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Purpose: Identify Oropharyngeal cancer (OPC) patients at high-risk of
developing long-term severe radiation-associated symptoms using dose
volume histograms for organs-at-risk, via unsupervised clustering.

Material and methods: All patients were treated using radiation therapy for OPC.
Dose-volume histograms of organs-at-risk were extracted from patients’
treatment plans. Symptom ratings were collected via the MD Anderson
Symptom Inventory (MDASI) given weekly during, and 6 months post-
treatment. Drymouth, trouble swallowing, mucus, and vocal dysfunction were
selected for analysis in this study. Patient stratifications were obtained by
applying Bayesian Mixture Models with three components to patient's dose
histograms for relevant organs. The clusters with the highest total mean doses
were translated into dose thresholds using rule mining. Patient stratifications
were compared against Tumor staging information using multivariate likelihood
ratio tests. Model performance for prediction of moderate/severe symptoms at 6
months was compared against normal tissue complication probability (NTCP)
models using cross-validation.

Results: A total of 349 patients were included for long-term symptom prediction.
High-risk clusters were significantly correlated with outcomes for severe late
drymouth (p <.0001, OR = 2.94), swallow (p = .002, OR = 5.13), mucus (p = .001,
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OR = 3.18), and voice (p = .009, OR = 8.99). Simplified clusters were also
correlated with late severe symptoms for drymouth (p <.001, OR = 2.77), swallow
(p =.01, OR = 3.63), mucus (p = .01, OR = 2.37), and voice (p <.001, OR = 19.75).
Proposed cluster stratifications show better performance than NTCP models for
severe drymouth (AUC.598 vs.559, MCC.143 vs.062), swallow (AUC.631 vs.561,
MCC.20 vs -.030), mucus (AUC.596 vs.492, MCC.164 vs -.041), and voice
(AUC.681 vs.555, MCC.181 vs -.019). Simplified dose thresholds also show
better performance than baseline models for predicting late severe ratings for
all symptoms.

Conclusion: Our results show that leveraging the 3-D dose histograms from
radiation therapy plan improves stratification of patients according to their risk of
experiencing long-term severe radiation associated symptoms, beyond existing
NTPC models. Our rule-based method can approximate our stratifications with
minimal loss of accuracy and can proactively identify risk factors for radiation-
associated toxicity.
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quality of life

1 Introduction

With advancements in precision radiation therapy and the
emerging dominance of HPV-driven tumors over smoking-
related tumors (1), patient survival has improved significantly
for Oropharyngeal Cancer (OPC) patients (2, 3). Despite this,
survivors that receive radiation therapy frequently suffer severe
lasting side effects that can significantly reduce quality of life
following treatment as a side effect of radiation-induced damage
to organs, such as xerostomia (drymouth) or difficulty swallowing
(4). Damage to vital organs such as salivary glands and swallowing
muscles from radiation is a major factor in reduced quality of life,
and precisely determining the risk associated with patient
treatment plans can help physicians improve patient endpoints
in two ways (5). First, it allows oncologists to identify which
organs to prioritize when designing individualized treatment
plans. Second, when risk of organ damage is unavoidable,
oncologists can prescribe preventative treatments, such as
occupational therapy, to minimize side effects.

Existing approaches to radiation treatment planning often
consider single-value dose thresholds for key organs (6). For
xerostomia, existing guidelines recommends limiting the mean
dose to the parotid glands to under 20Gy to the contralateral side,
or 25Gy for the ipsilateral side (7), although other research suggests
higher dose thresholds of 35.7Gy (8). Single-dose thresholds are
useful in their practicality for clinical researchers but suffer from
poor generalizability and fail to consider interactions between
multiple organs, or effects from different dose distributions that
yield similar mean doses.
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Other approaches such as Normal Tissue Complication
Probability (NTCP) models attempt to account for 3-dimensional
dose distributions to organs by considering the contribution for
different parts of the dose-volume histogram to output a final risk
probability (9). Existing xerostomia NTCP models mainly consider
mean doses to organs at risk (10). NTCP models can outperform
dose thresholds but suffer from higher complexity that may lead to
overfitting on the data, and are difficult to use for dose planning
(11). More complex deep learning models have shown good
performance in predicting patient endpoints (12). However,
research has suggested that despite improvements in performance
from deep learning models, they don’t outperform standard
statistical approaches in practice due to their poor transparency
and generalizability (13).

To address this problem, we present an unsupervised learning
method for stratifying patients based on 3D dose distributions to
relevant organs-at-risk, to identify clusters of patients that are at risk
of radiation-associated long-term severe symptoms after treatment.
By using clusters as proxies for risk, these clusters can serve as risk
stratifications for patient symptoms that account for complex dose
distributions to multiple organs at risk, while maintaining simplicity
and actionability not seen in NTCP or more complicated models. To
translate these stratifications into more actionable doses, we also
propose a method of producing a set of dose thresholds to
approximate the high-risk group. Focusing on predicting patient-
reported drymouth, we compare our risk stratification to existing
dose-based models and models using clinical factors to show that our
cluster-based and simplified threshold-based stratifications can be
used to improve risk predictions of self-reported symptoms.
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2 Methods
2.1 Overview

We detail our methods in the following sections as follows: (1)
diagnostic and treatment data is collected and preprocessed from a
cohort of Oropharyngeal cancer patients. We then filter out relevant
patients and preprocess relevant features. (2) Patient treatment
plans are fed into a clustering algorithm in order to extract patient
risk clusters. (3) Ruling mining is used to produce a set of dose
thresholds that approximate the high-risk cluster. (4) We perform
multivariate correlation testing to show that the clusters are
correlated with severe long-term toxicities. (5) We perform cross-
validation using logistic regression to compare the performance of
our clusters to normal-tissue complication probability models. An
overview of our process is shown in (Figure 1). The remainder of
this subsection details an overview of our methodology.

First, we select a set of dosimetric features for organs relevant to
each toxicity, and cluster patients based on these features into three
clusters that correspond to low, medium, and high dose groups. We
then identify the high-dose group, which is assumed to be the group
at higher risk of long term drymouth due to damage to the relevant
organs. Thus, inclusion in this high dose cluster can be used as a
stratification metric for risk of tissue damage. In order to produce a
more actionable and explainable stratification, we also identify a
minimal set of dose thresholds to organs at risk which closely
models membership in this high-risk group.

