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ABSTRACT
Directed graphs are a natural model for many phenomena, in

particular scientific knowledge graphs such as molecular interaction
or chemical reaction networks that define cellular signaling rela-
tionships. In these situations, source nodes typically have distinct
biophysical properties from sinks. Due to their ordered and unidi-
rectional relationships, many such networks also have hierarchical
and multiscale structure. However, the majority of methods per-
forming node- and edge-level tasks in machine learning do not take
these properties into account, and thus have not been leveraged ef-
fectively for scientific tasks such as cellular signaling network in-
ference. We propose a new framework called Directed Scattering
Autoencoder (DSAE) which uses a directed version of a geometric
scattering transform, combined with the non-linear dimensionality
reduction properties of an autoencoder and the geometric properties
of the hyperbolic space to learn latent hierarchies. We show this
method outperforms numerous others on tasks such as embedding
directed graphs and learning cellular signaling networks.

Index Terms— geometric scattering, graph signal processing,
hyperbolic geometry, directed graphs, biological networks

1. INTRODUCTION

Graph representation learning methods, or methods which learn low-
dimensional feature representations for each node in a graph, have
shown strong performance and widespread utility for preserving
structural information for downstream tasks, including link predic-
tion, community detection, and node classification [1]. However,
most existing approaches are designed for undirected graphs. This is
despite the fact that many relations of interest can be best described
as directed; in fact, common benchmarks for graph representation
learning, including citation networks, are directed and symmetrized
for evaluation. Such real-world relationships also often exhibit hi-
erarchical structure, motivating approaches that leverage hyperbolic
geometry [2, 3, 4]. Notably, many scientific networks are directed
but are not regularly benchmarked or represented with direction or
latent hierarchies [5]. This includes graphs for cellular signaling,
consisting of molecular interactions occurring in a highly ordered
series resulting in directed and tree-like relationships [6].

Recently, efforts to incorporate the geometric scattering trans-
form, a generalization of the Euclidean scattering transform to the
graph domain, have proven effective in capturing multiscale graph
structure and overcoming oversmoothing for undirected graph neu-
ral networks [7]. While there exist directed graph neural network-
based approaches for supervised tasks [8], we hypothesized geo-
metric scattering would better preserve the graph geometry and im-
prove representations for unsupervised learning. Here, we introduce
our framework, Directed Scattering Autoencoder (DSAE), which in-
corporates a directed version of the geometric scattering transform
based on the eigendecomposition of the magnetic Laplacian. Addi-
tionally, as the resulting feature representation is high-dimensional,

we employ an autoencoder architecture with either Euclidean or hy-
perbolic geometry to learn a meaningful low-dimensional represen-
tation, where the hyperbolic version accounts for additional hier-
archical structure. We evaluate DSAE on two previously bench-
marked WebKB graphs [8] and three cellular signaling graphs [9, 10,
11], comparing against 11 undirected, directed, knowledge graph-
based, and hyperbolic-based graph representation learning methods.
DSAE performs best for link prediction on four of five graphs due
to the ability to account for directedness, higher-order, and hierar-
chical structure. Second, we describe how to adapt our pipeline by
adding additional regularizations to use DSAE for data-driven cel-
lular signaling network inference, demonstrating the efficacy of this
approach on a mouse visual cortex dataset with matched spatial data.

2. BACKGROUND

2.1. Magnetic Laplacian

Many methods in (undirected) graph signal processing rely on the
eigendecomposition of the graph Laplacian, L = D−A. The eigen-
values are viewed as generalized frequencies and the eigenvectors
are viewed as generalized Fourier modes. However, it is not straight-
forward to extend these methods to directed graphs since the naive
definition of the graph Laplacian will in general not be symmetric
or diagonalizable. While a number of solutions have been proposed
[12, 13, 14], here, we shall use a complex Hermitian matrix L(q),
known as the magnetic Laplacian (see, e.g, [15, 16]).

To construct the magnetic Laplacian, we let A be the (asymmet-
ric) adjacency matrix of a directed graph G = (V,E), N = |V |,
let A(sym) = 1

2
(A + AT ) be its symmetrized counterpart, and let

D(sym) be the diagonal degree matrix corresponding to A(sym), i.e.
D

(sym)
j,j =

∑N−1
k=0 A

(sym)
j,k , and D

(sym)
j,k = 0 if j ̸= k. Then, we

capture directional information via the phase matrix Θ(q), where for
q ≥ 0, we define Θ(q) = 2πq(A − AT ). Letting i =

