terms—wireless spectrum sharing, game theory, net-
work pricing

I. INTRODUCTION

Spectrum sharing has emerged as a promising technology to
meet the ever-growing demands for wireless spectrum. Shar-
ing provides new spectral resources for commercial service
providers (SPs) without the necessity of relocating existing
services, which can be cost-prohibitive and incur large delays.
However, spectrum sharing also incurs costs that must be
weighed against these gains [1]. In particular, for temporal-
based sharing as in the recent CBRS system [2], one cost
to commercial users from sharing is that they have a lower
priority to access the spectrum than federal incumbents [1].
This can make the spectrum intermittently available to a
commercial SP, which in turn can reduce the value of that
band of spectrum. This is a point made in a recent report on
CBRS commissioned by the CTIA, which notes that “Federal
preemption of commercial spectrum rights are a barrier to
applications that require guaranteed levels of service” [3].

In this paper, we consider an approach to mitigate the impact
of intermittency through pooling multiple intermittent bands
of spectrum, where each band’s availability is independent of
the others. The main idea is that by pooling such bands a SP
can dynamically shift their traffic to the available bands at any
time and so better maintain service in the face of intermittency.

Our objective is to study the market impacts of pooling
intermittent spectrum. We are interested in how much benefit
SPs can get from pooling and how it affects the congestion
level incurred by users. We also study how many bands are
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needed to achieve a considerable pooling gain and how it
affects the bidding result if the spectrum is auctioned.

Our analysis builds on the framework in [4] where SPs
compete via Cournot competition with a single licensed shared
band of spectrum (similar to PAL spectrum in the CBRS
system) and a single band of exclusively licensed spectrum.
Here, we instead consider a pool of shared bands for each SP.
Our main results are summarized as follows:

o Pooling intermittent spectrum always achieves higher
spectrum efficiency in terms of the congestion incurred by
users compared to using a single intermittent band with
the same bandwidth. In other words, from the perspective
of SPs, the revenue loss due to congestion is reduced by
pooling multiple bands.

e The revenue gain is bounded, and the maximum gain is
achieved by pooling an infinite number of intermittent
bands.

o The convergence rate of the revenue gain to the extreme
case is ©(1/n), where n is the number of pooled bands.
This means that the revenue gain converges quickly and a
considerable gain can be achieved with a relatively small
pool of bands.

o If a pool of spectrum is auctioned, the intermittency of
each individual band has a lesser impact on the final bids
submitted by the SPs.

These results suggest that a regulator may want to design
allocation mechanisms (e.g. auctions) so that SPs can create
packages of different bands of shared spectrum with indepen-
dent availability (e.g. by having bands that are shared with
different incumbent users). For example, suppose that there
are two distinct bands of spectrum each with bandwidth W
and with different incumbent users. Then, if these bands were
being allocated to two SPs, it may be preferred to allocate
W/2 of each band to each SP as opposed to allocating one
band to one SP and one to another.!

In terms of related work, this paper lies in a stream of
work that treats wireless spectrum as congestible resources
and analyzes the market impact of sharing policies, including
[4]-[8]. Much of this work has focused on models where
spectrum is not intermittent, unlike our approach here. These
types of models have also been used to study other aspects

1Of course these gains of pooling must be weighted against other costs
from using multiple bands as opposed to a single band.
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of spectrum markets such as security implications [9], the
bundling of content with service [10], or markets of spectrum
measurements [11]. Note that our work is different from work
on spectrum pooling as in [8] in which the same spectrum is
shared by multiple SPs to leverage statistical multiplexing due
to the randomness in their traffic. In this work, we consider
a setting in which a SP possesses multiple intermittent bands
of spectrum, thus the randomness lies in the spectrum itself
instead of the traffic. This work is more related to the field
of spectrum partitioning and there is a large body of work
on either the technical side [12], [13] or the policy side [14],
[15]. Note that the spectrum partitioning in [12] is used to
increase the overall throughput by fixing the data rate on each
partitioned band, which increases the SINR requirement for
each band. In this work, we partition the spectrum in order to
mitigate the impact of intermittency and we also show that the
revenue gain can be achieved with a relatively small pool of
bands. Thus if we consider enhancing the overall throughput
by maintaining a high data rate on each band as a by-product
of this partitioning, we still do not require a significant increase
in SINR.

