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Learnable Filters for Geometric Scattering Modules
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Jackson Grady

Abstract—We propose a new graph neural network (GNN)
module, based on relaxations of recently proposed geometric
scattering transforms, which consist of a cascade of graph wavelet
filters. Our learnable geometric scattering (LEGS) module en-
ables adaptive tuning of the wavelets to encourage band-pass fea-
tures to emerge in learned representations. The incorporation of
our LEGS-module in GNNs enables the learning of longer-range
graph relations compared to many popular GNNs, which often
rely on encoding graph structure via smoothness or similarity
between neighbors. Further, its wavelet priors result in simplified
architectures with significantly fewer learned parameters com-
pared to competing GNNs. We demonstrate the predictive per-
formance of LEGS-based networks on graph classification bench-
marks, as well as the descriptive quality of their learned features
in biochemical graph data exploration tasks. Our results show
that LEGS-based networks match or outperforms popular GNNs,
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as well as the original geometric scattering construction, on many
datasets, in particular in biochemical domains, while retaining
certain mathematical properties of handcrafted (non-learned)
geometric scattering.

Index Terms—Geometric scattering, graph neural networks,
graph signal processing.

I. INTRODUCTION

EOMETRIC deep learning has recently emerged as an in-

creasingly prominent branch of deep learning [1]. At the
core of geometric deep learning is the use of graph neural
networks (GNNs) in general, and graph convolutional networks
(GCNs) in particular, which ensure neuron activations follow
the geometric organization of input data by propagating infor-
mation across graph neighborhoods [2], [3]. [4]. [5], [6], [7].
However, recent work has shown the difficulty in generalizing
these methods to more complex structures, identifying common
problems and phrasing them in terms of so-called oversmooth-
ing [8], underreaching [9] and oversquashing [10].

Using graph signal processing terminology from [4], these
issues can be partly attributed to the limited construction of
convolutional filters in many commonly used GCN architec-
tures. Inspired by the filters learned in convolutional neural
networks, GCNs consider node features as graph signals and
aim to aggregate information from neighboring nodes. For ex-
ample, [4] presented a typical implementation of a GCN with
a cascade of averaging (essentially low pass) filters. We note
that more general variations of GCN architectures exist [3],
[5], [6], which are capable of representing other filters, but as
investigated in [10], they often have difficulty in learning long-
range connections.

Recently, an alternative approach was presented to provide
deep geomefric representation learning by generalizing Mal-
lat’s scattering transform [11], originally proposed to provide a
mathematical framework for understanding convolutional neu-
ral networks, to graphs [12], [13], [14] and manifolds [15],
[16], [17]. The geometric scattering transform can represent
nodes or graphs based on multi-scale diffusions, and differences
between scales of diffusions of graph signals (i.e., node fea-
tures). Similar to traditional scattering, which can be seen as
a convolutional network with non-learned wavelet filters, geo-
metric scattering is defined as a GNN with handcrafted graph
filters, constructed with diffusion wavelets over the input graph
[18], which are then cascaded with pointwise absolute-value
nonlinearities. The efficacy of geometric scattering features in
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graph processing tasks was demonstrated in [12], with both
supervised learning and data exploration applications. More-
over, their handcrafted design enables rigorous study of their
properties, such as stability to deformations and perturbations,
and provides a clear understanding of the information extracted
by them, which by design (e.g., the cascaded band-pass filters)
goes beyond low frequencies to consider richer notions of reg-
ularity [19], [20].

However, while geometric scattering transforms provide ef-
fective universal feature extractors, their handcrafted design
does not allow the automatic task-driven representation learning
that is so successful in traditional GNNs and neural networks in
general. Here, we combine both frameworks by incorporating
richer multi-frequency band features from geometric scattering
into GNNs, while allowing them to be flexible and trainable.
We introduce the geometric scattering module, which can be
used within a larger neural network. We call this a learnable
geometric scattering (LEGS) module and show it inherits prop-
erties from the scattering transform while allowing the scales of
the diffusion to be learned. Moreover, we show that our frame-
work is differentiable, allowing for backpropagation through it
in a standard reverse mode auto differentiation library.

The benefits of our construction over standard GNNs, as well
as pure geometric scattering, are discussed and demonstrated
on graph classification and regression tasks in Sec. VI. In par-
ticular, we find that our network maintains the robustness to
small training sets present in fixed geometric scattering [21],
while improving performance on biological graph classification
and regression tasks. In particular, we find that in tasks where
the graphs have a large diameter relative to their size, learnable
scattering features improve performance over competing meth-
ods. We show that our construction performs better on tasks
that require whole-graph representations with an emphasis on
biochemical molecular graphs, where relatively large diame-
ters and non-planar structures usually limit the effectiveness of
traditional GNNs. We also show that our network maintains
performance in social network and other node classification
tasks where state-of-the-art GNNs perform well.

A previous short version of this work appeared in the IEEE
Workshop on Machine Learning and Signal Processing 2021
[22]. We expand on that work first by incorporating additional
theory including Theorem 3 which generalizes existing theory
for nonexpansive scattering operators. Furthermore, we add
additional experiments on molecular data, as well as ablation
studies on both amount of training data and ensembling with
other models.

The remainder of this paper is organized as follows. In Sec-
tion I, we review related work on graph scattering and literature
on the challenges of modern GNNs. In Section III, we review
some of the concepts of geometric scattering. In Section IV,
we present expanded theory on geometric scattering with task-
driven tuning. This theory establishes that our LEGS module
retains the theoretical properties of scattering while increasing
expressiveness. In Section V, we present the architecture and
implementation details of the LEGS module. We examine the
empirical performance of LEGS architectures in Section VI and
conclude in Section VIL.
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II. RELATED WORK

A widely discussed challenge for many modern GNN ap-
proaches is so-called oversmoothing [8], [23]. This is a result of
the classic message passing in GNNs that is based on cascades
of local node feature aggregations over node neighborhoods.
This increasingly smooths graph signals, which in turn ren-
ders the graph nodes undistinguishable. From a spectral point
of view, this phenomenon is due to most GNN filters being
low-pass filters [24] that mostly preserve the low-frequency
spectrum. A related phenomenon is so-called underreaching
[9], which is a result of the limited spatial support of most
GNN architectures. Most models can only relate information
from nodes within a distance equal to the number of layers.
Hence, they cannot represent long-range interactions as the
before mentioned oversmoothing typically prohibits the design
of truly “deep” GNN architectures. Lastly, oversquashing [10]
is yet another consequence of typical message passing. As the
number of nodes in the receptive field of each node grows
exponentially in the number of GNN layers, a huge amount of
information needs to be compressed into a vector of fixed size.
This makes it difficult to represent meaningful relationships
between nodes, as the contribution of features of single nodes
becomes marginal.

We note that efforts to improve the capture of long-range con-
nections in graph representation learning have recently yielded
several spectral approaches based on using the Lancoz algo-
rithm to approximate graph spectra [25], or based on learning in
block Krylov subspaces [26]. Such methods are complementary
to the work presented here, in that their spectral approximation
can also be applied in the computation of geometric scattering
when considering very long range scales (e.g., via spectral for-
mulation of graph wavelet filters). However, we find that such
approximations are not necessary in the datasets considered
here and in other recent work focusing on whole-graph tasks,
where direct computation of polynomials of the Laplacian is
sufficient. Furthermore, recent attempts have also considered
ensemble approaches with hybrid architectures that combine
GCN and scattering channels [27], albeit primarily focused on
node-level tasks, considered on a single graph at a time, rather
than whole-graph tasks considered here on datasets comparing
multiple graphs. Such ensemble approaches are also compli-
mentary to the proposed approach in that hybrid architectures
can also be applied in conjunction with the proposed LEGS
module here as we demonstrate in Sec. VL