√
−1, this

allows us to define the complex Hermitian adjacency matrix by

H(q) = A(sym) ⊙ exp(iΘ(q)),

where ⊙ denotes the Hadamard product and the exponentation is
performed term-by-term. We then define the unnormalized and nor-
malized magnetic Laplacians by

L
(q)
U = D(sym) −H(q) and L

(q)
N = D(sym)−1/2

L
(q)
U D(sym)−1/2

respectively. Since Θ(q) is skew-symmetric, it is clear that both L
(q)
U

and L
(q)
N are Hermitian, and Theorem 1 of [8] shows that they are

positive semi-definite. Therefore, they both admit orthonormal bases
of eigenvectors with non-negative eigenvalues uk, 0 ≤ k ≤ N − 1,
L(q)uk = λkuk, 0 ≤ λ0 ≤ λ1 ≤ . . . ≤ λN−1 (where L(q) is either
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L
(q)
U or L(q)

N ).

2.2. The Geometric Scattering Transform
The geometric scattering transform [17, 18, 19] is a recently pro-
posed multiscale, multi-order signal transform that applies an al-
ternating sequence of wavelet transforms and non-linear activations
to an input signal x : V → R, building off of analogous work
for functions defined on Rn [20]. Given a wavelet frame, WJ =
{Wj}Jj=0 ∪ {AJ} (where Wj and AJ are n × n matrices) and
an input signal x : V → R, which we identify with the vector
x[k] = x(vk), we define first- and second-order scattering coeffi-
cients of x, for 0 ≤ j1 ≤ j2 ≤ J , by

S[j1]x = AJMW1jx, S[j1, j2]x = AJMWj2MWj1x,

where M denotes the entry-wise modulus (absolute value). The
zeroth-order coefficient is defined simply by AJx.

2.3. Hyperbolic geometry
Hyperbolic geometry is a non-Euclidean geometry that embeds
tree-structured data with arbitrarily low distortion [21]. Hyperbolic
spaces have constant negative curvature, where curvature measures
how a geometric object deviates from a flat plane. Here, we use
the d-dimensional Poincaré ball model with constant negative cur-
vature −c (c > 0), defining smooth manifold (Dd,c, gx), where
Dd,c = {x ∈ Rd : ∥x∥2 < 1

c
} and gx is the Poincaré metric tensor

[2]. The exponential map expc
x : T c

x 7→ Dd,c and the logarithmic
map logc

x : Dd,c 7→ T c
x map between the tangent space at x (T c

x )
and Dd,c [22]. The closed-form for these maps at the origin are:

expc
0(v)= tanh(

√
c∥v∥) v√

c∥v∥
, logc

0(y)= tanh−1(
√
c∥y∥) v

√
y∥y∥ .

2.4. Related Work
Learning meaningful representation of nodes for directed graphs has
relevant applications in works related to directed graph neural net-
works [8] and knowledge graph embeddings [23], where knowledge
graphs are defined as directed, heterogeneous multigraphs. Addi-
tionally, [24] recently explored a directed-graph version of the graph
scattering transform on synthetic data. Concurrently, there have been
developments in hyperbolic geometry in machine learning for pre-
serving latent hierarchies [2, 22, 3, 25, 26, 27]. While some pre-
liminary work incorporates hyperbolic geometry into directed graph
learning [4], no work has accounted for this geometry for biological
networks. Most embedding approaches do not evaluate on biologi-
cal networks, and benchmarks for these networks often test on undi-
rected (or symmetrized) versions [5]. This is despite the fact that
much biological analysis considers the directionality of the relation-
ship (e.g., between two interacting molecules [6, 28]).

3. METHODS

Our goal is to learn a representation of the nodes on a directed graph
that preserves both directional and hierarchical information (Fig.
1a). To accomplish this, we introduce a method which first applies
a directed-graph version of the scattering transform, then applies an
autoencoder restructure the scattering coefficients into a compressed
representation for improved performance on downstream tasks.

First, following the lead of [24], we use the (normalized or un-
normalized) magnetic Laplacian L(q) to construct a directed-graph
wavelet frame WJ = {Wj}Jj=0 ∪ {AJ}. As in Section 2.1, the q
parameter associated to the magnetic Laplacian will determine the
way in which L(q) encodes directional information. As in tradi-
tional wavelet constructions, the j parameter denotes the scale of
the wavelet Wj with J being the maximal scale.

