2024 58th Annual Conference on Information Sciences and Systems (CISS) | 979-8-3503-6929-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/CISS59072.2024.10480177

Bayesian Spectral Graph Denoising with
Smoothness Prior

Sam Leone”, Xingzhi SunzT, Michael Perlmutter® and Smita Krishnaswamy
]Program for Applied Mathematics, Yale University
4Department of Genetics, Yale School of Medicine
7Computational Biology and Bioinformatics Program, Yale University

3Department of Mathematics, Boise State University
FAIR, Meta Al

Abstract—Here we consider the problem of denoising features
associated to complex data, modeled as signals on a graph, via a
smoothness prior. This is motivated in part by settings such as
single-cell RNA where the data is very high-dimensional, but its
structure can be captured via an affinity graph. This allows us
to utilize ideas from graph signal processing. In particular, we
present algorithms for the cases where the signal is perturbed
by Gaussian noise, dropout, and uniformly distributed noise. The
signals are assumed to follow a prior distribution defined in the
frequency domain which favors signals which are smooth across
the edges of the graph. By pairing this prior distribution with
our three models of noise generation, we propose Maximum A
Posteriori (M.A.P.) estimates of the true signal in the presence of
noisy data and provide algorithms for computing the M.A.P.
Finally, we demonstrate the algorithms’ ability to effectively
restore signals from white noise on image data and from severe
dropout in single-cell RNA sequence data.

Index Terms—denoising, graph signal processing, estimation

I. INTRODUCTION

Signals defined on modern large-scale, irregularly structured
data sets are often corrupted by large amounts of noise such as
measurement error or missing measurements. This motivates
one to estimate the most likely true, uncorrupted values of
the signal based on both the noisy observations and their
prior beliefs about the signal, which often takes the form
of a smoothness assumption. We shall present an approach
for producing such Maximum A Posteriori (M.A.P.) estimates
which utilizes tools from spectral graph theory.

Our method is motivated by the explosion in recent decades
of complex high-dimensional data, and associated signals, with
very high noise levels. Such data may explicitly reside on a
graph, e.g., social, energy, transportation, sensor, or neuronal
networks [1], or it may implicitly have relationships between
entities from which a graph can be built, for example, physical
and biological systems, text, image, time series [2]-[6]

With the graph (either existing or built from data), we can
treat features as signals (functions) on the graph, and apply
methods in graph signal processing, especially spectral graph
theory. Typically, a well-behaved signal defined on the vertices
will take similar values at vertices that are more connected.
This leads us to the prior that many functions of interest will
be smooth on the graph, where the concept of smoothness
can be quantified using tools from spectral graph theory
and the eigendecomposition of the graph Laplacian. This
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intuition motivates the following approach. First, we assume
a priori that the signal of interest is likely “fairly smooth”
on the graph. Then, we model the noise of the observations.
Finally, we produce an estimate of the true signal with the
highest likelihood based on our prior beliefs and the observed
measurements. Importantly, we note that the assumption that
the signal is smooth is very mild and we do not assume that the
signal (or the data on which it is defined) has any specific form.
We provide details on how to implement this approach under
several noise models and then demonstrate the effectiveness
of our method on real-world and synthetic data sets. We also
note that our method fills the gap of theoretical guarantees in
the popular method MAGIC [4], which it outperforms due to
the specific modeling of noise types.

II. BACKGROUND & RELATED WORK
A. An example for high-dimensional data

We first motivate our method via an example of denoising
features associated to complex high-dimensional data. Single-
cell RNA sequence (scRNA-seq) provides high resolution
information about gene expression and is of great interest
in molecular biology, clinical studies, and biotechnology [7],
[8]. scRNA-seq data is high-dimensional, as it measures the
expression of tens of thousands of genes on up to millions of
cells [9], and suffers from high noise levels due to multiple
sources. Reducing this noise is a crucial step, which is needed
prior to downstream analysis [10].