The rest of the paper is organized as follows: Section II
introduces the pooling model. Section III examines the effi-
ciency of pooling multiple intermittent bands in comparison to
using a single intermittent band with the same bandwidth. Sec-
tion IV characterizes the Nash equilibrium within a spectrum
sharing market and discusses auctioning a pool of intermittent
spectrum. Finally, Section V concludes the paper.

II. THE MODEL

We consider a model in which there are N SPs competing
for a common pool of non-atomic customers through Cournot
competition as in [4]. Without loss of generality, we assume
that the total amount of customers (i.e., the market size) is
1. Specifically, SPs announce the quantity of customers they
want to serve. This in turn leads to a market-clearing price
given by

pa=P(X)=1-X, (1)

where X is the total quantity of customers announced by the
SPs, and P(-) is a linear demand function. Note that this linear
demand function is chosen for tractability and the main results
(i.e., Theorem 2, 3, and 4) of this paper are independent of the
choice of demand functions. Here, p, is the delivered price,
which is the total cost incurred by users for using the wireless
service. We assume that users are sensitive to congestion that
is measured in terms of a latency cost. The latency cost per
user when x users are served on a static’> band with bandwidth
B is given by -

=% @)
For intermittent bands, whenever a band is unavailable, the
SP reallocates the users on this band to other available shared
bands or its proprietary band.> For simplicity, we assume that

l(z,B

2The term “static” means there is no intermittency.
3For example, 5G networks support traffic steering across multiple spectrum
bands that could be used for this reallocation.

there is no cost for user reallocation and so our results can
be viewed as giving insight into the potential gains of pooling
when reallocation costs are small. The latency cost depends
on how SPs distribute users among their bands. We will derive
the latency cost for intermittent bands under the optimal user
allocation later.

The service price that a SP charges its users is given by the
difference between pg and the latency cost incurred by that
SP’s users. In other words, the latency experienced by users
will cause a revenue loss to SPs, as they can not charge as
much for a congested network.

Suppose each SP i € {1... N} possesses a proprietary band
with bandwidth B; and a pool of n; € N licensed shared
bands with aggregate bandwidth W;. For analytical conve-
nience, we assume that the bandwidth §; of these licensed
shared bands are the same, i.e.,

0; = m 3)
n;
SPs have exclusive use of their own proprietary bands whereas
they share their licensed shared bands with incumbent users
who have higher priority, which makes these bands intermittent
to the SPs. The intermittency of each shared band is modeled
by a Bernoulli random variable which takes value 1 with prob-
ability a; € [0, 1] meaning the corresponding band is available.
We assume that, for each SP, the Bernoulli random variables
among different shared bands are mutually independent and
identically distributed (IID). Therefore, the spectrum resources
of SP i can be characterized by a tuple as (B;, W;, n;, «;).

Next, we derive the average latency cost of SP i when
serving x; users with spectrum resources (B;, Wi, n;, a;).
From the perspective of SP i, if x; is given, it will try to
maximize its revenue (which is equivalent to minimizing the
loss due to the latency cost) by choosing an optimal user
allocation strategy.

First, we consider a SP which possesses a collection of K
static bands (i.e., the availability ap, = 1, V&) with bandwidth
B = (By,...,Bk). Given a vector of user allocations
v = (y1,...,yK) and a delivered price pgy, the service price
charged by this SP on band K is given by pg — %—z. Thus the
revenue of this SP is in turn given by

K y K K Y2
k k
§ : — ) = E - § Zk 4
Yk (pd Bk) Pd ) Yk B, €]
k=1 k=1 k=1

If we consider the second term in (4) as the revenue loss
due to the latency experienced by its users, then we naturally
define the revenue loss as:

Loy S YR
) =2 5 (5)
k=1

If the total amount of users is given, then the optimal user
allocation is characterized by the following lemma.