III. PRELIMINARIES: GEOMETRIC SCATTERING

Let G=(V,E,w) be a weighted graph with V :=
{vi,...,vn} the set of nodes, E C {{v;,v;} € (g),i;&j}
the set of (undirected) edges and w : E'— (0, 00) assigning
(positive) edge weights to the graph edges. We define a graph
signal as a function = : V — IR on the nodes of G and aggregate
them in a signal vector z € R™ with the ** entry being z(v;).
We define the weighted adjacency matrixW € R"™" of G as
W v, v;] = w(v;,v;) if {v;,v;} € E, and O otherwise and
the degree matrixD € R™*" of G as D :=diag(d,...,dn)
with d; == deg(v;) := Y_7_; W [vs, v;] the degree of node v;.
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The geometric scattering transform [12] consists of a cas-
cade of graph filters constructed from a left stochastic dif-
fusion matrix P:=3(I,,+WD™'), which corresponds to
transition probabilities of a lazy random walk Markov process.
The laziness of the process signifies that at each step it has
equal probability of staying at the current node or transitioning
to a neighbor. Scattering filters are defined via graph-wavelet
matrices ¥; € R™™™ of order j € Ny, as

Go:=1I,— P,
;=P _pY—p¥ N (I,-P¥"), j>1 (1)

These diffusion wavelet operators partition the frequency spec-
trum into dyadic frequency bands, which are then organized
into a full wavelet filter bank W; := {¥;, ®;}o<;<, Where
b= =P? isa pure low-pass filter, similar to the one used in
GCNes. It is easy to verify that the resulting wavelet transform
is invertible since a simple sum of filter matrices in W; yields
the identity. Moreover, as discussed in [20], this filter bank
forms a nonexpansive frame, which provides energy preserva-
tion guarantees, as well as stability to perturbations, and can be
generalized to a wider family of constructions that encompasses
the variations of scattering transforms on graphs from such as
those considered in [13].

Given the wavelet filter bank W;, node-level scattering fea-
tures are computed by stacking cascades of bandpass filters and
element-wise absolute value nonlinearities to form

UP:B:_ .‘.'m|‘:'[f ‘l‘pj2|‘I’j1m||"'|: (2)

Jm—1 -

parameterized by the scattering path p:=(j1,...,Jm) €
UmenlNg® that determines the filter scales of each wavelet.
Whole-graph representations are obtained by aggregating
node-level features via statistical moments over the nodes of
the graph [12], which yields the geometric scattering moments

Sp,qm = Z |Upm[vi.]|q: (3)
i=E

indexed by the scattering path p and moment order g. No-
tably, coefficients with m = 0 correspond to simply taking mo-
ments of the input signal x and, the coefficients with m =1
correspond to moments of the wavelet transform. For m > 2,
the coefficients correspond to iterated wavelet transforms with
non-linearities interspersed. Finally, we note that Theorem 3.6
of [20] shows that U, is equivariant to permutations of the
nodes. Therefore, it follows that the graph-level scattering trans-
form S, ; is node-permutation invariant since it is defined via
global summation.

IV. ADAPTIVE GEOM. SCATTERING RELAXATION

The geometric scattering construction, described in Sec. III,
can be seen as a particular GNN architecture with handcrafted
layers, rather than learned ones. This provides a solid mathe-
matical framework for understanding the encoding of geometric
information in GNNs [20], while also providing effective un-
supervised graph representation learning for data exploration,
which also has advantages in supervised learning tasks [12].

Both [20] and [12] used dyadic scales in Eq. 1, a choice
inspired by the Euclidean scattering transform [11]. Below in
Theorem 1, we will show that these dyadic scales may be
replaced by any increasing sequence of scales and the resulting
wavelets will still form a nonexpansive frame. Later in Sec-
tion V, Theorem 3 will consider scales which are learned from
data and show that the learned filter bank forms a nonexpansive
operator under mild assumptions. This allows us to obtain a
flexible model with similar guarantees to the model considered
in [12], but which is amenable to task-driven tuning provided
by end-to-end GNN training.

Given an increasing sequence of integer diffusion time scales

0 <ty <--- < ty, we replace the wavelets considered in Eq. 1
with the generahzed filter bank W/, := {¥}, ®',}/7], where
v =1, — P M 2
=Pa P, 1<L5<J—=1. @)

Since P is not a symmetric matrix, the these wavelets are
not self-adjoint operators on the standard, unweighted in-
ner product space. Therefore, to study these wavelets, it will
be convement to consider a weighted inner product space
Lz(g D~ 2) of graph signals with 11:mer product (a:' Y) =

(D_ia: D~ 2y) and induced norm ||:I:|| ||D_5::t:||2 =

Noi ﬂ— for z,y € L*(G, D™ 2) Importantly, we note that
Lemma 1 1 of [15] implies that P (and therefore the wavelets
constructed from it) are self-adjoint on L?(G, D_f)

The following theorem shows that W/, is a nonexpansive
frame, similar to the result shown for dyadic scales in [20].
We note our proof that it relies upon the fact that D~/2P D'/2
is a symmetric matrix, which necessitates that our results be in
terms of the weighted norm || - || 5-1/2 rather than the standard
unweighted inner product.

Theorem 1: There exists a constant C' > 0 that only depends
on t; and £ such that for all = € L2(G, D~'/?),

J
Cllel? _, <I®yal? 4+ ¥l
j=0

<llel? .

where the norm is the one induced by the space L2(G, D~'/2).

Proof: Note that P has a symmetric conjugate M :=
D~'/2P D2 with eigendecomposition M = QAQ " for or-
thogonal @. Given this decomposition, we can write

@} - DI/‘ZQAtJQTD_l/g,
¥, =D'?Q(A% —A)QTD™2, e<ji<JT—1,
where we set 75 = 0 to simplify notations. Therefore, we have

i —1/2
1852121/ = (B2, B)2) p-1/2 = |AY QT D™z |12.

If we consider a change of variable to y = QTD V2. we
have IITIID w2 = D™ 2|3 = ||yl3, while | &z, ./ =
||A73||2. Similarly, we can also reformulate the operations of
the other filters in terms of diagonal matrices applied to y as
523272 = I(AY — A5+ )y]l3.
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B =Trainable
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(a) Geometric Scattering

Fig. 1.
Given these reformulations, we can now write

J—1
1A% glIZ + > (A% — A% +)yl3

=0

Ziy?-()ﬁ”“rz

Since0< \;<landD=tp <ty <---

tm)z) _

< ty, we have
2

J-1 J—1
e DI R D PEED PPEED il IS
=0 =0
which yields the upper bound I|A“y||2+2 LI|(At —

A¥+1)y||3 < |ly||2. On the other hand, since t; > 0 =1y,

J-—1
AN -

j=0

AP 2T+ - NP,
and thus, setting C := mino.;gq(g?w +(1—£%)%) >0, we
get the lower bound ||A%y||3 + E ||(At-‘ Ab+)y|2 >
Cllyl3. Ap}:ilylng the reverse change of variable to = and
L*(G,D ) yields the result of the theorem. |

Theorem 1 shows that the wavelet transform is injective
and stable to additive noise. Our next theorem shows that it
is permutation equivariant at the node-level and permutation
invariant at the graph level. This guarantees that the extracted
features encode the intrinsic geometry of the graph rather than
a priori indexation.

Theorem 2: Let U}, and S, , be defined as in Eq. 2-3, with
the filters from W} with an arbitrary configuration 0 < ¢; <

- <ty in place of W;. Then, for any permutation II over
the nodes and any graph signal « € L2(G, D~/2), we have
U llz =IIU,x and S}, Ilx = S}, .z, for p € UmenNG, g €
N, where geometric scattering implicitly considers the node
ordering supporting its input signal.

Proof: For any permutation II, we let G =TII(G) be the
graph obtained by permuting the vertices of G with 1I. We note
that the adjacency and degree matrices on G are given by
W =TIIWII' and D = IIDII". Additionally, the correspond-
ing permutation operation on a graph signal « € L2(G, D =)
gives a signal Iz € L2(G, D~ /%), which we implicitly con-
sidered in the statement of the theorem, without specifying these
notations for simplicity. Rewriting the statement of the theorem

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 72, 2024

Diffusion Module

= W l Scattering Module

LJ' Aggregation Module
(b) Learnable Geometric Scattering

LEGS module learns to select the appropriate scattering scales from the data.