For this paper, we consider the following four self-reported
symptoms: drymouth, difficulty swallowing (swallow), excessive
mucus (mucus), and voice dysfunction (voice). Drymouth has
been shown to be an accurate indication of salivary function (14),
and other symptoms are included as we theorize that they are also
causally linked to damage to key tissues. Separate feature sets
(choice of organ and dose thresholds) and clusters are generated
for each symptom.

10.3389/fonc.2023.1210087

Our symptom data is self-reported ratings of symptoms at their
worst between 0 (none) and 10 (the worst I can imagine) taken from
the MD Anderson Symptom Inventory (15). To identify long-term
outcomes, we consider the reported symptom rating during the
patient’s 6 month (late) followup. We consider whether the
reported symptom is > 4 (severe), as well as the change in
reported symptom from the patient’s reported drymouth at the
start of treatment is > 4 (severe change). These result in 2 binary
outcomes for each symptom. Values measured during treatment
were only used for imputing baseline values.

We demonstrate that our stratifications are highly correlated
with self-reported late symptoms using multivariate likelihood ratio
tests, and well as cross-validation to demonstrate that the clusters
provide better predictive performance for late symptoms relative to
existing clinical and normal tissue complication probability models
(7, 10, 16), while being more explainable and accessible in
real settings.

2.2 Data collection and preprocessing

Data were collected retrospectively from a continuously enrolled
cohort of Oropharyngeal patients treated using curative-intent
Radiation Therapy at the MD Anderson Cancer Center between
2010 and 2021. DVH histograms were collected from pre-treatment
CECT scans taken prior to the start of treatment. Organs of interest
were segmented, and dose-volume histograms were extracted using
commercially available software (17), as described in (18). Additional
information such as T-stage, N-stage (19), HPV/p16 status, tumor
location, demographic information, and initial ECOG performance
score (20) was collected from electronic health record data. T and N
stage are existing risk stratifications based on the size and spread of
primary and secondary tumors, respectively, while ECOG
performance score is an indicator of the patient’s level of
functioning at the start of treatment.
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FIGURE 1

Overview of the methods used for each symptom of interest. First, relevant ROIS and DVH features are selected. These features are used to
vectorize each patient and cluster them using a Gaussian Mixture Model. Clusters are then converted into a set of dose thresholds to approximate
the high-risk group. Both clusters and simple clusters are evaluated using multivariate likelihood-ratio tests and cross-validation against NTCP
models with clinical covariates to assess how predictive they are of the symptom of interest at 6 months.
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To collect symptom information, patients were asked to fill out
an MD Anderson symptom inventory (MDASI) questionnaire (15)
at weekly intervals during treatment, as well as during follow up
sessions at 6 weeks, and 6 months after treatment, for a maximum
of 9 time points. These questionnaires asked patients to rate the
severity of 28 side eftects, including drymouth, on a scale of 0-10.

Inclusion criteria for the patients were: 1) presence of OPC
confirmed via biopsy; 2) patient was treated using curative-intent
IMRT; 3) dose-volume histogram data available for organs at-risk in
the head and neck; 4) at least 70% of the items on the MDASI
questionnaire are available in the time period from the start of
treatment until 6 months after treatment; 5) symptom ratings
available at 6 months; 6) patients survived long enough for a 6
month follow up appointment. The final cohort consisted of
349 patients.

Because baseline ratings were not available for 59 (16.9%)
patients, we used a denoising neural network (21) to impute
missing values from related symptoms and the ratings at other
time points for patients with enough symptom ratings. To train the
symptom imputation model, all symptom ratings from all 10 time
points were used as input data. To ensure that enough symptom
data was available to impute missing values, we only considered
patients with a baseline drymouth rating and with at least 70% of all
symptom ratings across all timesteps available. In order to train the
network to learn to impute missing data, we used gaussian dropout
during training, where values were randomly get to 0 with a 50%
change during training, and the network was trained to reconstruct
the original values using the other symptom ratings. The denoiser
used two fully connected layers with a ReLU activation function

10.3389/fonc.2023.1210087

followed by batch normalization. The model was trained using the
Adam optimizer and mean-squared-error loss with a learning rate
0£.001 for 2000 with early stopping. The final model had a mean
reconstruction error of 6.18%

2.3 Clustering

In order to demonstrate that our approach can be generalized to
any outcome that is associated with radiation-induced tissue
damage, we apply our methodology for identifying high-risk
clusters for predicting late severe ratings for four different
symptoms: drymouth, swallow, mucus, and voice. Optimal cluster
parameters were identified using a previously published visual
analytics system developed for this project (22). For all outcomes,
we use 3 clusters, and consider the cluster with the highest total
mean dose to organs at risk to be the “high-dose cluster”. Organs
and DVH values used for each symptom cluster are given in
(Table 1). To account for bilaterality of the head, we consider the
side with the higher total mean dose as the primary side and encode
the parotid and submandibular glands on that side as the “ipsilateral
side”, and the organs on the other side as the “contralateral” side.

For example, when creating clusters for drymouth, we used the
doses to both parotid glands, both submandibular glands, and the
hard palate. We then considered the following DVH features from
each organ of interest: The dose delivered to 25% of the volume
(V25) through the dose delivered to 60% of the volume (V60),
collected in increments of 5%, which were selected by identifying
the dose features with the maximum mutual information with all

TABLE 1 Table of rules used to approximate the high-dose clusters for alternative outcomes, along with the precision, recall, and info gain associated
with each set of simplified clusters, to show how well the simplified clusters approximate the high-dose group.

Cluster
DVH N N (Simplified = Cluster Cluster
Outcome  Cluster Organs Features Thresholds @ (HD) HD) Precision Recall NTCP Organs
Contralateral
submandibular
gland V45 > 61
Parotid glands,
Both Parotid Glands, Contralateral Submandibular glands, soft
Both Submandibular parotid gland palate, upper lip, lower lip,
Drymouth Glands, Hard Palate V25-V60 V45 >0 219 205 0.98 0.89 oral cavity, mylogeniohyoid
IPC V50 > 40
IPC, MPC, Supraglottic Supraglottic IPC, SPC, Supraglottic Larynx,
Larynx, Esophagus, Larynx V60 > Parotid Gland,
Swallow Mylogeniohyoid Muscle = V30-V65 46 60 65 0.892 0.967 Cricopharyngeal Muscle
Contralateral
Submandibular
Gland V50 >
48
Both Parotid Glands, Contralateral Soft Palate, Hard Palate, Oral
Both Submandibular Parotid Glannd Cavity, Mandible, Tonge,
Mucus Glands V25-V65 V45 >0 184 171 0.988 0918 Parotid Glands
Tongue, IPC, Larynx, IPC V55 > 34
Supraglottic Larynx, Larynx, Supraglottic Larynx,
Contralateral Larynx Max Tongue, Genioglossus Muscle,
Voice Submandibular Gland V45-V65 Dose > 66 45 5.50E+01 8.00E-01 0.978 Mylogeniohyoid Muscle
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late patient symptoms. Each patient was thus encoded as a vector of
40 (5 organs x 8 features) values.

