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Objective: Evaluate the effectiveness of machine learning tools that incorporate spatial information such as dis-
ease location and lymph node metastatic patterns-of-spread, for prediction of survival and toxicity in HPV+
oropharyngeal cancer (OPC).

Materials & methods: 675 HPV+ OPC patients that were treated at MD Anderson Cancer Center between 2005 and
2013 with curative intent IMRT were retrospectively collected under IRB approval. Risk stratifications incor-
porating patient radiometric data and lymph node metastasis patterns via an anatomically-adjacent represen-
tation with hierarchical clustering were identified. These clusterings were combined into a 3-level patient
stratification and included along with other known clinical features in a Cox model for predicting survival
outcomes, and logistic regression for toxicity, using independent subsets for training and validation.

Results: Four groups were identified and combined into a 3-level stratification. The inclusion of patient strati-
fications in predictive models for 5-yr Overall survival (0S), 5-year recurrence free survival, (RFS) and Radiation-
associated dysphagia (RAD) consistently improved model performance measured using the area under the curve
(AUQ). Test set AUC improvements over models with clinical covariates, was 9 % for predicting OS, and 18 % for
predicting RFS, and 7 % for predicting RAD. For models with both clinical and AJCC covariates, AUC
improvement was 7 %, 9 %, and 2 % for OS, RFS, and RAD, respectively.

Conclusion: Including data-driven patient stratifications considerably improve prognosis for survival and toxicity
outcomes over the performance achieved by clinical staging and clinical covariates alone. These stratifications
generalize well to across cohorts, and sufficient information for reproducing these clusters is included.

Introduction

Head and neck cancers (HNCs) affect almost 65,000 individuals per
year in the United States, with approximately 14,000 deaths from the
disease [1]. The prognosis of HNCs is considerably variable in different
tumor types, ranging from excellent prognosis, as in Human papillo-
mavirus (HPV)-associated squamous cell carcinoma [2,3], to deadly
disease as in advanced HPV-negative tumors [4,5]. The incidence of
oropharyngeal cancer (OPC) has been increasing for the last few de-
cades. The increased prevalence of HPV-positive cases has also led to
improved treatment outcomes and has motivated the modification of the
AJCC staging system and TNM Classification of Malignant Tumors
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(TNM), which is a standardized system for classifying the spread and
extent of cancer for use in treatment planning and as a prognostic tool
[6]. The current staging system relies however on only the primary tu-
mor’s size and extension, and size and laterality of secondary nodal
tumors, while overlooking other relevant features such as radiomics or
the disease spread [6].

The ability to better personalize treatment approaches and further
treatment efficacy requires better risk stratification models so that pa-
tients with lower risk may benefit from treatment de-escalation (i.e.
reduction of long-term toxicity) whereas patients with higher risk may
benefit from treatment intensification strategies (i.e. increased tumor
control rate) [7,8].
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Imaging radiomics is a method that extracts a large number of fea-
tures from patients’ images. These features can identify tumor charac-
teristics that cannot be appreciated by the naked eye. The inclusion of
imaging radiomics in risk stratification of cancer patients showed
promising results for many cancer sites [9-11]. In addition to radiomics,
we recently showed that the anatomically-informed clustering of the
lymph node patterns-of-spread (LN) is associated with treatment out-
comes [12].

To this end, we sought to evaluate the effect of including patient risk
stratifications derived from radiomics and patterns of lymph node
metastasis to improve the prediction of oncologic and toxicity outcomes
in a large cohort of oropharyngeal cancer patients. We consider two
survival outcomes: Overall Survival (OS) and Recurrence-Free Survival
(RFS), and radiation associated dysphagia (RAD) as a toxicity outcome
associated with OPC patients.

Methods
Data

Patients were retrieved from an internal University of Texas MD
Anderson Cancer Center (UT MDACC) database after approval from the
UT MDACC Institutional review board (IRB). All methods for this study
were performed in accordance with the UT MDACC IRB guidelines and
regulations.