I+ WD ') denote the analog
of P on G and let ¥; denote the matrix defined according to
Eq. 4 but with P in place of P. Then, we let ﬁ; and ?;‘q
be the analogs of U7, and S, ,
introduced notations, we aim to show that ﬁ;l’[:r = HU;,:I: and

—

Sy iz =8, ,
FLrst we notlce that for any ¥;, 0 < j <.J we have that
\I’Hﬁ’: M¥;z,asforl <j<J—1,

T,llz = ((IPM )% — (TP )4+ [z
= (MPYT" — TP+ 11" Iz = 1Tz,

more formally, we let P =

constructed using 'I'_f? With the

with similar reasoning for j € {0, J}. Note that the element-
wise absolute value yields |[Iz| = II|z| for any permutation
matrix II. These two observations inductively yield

UpHa:— ¥, W, . [T, [T .|

o i oo [T, ||| = =TT

To show S ¢ is permutation invariant, first notice that for any
statistical mornent q >0, we have |[Ix|? =1II|x|? and further,
as sums are commutative, . (Ilz); =3, x;. We then have

n n
Spolle =Y [T llefu]|? = Y MU, z[v]| = S, 4,
i=1 i=1
which completes the proof of the theorem. O
We note that the results in Theorems 1-2 and their proofs
closely follow the theoretical framework proposed by [20].
‘We carefully account here for the relaxed learned configuration,
which replaces the original handcrafted one there. We also note
that conclusions of Theorem 2 remain valid if | - | is replaced
with any vertex-wise nonlinearity.

V. A LEARNABLE GEOM. SCATTERING MODULE

In this section, we show how the generalized geometric scat-
tering construction presented in Sec. IV can be implemented
in a data-driven way via a backpropagation-trainable module.
Throughout this section, we consider an input graph signal
x € R" or, equivalently, a collection of graph signals X €
R™*Ne—1 | For simplicity, our theory will focus on the case
where there is a single signal x. However, the numerical im-
plementation proceeds in the exact same manner with multiple
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signals and our theoretical results may also be easily adapted
to the multiple signal case. The forward propagation of these
signals can be divided into three major submodules. First, a
diffusion submodule implements the Markov process that forms
the basis of the filter bank and transform. Then, a scattering sub-
module implements the filters and the corresponding cascade,
while allowing the learning of the scales £, ..., ¢ ;. Finally, the
aggregation module collects the extracted features to provide a
graph and produces the task-dependent output.

The diffusion submodule. We build a set of m € N subse-
quent diffusion steps of the signal = by iteratively multiplying
the diffusion matrix P to the left of the signal, resulting in
[P:L’,P2:I:,...,Pt“’“$1 . Since P is often sparse, for effi-
ciency reasons these filter responses are implemented via an
RNN structure consisting of £, RNN modules. Each mod-
ule propagates the incoming hidden state h;_1,t=1,..., tmax
with P with the readout o, equal to the produced hidden state,
ht = Ph;t_]_._. O Z:h’t.

The scattering submodule. Next, we consider the selection of
J < m diffusion scales for the flexible filter bank construction
with wavelets defined according to Eq. 5. We found this was
the most influential part of the architecture. We experimented
with methods of increasing flexibility: 1) Selection of {¢; }j;ll
as dyadic scales (as in Sec. III and Eq. 1), fixed for all datasets
(LEGS-FIXED); and 2) Selection of each ; using softmax and
sorting by j, learnable per model (LEGS-FCN and LEGS-RBF,
depending on output layer explained below).

For the scale selection, we use a selection matrix F' &
RJI*tmax  where each row F.y,3=1,...,J is dedicated
to identifying the diffusion scale of the wavelet P via a
one-hot encoding. This is achieved by setting F :=¢(0) =
[0(61),0(02),...,0(85)], where 8; € Rtmx constitute the
rows of the trainable weight matrix ©, and o is the softmax
function (see [28], section 6.2.2.3). For 8 = [fy,...,0: ] €
Rtmax and o(6); := e/ X €%, we have

o(61); J(Gx)tmu
| o(@2) 0(02)t s
o(0)1 o 0(81)m

While this construction may not strictly guarantee an exact one-
hot encoding, we assume that the softmax activations yield a
sufficient approximation. Further, without loss of generality, we
assume that the rows of F are ordered according to the position
of the leading “one” activated in every row. In practice, this can
be easily enforced by reordering the rows. We now construct the
filter bank Wg := {¥;, ®,}/; with the filters

Tmax tmax
‘Hi'o:B::B— ZF(l,”PtI, ‘I'JZI:: ZF(J,t)Pt:I'E,
t=1 t=1
= tmax
bie= Y [PupPe—FeapPel, 1<j<t—l,
t=1
(5)

matching and implementing the construction of W (Egq. 4).
We further illustrate the relationship between F' and Wg in
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Sec. VIII of the appendix. The following theorem shows that
Wg = {:I;j,&;_}};;g is a nonexpansive operator under the
assumption that the rows of F have disjoint support. Since soft-
max only leads to approximately sparse rows, this condition will
in general only hold approximately. However, it can be easily
achieved via post-processing, e.g. via hard sampling using the
Gumbel-softmax [29] in each row of F as long as .J < t;nqz.

Theorem 3: Suppose that the rows of F' have disjoint support
and that every element of supp(F; .) is less than every element
of supp(F;41.) forall 1 <j<.J—1. Then W is a nonex-
pansive operator, i.e.

J
T 2 I, 2 2
DB,y + 1R, <INy ©

The proof of Theorem 3 relies on applying Jensen’s inequal-
ity and then Theorem 1. We provide full details in the Section IX
of the appendix. We note that since the proof of Theorem 3
relies upon Jensen’s inequality, we are not able to provide a
lower bound in equation 6. However, we view the upper bound
as more important for analyzing the theoretical properties of
scattering transforms built using the filter bank Wg. Indeed,
given Theorem 3, one may imitate the proof of Theorem 3.2 of
[20] (and also analogous results in e.g., [11] and [14]) to easily
derive upper bounds for scattering transforms constructed from
Wr (using the fact that ||a| — |b|| < |a — b|). However, even if
one were to obtain a lower-bound in equation 6, one would not
be able to transfer this lower-bound to the scattering transform
since | - | is not injective.

The aggregation submodule. While many approaches may
be applied to aggregate node-level features into graph-level
features such as max, mean, sum pooling, or the more powerful
TopK [21] and attention pooling [30], we follow the statistical-
moment aggregation explained in Secs. III-IV and leave explo-
ration of other pooling methods to future work.These moments
are a natural choice because they were shown to be effective
in the (fixed) geometric scattering transform in [12]. The use
of multiple moments together can be thought of as capturing
the mean, standard deviation, and skew, and kurtosis of the
U px[v;] over the graph (since these statistical quantities can all
be computed from the first four moments of a random variable).

A. Incorporating LEGS Into a Larger Neural Network

As shown in [12] on graph classification, this aggregation
works particularly well in conjunction with support vector ma-
chines (SVMs) based on the radial basis function (RBF) kernel.
Here, we consider two configurations for the task-dependent
output layer of the network, either using two fully connected
layers after the learnable scattering layers, which we denote
LEGS-FCN, or using a modified RBF network [31], which we
denote LEGS-RBF, to produce the final classification.

The latter configuration more accurately processes scattering
features as shown in Table II. Our RBF network works by first
initializing a fixed number of movable anchor points. Then, for
every point, new features are calculated based on the radial
distances to these anchor points. In previous work on radial
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basis networks these anchor points were initialized independent
of the data. We found that this led to training issues if the
range of the data was not similar to the initialization of the
centers. Instead, we first use a batch normalization layer to
constrain the scale of the features and then pick anchors ran-
domly from the initial features of the first pass through our data.
This gives an RBF-kernel network with anchors that are always
in the range of the data. Our RBF layer is then RBF(xz) =
#(||BatchNorm(z) — ¢||) with ¢(z) = e~ 1=I”, Where c is the
SVM margin, which is set to 1 by default.