In single-cell RNA sequence data, one obtains the gene-
expression counts for a variety of genes in each cell. Each cell
can then be viewed as a high-dimensional vector (whose i-th
coordinate corresponds to the amount of gene i expressed). It
is a common practice to turn this data, consisting of high-
dimensional vectors (cells), into a graph by placing edges
between cells which are close together in high-dimensional
space, and viewing the expression of each gene, as a signal
(function) defined on the cellular graph [4], [11]-[13].

B. Graph Signal Processing with Bayesian inference

Spectral graph theory concerns itself with the distribution
of eigenvalues and eigenvectors of matrices associated with
graphs. The set of eigenvalue-eigenvector pairs is known to
uncover the geometric and algebraic properties of a graph. This
is the observation that drives algorithms like spectral clustering
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and diffusion maps [6], the main intuition being that low
frequency eigenpairs capture low-resolution, key information
about a graph’s structure.

Graph Signal Processing (GSP) utilizes tools from spectral
graph theory to extend the Fourier transform from classical
signal processing and time series analysis to the graph setting
[1]. In the classical methods, signals can be denoised by
mapping the signal to the Fourier domain, reducing the high-
frequency component of the function, and inverting the Fourier
transform to achieve a “smoother” version of the signal. In
much the same way, GSP operates by representing graph
signals in a basis eigenvectors for the graph Laplacian (defined
below), whose corresponding eigenvalues may be interpreted
as (squared) frequencies, and then reducing the high-frequency
components. Filtering in this manner has been applied to use
cases such as point cloud data, biological imaging, sensor
networks, and more [14].

Bayesian inference is a fundamental method of parameter
estimation. The typical form of this problem is that there
is a random variable & drawn from some prior distribution
and another random variable y whose distribution depends
on x. The ambition of Bayesian estimation is, given only
y, to estimate the underlying value of x using both prior
information on x and the interaction between = and .

Notably, two important, nonstandard aspects of our method
are: (1) we do not have any explicit prior on a data on
which the signals is defined, but rather directly build the graph
from the data (if it does not already exist), and treat it as a
deterministic structure; (2) we do not assume the signal has
any specific form, but rather use a mild prior of its smoothness
on the graph. These distinctions free us from the limitations
of Bayesian models caused by model misspecification [15],
and make our method generally applicable to the vast range
of data sets regardless of the data distributions.

C. MAGIC: Markov Affinity-based Graph Imputation of Cells

MAGIC [4] is a commonly used method for denoising
single-cell data. It is based on the idea that the high-
dimensional data lies on a low-dimensional manifold, repre-
sented by a nearest neighbor graph. After building the graph,
it uses data diffusion, which is random-walk on the graph
to denoise the model. Its has been tremendously successful;
however, it lacks a solid theoretical model. Our method fills
this gap with GSP and Bayesian inference. Furthermore,
by specifying cases of common noise models, we are able
to adjust our model accordingly, allowing us to outperform
MAGIC in these cases.

D. Notation and Defininitions

Throughout, we shall let G = (V, E, w) denote a weighted,
connected, and undirected graph with |V| =n and |E| = m.
Without loss of generality, we will assume V' = {1,...,n}.
We shall refer to functions f : V' — R as graph signals. In
a slight abuse of notation, we will not distinguish between f
and the vector in R"™ whose a-th entry is f(a), 1 < a < n. We

shall let A denote the weighted adjacency matrix and let D =
diag(A1) denote the corresponding diagonal degree matrix.