The patient dose distribution was modeled using a Bayesian
Gaussian Mixture Model (BGMM), an unsupervised machine
learning model that learns from the distribution of the data (23).
We chose to use mixture models as we found that they proved to be
effective at modeling patterns in the dose distribution due to
difference in the position of the underlying tumors (24). We
consider the bayesian variant of the model as it is traditionally
less sensitive to the choice of parameters (25). After training a three
cluster BGMM, the patients were clustered by assigning them to the
component with the maximum likelihood.

2.4 Simplified cluster generation

In this paper we are mainly interested in high-dose, high-risk
patients. To define the high dose (HD) group as follows. First, we
calculate the mean dose for the organs of interest used to define the
clusters. We then calculate the sum of the mean doses for each
cluster and consider the cluster with the highest total mean dose to
be the HD group. We verify that this HD group is also the group
with the highest incidence of severe late symptom ratings.

To make the model more accessible for users without access to
the original model, we also generate a “simplified” high risk group
(SHD) as follows. First, we look at all dose features for all organs
used in the cluster (e.g., V55 to the parotid gland). For each feature,
we test different value thresholds to split the cohort into 2 groups
(e.g., V55 to the parotid > 1). We then calculate the mutual
information between this split, and the HD cluster, and select the
25 feature splits with the highest mutual information gain. For each
rule, we then repeat this process only on the sub-cohort that meets
the criteria of the first rule and select the 25 sets of 1-2 feature splits
with the highest mutual information gain. We repeat this process
iteratively until we identify a set of dose thresholds that maximize
the mutual information with cluster membership. The group that
exceeds all thresholds in the data is considered the “simplified” high
dose (SHD) group. This results in a set of rules that can quickly
approximate the original HD group, while providing thresholds that
may be used for soft constraints when planning treatment plans.

Once the high-risk and simplified high-risk clusters were
identified, we performed a chi2 test between clinical covariate and
membership in either the original clusters or the simplified cluster.
T-test statistic and significance levels were collected for the
following covariates: Sex (male/female), T-stage, N-stage, HPV
pl6 status, primary tumor subsite, radiation treatment type, if the
patient had surgery prior to treatment, age, total dose to the primary
tumor, and the dose-fraction.

2.5 LRT tests

For each endpoint we assess the predictive power of the original
and simplified clusters using a likelihood ratio test (LRT). For this, we
build maximum likelihood estimation models that consider clinical
covariates as well as models that include both clinical covariates and
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either all clusters or each cluster individually. We then perform an
LRT to identify if the goodness of fit of the model with clusters added
has a statistically significant better fit than the baseline cluster with
only clinical covariates. Additionally, we consider the linear case
where we model the outcome on a 10-point scale using linear
regression. We report the p-values from the likelihood ratio test,
the odds ratios are taken from the model coefficients for each cluster,
and the change in Akaike (AIC) and Bayesian (BIC) information
criteria between each model and the clinical baseline mode. AIC and
BIC are estimates of the goodness of fit of a model that includes a
penalty for the number of variables considered, in order to prevent
overfitting, where lower scores indicate better fits (26). For BIC,
reductions in score relative to the baseline model of at least 2 indicate
reasonable evidence, while reductions of at least 6 indicate “strong”
evidence of improvement (27).

For the purpose of testing our models, we consider the following
covariates that serve as our clinical confounders: T-stage > 2 (T-stage);
N-stage > 1 (Nn-stage); HPV/p16 status (hpv); primary tumor at
the base of the tongue (BOT); primary tumor at the Tonsil (Tonsil);
age >= 65 years at the time of diagnosis (age); ECOG performance
score = 1; ECOG performance score = 2 (ECOG score); and if the
patient had a mean dose of > 20 Gy to both parotid glands, or > 25 Gy
to one parotid gland (Parotid Limit). These encodings were chosen as
they are clinically relevant confounders that have been found to be
most relevant when considering treatment type and outcomes. Sex
was not included as it was found to not have any correlation with any
outcome (p >.8) via chi-squared test, and 90% of the cohort was male.
We chose to include T-stage, N-stage, and HPV status separately as
our earlier work suggested that T-stage was more predictive of
dysphagia than AJCC status (28), which was designed to be
predictive of survival, and our cohort had a combination of AJCC
8th edition and 7th edition ratings.

To understand how our baseline confounders compare to our
clusters, we performed multivariate maximum likelihood
estimation to determine the odds ratio and p-value from the
likelihood ratio test between each confounder and outcome
individually. Additionally, we tested the correlation between
published dose thresholds to organs in the head and neck and
severe late drymouth. We also looked at correlations with published
dose limits to organs of interest. Rules for dose limits are described
in (Table 2).

2.6 Cross-validation

In order to compare our model to existing models, we compare
cross-validation performance of our clusters (3-level stratification)
to a baseline NTCP model based on previous literature. For the
NTCP model, we use logistic regression with clinical covariates as
well as the dosimetric values to organs at risk that best
approximated existing clinical models based on available
segmentation data (10, 16). For each outcome, we re-calibrate the
NTCP model on the training data during cross-validation in order
to ensure the optimal performance of the NTCP model for
comparison. All dosimetric values for NTCP models consider the
mean dose to the organs considered. For example, the final dose
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TABLE 2 Description of the dose limits considered to different organs (7), and the toxicity they are designed to avoid.