B. Backpropagation Through the LEGS Module

The LEGS module is fully suitable for incorporation in
any neural network architecture and can be backpropagated
through. To show this we write the partial derivatives with re-
spect to the LEGS module parameters © and W here. The gra-
dients of the filter ¥, j > 1, with respect to scale weights 0y,
k=1,....J, where o is the softmax function, can be written as

O, P'o(8;):(1—0(8y)): if k=3,
_8@::3 = Pﬂcr(f’j ):0(Or)e :::: i+1, %)

Finally, we note that while in this paper we consider the setting
where W is fixed, one could also consider variations in which
one attempted to learn W . In this case, the gradient matrix with
respect to the adjacency matrix entry W, , would be given by

08, ‘ex

awa'b =% ; I:(ant - Fj‘i‘]-‘t_)
i D! .

= Pk—l Jﬂ.bD—l %% Pt—k .

X3 ; ( T Wy '

8

where we denote J the matrix with J2% =1 and all other
entries zero, and g{f,; lb is defined in equation 17. In this setting,
some ftricks and heuristics may be needed to maintain desirable
properties of W, (positivity, symmetry, etc.). Gradients of filters
®; and ¥y, which are simple modifications of the partial
derivatives of ¥; and derivations of these gradients can be

found in Sec. XI of the appendix.

VI. EMPIRICAL RESULTS

We investigate the LEGS module on whole graph classifi-
cation and graph regression tasks that arise in a variety of con-
texts, with emphasis on the more complex biochemical datasets.
Unlike other types of data, biochemical graphs do not exhibit
the small-world structure of social graphs and may have large
diameters relative to their size. Further, the connectivity patterns
of biomolecules are very irregular due to 3D folding and long-
range connections, and thus ordinary local node aggregation
methods may miss such connectivity differences.

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 72, 2024

TABLE I
DATASET STATISTICS, DIAMETER, NODES, EDGES, CLUSTERING COEFFICIENT
(CC) AVERAGED OVER ALL GRAPHS. SPLIT INTO BIO-CHEMICAL AND
SocCIAL NETWORK TYPES

# Graphs  # Classes Diameter  Nodes Edges cc
DD 1178 2 19.81 284.32 715.66 0.48
ENZYMES 600 6 10.92 32.63 62.14 045
MUTAG 188 2 8.22 17.93 19.79  0.00
NCII 4110 2 13.33 29.87 3230 0.00
NCII09 4127 2 13.14 29.68 32,13 0.00
PROTEINS 1113 2 11.62 39.06 72.82 0.5l
PTC 344 2 7.52 14.29 1469 0.01
COLLAB 5000 3 1.86 7449 245722 0.89
IMDB-B 1000 2 1.86 19.77 96.53 095
IMDB-M 1500 3 1.47 13.00 65.94 097
REDDIT-B 2000 2 8.59  429.63 497.75  0.05
REDDIT-12K 11929 11 9.53 39141 456.89 0.03
REDDIT-5K 4999 5 10.57 508.52 59487 0.03

A. Whole Graph Classification

We perform whole graph classification by using eccentricity
(max distance of a node to other nodes) and clustering coeffi-
cient (percentage of links between the neighbors of the node
compared to a clique) as node features as are used in [12].
We compare against graph convolutional networks (GCN) [4],
GraphSAGE [5], graph attention network (GAT) [30], graph
isomorphism network (GIN) [6], Snowball network [26], and
fixed geometric scattering with a support vector machine clas-
sifier (GS-SVM) as in [12], and a baseline which is a 2-layer
neural network on the features averaged across nodes (disre-
garding graph structure).

These comparisons are meant to inform when including
learnable graph scattering features are helpful in extracting
whole graph features. Specifically, we are interested in the
types of graph datasets where existing graph neural network
performance can be improved upon with scattering features.
We evaluate these methods across 7 biochemical datasets and
6 social network datasets where the goal is to classify between
two or more classes of compounds with hundreds to thousands
of graphs and tens to hundreds of nodes (See Table I). For more
specific information on individual datasets see Appendix XII.
We use 10-fold cross validation on all models which is elabo-
rated on in Section XIII of the supplement.

LEGS outperforms on biochemical datasets. Most work on
graph neural networks has focused on social networks which
have a well-studied structure. However, biochemical graphs that
represent molecules and tend to be overall smaller and less
connected than social networks (see Table I). In particular, we
find that LEGS outperforms other methods by a significant
margin on biochemical datasets with relatively small but high
diameter graphs (NCI1, NCI109, ENZYMES, PTC), as shown
in Table II. On extremely small graphs we find that GS-SVM
performs best, which is likely because other methods with more
parameters can more easily overfit the data. We reason that
the performance increase exhibited by LEGS module networks,
and to a lesser extent GS-SVM, on these biochemical graphs
is due the ability of geometric scattering to compute complex
connectivity features via its multiscale diffusion wavelets. Thus,
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TABLE II
ACCURACY (MEAN &+ STD.) OVER 10 TEST SETS ON BIOCHEMICAL (TOP) AND SOCIAL NETWORK (BOTTOM) DATASETS
LEGS-RBF LEGS-FCN LEGS-ATTN-FCN  LEGS-FIXED GCN GraphSAGE GAT GIN GS-5VM Baseling
DD 72.58 £ 335 7207 £ 237 7093 £ 4.81 69.09 + 4.82 67.82 £ 3.81 66.37 + 445 6850 £ 3.62 4237+ 432 7266 £ 494 7598 + 231
ENZYMES 36.33 £ 450 3850 + 818 3372 £ 645 3233 £ 504 3133 £+ 6.89 15.83 £ 9.10 2583 £ 473 3683 £ 481 27331510 2050 £ 599
MUTAG 3351 £ 434 8298 £ 085 8460 £ 613 BLEB4 £+ 1124 7930 £+ 9.66 8143 & 1164 7985 £ 044 8357 £ 068 8500 £ 744 7980 £ 9.92
NCI1 7426 +£ 1.53 7083 £ 265 6862 + 237 T1.24 £ 1.63 60.80 + 4.26 57.54 +£ 1333 62,19 + 218 66.67 £ 290 69.68 £ 238 56.69 + 3.07
NCI1109 7247 £ 211 7007 £ 146 6458 £ 526 6925 + 175 6130 £ 2.99 55.15 + 2.58 6128 + 224 65234+ 182 6855206 5738 +220
PROTEINS T0.89 £ 391 7106 £ 3.17 67.69 £ 431 6730 £ 2.94 74.03 £ 3.20 TIL8T £+ 350 7322+ 355 7502+ 455 TO98 267 73224376
PTC 5726 £ 554 5692 + 936 4985 £+ 1137 5431 £ 692 5634 £ 1029 5522 4+ 9.13 5550 £ 690 55.82 £ B.OT7 56.96 £ 7.09 5671 &£ 554
COLLAB 7578 £ 195 7540 + 1.80 64.29 + 5.82 7294 £ L70 T3.80 £ 1.73 76.12 + 158 7288 +£ 206 6298 +392 74544232 6476+ 263
IMDB-BINARY 64.00 £ 348 6450 £ 350 53107 £435 64.30 £ 3.68 47.40 £ 6.24 46,40 £+ 4.03 4550 £ 304 6420 £ 577 6670 £ 353 47.20 & 5.67
IMDB-MULTI 41.93 £ 301 4013 £277 3260 £ 9.52 41.67 £ 3.19 3933 £ 3.13 39.73 £ 345 39.73 £ 361 3867 £393 4213+ 253 3953 + 3.63
REDDIT-BINARY 86.10 £ 292 7815+ 542 8174 £ 6.62 85.00 + 1.93 8L60 £ 232 T340 £ 438 T335+£227 TI40 698 8515+ 278 6930+ 508
REDDIT-MULTI-12K 3847 £ 1.07 3846 + 131 2826 + 3.15 39.74 £ 131 4257 £ 090 3217 £ 204 3274 £ 075 24454552 3979 + L1l 2207 + 0.98
REDDIT-MULTI-5K 4783 £ 261 4697 £ 3.06 4137+ 534 4717 £ 253 52.79 + 2.1 4571 + 288 4403 £ 257 3573 £ B35 4879295 3641+ 180
methods that rely on a scattering construction would in general Affinities between

perform better, with the flexibility and trainability of the LEGS
module giving it an edge on most tasks.