Given A and D, the combinatorial Laplacian is defined as
L = D — A. Is is well-known that L admits an orthonormal
basis of eigenvectors, L1, = A\jp;, 1 <i <n,where¢); =1
and 0 = Ay < A2 <... < Ag. It follows that L is a positive
semi-definite matrix whose null space is equal to span{1}.
One may co 1pute that the quadratic form corresponding to L
is given by f ' Lf =31, yyepw(a,b)(f(a)— £f(b))2. Thus,
setting f = 1);, the ); are interpreted as (squared) frequencies,
representing the rate at which 1), oscillates over the graph, and
the 1), are interpreted as generalized Fourier modes, where
f{/\ ) = (f,v;) represents the portion of f at frequency
Ai. Since the ), are an orthonormal basis, we have f =
Yoy F(A:)®p;. Therefore, for a real-valued function k, we can
define a corresponding filter by h(f) =Y 1, B(A) F(Ai) ;.
We shall let B denote the weighted m x n incidence matrix,
where rows correspond to edges and columns to vertices,
whose entries are given by B(e,a) = —B(e,b) = \/w(a,b),
if e = (a,b) and B(e,v) = 0 for all v & {a,b} [16]. One
may verify that the Laplacian can be factored as L = B ' B.
(Here, we implicitly assume an arbitrary, but fixed, ordering
of each edge (a,b). This arbitrary choice does not affect the
identity L = BB nor any of our analysis.)

We shall let p(f) denote the probability distribution of a
random variable f and shall let p(f|g) denote the conditional
distribution of f given another random variable g. We shall
make use of the fact that by Bayes’ theorem, p(f|g) o
p(f)p(g|f), where ox denotes proportionality and the implied
constant depends on g.

III. METHODS

Our goal is to estimate an unknown signal f € R™ based on
an observation g € R™, which we interpret as a noisy version
of f under various settings. In each case, we will assume that
an observed g is obtained from a corruption of a true signal
f which lies within a corresponding admissibility class (g.
We shall then define the maximum a posteriori estimate of f
to be the most likely value of f based on (i) the fact that g
was observed and (ii) our a priori beliefs on f discussed in
the following subsection.

A. A Prior Distribution Based on Smoothness
We define prior distributions on ?(/\i) fori =2,...,n
assuming that each f()\;) follows the probability distribution:

pr(F(A)) o< exp (= kA F(X)?)

where « is a fixed smoothing parameter. We further assume
that the f (A ) are independent which implies that, for any
fixed value of f()\l) the probability distribution of ¥ satisfies

pe(P) o [ exp (— AFON?) —exp(—»:zf\ F0?).

i=2
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We then give f the probability distribution defined by taking
the inverse GFT of f. We note that since the ; are an
orthonormal eigenbasis and f =) . ; _f{A );, we have

Pe(f) o< exp ( — ﬁZA;f(Ai)z) = exp(— .'chL_f).
i=2

Therefore, we see that this probability distribution is defined
so that the likelihood of f decreases with its variation across
the graph and « acts as a parameter controlling the tolerance
towards fluctuation. Notably, we do not assume any prior
distribution on f()1) (although is some cases f(A;) will be
implicitly constrained by the admissibility class €2g). There-
fore, our maximum a posteriori estimate is simply the most
likely value of f based on the g and our prior beliefs about

F), - FOn)-
B. Gaussian Noise on the Graph

We first consider the setting where each of the Fourier
coefficients is corrupted by Gaussian noise, ie., g(A;) =
f(\i) + zi, 2 < i < n, where each z; ~ N(0,0?) is an
independent normal random variable. We will further assume
that the total noise g— f has zero mean, which motivates us to
define the admissibility class Qg = {f : f(A1) = g(M)}. By
expanding the conditional and a priori densities and utilizing

the fact that for a given g, we have p.(flg) o pe(f)pc(glf),

one may derive a maximum a posteriori estimate of f given
1

g'.
Theorem 1 {Gau551an Denoising). Let g be given, and let

Qe ={f: F(A1) = G(A1)}. As above, assume that G();) =
f{/\ )+2i,2 < i < n, 2 ~ N(0,0?) and that our prior beliefs
on f are as described in Section IlI-A. Then, the maximum a
posteriori likelihood estimate of f given g is,

Fmap = P(9),

where h(g) is a filter as described in Section II with
h(A:) = m Moreover, f,,, can be computed, to
within € accuracy in the L-norm (||f||2 = £ Lf), in time
@(m log(e~!) min {\flog(n)”.r‘g‘%iﬁ}).

