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Abstract—The expectation consistent (EC) approximation
framework is a state-of-the-art approach for solving (generalized)
linear inverse problems with high-dimensional random forward
operators and i.i.d. signal priors. In image inverse problems, how-
ever, both the forward operator and image pixels are structured,
which plagues traditional EC implementations. In this work, we
propose a novel incarnation of EC that exploits deep neural
networks to handle structured operators and signals. For phase-
retrieval, we propose a simplified variant called “deepECpr” that
reduces to iterative denoising. In experiments recovering natural
images from phaseless, shot-noise corrupted, coded-diffraction-
pattern measurements, we observe accuracy surpassing the state-
of-the-art prDeep (Metzler et al., 2018) and Diffusion Posterior
Sampling (Chung et al., 2023) approaches with two-orders-of-
magnitude complexity reduction.

Index Terms—Expectation-Consistent Approximation, Gener-
alized Linear Model, Phase Retrieval, Message-Passing Algo-
rithms, Plug-and-Play Algorithms

I. INTRODUCTION

In nonlinear inverse problems, one observes corrupted
measurements y ∈ Ym of a signal/image x ∈ Rd or Cd and
they would like to recover x from y. We consider problems
for which the relationship between y and x can be described
using a likelihood model of the form

p(y|x) =
m∏
i=1

py|z(yi|zi) for z , Ax, (1)

where the forward operatorA ∈ Cm×d and scalar measurement
channel py|z are both known. In the statistics literature, (1) is
known as the generalized linear model (GLM). Versions of py|z
exist for, e.g., additive noise of an arbitrary distribution, logistic
regression [1], Poisson regression [2], noisy quantization [3],
and phase retrieval [4], [5]. In this work, we focus on phase
retrieval, although many of the ideas that we describe can be
applied more generally.

For phase retrieval, although many forward operators A can
be considered, the most common are the (possibly oversam-
pled) 2D Fourier transform and the coded diffraction pattern
(CDP) [6] shown in (2), where F is the unitary 2D Fourier
transform and {Dk}Kk=1 are diagonal matrices with entries
drawn independently and uniformly from the unit circle in the
complex plane. Although several choices of py|z have been
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applied to phase retrieval, we will focus on the choice in (2)
since it has been shown to work well in a variety of real-world
settings [7].

A =
1√
K

FD1
...

FDK

 , py|z(y|z) = exp
(
− 1

2v (y − |z|)
2
)
.

(2)

Various computational approaches have been proposed for
phase retrieval in imaging applications. Classical methods,
like the Gerchberg-Saxton [8] and Hybrid Input-Output [9]
algorithms are based on iterative projection. A more mod-
ern approach is to minimize the negative log-likelihood,
i.e., argminx{− ln py|z(y|Ax)}, using gradient-based iterative
methods with a spectral initialization [10]–[12]. Although
convex-relaxation-based methods like PhaseLift [13] have
also been proposed (see the overview in [14]), they tend
to be computationally impractical at typical image sizes.
Approximate message-passing (AMP) algorithms have been
proposed for phase retrieval [15], [16] that are near-optimal
for high-dimensional i.i.d. or rotationally invariant random A
[17], [18], but they tend to diverge with Fourier or CDP A.

The aforementioned phase-retrieval methods do not exploit
prior knowledge about x. To exploit the knowledge that x
is a natural image, several approaches have been proposed
that involve deep neural networks. For example, by using the
plug-and-play (PnP) [19] or RED [20] frameworks, one can
iteratively alternate between negative-log-likelihood reduction
and neural-network based image denoising [21], [22]. Or,
inspired by CSGM [23], when given an image-generator
gθ(z), one could search for the code vector z such that
the elementwise magnitude of Agθ(z) matches the phaseless
measurements y [24]. A variation on this idea, inspired by DIP
[25], is to optimize the generator parameters θ for a fised code
vector z [26], [27]. A more recent trend is to use diffusion
methods, like DPS [28], for phase retrieval.