Lemma 1. Consider a collection of K static bands with
bandwidth B = (Bi,...,Bk) and © = Eszl Yy total
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amount of users. Under the optimal allocation, the amount
of users served on the k-th band is given by

By,
—%
Zj:l B

which is proportional to the bandwidth By. The revenue loss
in turn is given by

. (6)

Yr =

372

B 25:1 Bk'

Proof. Lety = (y1,...,yK) be the vector of user allocation.
For convenience, let py, = y/ By, be the user density on the k-
th band, then with some abuse of notation, (5) can be written
as

L(z,B) := L(y”) (7N

K
Lip) = Buk ®
k=1
The minimum revenue loss can then be formulated as follows:
min L(p),
P

K
s.t. Z Bypr = x; 9)

k=1

or>0, k=1,... K. (10)

Since the objective function (8) is convex and the feasible set
is also convex, strong duality holds. The Lagrangian is

K K
La(p,pn) =Y _ Bipj + 1 (Z Brpr — 5E> : (1D
k=1 k=1

where 1 is the Lagrangian multiplier of the equality constraint.
Let g(p) = ming.p>0 La(p, ). The solution to the dual
problem max,, g(y) is given by:

2x

W= - = (12)
25:1 By,
oM x
=% = = (13)
2 Eszl By,
()= g(u*) o (14)
Lp")=9(1") = =g
Zszl By,
O

Note that Lemma 1 implies that a SP should spread its
customers across a set of static bands so that the user density
per unit bandwidth on each band is equal. An immediate result
from Lemma 1 is that pooling K static bands with bandwidth
B = (By,...,Bk) is equivalent to having one single band
with bandwidth B = Zszl By, and a revenue loss of

— x2
L(z,B) = 5 (15)
In other words, for the assumed model with static bands,
having either one band or a pool of bands with the same
bandwidth is equivalent. Next we will see that this is not the
case with intermittent spectrum.

Assume a SP possesses a spectrum profile of B =
(B,W,n,«), which contains intermittent bands. Since there
is no penalty for user reallocation, whenever k shared bands
are available, the minimum loss is achieved when users are
served on the k available bands as in Lemma 1, i.e., with an
equivalent bandwidth of B = B + k§ in (15). The expected
revenue loss of this SP averaged over the possible realizations
of channel availabilities is then given by

B 2
E [L(:c,B)] —F [Biay] (16)
o (et -t

- kZ:O Btko 17

where 6 = W/n, and Y is a binomial random variable such
that Y ~ Binomial(n, ).

Next, we derive the revenue of SP ¢ € {1... N} in a market
of N SPs. Assume SP ¢ possesses the spectrum of B; =
(B, Wi, n;, ;). The revenue* of SP i is then given by

n n\ k _ n—k
Rizz-(pdxiz(’“)o‘ 1-a) ) (18)

2" Btk

=paz; — E [L(xi,fii)}
=P (i xk> z; — E [L(x“ﬁz)}
k=1
= — (ZN: xk> 5 —E[L@,B)|, (9
k=1

where x1,...,xn are the users served by the N SPs.

From (19) we can conclude that the revenue of each SP is
coupled with that of other SPs through the delivered price py
which is determined by the total demands ij:l 2. SPs suffer
arevenue loss determined by the amount of users z; they want
to serve and the amount of resources B; they have. Each SP
wants to maximize its revenue and this coupling makes it a

game among SPs.

III. EFFICIENCY OF POOLING INTERMITTENT SPECTRUM

In this section, we study the efficiency of pooling multiple
intermittent bands compared to using one single band with
the same expected bandwidth. Specifically, we compare the
revenue loss when n > 2 intermittent bands are pooled, i.e.,
B" = (B,W,n,a), to the case when B = (B,W,1,q).
By abuse of notation, we also use B” and B! to denote the
random variables that represent the corresponding available

4As mentioned before, the service price charged by each SP is the difference
between pg and the latency cost incurred by its users. Thus (18) holds because
the revenue of SP i is given by the product of the amount of users z; and
the corresponding service price.
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bandwidth. Note that for a fair comparison, the expected
bandwidth is the same in both cases:

E [1’3”} = B+ n(ad)

:B—&-n(a%)
=B+ alW
:E[El}.