Organ

Spinal Cord

Parotid Gland

Inferior Pharyngeal Constrictor (IPC) Mean dose > 50
Inferior Pharyngeal Constrictor (IPC 2) Mean dose > 60

Medial Pharyngeal Constrictor (MPC) Mean dose > 50

Dose Limit (Gy) Outcome
Max dose > 50 Myelopathy
Mean dose > 25 for one OR Mean dose > 20 for both Xerostomia

Feeding Tube
Aspiration

Feeding Tube

Medial Pharyngeal Constrictor (MPC 2) Mean dose > 60

Aspiration

Superior Pharyngeal Constrictor (SPC) Mean dose > 50

Superior Pharyngeal Constrictor (SPC 2) Mean dose > 60

Mandible Max dose > 70
Larynx V50 > 27
Brachial Plexus Max dose > 60

Esophagus

values considered in the NTCP model are the mean doses to the
following organs: parotid glands, submandibular glands, soft palate,
upper lip, lower lip, oral cavity, and mylogeniohyoid muscle. We
included the mylogeniohyoid muscle as we did not have separate
contour data for sublingual salivary glands.

When evaluating the performance of our clusters during
cross-validation, we rank each cluster based on the number of
patients that experience the given outcome in the training data
and assign risk to patients in the test data based on the rank of
their clusters. In this way, the highest-risk cluster is given a risk
score of 1, while the second highest-risk cluster is given a risk
score of.5. For the simplified cluster, we always assign a risk of 1
to the high-dose cluster and 0 otherwise. For the whole dataset,
this is the equivalent of using the clusters as a xerostomia
risk stratification.

We report the area under the receiver-operator curve (AUC-ROC
score), which is a measure of the specificity of a test as the sensitivity
threshold changes (29); and the Mathew’s correlation coefficient
(MCC) (30), which is a special case of a correlation coefficient that
has been shown to be useful for evaluating binary outcomes for
imbalance data (31), of our risk stratification compared to the
baseline and NTCP models for all binary outcomes.

3 Results
3.1 Demographics

The distribution of patient symptom ratings is shown in
(Table 3). We see drymouth is the most prevalent symptom, with
late severe drymouth occurring in 43.8% of patients and an average
rating of 4.34 at 6 months, followed by severe mucus, which only
occurs in 16% of patients (mean rating 2.26). Voice had the lowest
number of patients with an average rating of 1.07 and only 4% of
patients reporting severe voice dysfunction and only 1.7% reporting
an increase of at least 5 point from baseline at 6 months.

Frontiers in Oncology
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Feeding Tube
Aspiration
Osteoradionecrosis
Edema

Nerve Damage

Esophagitis

Demographics and demographics within the high-dose and
simplified high-dose clusters for each outcome are shown in
(Table 4). The cohort was predominantly male (90%) and HPV/
pl6 positive (81%), with a mean age of 59 (95% CI 58-60). A
majority of patients were treated with volume-modulated arc
therapy or intensity modulated proton therapy (63%), while only
2 patients received 3d conformational therapy. 10% of patients
underwent surgery prior to radiation therapy.

Results of chi-squared tests between demographic features and
cluster membership is shown in (Figure 2). A significant correlation
was found between all cluster memberships and T-stage (p <.0001),
tumor subsite (p <.0001), and treatment modality (p <.05), while N-
stage was correlated with all but simplified swallowing risk (p <.05).
Patients in high-risk clusters had higher rates of stage T4 (10% vs
17-31%) and N2C/N3 tumors (14% vs 18-23%), which correspond
to patients likely to receive the most aggressive treatment.
Additionally, all high-risk groups had higher incidences of tumors
at the base of the tongue (BOT), and lower incidence of tumors in
the Tonsil. There was also a higher rate of patients that received
VMAT/IMPT in the high-risk clusters (63 vs 69-87%). All standard
clusters as well as simplified voice clusters were correlated with
lower rates of pre-treatment surgery (p <.05, 10% vs 0-7%). No
significant difference was found between ECOG performance score
and clusters. Drymouth and Mucus clusters were not correlated
with HPV status (p >.05), but there were fewer HPV+ patients in
the swallow high-dose (81% vs 78%, p <.01) and simplified high
dose clusters 81% vs 80%, (p <.05), as well as simplified voice (81%
vs 76%, p <.001).

Results for the correlation tests between baseline confounders,
existing dose guidelines, and late severe symptoms are shown in
(Figure 3). The factors most correlated with severe drymouth were
ECOG performance score >= 2, and primary tumor at the base of
the tongue (BOT). Oddly, T-stage 4 was negatively correlated with
drymouth, while the less-severe T-stage 3 was positively correlated.
The strongest predictors of negative outcomes are high doses to the
larynx and superior pharyngeal constrictor, which are traditionally
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TABLE 3 Distribution of each symptom rating at 6 months, as well as the number of patients who have ratings or change in ratings above different
thresholds, corresponding to “any”, “moderate”, and “severe”.

Above Change
Avg Rating  Rating Rating Above Threshold Above Change Above
Symptom  Rating 5% Cl Median  95% Cl  Threshold = Threshold = (%) Threshold Threshold (%)
0 331 94.8% 295 84.5%
2 241 69.1% 203 58.2%
Drymouth 434 0.4 4 9 4 153 43.8% 114 32.7%
0 259 74.2% 199 57.0%
2 112 32.1% 73 20.9%
Swallow 2.14 0 2 7 4 46 13.2% 29 8.3%
0 255 73.1% 202 57.9%
2 120 34.4% 86 24.6%
Mucus 226 0 2 8 4 56 16.0% 42 12.0%
0 167 47.9% 133 38.1%
2 51 14.6% 34 9.7%
Voice 1.07 0 0 4 4 14 4.0% 6 1.7%

associated with swallowing complications and not drymouth. The
dose limits to the parotid glands intended to predict xerostomia
were negatively correlated with high drymouth, which is likely since
most patients whose doses were within acceptable limits were in the
low-dose cluster, which had anomalously high rates of drymouth
relative to the moderate dose group (38.3% vs 92.92%, respectively).

3.2 Cluster analysis

The final parameters for each outcome are shown in (Table 1).
Interestingly, we found similar simplified rules for predicting late
severe voice dysfunction (IPC V55 > 34) and late severe swallowing
issues (IPC V50 > 40). Similarly, rules for the high-risk mucus and
drymouth clusters show similar rules for thresholds to the
contralateral parotid glands (V45 > 61 and V50 > 48), and for the
contralateral parotid gland (V45 > 0). Notably, the optimal DVH
values were lowest for predicting drymouth than other symptoms
with values ranging from V25-V65, compared to V20-V60 for
drymouth. Clusters for swallow and voice also had higher optimal
DVH values, and generally included more muscles instead of
salivary glands.