We note that the minimum in the term describing the time
complexity arises from the existence of two possible methods
of computation, both of which are algorithms for solving
linear systems in an implicit matrix M with a condition
number of 5 = %Iﬂ;ﬂ—"'— When 2k0? is small, 3 is small
and the conjugate gradient algorithm will terminate rapidly.
Alternatively, when 3 is large, one may use the solver from
[17] which requires O (mlog(e~1)y/log(n)) time.

In practice, o2 and & are generally unknown. However, as
the filter depends only on the product 2xo?, it suffices to
estimate this quantity, which we denote by 7. We propose a
method of moments estimator which calculates the expectation
of g"Lg,g"L?g in terms of o, x and backsolves using the

Further details on the derivation of Theorem 1, and all of our other
theoretical results, are available at https://arxiv.org/abs/2311.16378

empirical values. Alternatively, we may regard T as a smooth-
ing parameter to be tuned, rather than a quantity needing
estimation.

_tr(L)g"Lg — (n—1)(Lg) " (Lg)

~ 1
v(@)Ig) Eg)—trLg'Lg

Note that, by the handshake lemma, tr(L) = ZaeV deg(a) =

23 (a.p)cr w(a, b). Furthermore, tr(L?) = 37, (deg(a)® +

> (ap)er w(a,b) 2), and so both of these quantities can be
calculated in O(m) time. Alternatively, we may regard 7 as
a smoothing parameter to be tuned, rather than a quantity
needing estimation. We note that this filter may be viewed
as a form of Tikhonov regularization [1].

C. Uniformly Distributed Noise

Next, we consider the case when the noise is a random
uniform scaling in the vertex domain: g(a) = u(a)f(a), where
each u(a) ~ Unif[0,1] is an independent uniform random
variable. In this case, since 0 < wu(a) < 1, we set the
admissibility class Qg = {f : |f(a)] > |g(a)|,sign(f) =
sign(g),Va € V}. For such an f € g, one may compute
that the a posteriori likelihood of f € Qg given g is

w(£19) = pr(f)
peiJig) = g,w )

We will maximize the a posteriori likelihood by minimizing
the negative log likelihood, which using basic properties of
the logarithm leads us to the optimization problem

: T

min L(f), £(f) =rf Lf+§log|f(a)l-

In order to (approximately) solve this problem, we adopt a
constrained Convex-Concave Procedure (CCP) [18] for the
above. The CCP operates by splitting a function of the
form f(z) = feoncave(Z) + feomex(z) and approximating the
concave portion linearly about the current solution; the relaxed
problem is convex and can be solved more efficiently. The
procedure is repeated until convergence, and it is known to be
a descent algorithm. Applied this particular optimization, the
CCP update of f**! from f* is as follows:

t+1 _ + f(a)
T =arg mln K,f Lf t%‘; |ft(a)|

We remark that £+ can be computed as a quadratic program
and that the update provides a descent algorithm - £(f*T") <
L(f"). This is because the loss function is a quadratic function
of f and the feasible region §}g is a convex polyhedron.

D. Partial Observations & Bernoulli Dropout

In our final two models, we consider two settings where
the noise behaves differently at different vertices. We assume
that there is some (possibly unknown) set S C V where
f(a) is exactly equal to g(a) for all @ € S. We make no
assumption regarding the relationship between f(a) and g(a)
for a ¢ S. This leads us to define the admissibility class
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Qg = {f : f(a) = g(a) for all a € S}. We consider two
practically useful variations of this problem:

1) Basic Interpolation: The set S is known.

2) Bernoulli Dropout: There is a “set of suspicion” ¢ where
we are unsure whether @ € S or a € S°. There is also a
(possibly empty) set (¢ for which the observer is certain
of their observations (i.e., we know (¢ C S). For each
a € ¢, we assume that a is corrupted (ie., a ¢ S) with
probability p and that a € S with probability 1 — p.