LEGS performs well on social network datasets and
considerably improves performance in ensemble models.
In Table II, we see that on the social network datasets LEGS
performs well. We note that one of the scattering style networks
(either LEGS or GS-SVM) is either the best or second best
on each dataset. On each of these datasets, LEGS-RBF (which
uses a SVM with a radial basis function similar to GS-SVM)
and GS-SVM are well within one standard deviation of each
other. If we also consider combining LEGS module features
with GCN features the LEGS module performs the best on five
out of six of the social network datasets. Across all datasets,
an ensemble model considerably increases accuracy over GCN
(see Table VIII). This underlines the capabilities of the LEGS
module, not only as an isolated model, but also as a tool for pow-
erful hybrid GNN architectures. Similar to [27], this supports
the claim that the LEGS module (due to geometric scattering)
is sensitive to complementary regularity over graphs, compared
to many traditional GNNs. That is, many traditional GNNs
focus on low-frequency information, whereas the band-pass
wavelet filters are also able to capture high-frequency informa-
tion. Since the two network types capture different information,
using them together achieves better performance than either
network by itself.

LEGS preserves enzyme exchange preferences while in-
creasing performance. One advantage of geometric scatter-
ing over other graph embedding techniques lies in the rich
information present within the scattering feature space. This
was demonstrated in [12] where it was shown that the em-
beddings created through fixed geometric scattering can be
used to accurately infer inter-graph relationships. Scattering
features of enzyme graphs within the ENZYMES dataset [33]
possessed sufficient global information to recreate the en-
zyme class exchange preferences observed empirically in [32].
We demonstrate here that LEGS features retain similar de-
scriptive capabilities, as shown in Fig. 2. Here we show chord
diagrams where the chord size represents the exchange prefer-
ence between enzyme classes, which is estimated as suggested
in [12]. Our results here (and in Table X, which provides
complementary quantitative comparison) show that, with relax-
ations on the scattering parameters, LEGS-FCN achieves better

Classesl, 2, 8, &, 5, 6

(d) GCN

(c) LEGS-FIXED

Fig. 2.  Enzyme class exchange preferences empirically observed in [32],
and estimated from LEGS and GCN embeddings.

classification accuracy than both LEGS-FIXED and GCN (see
Table II) while also retaining a more descriptive embedding
that maintains the global structure of relations between enzyme
classes. We ran LEGS-FIXED and LEGS-FCN on the EN-
ZYMES dataset. For comparison, we also ran a standard GCN
whose graph embeddings were obtained via mean pooling. To
infer enzyme exchange preferences from their embeddings, we
followed [12] in defining the distance from an enzyme e to the
enzyme class EC; as dist(e, EC;) := ||ve — proj¢, (ve)||, where
v, is the embedding of e, and C); is the PCA subspace of the
enzyme feature vectors within EC;. The distance between the
enzyme classes EC; and EC; is the average of the individual
distances, mean{dist(e, EC;) : € € EC; }. From here, the affinity
between two enzyme classes is computed as pref(EC;, EC;) =

o Dia. Dyis : =
w;/ min( == ﬁ-;-}), where w; is the percentage of enzymes in

D;;’
class ¢ which are closer to another class than their own, and

D, ; is the distance between EC; and EC;.

Robustness to reduced training set size. We remark that sim-
ilar to the robustness shown in [12] for handcrafted scattering,
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TABLE Il
ACCURACY (MEAN =+ STD.) OVER TEST SET SELECTION ON CROSS-VALIDATED LEGS-RBF NET
WITH REDUCED TRAINING SET SIZE

Train, Val, Test % 80%, 10%, 10%  70%, 10%, 20%  40%, 10%, 50%  20%, 10%, 70%
COLLAB 75.78 + 1.95 75.00 + 1.83 74.00 £+ 0.51 72.73 + 0.59
DD 72.58 + 3.35 70.88 + 2.83 69.95 + 1.85 6943 + 1.24
ENZYMES 36.33 + 4.50 3417 £ 3.77 29.83 + 3.54 23.98 + 3.32
IMDB-BINARY 64.90 + 3.48 63.00 £+ 2.03 63.30 + 1.27 57.67 + 6.04
IMDB-MULTI 4193 £+ 3.01 40.80 + 1.79 41.80 + 1.23 36.83 + 3.31
MUTAG 33.51 +4.34 33.51 + 1.14 33.52 + 1.26 33.51 £ 0.77
NCI1 74.26 + 1.53 74.38 £+ 1.38 72.07 + 0.28 70.30 £ 0.72
NCI109 7247 £+ 2.11 7221 £ 092 7044 + 0.78 68.46 + 0.96
PROTIENS 70.89 + 3.91 69.27 + 1.95 69.72 + 0.27 68.96 + 1.63
PTC 57.26 + 5.54 57.83 £ 4.39 54.62 + 3.21 5545 +2.35
REDDIT-BINARY 86.10 + 2.92 86.05 + 2.51 85.15 £ 1.77 83.71 £ 097
REDDIT-MULTI-12K 3847 + 1.07 38.60 + 0.52 37.55 &+ 0.05 36.65 + 0.50
REDDIT-MULTI-5K 47.83 £ 2.61 47.81 + 1.32 46.73 £+ 1.46 44.59 + 1.02

TABLE IV
CASP GDT REGRESSION ERROR OVER THREE SEEDS

(pEo) Train MSE Test MSE
LEGS-FCN 134.34 + 8.62 144.14 + 1548
LEGS-RBF 140.46 + 9.76 152.59 + 14.56
LEGS-FIXED 136.84 £ 15.57 160.03 + 1.81
GCN 289.33 £ 15.75 303.52 + 18.90
GraphSAGE 221.14 £4256 219.44 + 34834
Baseline 39378 £4.02 40221 £ 21.45

LEGS-based networks are able to maintain accuracy even when
the training set size is shrunk to as low as 20% of the dataset,
with a median decrease of 4.7% accuracy as when 80% of

the data is used for training, as discussed in the supplement
(see Table III).

Ensembling LEGS with GCN features improves classifica-
tion. Recent work by [27] combines the features from a fixed
scattering transform with a GCN network, showing that this has
empirical advantages in semi-supervised node classification,
and theoretical representation advantages over a standard [4]
style GCN. We ensemble the learned features from a learn-
able scattering network (LEGS-FCN) with those of GCN and
compare this to ensembling fixed scattering features with GCN
as in [27], as well as the solo features. Our setting is slightly
different in that we use the GCN features from pretrained net-
works, only training a small 2-layer ensembling network on the
combined graph level features. This network consists of a batch
norm layer, a 128 width fully connected layer, a leakyReLU
activation, and a final classification layer down to the number of
classes. In Table VIII we see that combining GCN features with
fixed scattering features in LEGS-FIXED or learned scattering
features in LEGS-FCN always helps classification. Learnable
scattering features help more than fixed scattering features over-
all and particularly in the biochemical domain.

B. Graph Regression

We next evaluate learnable scattering on two graph regression
tasks, the QM9 [34] graph regression dataset, and a new task

from the critical assessment of structure prediction (CASP)
challenge [35]. In the CASP task, the main objective is to score
protein structure prediction/simulation models in terms of the
discrepancy between their predicted structure and the actual
structure of the protein (which is known a priori). The accuracy
of such 3D structure predictions are evaluated using a variety of
metrics, but we focus on the global distance test (GDT) score
[36]. The GDT score measures the similarity between tertiary
structures of two proteins with amino acid correspondence.
A higher score means two structures are more similar. For a
set of predicted 3D structures for a protein, we would like to
quantify their quality by the GDT score.

For this task we use the CASP12 dataset [35] and preprocess
it similarly to [37], creating a KNN graph between proteins
based on 3D coordinates of each amino acid. From this KNN
graph we regress against the GDT score. We evaluate on 12
proteins from the CASP12 dataset and choose random (but
consistent) splits with 80% train, 10% validation, and 10% test
data out of 4000 total structures. We are interested in structure
similarity and use no non-structural node features.

LEGS outperforms on all CASP targets. Across all CASP
targets we find that LEGS-based architectures significantly out-
perform GNN and baseline models. This performance improve-
ment is particularly stark on the easiest structures (measured by
average GDT) but is consistent across all structures. In Fig. 3 we
show the relationship between percent improvement of LEGS
over the GCN model and the average GDT score across the
target structures.