In this work, we propose a novel approach to phase retrieval
that builds on the expectation consistent (EC) approximation
algorithm from [29]. Although there are connections to AMP
algorithms like [16], our approach does not require random A.
And although our approach performs iterative denoising (like
with plug-and-play, RED, and diffusion methods) it converges
two orders-of-magnitude faster.
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compute
z posterior mean: ẑ(1)

z posterior variance: v̂(1)

compute
z posterior mean: ẑ(2) =Ax̂(2)

z posterior variance: v̂(2)

extrinsic: z(1), v(1)

extrinsic: z(2), v(2)

z likelihood: py|z(y|z) x likelihood: N (z(2);Ax,Diag(v(2)))

z prior: N (z; z(1),Diag(v(1))) x prior: px(x)

Fig. 1. Summary of EC applied to the GLM in (1). The algorithm iteratively estimates the transform outputs z = Ax by alternating between two estimation
modules that exchange extrinsic means and variances.

II. PROPOSED APPROACH

A. Review of EC

The expectation-consistent (EC) approximation algorithm
[29] is a message-passing algorithm for iterative inference of
vector-valued variables. Unlike the sum-product algorithm, it
passes mean and variance messages rather than full probability
distributions. More precisely, EC is a parallel version of the
expectation propagation (EP) algorithm [30] that (locally)
minimizes a known cost function. Over the last decade, EC has
become famous as a method that admits rigorous analysis, and
in some cases optimal recovery, in high-dimensional random
settings. Perhaps the best known setting is the standard linear
model (i.e., the GLM (1) with additive Gaussian py|z) with high-
dimensional rotationally invariant A and i.i.d. x. This applica-
tion of EC is sometimes referred to as Vector AMP (VAMP),
which obeys a rigorous state-evolution whose fixed points are
minimum mean-squared error (MMSE)-optimal whenever they
are unique [31], [32]. EC has also been proposed for the GLM
[16], [33], [34] and rigorously analyzed in [35] under the
same random-A and i.i.d.-x assumptions. Although the i.i.d.-x
assumption was circumvented in [36], random-A remains an
important ingredient in existing applications/analyses of EC.

In image inverse problems, applying EC is challenging
because A is not random. Consequently, EC behaves unpre-
dictably and may not even converge [37]. Although work-
arounds have been proposed for the special case of magnetic
resonance imaging [38], [39], successful applications of EC to
general imaging inverse problems remain elusive.

Figure 1 illustrates how EC iteratively estimates the trans-
form outputs z = Ax by alternating between two estimation
modules. The left module computes the posterior mean and
(pixel-wise) variance of {zi}mi=1 using the likelihoods py|z(yi|·)
and a Gaussian prior informed by the extrinsic message
{(z(1)

i , v(1)

i )}mi=1 received from the right module, i.e.,

∀i : ẑ(1)

i = E{zi|yi; z(1)

i , v(1)

i }
v̂(1)

i = var{zi|yi; z(1)

i , v(1)

i }
(3)

via p(zi|yi; z(1)

i , v(1)

i ) =
py|z(yi|zi)N (zi; z

(1)

i , v(1)

i )∫
py|z(yi|zi)N (zi; z

(1)

i , v(1)

i ) dzi
.

Meanwhile, the right module computes the posterior mean
and covariance of x using the prior px and a linear-Gaussian
likelihood informed by the extrinsic message from the left

module, i.e.,

x̂(2) = E{x|y; z(2),v(2)}
Ĉ(2) = Cov{x|y; z(2),v(2)} (4)

via p(x|y; z(2),v(2)) =
N (z(2);Ax,Diag(v(2))) px(x)∫
N (z(2);Ax,Diag(v(2))) px(x) dx

,

and then uses those quantities to compute the posterior mean
and (pixel-wise) variance of z, i.e.,

ẑ(2) = Ax̂(2)

v̂(2) = diag(AĈ(2)AH).
(5)