Comparison of high-dose and low/moderate-dose-volume
histograms of the organs used for the high-dose clusters are in
(Figure 4). We can see that rules generally correspond to the ROIs
that show the highest difference in mean dose between high- and
low/moderate-dose groups. We see larger separations for the
contralateral submandibular glands, inferior pharyngeal
constrictors, and supraglottic larynx. We can also see that in the
high-risk group, mean dose to the submandibular glands tends to be
relatively high even at 80% penetration, while the dose to the dose to
the parotid gland will drop off to low or zero values at around 45%
penetration for the low/moderate dose groups. We also see
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relatively high levels of dose for the MPC and SPC (Figure 4-
swallow column) even at 80% penetration with limited dropoff.
The distribution of symptoms at the start of RT treatment and
at 6 months for each high-risk and low/moderate risk groups are
shown in (Figure 5). Mean ratings for all groups increase between
baseline and 6 months, although the difference in change is higher
for the high-dose groups. All high-dose clusters show a slightly
higher mean symptom rating at baseline than the low/moderate
dose groups, with differences 0f.14,.83,.01, and.78 for drymouth,
swallow, mucus, and voice, respectively. This difference increases at
6 months for all cases to 1.27,.126,.91, and 1.02 for drymouth,
swallow, mucus, and voice, respectively. The larger baseline
difference for swallow and voice likely corresponds to the higher
rates of stages T4 and N3 in these groups at the start of treatment,
which we don’t see in drymouth or mucus. The most significant
change is in the high-dose drymouth group, which has a mean
symptom rating increase of 3.87 between baseline and 6-months.

3.3 LRT test results

Results for LRT tests on all outcomes with clinical confounders are
reported in (Table 5). All outcomes show significant (<.01) correlation
between 3-level cluster stratifications and severe late symptoms. When
considering the change from baseline rating, we have significant
correlations for the high-dose clusters with all outcomes except for
“voice”, which may be because we only have 6 patients with a change
in voice ratings above 4 in the dataset (1.7%) (Table 3).

For absolute outcomes (rating > 4), Drymouth high-dose (HD)
and simplified high-dose (SHD) clusters had the highest
significance level (p <.0001) with odds-ratios of 2.942 and 2.767
for severe late drymouth, respectively. Voice had the highest odds-
ratios of all symptoms for severe voice dysfunction with values of

frontiersin.org


https://doi.org/10.3389/fonc.2023.1210087
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wentzel et al. 10.3389/fonc.2023.1210087

TABLE 4 Patient demographics, treatment information of the cohort, as well as the distribution of features within the high-dose (HD) and simplified
high-dose (SHD) clusters for each outcome.

Swallow
Cohort HD
Feature 349 60
Sex Male 314 (90%) | 171 (89%) | 155 (89%) | 58 (97%) 63 (97%) 163 (89%) | 152 (89%) 43 (96%) 53 (96%)
T3 48 (14%) 31 (16%) 24 (14%) 13 (22%) 15 (23%) 28 (15%) 22 (13%) 11 (24%) 13 (24%)
e T4 34 (10%) 32 (17%) 31 (18%) 16 (27%) 15 (23%) 31 (17%) 31 (18%) 14 (31%) 15 (27%)
N2a/N2b 164 (47%) | 88 (46%) 81 (46%) 31 (52%) 36 (55%) 85 (46%) 81 (47%) 21 (47%) 28 (51%)
Notee N2C/N3 48 (14%) 40 (21%) 40 (23%) 13 (22%) 12 (18%) 40 (22%) 40 (23%) 10 (22%) 13 (24%)
Unknown 43 (12%) 23 (12%) 20 (11%) 3 (5%) 4 (6%) 22 (12%) 19 (11%) 3 (7%) 3 (5%)
Y HPV + 282 (81%) | 155 (80%) | 142 (81%) | 47 (78%) 52 (80%) 147 (80%) | 139 (81%) 35 (78%) 42 (76%)
BOT 162 (46%) | 117 (61%) | 114 (65%) | 45 (75%) 49 (75%) 113 (61%) | 112 (65%) 32 (71%) 40 (73%)
subste Tonsil 145 (42%) | 52 (27%) 40 (23%) 11 (18%) 13 (20%) 48 (26%) 38 (22%) 10 (22%) 11 (20%)
3D Conlf. 2 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Treatment VMAT/IMPT | 221 (63%) | 134 (69%) | 120 (69%) 50 (83%) 52 (80%) 128 (70%) | 118 (69%) 39 (87%) 46 (84%)
IMRT 74 (21%) 41 (21%) 39 (22%) 6 (10%) 8 (12%) 39 (21%) 38 (22%) 2 (4%) 5 (9%)
Prior Surgery Yes 36 (10%) 13 (7%) 13 (7%) 1 (2%) 2 (3%) 12 (7%) 13 (8%) 0 (0%) 0 (0%)
1 64 (18%) 41 (21%) 35 (20%) 13 (22%) 17 (26%) 37 (20%) 34 (20%) 12 (27%) 13 (24%)
ECCO?CG Perf 2 6 (2%) 3 (2%) 0 (0%) 1 (2%) 1(2%) 1 (1%) 0 (0%) 0 (0%) 0 (0%)
Unknown 18 (5%) 8 (4%) 8 (5%) 3 (5%) 3 (5%) 9 (5%) 8 (5%) 3 (7%) 3 (5%)
Mean (95% 59 (58 - 59 (58 - 60 (58 - 63 (61 - 64 (61 - 59 (58 - 60 (58 - 64 (61 - 63 (61 -
Age CI 60) 61) 61) 66) 66) 61) 61) 67) 65)
Mean (95% 53 (51 - 51 (47 - 51 (48 - 51 (43 - 52 (46 - 52 (49 - 51 (47 - 53 (46 - 54 (47 -
RT Dose CIn 55) 55) 55) 57) 58) 55) 55) 60) 61)
Mean (95% 26 (25 - 26 (23 - 25 (23 - 24 (21 - 25 (22 - 26 (24 - 24 (23 - 25 (21 - 26 (22 -
Dose- Fraction (o)) 28) 28) 26) 27) 28) 28) 26) 29) 28)

Continuous values show mean values and 95% confidence intervals within each group. Legend) T-stage: AJCC 8th edition T-staging; N-stage: AJCC 8th edition N-staging; HPV) Whether the
patient was HPV/p16+; Subsite: site of primary tumor (BOT, Tonsil, other); BOT, Base of Tongue; VMAT, volumetric modulated arc therapy; IMPT, intensity modulated proton therapy; IMRT,
intensity modulated proton therapy; ECOG Perf. Score, Eastern Cooperative Oncology Group pre-treatment performance score; RT Dose: total prescribed RT dose the the main tumor; Dose-
fraction: weekly dose delivered to the main tumor.