LEGS outperforms on the QM9 dataset. We evaluate the
performance of LEGS-based networks on the quantum chem-
istry dataset QM9 [34], which consists of 130,000 molecules
with ~18 nodes per molecule. We use the node features from
[34], with the addition of eccentricity and clustering coefficient
features, and ignore the edge features. We whiten all targets to
have zero mean and unit standard deviation. We train each net-
work against all 19 targets as provided in the PyTorch geometric
package [38], which includes the targets from [34] and [39]. and
evaluate the mean squared error on the test set with mean and
std. over four runs finding that LEGS improves over existing
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Fig. 3. CASP dataset LEGS-FCN % decrease over GCN in MSE of GDT
prediction vs. average GDT score.

TABLE V
MEAN =+ STD. OVER FOUR RUNS OF
MEAN SQUARED ERROR OVER 19
TARGETS FOR THE QM9 DATASET,
LOWER IS BETTER

(ptao) Test MSE

LEGS-FCN 0.216 + 0.009
LEGS-ATTN-FCN  0.348 + 0.106
LEGS-FIXED 0.228 + 0.019
GraphSAGE 0.524 4+ 0.224
GCN 0417 £ 0.061
GIN 0.247 £ 0.037
Baseline 0.533 4+ 0.041

models (Table V). On more difficult targets (i.e., those with
large test error) LEGS-FCN is able to perform better, where on
easy targets GIN is the best. We suspect this is due to difficult
proteins having more long range connections. We also investi-
gate performance on individual regression targets in Table XI.

Overall, scattering features offer a robust signal over many
targets, and while perhaps less flexible (by construction),
they achieve good average performance with significantly
fewer parameters.

LEGS outperforms on the ZINCI15 dataset. We compared
the performance of LEGS-based networks against various ar-
chitectures using 3 tranches of the ZINC15 [40] dataset in a
multi-property prediction task (Table VI). The BBAB, FBAB
and JBCD tranches contain molecules with molecular weight
in the range of 200-250, 350-375 and 450-500 Daltons respec-
tively. All networks were trained using the PyTorch geomet-
ric package [38], using a 1-hot encoding of atom type as the
node signal. We predicted 10 chemical, physical and structural
properties for each molecule, including measures of size, shape,
lipophilicity, hydrogen bonding, and polarity. To illustrate the
flexibility of the LEGS module, we also include a variant,
LEGS-ATTN-FCN, which includes an attention layer between
geometric scattering and the fully connected regression network
and MP-LEGS-FCN, which applies LEGS to the output of a 3-
layer graph messaging passing network. We observe that LEGS-
ATTN-FCN and LEGS-FCN are the best performing methods

PROPERTIES IN ZINC, LOWER IS BETTER

TABLE VI
MEAN =+ STD. OVER FOUR RUNS OF MEAN SQUARED ERROR OVER 10

2947

(=% o) BBAB FBAB JBCD

LEGS-FCN 0.591£0.026 0472 + 0.018  0.603 =+ 0.022
LEGS-ATTN-FCN ~ 0.551 + 0,033 0.510+0.029 0.598 + 0.072
LEGS-FIXED 0.548 £0.017 0.496+0.015 0.685 +0.017
MP-LEGS-FCN 1.0334+0.081 0.79540.024 0.802 & 0.093
GraphSAGE 1.004+0.037 0.994+40.026 0.987 & 0.011
GCN 0.8414£0.025 0.923+0.037 0.892 =+ 0.039
GIN 0.670£0.018 0.673+£0.024 0.689 +0.022
Baseline 1.2324+0.146 1.39940.163  1.357 4 0.154

TABLE VII

MEAN =+ STD. OVER FOUR RUNS OF MEAN SQUARED ERROR
IN BINDING AFFINITY PREDICTION OF TARGETS IN BINDINGDB,
LOWER IS BETTER

(u+0) P00918 P14416

LEGS-FCN 0.0318 =+ 0.0009  0.0441 £0.0013
LEGS-ATTN-FCN  0.0332 £0.0016  0.0424 = 0.0012
LEGS-FIXED 0.0597 £ 0.0017  0.0514 = 0.0020
MP-LEGS-FCN 0.1991 £0.0014  0.1429 % 0.0034
GraphSAGE 0.1083 £0.0074  0.1106 % 0.0087
GCN 0.1072+0.0053  0.0994 = 0.0039
GIN 0.0615+0.0022  0.0583 = 0.0036
Baseline 0.1137 £ 0.0076  0.1201 % 0.0068

TABLE VIII
MEAN + STD. TEST SET ACCURACY ON BIOCHEMICAL AND SOCIAL
NETWORK DATASETS

(pxo) GCN GCN-LEGS-FIXED  GCN-LEGS-FCN
DD 67.82 + 3.81 74.02 + 2.79 73.34 £+ 3.57
ENZYMES 3133 + 6.89 31.83 £ 6.78 3583 £ 557
MUTAG 79.30 + 9.66 82.46 + 7.88 8354 £+ 939
NCII 60.80 + 4.26 70.80 + 2.27 72.21 + 232
NCI109 61.30 + 2.99 68.82 + 1.80 69.52 + 1.99
PROTEINS 74.03 + 3.20 73.94 + 3.88 74.30 £+ 341
PTC 5634 + 1029 58.11 + 6.06 56.64 + 7.34
COLLAB 73.80 £ 1.73 76.600 + 1.75 75.76 £+ 1.83
IMDB-BINARY 47.40 + 6.24 65.10 + 3.75 63.90 + 433
IMDB-MULTI 39.33 £ 3.13 39.93 + 2.69 39.87 +2.24
REDDIT-BINARY 81.60 + 2.32 86.90 + 1.90 87.00 £+ 2.36
REDDIT-MULTI-12K  42.57 + 0.90 4541 + 1.24 45.55 £+ 1.00
REDDIT-MULTI-5K 5279 £ 2.11 5387 + 2.75 5341 +3.07

and achieve better performance compared to LEGS-FIXED,
MP-LEGS-FCN, and other graph neural networks.

LEGS outperforms on the BindingDB dataset. We pre-
dicted the inhibition coefficient for ligands binding to 2 different
targets in the BindingDB dataset [41], namely D(2) dopamine
receptor (UniProtKB ID: P14416) and Carbonic anhydrase 2
(UniProtKB ID: P00918). The molecular weight and structural
diversity of these ligands was significantly higher compared to
the ZINC15 tranches. Learnable scattering networks (LEGS-
FCN and LEGS-ATTN-FCN) outperformed GNN and baseline
models (Tab. VII). Applying attention to the scattering output
did not result in a significant performance improvement over
the LEGS-FCN model, perhaps due to the FCN being capable
of identifying scattering features pertaining to parts of ligand
responsible for binding.
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VII. CONCLUSION

Here we introduced a flexible geometric scattering mod-
ule, that serves as an alternative to standard graph neural net-
work architectures and is capable of learning rich multi-scale
features. Our learnable geometric scattering module allows a
task-dependent network to choose the appropriate scales of the
multiscale graph diffusion wavelets that are part of the geo-
metric scattering transform. We show that incorporation of this
module yields improved performance on graph classification
and regression tasks, particularly on biochemical datasets, while
keeping strong guarantees on extracted features. This also opens
the possibility to provide additional flexibility to the module
to enable node-specific or graph-specific tuning via attention
mechanisms, which are an exciting future direction, but out of
scope for the current work.