Finally, the messages passed between the two modules take
the form

∀i :

v(2)

i =
(
1/v̂(1)

i − γ(1)/v(1)

i

)−1
z(2)

i =
(
ẑ(1)

i /v̂(1)

i − γ(1)z(1)

i /v(1)

i

)
v(2)

i

v(1)

i =
(
1/v̂(2)

i − γ(2)/v(2)

i

)−1
z(1)

i =
(
ẑ(2)

i /v̂(2)

i − γ(2)z(2)

i /v(2)

i

)
v(1)

i

, (6)

which are “extrinsic” when γ(1) = 1 = γ(2). When x is i.i.d.
and A is a large, rotationally invariant random matrix, it is
possible to avoid the high-dimensional integral and posterior
covariance matrix Ĉ(2) in (4), as detailed in [16], [33]–[35].
But what can be done when x and A are structured and non-
random, as in most imaging applications?

B. The Proposed deepEC and deepECpr

For GLM image recovery, we propose to use EC as above,
but with (4)-(5) approximated as follows:

1) Compute the posterior mean x̂(2) using a neural
network fθ(z

(2);v(2)) trained to minimize Jf (θ) =∑T
t=1 E ‖xt − x̂(2)

t ‖2, with training {xt}Tt=1, output
x̂(2)

t = fθ(Axt+et;v
(2)), noise et ∼ N (0,Diag(v(2))),

and variances v(2)

i ∼ i.i.d.Unif[0, vmax] for some vmax.
2) Compute the posterior variances v̂(2) using a neural

network hφ(z
(2);v(2)) trained to minimize Jh(φ) =∑T

t=1 E ‖|zt − ẑ
(2)

t |�2 − v̂
(2)

t ‖2, with true zt = Axt,
estimated ẑ(2)

t = Ax̂(2)

t , elementwise square (·)�2, and
v̂(2)

t = hφ(z
(2)

t ;v(2)). This avoids computing Ĉ(2).
For phase retrieval, we make additional simplifications, some

of which exploit AHA = I , which holds for both the (possibly
oversampled) Fourier and CDP (2) incarnations of A.

1) Use the Laplace approximation [40] of (ẑ(1)

i , v̂(1)

i ) in (3),
computable in closed-form.

2) Approximate the posterior variance vectors v̂(j) by 1
times their average value v̂(j) , 1

m1>v̂(j), for j = 1, 2.
Consequently, v(j) has the form 1v(j) for scalar v(j).
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TABLE I
AVERAGE PSNR AND SSIM AT VARIOUS SHOT-NOISE LEVELS α FOR SET12 TEST IMAGES

method α = 9 α = 18 α = 27 denoiser callsPSNR SSIM PSNR SSIM PSNR SSIM
HIO 30.92 0.9557 25.79 0.8568 22.44 0.7413 -

prDeep 38.90 0.9900 34.60 0.9778 32.04 0.9633 800
deepECpr 39.27 0.9913 34.69 0.9785 32.02 0.9626 30

TABLE II
IMPROVEMENT OF DEEPECPR OVER PRDEEP

VERSUS α

α ∆PSNR ± SE ∆SSIM ± SE
9 0.37 ± 0.06 0.0013 ± 0.0003
18 0.09 ± 0.05 0.0007 ± 0.0002
27 -0.02 ± 0.06 -0.0007 ± 0.0007

TABLE III
AVERAGE PSNR AND SSIM AT VARIOUS SHOT-NOISE LEVELS α FOR FFHQ TEST IMAGES

method α = 9 α = 18 α = 27 denoiser callsPSNR SSIM PSNR SSIM PSNR SSIM
HIO 20.84 0.7821 20.02 0.5519 18.89 0.3959 -
DPS 41.98 0.9803 38.4 0.9619 36.14 0.9432 1000

deepECpr 43.68 0.9865 39.92 0.9724 37.70 0.9595 30

TABLE IV
IMPROVEMENT OF DEEPECPR OVER DPS

VERSUS α

α ∆PSNR ± SE ∆SSIM ± SE
9 1.70 ± 0.03 0.0063 ± 0.0007
18 1.52 ± 0.03 0.0105 ± 0.0009
27 1.57 ± 0.03 0.0163 ± 0.0012

3) Replace the linearized measurement z(2)

t = Axt + et,
where et ∼ N (0, v(2)I), with the sufficient statistic
r(2)

t , AHz(2)

t = xt+ εt, where again εt ∼ N (0, v(2)I).
Consequently, estimating xt from r(2)

t becomes a denois-
ing task, for which we use x̂(2) = fθ(r

(2), v(2)1).
4) Approximate v̂(2) = hφ(z

(2); v(2)1) by v̂(2) = βv(2) for
some scalar β ∈ (0, 1]. This is admittedly heuristic, but
it works well empirically and avoids the need to use (and
hence train) a variance-estimation network hφ.