8.99 and 19.75 for the HD and SHD, respectively (p <.01). Swallow >4 from baseline, 3-level stratification tended to perform worse in
HD and SHD clusters had odds ratios of 5.129 (p = .002) and 3.625  terms of change in Bayesian Information Criteria, suggesting that
(p = .01), respectively. Finally, mucus HD and SHD clusters had ~ majority of the information gain comes from the high-dose clusters.
odds ratios of 3.18 (p = .001) and 2.37 (p = .01), respectively.
For relative outcomes (rating change from baseline > 4), we see
similar or slightly lower odds ratios but lower p-values, due to the 3.4 Cross-validation results
smaller number of measured outcomes, for Drymouth HD (OR =
2.38, p = .002), Drymouth SHD (OR = 2.447, p <.002), Swallow HD We report results from performing cross-validation for several
(OR =4.73, p =.014), Swallow SHD (OR = 3.76, p = .028), Mucus HD alternative patient outcomes in (Table 6). ROC curves for each
(OR =3.382, p <.001), and Mucus SHD (p =2.17, p=.032). However, ~ outcome on severe ratings are shown in (Figure 6). In terms of ROC
there is no correlation between Voice HD (OR = .96, p = .96) or Voice ~ and MCC, cluster stratification (3 clusters) outperformed baseline
SHD (OR = 2.55, p = .42) and change in voice ratings > 4. NTCP models for all outcomes. Performance differences between
Comparing 3-level cluster stratifications, HD cluster, and SHD  only the high-dose clusters (HD), simplified clusters (SHD), and all
clusters, HD clusters tend to perform slightly better, except in the  clusters (3-level stratification) were mixed, with the high-dose
case of predicting severe late drymouth and severe late voice, in  cluster outperforming all clusters for late mucus and drymouth,
which the SHD clusters do marginally better. Inclusion of the 3-  but not voice or swallow.
level stratifications over the High-dose only clusters didn’t have a For Drymouth outcomes, the HD cluster alone performed the
notable difference in significance level. Except for change in swallow  best for all measures, with an AUC of.6 for severe drymouth vs.56
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FIGURE 2

Score Fraction

Results of a chi-squared test between covariates and membership in each set of clusters for each outcome. (HD) Standard clusters, (SHD) Simplified
clusters. Color and annotations encode t-statistic values while colored circles represent the significance level based on the p-value.

for the NTCP + clinical covariates model. Using the 3-level
stratification achieved the same AUC score as the HD cluster, but
lower MCC, due to the higher number of clusters. SHD slightly
outperformed the NTCP model for absolute rating > 4 (AUC.57
vs.56), but not for change in rating > 4 (AUC.55 vs.57), although the
SHD had a higher MCC for both outcomes.

For Swallow, 3-level stratifications performed the best in terms
of AUC for rating > 4 (AUC = .63) and change in rating > 4 (AUC =

.61). In all cases for swallow, the 3-clusters performed the best,
followed by the HD, SHD, and NTCP models performed the worst.

For Mucus, the SHD performed the best in terms of AUC for
both Mucus > 4 (AUC = .62) and change from baseline > 4 (AUC =
.64). Voice had mixed results in terms of performance. For Voice >
4, the 3-level model performed the best (AUC = .68), followed by
HD (AUC = .67), and SHD (AUC = .61), and finally the NTCP
model (AUC = .56). For change from baseline, all models

Clinical Confounders

Drymouth 1.5  0.89 11 11 0.88 0.95 i 0.68 1.1 1
Mucus (N 0:53 N1 11 061 076 14 14 11 @ 1
.
swallow JRESEN 0.63 [SSEN0.76" 0.67 098 12 088 1.3 13
Voice  0.86 0.51 1 0.6 TSRS 0.51 12 0
BOT HPV+ IMPT. IMRT N-Stage 2 N-Stage3  T-Stage 3 T-Stage 4 Tonsil VMAT Age > 65 Concurrent c ECOG=1 ECOG=2
Published Dose Limits !
Drymouth- 1.1 1L5) 1.6 1.2 1kal 1.4 0.58 42 14 0.5 L,
Mucus- 1.1 2.1 155 i 1.8 1.5/ 155 il74 0.81 0.69 155 aley/ 0.39 B
Swallow @ 19 16 11 18 16 . °
Voice 4 3.6 1.8 1.9 1l7/ L) 17/ 0

Esophagus MPC MPc2

FIGURE 3

Mandble Paroti spc spo2 spial

Heatmap of odds-ratios from fishers-exact test between late severe (> 4) ratings for each symptom, and confounders used in the data, (top) as well
as published dose limits. Statistically significant values (p <.05) are marked with green circles. Values < 1 indicates lower than average risk while
values > 1 indicate above average risk. BOT, Subsite at Base of Tongue; HPV+, HPV/p16 positive; IMPT, Intensity Modulated Proton Therapy); IMRT,
Intensity Modulated Radiation Therapy; Tonsil, Subsite at Tonsil; VMAT, Volumetric Modulated Arc Therapy; Concurrent, Chemotherapy concurrent
with radiation therapy; IC, Induction Chemotherapy; ECOG, Eastern Cooperative Oncology Group Performance Score.
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FIGURE 4

Comparison of Dose-volume features between patients in each high-dose cluster (red) and those in low- or moderate-dose clusters (blue). Each
plot shows the dose-volume histogram for each patient. Darker lines show the median values within each group. Dashed lines show the thresholds
used for producing the simplified cluster, excluding rules that use max-dose to the ROI. Patient histograms that pass through the upper-right

window of all plots in their row are in the simplified high-dose cluster.

performed close to chance due to the lower number of positives,
with the highest performance from HD (AUC = .53).