Our original cohort consists of 575 patients that were randomly split
into two independent datasets for training (N = 391) and validation (N
= 284) before the start of the study. Inclusion criteria for this study
where: 1) histopathologically-proven squamous cell carcinoma of the
OPC; 2) tumor present at the base of tongue, tonsil, soft palate,
pharyngeal wall, glossopharyngeal sulcus, or vallecula; 3) HPV/pl6
positive status assessed via in-situ hybridization or immunohistochem-
istry; 4) available pre-treatment contrast-enhanced CT scans, with con-
tours for the primary gross tumor volume (GTVp); and 5) patients were
treated with curative-intent intensity-modulated radiation therapy with
concurrent chemotherapy.

Clinical features including age at diagnosis, sex, ethnicity, smoking
status and frequency, subsite of the primary tumor within the
oropharynx, T category, N category, therapeutic combination, and AJCC
stage (7th and 8th edition) were extracted from electronic medical re-
cords. A detailed description of these data can be found in Elhalawani
etal. [13].

We consider two survival outcomes and one toxicity outcome.
Overall survival (OS) refers to the number of months survived after
diagnosis or last follow-up time (for censored outcomes). Recurrence
Free Survival (RFS) is a combined survival outcome including Local
Control, Regional Control, and Distant Metastasis, whichever occurs
first, or last follow-up time (for censored outcomes). RAD was defined as
the presence of grade 2+ aspiration rate based on CTCAE guidelines
[18], or feeding-tube insertion during treatment or after treatment
completion [37]. No feeding tubes were placed prophylactically.

For imaging data, contrast-enhanced computed tomography (CECT)
scans acquired at diagnosis, prior to any local or systemic treatment,
were exported via commercially available contouring software (Velocity
Al v3.0.1). 3D volumes of interest (VOIs) including the gross primary
tumor volumes (GTVp) were segmented by a radiation oncologist, and
then inspected by a second radiation oncologist. The generated VOIs and
CT images were exported to DICOM-RTSTRUCT format to be used for
radiomics features extraction. The primary tumor volumes (GTVp) were
contoured based on the ICRU 62/83 definition [14] and radiomics fea-
tures representing intensity, shape, and texture were extracted using the
freely available open-source software IBEX [15].

For radiomics, we extracted thousands of human-defined and
curated features which describe tumor shape, intensity, and texture,
among other characteristics [43]. This enabled us to choose and engi-
neer radiomic features proven to be more immune to inter-scanner
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variability, boosting generalizability and significant clinical correla-
tivity [44]. Acknowledging concerns for inter- and intra-observer vari-
ability associated with manual segmentations, we assigned two expert
radiation oncologists who were blinded to relevant clinical data. Dis-
crepancies were resolved by consensus or the call of a third expert ra-
diation oncologist. To decrease volume-dependence of radiomic
features, pixels were resampled to 1 mm x 1 mm and Laplacian of
gaussian and Butterworth smoothing were applied to non-shape feature
extraction with standard deviations between 0.5 and 2.5 [45]. Previous
work from our group has found that inter-observer variability of the
selected radiomics features is low relative to inter-patient variability in
squamous cell carcinoma [42,46,47]. The small number of features that
fell below the acceptable stability threshold were excluded in this
analysis.

Regions in the lymph node drainage system (levels) that were
affected (nodal tumors) were annotated for each patient. Involved
lymph nodes in each patient were identified for both sides of the head. If
at least one lymph node in a given level is affected with cancer cells,
radiation oncologists refer to the corresponding node level as being
involved with disease, and they involve the whole node level in treat-
ment. Involvement was treated as separate covariates for the side of the
head with the primary tumor (ipsilateral) and the side opposite the
primary tumor (contralateral). When the primary tumor (GTVp) crossed
the midline of the head (bilateral), the side with the larger bulk of pri-
mary disease was treated as the ipsilateral side. A multidimensional
vector was constructed to describe the patterns of affected nodes in a
way that accounted for the relative anatomical positions of the lymph
node levels, which was used for creating clusters of patients based on
similar LN involvement, as described by Luciani et al.[16].