Theorem 2 (Revenue Loss Inequality). Given the same ex-
pected bandwidth of the intermittent bands, serving the same
amount of users on a pool with n > 2 intermittent bands yields
a smaller revenue loss compared to the case in which there is
only one intermittent band. That is, the following inequality
holds:

(20)

E[L(z,B")] <E[L(z,BY)], 1)
for any x > 0, or equivalently,
n n\ .k n—k
(e (1 — ) . -«
. 22
2 SByw B @2)

w
P B+ k-

According to Theorem 2, pooling any number of intermit-
tent bands can reduce the revenue loss compared to serving
users on a single large intermittent band, indicating that
pooling can achieve higher revenue. This suggests that to mit-
igate the impact of intermittency, regulators should consider
providing SPs with multiple bands with independent (or less
correlated) incumbent activities. One possible way to achieve
this is to assign each SP multiple bands that are spread over a
large span of spectrum instead of a single band that occupies
a certain range of spectrum to reduce the correlation between
bands.

Next, we study the asymptotic behavior of revenue loss
as n goes to infinity. We want to examine the theoretical
limit of the pooling efficiency. Consider the case in which
there are infinite arbitrarily small intermittent bands with finite
aggregate bandwidth W, i.e., B® = (B, W, 00, a).

Theorem 3 (Pooling Infinite Intermittent Bands). Consider a
spectrum profile of B> = (B, W, 00, «), the revenue loss due
to the latency incurred by users is given as follows
2
~ T
E L@ B%)|= .

(2, B%) B+ aW
which also provides a lower bound of revenue loss, that is

(23)

E [L(x, EOO)} <E {L(m,fi")} Wnell,2,...}. (24)

Proof. Consider a profile B” with n intermittent bands. Ac-
cording to (16), the expected revenue loss is

(25)

Since Y ~ Binomial(n,«), by the law of large numbers
(LLN), Y/n converges to a as n — oo, which also implies

the convergence in distribution. Then by weak convergence,
(23) holds.
To prove (23) is a lower bound, define

9(y) : !

=, (26)
B+ 2w

which is a convex function of y. Then by Jensen’s inequality,
we have

Elg(Y)] zg (E[Y])

=g (an)
1
“Braw @7
O

From Theorem 3, we can conclude that, with a large number
of intermittent bands, the equivalent bandwidth approaches
B + oW without intermittency as n goes to infinity. In other
words, B> is equivalent to a static band with bandwidth
B + aW in terms of revenue loss. Also, (24) indicates that
the gain of pooling is bounded as n increases.

Next, we examine how fast the lower bound in (24) is
achieved by increasing the number of pooled bands.

Theorem 4 (Order of Convergence). The revenue loss with
finite pooled bands converges to the extreme case given by
(23) with order ©(1/n), that is’

E {L(x,f’)”)} ~E [L(m,f}f’o)} - (31) . @8

The convergence rate given by Theorem 4 is relatively fast.
This suggests that it is not required to have an extremely large
n to achieve a near-optimal pooling gain, proving pooling
intermittent bands is an efficient strategy. This also means
that in the meantime we can increase the overall throughput
by fixing the data rate on each band without worrying too
much about the increasing SINR requirement. The numerical
result below will show that a relatively small n can achieve a
considerable improvement in latency.

Fig. 1 gives a numerical example of this asymptotic be-
havior of E[L(z, B™)]. As shown in Fig. la, pooling multiple
intermittent bands (i.e., n > 2) always yields less revenue loss
compared to using a single intermittent band (i.e., n = 1), as
suggested by Theorem 2. Pooling infinite intermittent bands
provides a lower bound of revenue loss, as suggested by
Theorem 3. It is also worth noting that there is a significant
reduction in revenue loss even when n = 2 compared ton = 1.
Also, the revenue loss with n = 5 is already close to the lower
bound, indicating that the lower bound is easy to approach with
a relatively small number of intermittent bands. Also note that
the largest gains from pooling occur with oo = 0.5, i.e. when
50% of the time, the channels are not available. If channels
have larger (or smaller) availability, then the gain in increasing

SHere, the notation that f(n) = ©(g(n)) means there are constants P and

Q s0 that limy 00 L2 < P and limy, 00 423 < Q.
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B" = (1,2,n,0), 2 =1 B" = (1,2,n,05), 2 =1
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(0% n

(a) Revenue loss (b) Difference

Fig. 1: (a) shows the revenue loss E[L(z, B")] vs. a and
number of partitions n. (b) shows the difference in (28) vs. n
with fixed a = 0.5.

beyond n = 2 reduces. Fig. 1b shows the difference in (28) for
a = 0.5 versus n. This has the shape of ©(1/n), as suggested
by Theorem 4.