4 Discussion

Our results demonstrate the benefits of grouping OPC RT
patients based on multi-organ key 3D dose spatial distribution
metrics related to patient outcomes. By identifying organs that may

Baseline

- — Threshold

serve as failure points for essential functions, we were able to
identify a high-dose, high-risk group of patients. Both the original
high-dose cluster and the simplified version of this cluster are
strongly correlated with the severity of self-reported symptoms
that persist up to 6 months after treatment and improve predictive
models after accounting for clinical confounders and overfitting.
This methodology can serve as a valuable tool for identifying
potential causes of lasting toxicities because of radiation-induced
damage that outperforms existing models and can be used alongside

Drymouth

FIGURE 5

Histogram of symptom ratings before treatment (top), 6 week (middle) and 6 months (bottom) after treatment for each cluster (colored bars)
compared to the rest of the cohort (black outline). Lines show median rating for patients within (colored) and patients not in the cluster (black).

Mean values for high-dose clusters are labeled in colored boxes while the
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moderate/low dose clusters are labeled with black boxes.
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TABLE 5 Results from LRT tests for severe late drymouth and severe late change in drymouth for swallowing, mucus, and voice outcomes using their
clusters.

Swallow Drymouth
Outcome All HD All HD
P-value 0.001 0.002 0.010 0.003 0.001 0.010 0.004 0.009 0.000 0.000 0.000 0.000
0dds Ratio N/A 5.129 3.625 N/A 3.182 2373 N/A 8.987 19.749 N/A 2,942 2.767
AAIC -10.6 7.6 47 -8.0 9.3 47 7.2 4.8 -11.1 -12.3 -14.2 -12.0
Rating > 4 ABIC 2.9 3.7 0.9 0.2 5.4 0.8 05 0.9 72 -4.6 -10.4 82
P-value 0.002 0.014 0.028 0.002 0.001 0.032 0.046 0.976 0.409 0.009 0.002 0.002
0dds Ratio NA 4726 3.762 NA 3382 2171 NA 0.960 2.559 NA 2.382 2.447
AAIC -8.8 4.1 2.8 -8.1 8.4 26 2.1 2.0 13 5.4 73 74
ARating > 4 ABIC 1.1 02 1.0 0.4 45 13 5.6 59 52 23 -35 -3.6

All) all clusters, results do not include odds ratio; HD) Highest dose cluster; SHD) Simplified high-dose cluster using the threshold rules; AAIC) Change in Aikake Information Criteria from

inclusion of the cluster in a regression model; ABIC) Change in Bayesian Information Criteria from inclusion of the cluster in a regression model.

NTCP risk prediction models. Additionally, we provide a rule
mining algorithm that can simplify our rule set into a set of
actionable dose thresholds that can be used without access to the
original model.

Existing approaches for normal tissue toxicity probability
(NTCP) calculation for risk prediction rely on summary
dosimetric parameters (11), such as generalized equivalent
uniform dose (32), maximum, or mean dose to a region of
interest. Normal Tissue Complication Probability (NTCP) models
can address three-dimensional dose distributions to individual
organs to predict outcomes. Existing models suffer from
limitations imposed by challenges of dealing with correlated dose
features, assumptions of linear relationships between dose and
effect, and reliance on simplifying 3-dimensional dose
distributions to a single unit (33). We attempt to address these
issues with the use of clustering on 2-dimensional dose-volume
histograms, which allows us to capture patterns in the dose
distribution that encompass relationships between many
correlated features in a way that does not assume linearity or
uncorrelated dose features. Additionally, our simplified
stratifications are transparent, which makes them more
convenient to use when incorporating them into existing
treatment guidelines and accounting for patient-specific
information. Finally, we note that while we directly compare our

model to NTCP models, these metrics can be used alongside each
other, as NTCP models are designed for use in calculating specific
risks when using dose planning software, while our methods are
designed to provide convenient risk stratification for identifying
high-risk patients and giving simple dosing guidelines.

Outside of NTCP models, the most common risk stratification
for OPC patients is AJCC TNM staging. T, N, and M-staging
criteria consider the size and spread of the primary tumors,
secondary tumors, and distant metastasis, respectively, to predict
survival (19). While TNM staging is not directly related to late
toxicity risk, it can serve as a proxy for the aggressiveness of
treatment and is correlated with radiation-associated dysphagia in
patient outcomes (28).

In our cohort, the predominant lasting toxicity was severe
drymouth, which occurred in 43.8% of patients, while only 5.2%
of patients reported no drymouth at 6 months, which makes it of
particular interest for clinical applications. Our cluster parameters
for drymouth include the submandibular glands, and the hard
palate, which are all possibly causally linked to patients
experiencing drymouth. When considering the simplified cluster,
we found using the V45 to the contralateral submandibular gland
and the V45 to the contralateral parotid gland achieved a sensitivity
and specificity of.89 and.98, respectively. This suggests that
treatment planning should prioritize reducing the dose delivered

TABLE 6 Area-under the curve score (AUC) and Mathew's correlation coefficient (MCC) scores from 5-fold cross-validation testing using cluster
stratification and NTCP models for severe (> 4) self-reported symptoms at 6 months.

Outcome Swallow Mucus Drymouth
Metric Al NTCP All NTCP HD All | NTCP HD
AUC | 063 | 056 061 057  0.60 049 061 062 | 068 056 067 061 | 060 056 060 057
Rating >4 | MCC ‘ 020 | -0.03 020 0.09 ‘ 0.16 ‘ -0.04 ‘ 016 | 0.17 ‘ 0.18 ‘ -0.02 021 009 014 ‘ 0.06 ‘ 020 | 0.14
AUC ‘ 061 | 050 060 057 ‘ 0.63 ‘ 0.50 ‘ 0.64 | 0.64 ‘ 052 ‘ 0.52 053 045 058 ‘ 0.57 ‘ 058 | 055
ARating >4 | MCC | 0.14 ‘ -0.02 ‘ 014 008 0.9 ‘ -0.03 019 0.8 ‘ 000 = -0.01 ‘ 002  -003 011 008 ‘ 0.16 | 0.09

All) Stratification with all clusters; NTCP) Fitted NTCP logistic regression model; HD) Stratification with only the high-dose cluster; SHD) Stratification with only the simplified high-dose cluster rules.
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FIGURE 6

ROC Curves for predicting symptom ratings > 4 at 6 months for each symptom ratings. Cluster stratifications include: all clusters (blue), the high
dose cluster (cyan), and the simplified high dose cluster (red). Baseline models for comparison are NTCP logistic regression models which includes

dosimetric variables and clinical variables.

bilaterally to the submandibular salivary glands, as well as sparing at
least 55% of the contralateral salivary gland from irradiation. These
findings suggest that damage to both sets of salivary glands, rather
than one, is a major factor in determining severe drymouth, as
sparing a single set of glands may be able to mitigate the severity of
experienced drymouth. At the same time, high dose to the
contralateral side of the head is also correlated with larger and
more extensive tumor spread, which may be a confounding factor
that we would like to investigate in future work (28).