Data preprocessing

Some radiomic features that relied on larger filters or large neigh-
borhood sizes could not be extracted from smaller tumor volumes. In
these cases, missing radiomics were imputed using Multivariate Impu-
tation by Chained Equations [17], using classification and regression
trees (CART). Imputation of the training data was done first, and then
the validation samples were imputed using the complete training data.
No clinical data was imputed, and patients with missing data or un-
known HPV status were excluded from the analysis.

A 5-year cutoff was used to generate an event indicator for each
survival outcome. Only patients that experienced the outcome before
the 60-month mark were flagged as having experienced the event.

Radiomics clusters and features

We created clusters of patients based on radiomic features as follows.
First, a set of 3831 features were extracted using the IBEX package.
Features with zero variance or that were highly correlated (>80 %), and
then centered and scaled using the Caret R package [19]. Additionally,
based on previous studies using the same cohort that identified tumor
volume and intensity as highly predictive for local control [20], the
features F25.ShapeVolume (first-order feature), and F29.IntesityDir-
ectGlobalMean (shape feature) are always included a-priori in the final
set of features. Using the final set of features, a penalized semi-
parametric Cox regression model [21], which was tuned using cross-
validation, was applied to select the most informative radiomic fea-
tures. A radiomic signature was generated with the selected features and
the linear predictor from the Cox model was used as a radiomic score.
Lloyds (K-means) clustering was applied to generate patient stratifica-
tion with three groups based on radiomic information, referred to as RM
clusters from here onwards.

Lymph-node similarity and clustering

Pairwise similarity between patients was calculated using similarity-
based on lymph node (LN) involvement over adjacent anatomical re-
gions as described by Wentzel et al [12]. Similarity was computed using
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the squared Canberra distance metric [22] using an anatomically-aware
encoding of patients based on the patterns of involved LN levels. Hier-
archical clustering with four clusters was performed using Ward’s
linkage method [23] on a subset of the patient in the training set that
had involved lymph nodes, based on the parameters used in the original
study [12]. These four clusters were created from the LN spread patterns
of the patients in the training cohort. Patients in the validation cohort
were assigned to the clusters with their corresponding pattern. Patients
in the validation cohort with patterns not present in the original cohort
were assigned to the nearest existing cluster based on average euclidean
distance, while patients with no lymph node involvement were grouped
into their own fifth cluster. Finally, the five LN clusters were grouped
into the low-risk group (No involvement or cluster 1), and a high-risk
group (clusters 2-4), based on the relative incidence of toxicity found
in the training cohort. For the remainder of this paper, “LN clusters” will
refer to these two (high or low) risk strata, rather than the original five
clusters.

The RM and LN clusters were then combined into a RLN stratification
with three risk groups. RLN 1 is a low risk group and corresponds to the
patients in low risk groups for both RM and LN. RLN 2 is a medium risk
group for patients with low/medium risk for either RM or LN, and RLN 3
is a high-risk group with patients in either high risk for RM or LN.

Statistical analysis

Kaplan-Meier curves for OS and RFS were computed for strata
defined by AJCC stage (8th edition) and RLN precision-imaging strati-
fication. We compared OS and RFS among these strata using the log rank
test. We then assessed the improvement of including the cluster labels as
covariates in a Cox proportional hazards model, and evaluated the
prediction improvement over the same baseline model without the
cluster labels, e.g. using only the clinical features and/or clinical staging.
Clinical covariates included age at diagnosis, smoking status (current/
former/never) and whether the patient received chemotherapy or not
(yes/no). Clinical staging covariates include AJCC (8th edition). The a-
priori tumor volume and intensity radiomic features (2F) were also
tested as predictive covariates for some of the models. Models were built
over the training dataset and evaluated over the validation dataset.

Several metrics are used to evaluate the results. Over the training
data we compute the Akaike information criterion (AIC) as a measure of
the goodness of fit and simplicity of the model. We evaluate the
improvement in model discrimination and calibration when including
the radiomics and LN cluster labels for the validation datasets. For model
discrimination, we computed both the area under the curve (AUC) of the
Receiver Operating Characteristic (ROC), which considers sensitivity
against specificity for consecutive cutoffs of the survival probability, and
Harrel‘s C-index (i.e. probability of concordance). For toxicity outcomes
we only report AUC, as the C-index is identical to AUC for binary out-
comes [24]. For evaluating model calibration, we computed Brier score
and the Nam-D’Agostino test statistic [25], which are suggested as
relevant metrics in the literature [26]. All statistical analysis was per-
formed using statistical software R version 3.2.3.