IV. EQUILIBRIUM AND AUCTIONS
A. Nash Equilibrium

Consider a market of N SPs and each SPi € {1... N} pos-
sesses bandwidth B; = (B, Wi, n;, ;). We assume a Cournot
competition among these SPs in which SPs simultaneously
announce the amount of users (z1, ..., 2y) they plan to serve.
Each SP i strategically chooses x; to maximize its revenue R;
which is given by (19).

To simplify the notation, we define

-1

T4 (Z‘)O&f(l _ ai)nifk
T, = : ; (29)
T

which can be considered as the equivalent bandwidth of B..
With this definition, we rewrite (19) as

2
[

N
o
Ri =T; — <kz:1l‘k> Ty — ?

(30)

2

The following theorem gives the Nash Equilibrium of this
game.

Theorem S (Equilibrium). There is a unique Nash equilibrium
given by
1 1

. . 3D
3 N
tq 1435 ﬁ

Proof. This theorem can be proved by solving OR;/0x; = 0
for all users. O

From (31), we observe that

which means the more spectrum resources a SP possesses, the
larger its market share will be at the equilibrium.

By =1.0, By =05, W =50 By =10, B, =05, W =5.0

0.125 A 0.125
0.100 A 0.100 A
0.075 1 0.075 1
o b}
“ 0.050 “ 0050
0.025 0.025 1
0.000 A 0.000 A
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
a
—— SP1, n=1 === SP1, n=0c —— SP1, n=4 === SP1, n=0c0
SP2, n=1 SP2, n=co SP2, n=4 SP2, n=c0

(@n=1vs.n=oc0 b)yn=4vs.n =00

Fig. 2: Bids vs. availability o with different numbers of
partitions n in a second price auction.

B. Auctions

Next, we study the effect of pooling intermittent spectrum
on auction results. Consider a market of two SPs, i.e., N = 2,
and each possesses B; amount of proprietary spectrum and
no shared spectrum. Now assume a pool of intermittent bands
with aggregate bandwidth W, partition n, and availability «
is to be allocated through a second price auction. Since in
a second price auction, truthful bidding is an equilibrium,
we assume that each SP bids the revenue difference between
winning and losing.

Fig. 2 shows a numerical result of the bids offered by two
SPs with proprietary bandwidths B; = 1 and By = 0.5.
Fig. 2a shows the bids versus « for n = 1 and n = oo; Fig. 2b
shows that case of n = 4 and n = co. In every case SP1 (the
SP with the larger value of B;) wins the auction. The reason
behind this is that having more proprietary spectrum enables
SP1 to better absorb traffic offloaded due to the intermittency.
However, the difference between the bids becomes smaller
as n increases. This suggests that should a regulator want to
offer bidding credits to help a small SP compete,® the amount
of credit needed would reduce with more pooling. Note also
that when n = 1, the bid curves are a convex function of
o, meaning that the spectrum needs to have a fairly high
availability before the SPs are willing to submit large bids.
However, when n = 4 (or n = o0), these curves are concave in
«. This means that the bids increase more rapidly in o showing
that pooling spectrum with a lower availability is valued more.

V. CONCLUSIONS

We studied the market impacts of pooling intermittent spec-
trum and showed that pooling can boost spectrum efficiency
in the sense that it can reduce the congestion experienced by
users, leading to less revenue loss by SPs. The improvement in
efficiency is an increasing function of the number of pooled
intermittent bands but it is also bounded. The improvement
converges to this upper bound on the order of ©(1/n) as the
number of pooled bands n increases. Numerical results show
that a considerable efficiency improvement can be achieved

SFor instance, the FCC permits certain qualified small business or rural
providers to utilize bidding credits in the auction of CBRS band.
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with a small pool of bands, indicating that pooling may be an
efficient way to increase the value of intermittent spectrum.
This is also illustrated in a simple auction model, where
pooling is shown to reduce the impact of intermittency on
bids. A natural next step for this work would be to model
the costs of switching between different bands and understand
how that may impact the benefits of pooling.
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APPENDIX
A. Proof of Theorem 2

We prove this theorem by induction.
Before we begin the proof, we first introduce the following
Arithmetic mean-Harmonic mean (AM-HM) inequality:

which holds for any positive a and b.
To prove (22), we first verify the case of n = 2, which is

a 11—« a? 20(1 —a)  (1-a?)
>
Br2 B “Bio B+ 5
where § = W/2.