When comparing our clusters for different symptoms we see
that the optimal parameters for predicting both drymouth and
mucus include the parotid glands and submandibular glands, which
indicate that mucosal dysfunction may be related to drymouth. Our
parameters for swallow and voice issues consider larger sets of
muscles closer to the area around the neck and base of the tongue,
while mucus and drymouth focus on salivary glands in the mouth.
Additionally, we see that the optimal parameters for swallow and
voice consider radiation at larger levels of penetration into the
volume (V30-V65) and contain smaller high-risk clusters (Table 6).
This may reflect a greater tolerance in muscle tissue over salivary
glands to radiation. Overall, the alternative symptoms considered
were reported as severe (> 5) less frequently than drymouth, which
may explain the larger p-values on LRT tests relative to drymouth,
even when performed on predictive models was good for high-dose
and simplified high-dose clusters.
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While our models represent an improvement over existing
tools, overall performance remains relatively low, with clinical
baseline models performing only slightly above chance, which
may reflect the difficulty in precisely identifying patients at high
risk of symptoms using only EHR and dosimetric data. Notably, the
previously suggested dose limits for the parotid gland to limit
xerostomia are not correlated with drymouth, with most
outcomes yielding a negative odds ratio, likely due to other
confounders in the data. Of our confounders, we found that the
strongest predictors were ECOG performance score, having a tumor
at the base-of-tongue, and receiving proton therapy. The
relationship between tumors at the BOT supports the theory that
higher doses to the submandibular glands are related to drymouth.
Preliminary analysis suggests that patients with a primary subsite at
the BOT are associated with higher doses to the contralateral
submandibular gland (Figure 7), with an average mean dose of
66Gy and 54Gy to the ipsilateral and contralateral submandibular
glands, respectively, vs 62Gy and 34Gy for other subsites. On the
other hand, BOT tumors are not associated with higher doses to the
parotid glands.

Interestingly, we also found that late T-staging (T4) and N-staging
(N3) was strongly predictive of severe swallow and voice dysfunction,
but not mucus or drymouth. Both swallow and voice also had a higher
difference in baseline symptom ratings between the high-dose and
moderate-dose groups, as well as higher rates of tumors at the base-of-
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Dose distribution for patients with tumors at the BOT, Tonsil, and any other subsite for the parotid and submandibular salivary glands. Each row
represents Mean Dose, V45, and V55, respectively. BOT subsite is associated with higher average doses to the contralateral submandibular glands,
suggesting more frequent bilateral irradiation. Each rectangle in the plot represents the value range for a quantile.

tongue. This suggests that there may be additional effects caused by
the tumor itself in addition to radiation damage. Regarding treatment
modality, we didn’t find a correlation between method and outcomes
(Table 3), but we did find a correlation between treatment method
and cluster, with the HD clusters being a higher portion of patients
that received VMAT or IMPT, especially for the swallow and
voice clusters.

Our results consider both overall severity at 6 months (rating >
4), as well as severe change in rating relative to baseline ratings
(change > 4). The inclusion of the severe change outcome is
designed to filter out patients with high baseline symptoms,
whose toxicity may not be related to radiation-induced damage.
Results show that our model still improves over the baseline in these
cases, with a slight decrease in measured effect size, which is likely
due to the smaller number of outcomes. However, we don’t find a
significant correlation when considering severe change in voice
outcomes, which may be because only 1.7% (6) of patients in the
data report this outcome (Table 3). Additionally, we see that the
high-risk clusters have a lower incidence of patients with prior
surgery than the main cohort, or the low-risk group. These findings
support the idea that the differences in patient outcomes are likely
related to radiation-driven effects, and not confounders due to the
impact of prior treatment.

With respect to our study’s limitations, while our methodology
attempts to identify the organs most likely to have a causal effect on
outcomes, the nature of radiation dosing makes identifying causal
relationships difficult due to the highly correlated nature of the
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doses. Spatially adjacent organs have highly correlated doses which
makes disentangling their effects difficult without very large
datasets. Additionally, our results are sensitive to the choice of
dose parameters and require parameter tuning in order to translate
our results to other cohorts. Although we focus on HNC cancer
here, our method could be generalized to other types of cancer that
are linked to radiation-associated side effects, although other
localized considerations may need to be taken, such as greater
shape variability in the case of bladder cancer. Since the thresholds
may be affected both by the specific organ and treatment methods,
generalizing these results to other cohorts requires calibration of
dose-volume parameters used in the clustering. Additionally, our
reliance on imputation for 17% of the baseline symptoms may
introduce some bias. Finally, while we attempt to use baseline
features to correct for high initial symptoms, this approach may
under-count patients whose initial symptoms were caused by the
tumor itself as the initial symptoms not due to radiation damage
would decrease after completion of treatment.

Future work could also consider modifying the dose
distributions on a per-organ basis, as the submandibular glands
may have lower threshold tolerances than larger muscles such as the
tongue. The model may be further improved by using segmentation
of specific sublingual and salivary glands in the mouth, beyond the
two sets that we consider. Additionally, while we only consider dose
plans prepared before treatment, future research could consider the
impact of anatomical data as well as the impact of changes in dose
due to temporal anatomical changes in response to treatment (34).
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Finally, we plan on incorporating additional information that may
provide additional insight into patient risks, such as tumor location
and bilaterality. Finally, other work may investigate correlating
doses to more complicated patterns of symptom progression
rather than simply considering late severe symptoms, such as
those being investigated in other works such as (35).

In conclusion, our paper presents an unsupervised
methodology for identifying patients with high doses to a set of
organs, which we have shown are associated with a higher risk of
lasting severe symptoms. Our model uses unsupervised Gaussian
Mixture Models and approaches based in rule mining to find
stratification rules that consider failure points at multiple organs
in order to identify high-risk patients.
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