More specifically, for t ≥ 0, we define the graph heat-kernel
by Ht =

∑N−1
k=0 e−λktuku

∗
k, where ⋆ denotes conjugate transpose,

and define a wavelet frame for a fixed J ≥ 0, byWJ = {Wj}Jj=0 ∪
{AJ} where W0 = Id−H1, AJ = H2J , and Wj = H2j−1 −H2j

for 1 ≤ j ≤ J .

i. Construct or prune directed 
knowledge graph (KG)

ii. Directed scattering transform via spectral 
decomposition of the magnetic Laplacian

iii. Encode scattering coefficients
in geometric spaces

Prune low-
consensus

edges

S[0]= H1x

W1 W2

W3

S[1] S[2] S[3]
W1 W2

W3
W1 W2

W3
W1 W2

W3

S[1,1] S[1,2] S[1,3] S[2,1] S[2,2] S[2,3] S[3,1] S[3,2] S[3,3]

S

Ŝ

latent

Encoder (E)

Decoder (D)

S

S

Ŝ

latent

Encoder (E)

Decoder (D)

Intracellular 
Classifier

Intercellular 
Classifier

i. Identify cell types and 
cell type-specific genes 

from data

ii. Prune KG for cell type-specific interactions and 
embed KG with DSGE + auxiliary classifiers

iii. Predict network with directed links

Â Cell type A
Intracellular 
signaling

Cell type B
Intracellular 
signaling

Intercellular 
signaling

Cell type B

Cell type A

a. Directed Scattering Autoencoder

b. Data-driven cellular signaling network inference

Fig. 1. DSAE and cellular signaling network inference pipeline.

We will assume that we are given C signals x1, . . . ,xC and will
compute the zeroth-, first-, and second-order scattering coefficients
of each xi using the formulas from Section 2.2. However, inspired
by [7], we use H1 instead of AJ in the final filtering (e.g., we com-
pute second-order scattering coefficients by H1MWj2MWj1x).
We then let S[v] denote the concatenation of all zeroth-, first-, and
second-order scattering coefficients evaluated at the vertex v and let
S(G) = {S[v] : v ∈ V }.

The node representations S[v] are typically redundant and un-
necessarily high-dimensional. Therefore, in order to reduce the di-
mension of our preliminary scattering representation, we apply an
autoencoder D ◦ E so that

S(G) ≈ Ŝ(G) = D(E(S(G)).

In particular, while training our autoencoder, we aim to minimize the
mean squared error (MSE) reconstruction loss

Lrecon = ∥S(G)− Ŝ(G)∥22 =
∑
v∈V

∥S[v]− Ŝ[v]∥22.

We consider two versions of the feed-forward encoder and de-
coder layers to learn a d-dimensional embedding, where d ≪ the
dimensionality of S[v]. First, we consider matrix operations carried
out via Euclidean geometry (DSAE-Euc). Second, since each S[v]
has inherent tree-like structure (Fig. 1), we consider an analog to
Euclidean operations for hyperbolic space to preserve hierarchical
structure: Möbius addition ⊕c and Möbius matrix-vector multipli-
cation ⊗c [22] (DSAE-Hyp) . For the encoder in the latter case, we
map S[v] to Dd,c, the d-dimensional Poincaré ball of radius c, via
the exponential map hv

0 = expc
0(S[v]) (see [22, 3]), then employ

hyperbolic feed-forward layers, i.e.

hv
ℓ ← σ((Wℓ ⊗c h

v
ℓ−1)⊕c expc

0(bℓ))

for hidden representation hℓ at layer ℓ, 1 ≤ ℓ ≤ L, where L is the
number of layers. Wℓ is the weight matrix (which is shared across
v), bℓ is the bias, and σ is the activation. For the decoder, we use
the same construction and map to the Euclidean space for recon-
struction via logc

0(h
v
L). We view the encoder output E(S[v]) as the

hidden representation of each vertex v. In Section 4, we show this
representation may be used for tasks such as link prediction.

When applying our method, we may also use an additional net-
work to regularize our autoencoder. When doing so, we assume that
there is some property of interest p(v) which is important for down-
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stream tasks. Therefore, we train an additional network F (or pos-
sibly multiple additional networks) so that F (E(S[v])) ≈ p(v) and
penalize this network by

Lprop =
∑
v∈V

dist(p(v), F (E(S[v]))),

where the distance function will vary depending on the task of inter-
est. This regularizing network helps our autoencoder learn a com-
pressed representation of the scattering coefficients which preserves
information relevant for a given application but discards less relevant
information. In Section 5, we will provide an example of how such
regularizing networks may be applied to cellular signaling networks.

4. LINK PREDICTION IN DIRECTED GRAPHS

We evaluate the performance of our method on the task of link di-
rection prediction on two WebKB graphs modeling links between
websites at different universities [8], and three cellular signaling
graphs [9, 10, 11]. In the latter case, the nodes are genes and the
edges encode signaling relationships, including transcriptional reg-
ulation (within cells), or protein-protein binding after secretion (be-
tween cells). While constructing the biological graphs, we prune the
network for interaction confidence, restrict the graph to the largest
connected component, and give all remaining edges unit weight so
as not to overemphasize well-studied genes.