In this first scenario, the maximum a posteriori estimate of f
is the most likely f that is equal to g over the observation set
S: fmap = arg maxseq, px(f). Because of the monotonicity
of the exponential function, this is equivalent to computing
mingeq, fTL f. This problem was studied in [19], which
proved the following result. Notably, [19] predated the devel-
opment of efficient solvers which could be used to compute
fmap as in (2). However, now that such solvers exist [20], one
may use them to compute the proposed estimate to accuracy
€ in O(my/lognlog(e~!)) time, where 95 is the boundary
of §, n =|5°UadS| and m = |E(S¢, S°) U E(S¢, S)|, where
E(S1,52) denotes the set of edges going from S; C V to
Sy C V. We also denote £(A) := (£(ay), f(az), ..., F(ax)),
where {al,ag, e ,ak} =A C V; L(Sl, Sg) and A(Sl, Sg)
are the restrictions of I and A to rows in S; and columns in
Sa, respectively; B(:,S1) is the restriction of B to columns
in Sl; VSl,SQ - V.

Theorem 2 (Restated from [19]). Suppose S has at least
one edge going to S€. Then there exists a unique solution
to mingeq _fTL f. The interpolation of f to S° is given by

Fap(5°) = L(8°,5) 1 A(5%, 8)g(5). @

Now, we consider the second, more challenging scenario
where we observe a signal g which is equal to f, except in a
set of suspicion ¢ where, with probability p, g(a) is corrupted
(i.e., not equal to f(a)). Based on the observation g alone,
there is no obvious way to identify the set S = {a € V :
f(a) = g(a)} (although we do know (° C S). However, we
note that for g to take a given value, there must be || f(¢) —
9(0)llo corrupted entries and ||~ | £(¢) —(C) lo uncorrupted
entries. Since each entry is corrupted with probability p, we
model p,.(g|f) o plF(©=9llo(1 — p)I<I=IF(O~9(Ollo, Thus,
for f € Qg, the negative log of the posterior likelihood of f
can be estimated as:

—logpx(flg) = kf Lf
+11£(¢) — 9(O)llo (log(1 — p) — log(p))

-+ constant.

Therefore, if we define 7 = x~!(log(1 — p) — log(p)), we
observe the MAP is produced by the following minimization
problem:

Frap € moin FILF+7I£(C) = g(Ollo-

Note that the sign of 7 is going to depend on log(1 — p) —
log(p) = log(3;—1). When p < 1/2, then the penalty term  is

Fig. 1. The results of LASSO regularization along with different parameters
of 7. In this case, the region of skepticism is the set of zeroes { = {a €
V' : g(a) = 0}. The leftmost image is ground truth, the second image
is the corrupted signal (i.i.d. across each pixel and channel with dropout
probability p = 0.7). The last three images are Bernoulli-LASSO restorations

with 7 = 102,103, and T = 0.

Fig. 2. A no trust algorithm applied to an image. Here, approximately 10%
of pixels get corrupted by salt and pepper noise (left). Critically, the algorithm
has no explicit knowledge of where. Parameters of 7 = 10~5,10~6 (middle,
right) are chosen and paired with LASSO regression.

positive; otherwise, 7 < 0 so we may assume all values have
changed and estimate f using Theorem 2. When p < 1/2,
the penalty term is positive. By breaking up f into f(¢) and
F(¢°), we may write the optimization as a regression problem:

Theorem 3. When p < 1/2, the S map 1s the arg min of the
following sparse regression problem:

fmap(C) € Q(C) + a‘rgmén {T”:E”U
+IB(;, Oz — B(:,¢)9(¢%) + B(;,O)g(Q) |3}
And when p > 1/2, the solution is given by,

Fmap(€) = L(C%,C%) T A(C5, 0)g(C).