The resulting phase-retrieval algorithm, “deepECpr,” per-
forms iterative denoising, similar to PnP or RED. However, it
requires many fewer iterations, as we show next.

III. NUMERICAL EXPERIMENTS

To compare to prDeep [21], we repeat one of their exper-
iments, where 128×128 grayscale images from Set12 [41]
were recovered from phaseless CDP measurements y under
the noise model

y2i = |zi|2 + wi with wi ∼ N (0, α2|zi|2). (7)

This approximates shot-noise corruption at noise level α since
y2i /α

2 is approximately Poisson(|zi|2/α2) [21].
For deepECpr, we use the py|z from (2) with bank of five

DnCNN [41] denoisers trained on BSD400 using the bias-free
approach from [42]. These denoisers were trained to remove
σ-std AWGN with σ drawn uniformly over [0, 5], [5, 10],
[10, 20], [20, 40], and [40, 60], respectively, where 255 is the
maximum pixel intensity. At each iteration, deepECpr uses the
denoiser whose σ interval includes the current value of

√
v(2).

For message passing, we used γ(1) = 1 and γ(2) = 0 in (6).
We initialized with z(1) = A1x, where x is the average pixel
value over the training data, and with v(1) set to the variance
of zi − z(1)

i averaged over the training data and measurement
indices i. We set β = 0.5.

For prDeep, we used the Python implementation [43] under
the settings recommended in [21], which includes using py|z
from (2) and a bank of four DnCNN denoisers trained on the
BSD400 over the σ intervals [0, 10], [10, 20], [20, 40], and [40,
60], respectively. First prDeep is run for 200 iterations using the
denoiser trained for σ ∈ [40, 60], then the result is improved

Fig. 2. Average PSNR versus iteration for Set12 test data with shot-noise
level α = 9 (left) and FFHQ test data with shot-noise level α = 18 (right).

by running another 200 iterations using the denoiser trained for
σ ∈ [20, 40], and so on, for a total of 800 iterations. We did
not further split the [0,10] interval, as we did with deepECpr,
because we found that this degraded the performance of prDeep.
Like with deepECpr, we trained DnCNN using the bias-free
approach from [42] and initialized prDeep with x̂ = 1x, where
x is the average pixel value over the training data. For both
prDeep and deepECpr, v in (2) is set at the variance of yi−|zi|
averaged over the training data and measurement indices i.

We also compare to the classical HIO algorithm [9], as
implemented in [44], using 1000 iterations.

Table I shows PSNR and SSIM averaged over the Set12 test
images, where the proposed deepECpr outperformed prDeep
and HIO at noise levels α = 9 and 18. At α = 27, deepECpr
and prDeep exhibit comparable performance, with both vastly
outperforming HIO. Table II1 shows that the PSNR and SSIM
gains at α = 9 and 18 are statistically significant. Furthermore,
Fig. 2 shows that deepECpr converges two orders-of-magnitude
faster than prDeep. The example reconstructions in Fig. 3 show
that deepECpr obtained superior visual quality by removing
more noise than prDeep and HIO while still preserving fine
details.

In a second experiment, we compare to the recent “DPS”
conditional diffusion method from [28], where first 30 images
from the FFHQ dataset [45] were recovered from phaseless
CDP measurements at K = 4 with shot noise from (7).