APPENDIX
VIII. ILLUSTRATION OF SCALE SELECTION MATRIX

A traditional filter bank (Sec. IIl) W := {¥;, ®; }o<j<.
for the case J =4, would be the result of a scale selec-
tion matrix

o B e )
o o o

F:

o= o o

0
0 J % tmax
0 cR .
1

o

oo = O
oo oo
oo oo
oo oo

0

However, as we derive F from a learned matrix © &
R7*tmsxwe do not obtain an exact one-hot encoding per row.
For example,

41 01 02 01 01 03 01 02

o ~ 02 01 52 01 01 03 01 02

- 01 01 03 01 4.0 02 02 02

03 03 02 01 01 01 01 53

would yield F' =

0.88 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.01 001 096 001 0.01 001 001 0.01
0.02 0.02 0.02 0.02 0.87 0.02 0.02 0.02
0.0 0.011 001 0.01 001 0.01 0.01 0.96

Then, the output wavelet ;19'2 of a learned filter bank (Sec. V)
Wr = {¥;, @;}j;ol for J = 4 would have the form
Uy~ —0.01-P'—0.01-P2+0.94- P> —0.01- P*
—0.86-P°—0.01- P5—0.01-P"—0.01-P®
~P3 — P>,

IX. THE PROOF OF THEOREM 3

Proof: Since each of the rows of F sums to one, we may
define 75, 7 =0,...,J to be an independent random variables
with probability distribution given by F; .. Then, by definition

tm
"PJ'X =

t

g

F(J',t)Ptx — F(j+113)PtX =K [P‘zj _ PTj+lx]

II
=
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(a) (b)

Fig. 4. Two graphs with similar structure consisting of an 8-cycle. Each
cycle has two nodes that are connected to another node, which (with respected
to shortest-path distance) are 3 steps (a) and 4 steps (b) apart, respectively.

for for all 1 < j < .J — 1. Similarly, we have
Uox=E[x—P"x] and ®;x=EP™x

Therefore, by Jensen’s inequality we have

J
D12y +118x12 ©
7=0
_ _ pn 2
=[Ex—Px] 4 (10)
J-1
T4 _ Ti41 2 T. 2
+Z;|IE [Pox—Puax] |73 +IEPVx[ 4
J:
J
T1 2 T4 _ Ti4+1 2
S]E|:||X—P x||D_%+ZD||P x—Prex|2 . (1D
J:
T, 2
1P, | (12)

By our assumptions on the support of the rows of F, we have
7j < Tj41 for all j. Therefore, the conditions of Theorem 1 are
satisfied with probability one and so we have

J
_Ppn 2 Tivw _ PTi+1 2 TF 2
P73 I — Pt 4Py
J:
<|IxI% s
D™z

with probability one. Combining this with completes the proof.
O

X. CASE STUDY OF LONG-RANGE DEPENDENCIES

Here, we study the effect of the receptive field of different
aggregations on the capacity to capture long-range interactions
by the example of two graphs, shown in Fig. 4. We aim to distin-
guish two structurally similar graphs that both contain n =12
nodes and consist of an 8-cycle with each containing two nodes
which are connected to an additional node. The major difference
between the graphs is the shortest-path distance between those
two nodes in terms of shortest-path distance, being 4 steps and
5 steps, respectively.
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TABLE IX T, 4
TABLE INDICATING OF SIMPLE HANDCRAFTED FEATURE EXTRACTORS CAN —= = (Fj:— Fj14), (14)
DISTINGUISH THE TWO GRAPHS FROM FIG. 4 USING GCN AND SCATTERING oP
AGGREGATIONS, RESPECTIVELY. ONLY SUFFICIENTLY LARGE RECEPTIVE aF,, o(0;)(1—0(8;) ifk=j
FIELDS ALLOW TO DISTINGUISH THE GRAPHS —_—= d 1 ’ (15)
00Oy ; —0o(08;)o(0k) else,
Recept. Field Agpgregation Matrices M " t —q
Radius R AR@CcN)y p'-pR p2z_pR p3_pR pi_pR o 1 ZPk 1 gop-1 +W8D ptk (16)
1 X Wga 2 AW g )
2 X x
3 X s v
; j j j ? , We note that in equation 16, we use the fact that P = (I +

To compare the capacity of different models to differentiate
between the graphs, we create a simple feature extractor that
leverages the aggregation scheme of a GCN model and of
wavelets that resemble those learned by the LEGS module.
In particular, we use the node degree d € R™ as input signal (d;
is the degree of node v; € V') and aggregate the signal according
to the different approaches. Finally, we calculate the average
of the output signal across the graph nodes to obtain a single
value for each graph, i.e., y = % Yo, (Md);, with M € R™x"
representing the different aggregation schemes.

For the GCN model, we use the matrix

A:=D+D)2(W+I)(D+I)"1/2

as proposed in [4] and vary the radius R > 0 of the receptive
field by setting M := A® for R € N. Similarly we experiment
with scattering wavelets of different receptive fields that re-
semble the wavelets learned by the LEGS module by setting
M:=P'— PRwith1<i<R!

Table IX shows that the radius of the receptive field of
the aggregation plays an important role in distinguishing the
two graphs and that only methods with a receptive field of
at least four are able to tell the graphs apart. Notably, GCN-
style networks with large receptive fields tend not to perform
well because of the oversmoothing problem, but wavelet-based
methods do not suffer from this issue [27].

XI. GRADIENTS OF THE LEGS MODULE

Here we analyze the gradients of the LEGS module with
respect to its outputs. As depicted in Fig. 1, the LEGS module
has 3 inputs, W, ©, and «, and J permutation equivariant
output matrices Wp = (¥ eR ‘I>J} ! Here we compute partial
derivatives of ‘I’ forl<g<J—1. The other related gradients
of ‘1'0 and & g are easily deducible from these. The following
partial derivatives and an application of the chain rule yield the
gradients presented in the main paper:

e Pt if k=7,
i _J)_pt el
s Pr fik=ygii; (13)

Opxn else,

IThe wavelets used for this analysis slightly differ from those learned by
LEGs due to the construction of the scales illustrated in Section VIII. As a
result, all learned wavelets effectively have a receptive field of radius R =
tmax, which further amplifies their ability to capture long-range dependencies.

W D). The first term in the sum is constant, and to compute
the derivative of the second term, we apply the product rule.
The Jacobian of W with respect to coordinate ab is given by
J and the Jacobian of D~ is given by

—q -2 FrTer -
oD N _(ZJWGJ') ifi=j=a
OW ap ij o 0

else

a7

XII. DATASETS

In this section we provide further information and analysis
on the individual datasets which relates the composition of the
dataset as shown in Table I to the relative performance of our
models as shown in Table II. Datasets used in Tables VI and
VII are also described here.

DD [42] is a dataset extracted from the protein data bank (PDB)
of 1178 high resolution proteins where each node represents
an amino acid and nodes are connected if they are proximal
in 3D space or along the linear protein backbone. The task is
to distinguish between enzymes and non-enzymes. Since these
are high resolution structures, these graphs are significantly
larger than those found in our other biochemical datasets with a
mean graph size of 284 nodes with the next largest biochemical
dataset with a mean size of 39 nodes.

ENZYMES [33] is a dataset of 600 enzymes divided into 6
balanced classes of 100 enzymes each. Each node represents an
amino acid and edges are present either in case of linkage along
the protein backbone or if two amino acids are within close
proximity. As we analyzed in the main text, scattering features
are better able to preserve the structure between classes. LEGS-
FCN slightly relaxes this structure but improves accuracy from
32 to 39% over LEGS-FIXED.

NCI1, NCI109 [43] contain slight variants of 4100 chemical
compounds encoded as graphs where each node represents an
atom and edges represent bonds. Each compound is separated
into one of two classes based on its activity against non-small
cell lung cancer and ovarian cancer cell lines. Graphs in this
dataset have 30 nodes with a similar number of edges. This
makes for long graphs with high diameter.

PROTEINS [33] contains 1178 protein structures with the goal
of classifying enzymes vs. non enzymes. Nodes represent sec-
ondary structure elements and two nodes are connected if they
are adjacent on the backbone or less than six Angstroms apart.
GCN outperforms all other models on this dataset, however
the Baseline model, where no structure is used also performs
very similarly. This suggests that the graph structure within

Authorized licensed use limited to: Yale University. Downloaded on August 27,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.



2950

this dataset does not add much information over the structure
encoded in the eccentricity and clustering coefficient.

PTC [44] contains 344 chemical compound graphs divided into
two classes based on whether or not they cause cancer in rats.
Here each node is an atom and each edge is an atomic bond.
This dataset is very difficult to classify without features however
LEGS-RBF and LEGS-FCN are able to capture the long range
connections slightly better than other methods.