In general, the problem of ¢;-regularized regression is NP-
Hard [21]. However, numerous approximation methods exist
including branch and bound [22] and an ¢3-based greedy
algorithm [21]. Alternatively, we may consider a relaxed
version of the minimization problem in which the £, penalty
term is replaced with an #; penalty term. In this case, the
relaxed Fmap can be found via LASSO regression [23], for
which many efficient algorithms exist.

Finally, we draw special attention to the “no-trust” case
where ( =V, i.e. we are skeptical of all observations. Then
the optimization can be written more simply:

Frmap(€) € 9(¢) +argmin | Bz — Bg||3 + 7llzlo

The benefit of the no-trust estimate is that it makes few
assumptions about the nature of the noise and does not require
the user to come up with ¢.

IV. EXPERIMENTS & APPLICATIONS
A. Gaussian Noise on an Image

We first consider 1000 images belonging to the CIFAR-10
data set modeled as signals on 32 x 32 grid graph G; we use
the convention of treating each pixel as a vertex connected
to adjacent pixels. Importantly, we note that images are not
our primary motivation. We include this example primarily
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Fig. 3. Best restoration on "Noodle™ for the spectral, local averaging, and
nuclear norm based models when & = 50.

to allow visualization of our method before proceeding to
more complex graphs. For a fixed image, we add Gaussian
noise with different variances o2. We then apply the filter
proposed in Theorem 1, and consider the £2 norm between
the restored signal and the ground truth. We compare to
two other algorithms: local averaging, and weighted nuclear
norm minimization. For the local averaging, we repeatedly set
the value of a vertex to be the average of its neighbors for
some number of iterations ¢. Note that this is equivalent to
applying the powered diffusion operator [6] (or equivalently
the random walk matrix) to the noisy signal g. The nuclear
norm minimization based estimate is parameterized by 7, and
is given by the solution to argming [ f — g||* + 7|l
where || f||. is the nuclear norm of f viewed as a matrix.
The penalty 7 corresponds to a convex relaxation of a low-
rank penalty and is designed with the assumption that noise
exists over excess left & right singular vectors of g. For the
spectral estimate, we use the method of moments estimate for
2k0? given by Equation 1. We then calculate, for every image,
the restored signal using each possible ¢ and 7. The average
percent error is provided in the Table I. We see that in the high-
noise setting, the spectral denoising algorithm outperforms
both local averaging and the nuclear norm estimate as a
consequence of our low frequency prior.

TABLE I
TOTAL PERCENT ERROR (|| f¢pue — Fmapll/ || ftruell?) FOR EACH
COMBINATION OF o, t, T.

og=5 =25 =50 =100
Ours 11.5% 18.5% 18.4% 22.6%
Avg. (t=1) 9.6% 14.0 % 22.5% 41.8%
Avg. (t=2) 11.9% 14.2% 19.6% 33.2%
Avg. (t=5) 16.5% 17.3% 19.6% 26.8%
NN.(7=1) 3.9% 19.8% 39.7% 79.5%
N.N. (7 = 25) 4.0% 17.8% 37.3% 76.9%
N.N. (7 = 50) 5.5% 16.1% 34.9% T4.3%

B. High Frequency Preservation: Comparison to MAGIC

We revisit MAGIC under our proposed framework. MAGIC
takes our prior assumption, that the true signal is likely in the
low-frequencies as a fact, rather than a probabilistic statement.
It can be interpreted as choosing i(A) in advance to be equal to
h(A) = (1 — A\/2)t (where ¢t is a tuned parameter) rather than
finding the optimal filter based combining our prior beliefs
with the observed signal.

To illustrate the advantages of our method over MAGIC, we
conduct a comparison using Bernoulli dropout. We generate
a set of C = 5 cluster centers in two dimensional space.
Around each, we generate m» = 200 points. We construct

Fig. 4. Top: Low frequency signals that vary over clusters. Bottom: High
frequency content that periodically varies inside clusters. Each row contains
different phases.

an affinity-based graph with 1000 vertices. We then consider
low frequency and high frequency signals. Low frequency
signals vary between clusters, while high frequency signals
vary within clusters. Finally, we randomly set a proportion p
of the observations to zero for different values of p and apply
each algorithm. Table 3 examines the resulting correlations
between estimated and ground truth signals.