Results

Table 1 shows the patient demographics for clinical features, as well
as the precision-imaging patient stratifications and survival outcomes
considered. As expected, both training and validation sets follow the
same demographic distribution. For the two survival outcomes, about
16 % of the patients experienced the event before the 5-year cutoff for
OS and RFS. For the toxicity outcome, 23 % of the patients experienced
dysphagia.

The Coxnet model selected 9 radiomic features using cross-validation
over the training data (Table 2). Four radiomics-derived clusters were
identified to represent different risk groups. The low and medium risk
groups account for 95 % of the patients, while the high-risk group is the
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Table 1

Summary of clinical and demographic features, follow-up time and event rate for
the outcomes considered, as well as the data-driven patient stratifications for
both training and validation sets. Table shows median (25th, 75th percentile) for
continuous values and count frequency ( %) for discrete values.

Number of patients Training Validation
391 284
Covariates Median and 25th-75th ~ Median and 25th-75th
percentile or Count percentile or Count
Frequency ( %) Frequency ( %)
Age 58.04 52.25-65.32  58.15  53.38-64.10
Gender
Male 346 88 % 243 86 %
Female 45 12 % 41 14 %
T Category
T1/T2 281 72 % 182 64 %
T3/T4 110 28 % 102 36 %
N Category (8th ed)
NO/N1 302 77 % 196 69 %
N2/N3 89 23 % 88 31%
AJCC Stage (8th ed)
I 239 61 % 143 50 %
I 100 26 % 86 30 %
111 52 13 % 55 20 %
v 0 0% 0 0 %
Smoking Status
Former 146 37 % 109 38 %
Current 80 20 % 34 12 %
Never 165 42 % 141 50 %
Tumor subsite
Tonsil 159 41 % 126 44 %
Base of Tongue 195 50 % 140 49 %
Other 37 9% 18 6 %
Therapeutic Combination
cC 203 52 % 76 27 %
IC + CC 91 23 % 110 39 %
IC + Radiation Alone 30 8% 62 22 %
Radiation Alone 67 17 % 36 13 %
Response
Overall Survival (0OS)
Alive 327 84 % 241 85 %
Deceased 64 16 % 43 15 %
Survival/Follow-up Time (in 56.80 43.83-80.95 59.60  45.65-70.95
months)
Relapse Free Survival (RFS)
Alive 320 82 % 244 86 %
Deceased 71 18 % 40 14 %
Survival/Follow-up Time (in 52.53  39.57-77.57 58.45  42.15-69.33
months)
Dysphagia (RAD)
Yes 79 20 % 79 28 %
No 312 80 % 205 72 %
Patient Stratifications
RLN Clusters
1 108 20 % 64 12 %
2 250 64 % 177 62 %
3 33 8% 43 15 %

smallest group (5 % of patients) (Table 1).

For the LN clusters, the low-risk group corresponds to patients with
no lymph node involvement and cluster 1 (78 % of the training data and
72 % of the validation), while the remaining groups are considered
medium to high-risk. Fig. A1 in Appendix A shows a summary of the LN
clusters found in the training data.

To aid interpretation, Fig. 1 shows a visual summary [34] of the
combined RLN clustering for the entire cohort of patients. Whereas
AJCC is an aggregate risk staging system, our model adds additional
anatomical information, and whereas our model correlates with AJCC, it
has additional capacity at a more granular risk prediction.

Fig. 2 shows the Kaplan-Meier (KM) curves for OS over training and
validation stratified by AJCC staging, and the combined radiomics and
LN clustering (RLN). There are significant differences in OS among the
strata in the training set curves (p < .001), as well as the validation
curves (p < .01).
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Table 2

Radiomic features: name, mean, standard deviation, and weight coefficient from the Coxnet model, as well as the linear predictor cutoffs to determine the cluster
labels, description and number missing from each dataset.