1In Table II, IV, and VI, the abbreviation ‘SE’ denotes ‘standard error.’
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TABLE V
AVERAGE PSNR AND SSIM AT GAUSSIAN NOISE LEVEL

√
v FOR FFHQ TEST IMAGES

method
√
v = 0.04

√
v = 0.06

√
v = 0.08 denoiser callsPSNR SSIM PSNR SSIM PSNR SSIM

HIO 18.98 0.5154 18.05 0.3692 16.87 0.2697 -
DPS 37.95 0.9584 35.91 0.9392 34.47 0.9206 1000

deepECpr 39.28 0.9679 37.34 0.9537 35.82 0.9359 30

TABLE VI
IMPROVEMENT OF DEEPECPR OVER DPS

VERSUS
√
v

√
v ∆ PSNR ± SE ∆ SSIM ± SE

0.04 1.33 ± 0.04 0.0095 ± 0.0009
0.06 1.43 ± 0.04 0.0145 ± 0.0010
0.08 1.35 ± 0.06 0.0154 ± 0.0014

Fig. 3. Top: Reconstructions of a 128 × 128 Set12 image from phaseless
CDP measurements at K = 4 in shot noise with α = 9. PSNR is shown in
parentheses. Bottom: Zoomed versions of the cyan squares in the top row.

Fig. 4. Top: Reconstructions of a 256× 256 FFHQ image from phaseless
CDP measurements at K = 4 in shot noise with α = 27. PSNR is shown
in parentheses. Bottom: Zoomed versions of the cyan squares in the top row.
Note how DPS generated artifacts in and around the lips.

DPS was run using the authors’ code from [46], modified
to accommodate the py|z from (2). The codebase includes
a pre-trained unconditional FFHQ diffusion model. In DPS,
tuning the hyperparameter v in py|z is equivalent to tuning the
step-size on the gradient of the log likelihood, which we did
by maximizing the PSNR on validation data that comprised
FFHQ images 31-60. For deepECpr, the same pre-trained
unconditional diffusion model is rescaled to act as a denoiser,
as in [28, eq. (9)]. Since this denoiser accepts a noise variance,
we feed it v(2). As before, the average pixel value from the
training data is used to initialize deepECpr, v in (2) is set at
the variance of yi − |zi| averaged over the training data and
measurement indices i, deepECpr used β = 0.5, γ(1) = 1, and
γ(2) = 0, and 1000-iteration HIO is used as a baseline.

Tables III and IV show PSNR and SSIM averaged over the

Fig. 5. Top: Reconstructions of a 256× 256 FFHQ image from phaseless
CDP measurements at K = 4 in shot noise with α = 9. PSNR is shown in
parentheses. Bottom: Zoomed versions of the cyan squares in the top row.
Note how DPS failed to reconstruct the fine hair stands near the center of the
zoomed plot.

FFHQ test images, where the proposed deepECpr outperformed
DPS and HIO at all three noise levels α. Furthermore, Fig. 2
shows that deepECpr converged two orders-of-magnitude faster
than DPS. Example reconstruction plots in Fig. 4 and Fig. 5
show that deepECpr obtained superior visual quality over HIO
and DPS.

In a third experiment, we compare deepECpr to DPS and
HIO using phaseless CDP measurements at K = 4 corrupted
by additive white Gaussian noise:

yi = |zi|+ wi with wi ∼ N (0, v), (8)

where v controls the variance of the additive white Gaussian
noise. Table V demonstrates that deepECpr performed better
than both HIO and DPS in this scenario, and Table VI suggests
that the performance gap between deepECpr and DPS is
statistically significant.

IV. CONCLUSION

For generalized linear models, we proposed a novel variant
of expectation consistent (EC) approximation [29] that exploits
deep neural networks. Unlike the traditional EC implemen-
tations, the proposed “deepEC” framework does not require
random forward operators nor an i.i.d. signal prior. For phase
retrieval, we proposed a simplified variant called “deepECpr.”
In experiments recovering natural images from phaseless,
shot-noise corrupted, coded-diffraction-pattern outputs, we
observed deepECpr outperforming the state-of-the-art prDeep
[21] and the DPS [28] methods in reconstruction accuracy,
while reducing complexity by two orders of magnitude.
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