By scaling, this is equivalent to the following inequality

! 11—« a? 20(1 —a) (1-a?)
> 36
m+ 2 m T om+2 m+1 + » (36)
where m = B/d. We can simplify (36) as follows:
a—a?> (1-a)—(1-a)?_ 2a(l —a)
m+ 2 m - m+1
a(l —a) n a1l foz)> 2a(1 — )
m—+2 m m+1
PR W A
m+2 m_ m+1

By (34), (37) holds.

It is worth noting that, in the proof of n = 2, we use the
inequality (34) once. One can verify that the case of n = 3
can be proved by applying (34) twice. Theoretically, for any
larger n, the proof can be done by using (34) for n — 1 times.
Thus for any n, (22) would eventually boil down to (34) after
some manipulations.

Back to the proof, it is obvious that (36) holds for any
positive m. Thus, for the induction hypothesis, we assume the
following inequality holds for any positive m:

1— n—1 /m—1 Oék 1—a n—1—k
—— “zz(k) S ETS
m+n-—1 m P m+k
from which we want to prove the following holds:
1— n n ak 1—a n—k
Y ()o™(1 = o) (39)
m+n m = m+k

Starting from the left-hand side of (39), we split each term
into two terms as follows:

a? a—a?
_i_i
m-+n m-+n

LHS:(

b 2
T (33) m m
a = < - >+(1—a)<1a>
or equivalently, L1 5 m+n m
-+ > (34) all—a) a(l—a) 40
a b afl m+n m (40)
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In order to apply the hypothesis (38), we add and subtract the
term we want in the first and second terms, respectively:

1-— 1-—
LHS =« “ e a +(1—a)
m+n m+1 m+1
le} 1l—« le}
_|_ —
<m—|—n—1 m m+n—1)
a(l-a) ol —a)
m-+n m
« 1 —«
= —+
(m+n m+1>
e (1-a)
1—
+ CO(m—i—n—l m >
+a(l —a)C, 41
where
1 1 1 1
C = — — — . 42
m+n m m+1 m4+n-—1 (42)

Then, we can apply the hypothesis to the first term as follows:
« 1—a « 1l-«a
+m—|—17 (m+1)+n—1+m+1
« 1l-«a
'+n—1 + m’
n—1 (n;l)ak(l _ a)n—l—k

m +k

m+4+n

3

> N C X))

™~
Il

0

where m’ =m + 1.
Similarly, we apply the hypothesis to the second term in
(41), then we have

LHS >aA+(1—a)B+a(l —a)C, (44)
where
n—1 m-1\ k n—1—k
( X )a (1-a)
A= 45
kZ:O m+1+k ’ 43)
n—1 m—1 k n—1-—k
a®(1 —«a
B= (") 77(1+ : ) (46)

k

Il
=)

Next, we will prove that «A+(1—«)B = RHS and C > 0.
To see this, by pulling the last term in A from the summation
and the first term in B from the summation, we have

we have
aA+(1-a)B
_an - (@er et (1—a)n
. s
m-4+n P m+k m
:i (Z)ak(l . a)n—k
— m+k
=RHS (50)
To prove C' > 0, we rearrange (42) as follows:
1 1 1 1
C= — _ _
m+n m-+1 m+n—1 m
1 1
= 1 — —
0= (G~ weenT)
>0, (51)
which holds for any n =1,2,....
Therefore, from (44), we have
LHS> RHS + a(l —a)C
> RHS. (52)

B. Proof of Theorem 4

We first simplify the difference by ignoring the coefficient
which does not affect the order of convergence:

_Y

. ] (53)