Feature Name Description Feature Type Mean () Std Dev () Weight Missing Missing
w) (Training) (Validation)

F8.IntensityDirectKurtosis Measures the peakedness of First-Order 41.81 54.05 0.012 86 0
all the voxel intensities.

F12.IntensityDirectGlobalMean Mean intensity along all First-Order 1.06 0.09 0.006 86 4
voxels

F13.IntensityDirectEnergy Magnitude of voxel values First-Order 255.92 824.15 0.001 86 20

F25.ShapeVolume The physical volume of the Shape 12.25 14.61 0.207 86 0
voxels

F28.GrayLevelRunLengthMatrix25... The joint distribution of Gray Level Run 0.00 0.02 0.017 86 0

OLongRunLowGrayLevelEmpha long-run lengths with lower Length Matrix

gray-level values (GLRLM)

F29.IntensityDirectGlobalMin Minimum intensity along all ~ First-Order 296.22 259.89  —0.207 86 0
voxels

F39.NeighborIntensityDifference25Contrast Measure of the spatial Neighboring Gray 0.32 1.48 0.059 86 0
intensity change, dependent  Tone Difference
on the overall gray-level Matrix (NGTDM)
dynamic range.

F52.NeighborIntensityDifference25Complexity =~ Measure of the uniformity Neighboring Gray 410056.46  1559470.22 0.149 86 0
and number of rapid changes  Tone Difference
in gray level intensity Matrix (NGTDM)

F29.IntensityDirectLocalRangeMax Maximum of the First-Order 1223.34 313.45 0.116 0 0
neighborhood intensity
range of each voxel

#Definition of the radiomics-derived clusters. The linear predictor is calculated as LP = > wiF‘ p Y The cutoffs to determine the cluster labels are [— 0,-0.197,
{i=1-9} i

0.213,0.866, o] and correspond to the midpoint between the cluster centroids.

Cluster 1 Cluster 2 Cluster 3
310 Patients 57 5Patients 98 Patients
14% RAD 29% RAD 57% RAD
% Nodes Affected
1A 1A 1A
100%
= o
60%
40%
6 66
20%
0%
Unilateral+ | Bilateral Unilateral+ | Bilateral Unilateral+ | Bilateral
AjcC 4 AjcC 4 AJCC 4
% RAD
75%
60%
T3 Ajccl T3 Ajcc1 T3 Ajcc 1 45%
30%
0,
AJcC AJcC AJcC N1 15%
0%

AJCC 2 AJcc 2 AJCC 2

Fig. 1. Average lymph node involvement and clinical staging categories of the 3 derived lymph node + radiomics clusters across both the training and validation
datasets. (Top) Heat map of the percentage of patients with an involved lymph node within a cluster for each level. The left half of each heatmap encodes patients
with at least one node involved, whereas the right encodes patients with bilateral involvement in the given level. The low-risk cluster has no bilateral nodal
involvement, while the highest risk cluster has significantly higher bilateral involvement and disease spread in levels 3, 4 and 5. (Bottom) Radar chart showing the %
of patients within each cluster with a given staging level. The plot shading is mapped to the incidence of late treatment associated with dysphagia. The low-risk
cluster is predominantly N-stage 1 and T stage 1-2, while the high-risk cluster is predominantly N-stage 2 with higher incidence of T-stage 4 and AJCC-stage 3-4.