TABLE I
CORRELATIONS BETWEEN THE TRUE & MAP SIGNALS FOR EACH
FREQUENCY TYPE, ALGORITHM, AND DROPOUT PROBABILITY p.

p=0.1 p=0.5 p=09 p=0.95
Spectral, Low E 1.00 1.00 0.97 0.91
MAGIC (t=1), Low F 0.59 0.57 0.46 0.38
MAGIC (t=5), Low E. 0.99 0.96 0.75 0.52
MAGIC (t=10), Low E 0.55 0.53 0.42 0.34
Spectral, High F. 0.87 0.82 0.55 0.41
MAGIC (t=1), High F 0.47 0.46 0.38 0.34
MAGIC (t=5), High E 0.83 0.77 0.51 0.39
MAGIC (t=10), High E. 0.43 0.41 0.35 0.27

Our algorithm consistently outperforms MAGIC, and the
effect is most notable for high-frequency signals. This can be
explained, at a high level, by the fact that the powered diffusion
operator [6] rapidly depresses high-frequency information,
which our algorithm is better able to preserve.

C. Denoising Simulated single-cell Data

TABLE III
PERCENTAGE ERROR SIMULATED SINGLE-CELL DATA (LOWER IS BETTER)

Bernoulli  Uniform
Noisy 50.0% 28.1%
Ours 7.9% 25.5%
Local Avg 39.9% 29.3%
Low Pass 49.7% 28.8%
High Pass 100.4% 100.3%
MAGIC 40.1% 30.3%

We next apply our method to single-cell RNA sequence
(scRNA-seq). scRNA-seq data involves counting mRNA
molecules in each cell, which is prone to two types of noise
which we test our method’s ability to remove:

1) Bernoulli dropout. Because of the small number of the
mRNAs molecules in the cell, there can be Bernoulli
dropouts when the mRNAs are present but not captured
by the experiment equipment [24].
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2) Uniform noise. For a given gene, considering the fact
that the failure of mRNA capturing does not happen for
all the mRNAs, but only for a percentage, we model the
noise as uniform - the counts are randomly reduced by
a uniformly-distributed percentage [4].

From the data matrix, we build a nearest neighbor graph
[4] where each vertex is a cell (modeled as a row vector of
gene counts). A column of the matrix (a gene’s counts on
all the cells) is considered a signal on the graph that we can
denoise with our models. By applying the models on all the
columns, we obtain a matrix of the denoised data. We compare
the denoising performance of our method with four existing
methods. On top of the ground truth, we add different types of
noise and then compare the performance of our method with
MAGIC and other denoising methods: low-pass filter and high-
pass band-limit filters defined w.r.t. L, and local averaging
which is a 1-step random walk on the graph using the row-
normalized adjacency matrix. We compute the relative error
of the denoised signals with the ground truth. In order to be
able to assess the efficacy of our method, we use the bulk
gene expression data of C. elegans containing 164 worms and
2448 genes [25] to simulate the ground truth single-cell data,
because it does not have the zero-inflation as in noisy scRNA-
seq data. As shown in Table III we are better able to recover
the true signal than the competing methods.

V. CONCLUSION

We have introduced a method that denoises high-
dimensional data by building a graph, treating the features as
signals on the graph, and doing M.A.P estimation to recover
the true features as denoised signals. We only rely on a mild
prior of smoothness on the graph, making our model general
and applicable to a vast variety of data modalities. We produce
estimators and efficient algorithms for three types of noise
common in real data: Gaussian, uniform-scaling, and Bernoulli
dropout. Our model outperforms MAGIC and other methods,
thanks to the modeling of the noise.
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