E|[L(@,B")| - E[L(,B%)|xE LW

Then define a function f: R - R

o Y
and let y = o« — Y/n which takes values in [ov — 1, a]. Then,
from (53), the difference is proportional to E [f(y)].
Now, it is equivalent to proving that

(54)

li_>m nE [f(y)]> K1, (55)
T nE [/(y)]< Ko, (56)

where K; and K5 are some non-zero constants.
We start with the proof of (55). The k-th order derivative

of f(y) is given by

n n—2 -1\  k+1 n—1—k
o (" H e (1 - a) HWE-1(B
ad= +2 7 y) = Bl (57)
m+n = m+1+k (B + oW — Wy)k+1
_an no! (Zj)ak(l — )"k 47 with y € [a — 1, .
T m4n + P m4+k ’ @7) By Taylor’s Theorem [16], we can write f(y) as the
summation of its (n — 1)-th order Taylor approximation at
and y = 0 and an error term as follows
n—1 (n—l)ak(l _ a)n—k (1 _ a)n n—1
1—a)B= k .48 AR @)
(1-a) ;1 mk m =3 L Oy L0 (58)
= k=0 ) '
Then, by Pascal’s rule which is which holds for some ¢ between y and 0.’
n—1 n—1 n
E—1 + k “\r) (49) 79 is a function of y.
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Next, let n = 4, we have

_ Y W 2 w? 3
W =g7aw " Branz? T Brawy?
3
W3 (B+aW) (59)

(B+aW —wy)y?

Since y € [ — 1, a], we have § € [@ — 1, a]. Then one can
verify that the last term in (59) is non-negative, which implies

that

Yy w 2 >

w
> % (60
W 25wt mramz? T B amy? ©0
Note that
Y
E[y]_]E{Oé] = *@:0; (61)
n n
v\° Y 1
21_ _
E[y*]=E (a—n) =Var (n) = ﬁVar(Y)
_aol-a) (62)
n
Then we have
Jim nE[f(y)]
. w a(l —a) w2 3
>1 0 E
S oo ( + (B+aW)?2 n + (B+aW)3 ]
a(l —a)W w2 . 3
= =1 Ely”]. 63
(B+aW)?2  (B+aW)3 nooo ] (63)
By the central limit theorem, the random variable \/ny =
vn(a — Y/n) converges in distribution to a normal
N(0,a(1 — «)). Thus, E[(v/ny)?] will converge to the

third moment of a zero-mean Gaussian, which implies that

lim,, 00 E[(v/ny)?] =
Continue from (63), we have

lim nE[f(y)

Oé(l 70[)W w2
_(B—I—aW)2 (B+aw) n~>oo n\f [(fy) ]
_Oé(l —Q)W Ww?2
_(B+QW)2 (B+aW) n_}(x)f [(\Fy) ]
Cal—a)W
“(B+aWw)?’ (64)

which proves (55) with K; = %_

To prove (56), we revisit the Taylor approximation in (59).
We can conclude that the last term in (59) is finite for any
y € [ —1,a], since § € [@ — 1,a]. Then there must exist a
constant C' such that the following equality holds:

2

y w w
fly) < + Sy° + =y’

Then we have

lim nE[f(y)]

n—oo
w a(l —a)
(B+aW)?2 n

< lim n(O—i—

n—oo
+CEly*))
_a(l—a)W

(B+ aW)?
Recall that y = o — Y/n.

+ C lim nE[y*.

n—oo

(67)

(@ na(l —a) (14 (3n —6)a(l — a))

_e(l-a) (14 Br-6a(l-a) o

n3

where (a) holds because E |(na — Y)ﬂ is the 4-th central

moment of Y ~ Binomial(n, «).
Continue from (67), we have

. a(l —a)W
Jm B WIS G ame
+C tim 2L (@4 (32 —6)a(l — a))
n— o0 n
al-a)W
" (B+aw)?’ (69)
which proves (56) with Ky = %_
Since K1 = K5, we can conclude that
. a(l —a)W
1 E et Sl A
Jim nE [f(y)] CEE (70)

B+ oW = (B+aW) (B+alW)3
+Cy?. (65)
A simple choice of C' could be
W3(B + aW)
C = inf — < 00. 66
yela—1,0] (B 4+ aW — Wi(y))° (66)
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