Fig. 3 shows the corresponding Kaplan-Meier (KM) curves for RFS.
Training curves show significant differences for training (p < .001) and
validation (p < .01). For clustering, the validation curves show the same

behavior as the training curves which is a good indicator that predictive
models built over the training data generalize well to unseen data.
Table 3 shows the performance of the prediction models when RLN



G. Canahuate et al.

OS Survival (Training Data — AJCC 8th ed)
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OS Survival (Validation — AJCC 8th ed)
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Fig. 2. Kaplan-Meier curves for Overall Survival (OS) over the training (left) and validation datasets (right), stratified by AJCC staging (2.a and 2.b), respectively
stratified by the combined RLN clusters (2.c and 2.d). The RNL clusters show a significantly improved separation between the curves (p-val < 0.01), and yield the

same stratification for both training and validation datasets.

cluster labels are also included in the model. A CoxPh model was trained
for survival outcomes (OS and RFS) over AJCC staging (8th edition)
alone and also over relevant clinical covariates (age, smoking status, and
chemo). A logistic regression model was trained for dysphagia (RAD) as
a toxicity outcome. AIC is reported for training, while C-index and AUC
are reported for validation as measures of discrimination. The Nam-
D’Agostino test statistic over the validation set is used as a measure of
model calibration. Brier scores were consistently between 0.11 and 0.13
for all models and are not included in the table for conciseness. Per-
formance of the models on the training dataset, as well as baseline
performance of clusters or AJCC staging alone are included in the Ap-
pendix (Table Al).

The performance of the Baseline model is considerably improved
when including the precision-imaging clusters RLN in the model
(Table 3). Models that include AJCC and clinical factors outperform
models with clinical factors alone for all outcomes. In terms of AIC and
validation AUC, modes are improved through the addition of the com-
bined Radiomics + Lymph node (RLN) clusters. AUC improves by 7 %
(0.61-0.65) for OS, 8.52 % (0.61 vs 0.66) for RFS, and 1.6 % (0.74 vs
0.71) for Dysphagia. All improvements are larger when considering

clinical-only models, possibly due to the overlap between the correlation
between AJCC staging and lymph node spread, and tumor shape
captured by the RLN clusters.

The best performing models for each outcome are highlighted in red
in Table 3. Clinical + AJCC models with combined RLN clusters and
fixed radiomic features (2F) performed the best in terms of validation
AUC for OS and Dysphagia, while Clinical + AJCC + RLN performed the
best for RFS. Radiomics clusters alone improved model predictions for
OS and Dysphagia, while LN clusters alone improved model predictions
for RFS. Models with AJCC included outperformed the baseline model
with only clinical attributes.

Discussion

Our findings demonstrate that the simultaneous inclusion of cova-
riates derived from imaging radiomics and anatomical patterns of lymph
node metastasis improves the prediction of both toxicity and oncologic
outcomes when compared to the standard of care staging system. The
models that include Radiomics + LN consistently have superior
discrimination and calibration compared to models that do not include



G. Canahuate et al.

RFS Survival (Training Data — AJCC 8th ed)
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RFS Survival (Validation - AJCC 8th ed)
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Fig. 3. Kaplan-meier curves for Recurrence Free Survival (RFS) over the training (left) and validation datasets (right), stratified by AJCC staging (3.a and 3.b), and
combined RLN clusters (3.c and 3.d). The RNL clusters show a significant separation between the curves (p-val < 0.01), and the same stratification for both training

and validation datasets.

these features. The improvement in discrimination over the hold-out test
set indicates that the proposed patient stratifications generalize well,
and offer predictive ability for both toxicity and oncologic outcomes
even when the model includes other proven predictive covariates.

The KM curves stratified by the RLN clusters show significant dif-
ferences in the expected survival outcomes for both training and vali-
dation (p-val < 0.01). Moreover, the curves show the same relative
stratification, i.e. patients in cluster 1 show better prognosis than pa-
tients in cluster 3 for both training and testing. While the KM curves for
OS and RFS (Figs. 1 and 2) stratified by AJCC staging are also significant,
the training set for RFS shows an inversion for AJCC staging (8th edi-
tion), where stage III has a better expected survival than stage II. This
can be partially explained by the fact that AJCC staging is optimized for
0OS. In contrast, the RLN clusters correlate well with both survival out-
comes, OS and RFS, as well as RAD, a toxicity outcome.