COLLAB [45] contains 5000 ego-networks of different re-
searchers from high energy physics, condensed matter physics
or astrophysics. Here each node is a researcher and edges rep-
resent co-authorship. The goal is to determine which field the
research belongs to. The GraphSAGE model performs best on
this dataset although the LEGS-RBF network performs nearly
as well. Ego graphs have a very small average diameter. Thus,
shallow networks can perform quite well on them as is the
case here.

IMDB [45] contains graphs with nodes representing ac-
tresses/actors and edges between them if they are in the same
move. These graphs are also ego graphs around specific actors.
IMDB-BINARY classifies between action and romance genres.
IMDB-MULTI classifies between 3 classes. Somewhat surpris-
ingly GS-SVM performs the best with other LEGS networks
close behind. This could be due to oversmoothing on the part
of GCN and GraphSAGE when the graphs are so small.

REDDIT [45] consists of three independent datasets.
In REDDIT-BINARY/MULTI-5K/MULTI-12K, each graph
represents a discussion thread where nodes correspond to users
and there is an edge between two nodes if one replied to the
other’s comment. The task is to identify which subreddit a
given graph came from. On these datasets GCN outperforms
other models.

ZINC15 [40] is a database of small drug-like molecules for
virtual screening. Here each node represents an atom and each
edge represents a bond between two atoms. The data is orga-
nized into 2D tranches consisting of approximately 997 million
molecules categorized by molecular weight, solubility (LogP),
reactivity and availability for purchase.

BindingDB [41] is a publicly available database of binding
affinities, focusing on interactions between small, drug-like lig-
ands and proteins considered to be candidate drug-targets. Bind-
ingDB contains approximately 2.5 million interactions between
more than 8,000 proteins and 1 million drug-like molecules.

QM9 [34], [39] is a dataset of stable organic molecules with
up to 9 heavy atoms. Each node is a heavy atom with edges
representing bonds between heavy atoms.

CASP We use the CASP-12 dataset where each graph repre-
sents a protein with nodes connected if they are close in 3D
space or connected along the backbone. We include the amino
acid type as a node feature.

XIII. TRAINING DETAILS

We train all models for a maximum of 1000 epochs with an
initial learning rate of 10~ using the ADAM optimizer [46].
We terminate training if validation loss does not improve for
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TABLE X
QUANTIFIED DISTANCE BETWEEN THE
EMPIRICALLY OBSERVED ENZYME CLASS
EXCHANGE PREFERENCES OF [32]

LEGS-FIXED LEGS-FCN GCN

0.132 0.146  0.155

100 epochs testing every 10 epochs. Our models are imple-
mented with Pytorch [47] and Pytorch geometric [38]. Models
were run on a variety of hardware resources. For all models we
use g = 4 normalized statistical moments for the node to graph
level feature extraction and mm = 16 diffusion scales in line with
choices in [12]. Most experiments were run on a 2 x 18 core
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz server with
512GB of RAM equipped with two Nvidia TITAN RTX gpus.

A. Cross Validation Procedure

For all datasets we use 10-fold cross validation with 80%
training data 10% validation data and 10% test data for each
model. We first split the data into 10 (roughly) equal partitions.
For each model we take exactly one of the partitions to be
the test set and one of the remaining nine to be the validation
set. We then train the model on the remaining eight partitions
using the cross-entropy loss on the validation for early stopping
checking every ten epochs. For each test set, we use majority
voting of the nine models trained with that test set. We then
take the mean and standard deviation across these test set scores
to average out any variability in the particular split chosen.
This results in 900 models trained on every dataset. With mean
and standard deviation over 10 ensembled models each with a
separate test set.

XIV. ADDITIONAL EXPERIMENTS

Quantification of the enzyme class exchange preferences
We quantify the empirically observed enzyme class exchange
preferences of [32] and the class exchange preferences in-
ferred from LEGS-FIXED, LEGS-FCN, and a GCN in Table X.
‘We measure the cosine distance between the graphs represented
by the chord diagrams in Fig. 2. As before, the self-affinities
were discarded. We observe that LEGS-Fixed is best able to
reproduces the exchange preferences. However, LEGS-FCN
still reproduces the observed exchange preferences well and has
significantly better classification accuracy than LEGS-Fixed.

QM9 Target Breakdown [34], [39] contains graphs that
each represent chemicals with 18 atoms. Regression targets rep-
resent chemical properties of the molecules. These targets are
respectively, the dipole moment g, the isotropic polarizability
v, the highest occupied molecular orbital energy egomo. the
lowest unoccupied molecular orbital energy epumo. the differ-
ence Ae = egomo — €Lumo. the electronic spatial extent, (R?),
the zero point vibrational energy ZPVE, the internal energy at
OK Uy, the internal energy U, the enthalpy H, the free energy
G, and the heat capacity ¢, at 25C, the atomization energy at
0K USTOM and 25C UATOM the atomization enthalpy HATOM
and free energy GT°M at 25C, and three rotational constants
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TABLE X1

MEAN + STD. OVER FOUR RUNS OF MEAN SQUARED ERROR OVER 19

TARGETS FOR THE QM9 DATASET, LOWER IS BETTER

LEGS-FCN LEGS-FIXED GCN GraphSAGE GIN Baseline
I 0.749 4 0825 0761 £ 0026 0776 £ 0021 0876 & 0083 0786 4 0032 0985 £ 0020
[} 0158 4 0014 064 £ 0024 0448 £ 0007 0555 £ 0295 0191 £+ 0060 0593 £ 0013
eqomMo 0830 £ 0016 0856 £ 0026 0899 £ 0051 0961 £ 0.057 0903 £0033 05982 £ 0037
ELUMD 0511 £ 0012 0508 + 0085 0549 & 0010 0688 & 0216 0555 + 0006 0805 £ 0.025
Ae 0.587 & 0.007 0587 + 0.006 0609 £ 0009 0755 £ 0177 0613 £ 0013 0792 £ 0010
(A% 0646 & 0013 0674 £ 0047 0889 - 0014 0882 £ 0118 0699 4+ 0033 0833 £ 0026
ZPVE 0018 £ 0012 0020 £ 0011 0099 £ 0011 0321 £ 0454 0012 + 0.006 0468 £ 0.005
Lo 0017 £0.005 0024 £ 0008 0368 £0015 05320405 0015 + 0005 0379+ 0013
U 0017 £ 0005 0024 £ 0008 0368 £ 0015 0532 £ 0404 0015 4+ 0.005 0378 £+ 0013
H 0017 4+ 0005 0024 £ 0008 0368 & 0015 0532 £ 0404 0015 4+ 0.005 0378 £ 0013
(&) 0017 & 0,005 0024 £ 0008 0368 £ 0015 0533 £ 0404 0015 + 0005 0380 £+ 0014
. 0.254 - 0.013 0279 £ 0023 0548 £ 0023 0617 £ 0282 0294 4 0003 0631 £ 0013
U%"]T:;" 0034 £+ 0014 0033 £ 0010 0215 £ 0009 0356 £ 0437 0020 + 0002 0478 £+ 0014
[ATOM o33+ 0014 0033 £ 0010 0204 £ 0009 0356% 0438 0,020 £ 0.002 0478 £ 0.014
HAOM  np33+0014 0033 £ 0010 0213+£0009 0355+ 043 0020 £ 0002 0478 £ 0014
GAOM 36 + 0014 0036 £ 0011 0219+ 0000 0359 £ 0436 0023 £ 0002 0479 £ 0014
A 0002 + 0002 0001 £ 0001 0007 £ 0034 0000 + 0.000 0033 £ 0013
B 0083 £ 0047 0079 & 8.033 0280 £ 0.354 0169 + 0206 0.205 £+ 0220
C 0062 + 0.005 076 = 0231 0482 £ 0753 0470 £ 0740 0321 £ 0507 0368 £ 0525

A, B, C measured in gigahertz. For more information see ref-
erences [34], [38], [39]. In Table XI we split out performance
by target. GIN performs slightly better on the molecule energy
targets both overall and atomization targets Uy, U, H, and G
where both LEGS and GIN significantly outperform the other
models GCN, GraphSAGE and the structure invariant baseline.
On all other targets, and especially the more difficult targets
(measured by baseline MSE) the LEGS module performs the
best or near to the best.
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