Several recent studies have demonstrated correlation of radiomic
features of the primary tumor and of the lymph nodes with toxicity
[27-28] and oncologic [29-32] outcomes. However, these studies use
the radiomic features directly into the models, and as shown in a large
study, the reproducibility and robustness of these models trained using
radiomic signatures for predicting OS are not warranted [38]. In

contrast, we use the radiomic features to identify a discrete variable, i.e.
the cluster label, to be subsequently used as a predictive covariate, and
we account for anatomical LN patterns of spread. Our experiments
consistently show that the cluster label as a risk strata offers better
generalization than the raw radiomic features [35]. Finally, prior studies
focus on the improvement of a single toxicity or oncologic outcome
while in this work we propose the same stratification for improving both
toxicity and oncologic outcomes simultaneously.

Our study, however, has some limitations. First, all analyses were
done using a single institution retrospective dataset and an independent
validation dataset from the same institution. The performance of our risk
prediction models was not prospectively evaluated. Finally, given the
good prognosis for oropharyngeal cancer, there is a relatively small
number of events (i.e. failure and death) in the data that may introduce
uncertainty in the results. In the future, we would like to include
radiomic features from lymph nodes [41] as well as anatomical infor-
mation relating to tumor location and organs at risk [33,36] into the
patient stratifications as well as other end-points and toxicity outcomes
[39,401.

In conclusion, our results demonstrate that precision risk stratifica-
tions derived from imaging data can improve the performance of
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Table 3
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Effect of including RLN clusters in a CoxPh model for prediction of Overall Survival (OS) and Recurrence Free Survival (RFS) at 5 years, and Radiation Associated
Dysphagia (RAD) at 6 months on the validation data. Clinical features are age, smoking status (never/current/ former), and chemo (yes/no). (RM) radiomics clusters
alone, (LN) Lymph node clusters, (RM + LN) combined 3-stage radiomics and lymph node clusters, (2F) a-priori radiomics features. The best and worst model in terms
of validation AUC score are shown in green and red, respectively. Combined radiomics and LN clusters performed the best in all cases.

AAUC

0.043

0.060

0.034

AAUC

0.059

0.070

Model Overall Survival (OS)
AIC Calib Cind AUC

None
(Baseline) 696.75 14.34 0.64 0.61
Additional Acal
Covariates AAIC ib ACind

Clinical +

AJCC +RM+LN -4.016 -5.414 0.026
+RM+LN+2F
A -5.207 -0.617 0.037
+2F -4.750 -6.946 0.019

AIC Calib Cind AUC
None
(Baseline) 705.07 9.91 0.61 0.60
Additional AcCal
. Covariates AAIC ib ACind
Clinical
+RM+LN -9.385 -6.322 0.045

+RM+LN+2F
A -14.386 -2.920 0.061
+2F -13.704 1.556 0.045

0.045

Dysphagia
Recurrence Free Survival (RFS) (RAD)
AIC Calib Cind AUC AUC
797.55 19.47 0.62 0.61 0.73
AcCal
AAIC ib ACind AAUC AAUC
-2.921 32.189 0.041 0.052 0.012
-1.981 23.511 0.030 0.041 0.017
-1.687 -1.572 -0.004 -0.002 0.005
AIC Calib Cind AUC AUC
799.42 30.07 0.54 0.55 0.65
Acal
AAIC ib ACind AAUC AAUC
-6.126 -0.822 0.097 0.099 0.044
-5.398 -0.933 0.096 0.091 0.080
-4.219 6.262 0.049 0.040 0.058

2AJCC is AJCC (8th edition).

PClinical covariates used are age, smoking status (never/current,/ former), chemo (yes/no).
°2F includes tumor volume and intensity as predictive radiomic features directly into the model.

predictive models for oropharyngeal cancer patients’ toxicity and
oncologic outcomes. The proposed stratifications incorporate anatom-
ical information available at diagnosis such as radiomic features of the
primary tumor, as well as patterns of lymph node spread. In our ana-
lyses, the addition of the cluster labels as predictive covariates consis-
tently improves model AUC performance when compared to the same
models only including clinical covariates and cancer staging. The per-
formance improvement over the hold out test set shows the models are
generalizable to previously unseen data for both oncologic outcomes
such as OS and RFS as well as toxicity outcomes such as radiation
associated dysphagia.
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