We note that all graphs are directed and hierarchical; less than
20% of edges are bidirectional for the website graphs, and less than
5% of the edges are bidirectional for the biological graphs. Further,
the Krachkardt hierarchy score (Khs) [29] is over 0.75 (between 0
and 1, where 1 is most hierarchical and 0 least hierarchical) for all
graphs, and the Ollivier-Ricci curvature [30] (averaged for all edges)
is negative. The k-NN graphs of the directed scattering coefficients
also have negative average Ollivier-Ricci curvature (data not shown).
Further details on the dataset are available in Table 1.

Type # Nodes # Edges Rec. Khs ORC
Texas WebKB 183 325 18% 0.91 -0.14

Cornell WebKB 183 298 12% 0.96 -0.30

OmniPath
Post-translational
and transcriptional

8909 58919 4% 0.76 -0.51

SIGNOR ppi Post-translational 4743 11109 2% 0.92 -0.56
iPTMnet Post-translational 1642 3650 0% 0.98 -0.44

Table 1. Statistics for each directed network. Rec: Reciprocity, Khs:
Krackhardt hierarchy score. ORC: Ollivier-Ricci curvature.

On each of these graphs, we are given a partially complete ver-
sion of the network (i.e., the original graph, but with some edges
removed) and the task is to predict whether a given edge, (u, v) or
its reciprocal edge (v, u) belongs to the original network. As base-
line methods, we considered shallow approaches – node2vec [31]
and Poincaré map (PM) [2]; graph neural network approaches –
graph autoencoder (GAE) [32], hyperbolic graph convolutional net-
work (HGCN) [3], and directed graph neural network MagNet [8]; a
knowledge graph-based approach – TransE [23]; and the undirected
graph scattering transform (UDS) [17]. When applicable, we use a
single input signal chosen to be a standard Gaussian random vector.

Table 2 summarizes comparisons of DSAE-Hyp and DSAE-Euc
to the other approaches. Both versions of DSAE perform quite well.
DSAE-Hyp is the top performing method on Texas, Cornell, and
SIGNOR and is the second best on OmniPath. DSAE-Euc is the top
method on OmniPath and second best on Texas and iPTMnet.

Method Texas Cornell OmniPath SIGNOR iPTMnet
DSAE-Hyp 0.915 0.936 0.846 0.905 0.983
DSAE-Euc 0.913 0.809 0.870 0.893 0.988
node2vec 0.860 0.714 0.608 0.703 0.804

PM 0.591 0.574 0.545 0.579 0.530
PM-D 0.617 0.678 0.581 0.564 0.602
GAE 0.807 0.584 0.716 0.780 0.873

GAE-D 0.806 0.695 0.712 0.793 0.881
HGCN 0.729 0.639 0.586 0.711 0.816

HGCN-D 0.799 0.754 0.714 0.733 0.910
MagNet 0.888 0.930 0.831 0.898 0.989
TransE nan nan 0.793 nan nan

TransE-E 0.801 0.933 0.777 0.898 0.988
UDS-AE 0.845 0.893 0.668 0.783 0.976

Table 2. Link Direction Prediction mean AUROC. -D refers to
implementation with asymmetric matrices -E refers to implemen-
tation with edge attributes. nan refers to undefined runs (no edge
attributes). Best performance bolded, second best underlined.

4.1. Ablation experiment
To test the importance of the autoencoder and the robustness to q
(the charge parameter) and J (the scale parameter), we performed a
series of ablations (shown in Table 3) with DSAE-Hyp, which per-
formed best on average. Ablations showed q=0.0 (which does not
take into account the edge direction) performed worse than q = 0.1
and q = 0.2 at all scales (with all other optimal hyperparameters),
showing that edge direction was useful for link prediction. Directed
scattering without the autoencoder (no AE) performed worse than
the full DSAE method on average (setting J and q to be the same as
the optimal performing version of DSAE).

Method Texas Cornell OmniPath SIGNOR iPTMnet

no AE 0.903 0.929 0.843 0.903 0.981
q=0.0 J=5 0.750 0.641 0.519 0.549 0.922
q=0.0 J=10 0.747 0.642 0.518 0.561 0.921
q=0.0 J=15 0.751 0.641 0.518 0.564 0.921
q=0.1 J=5 0.906 0.930 0.846 0.905 0.980
q=0.1 J=10 0.915 0.932 0.846 0.905 0.980
q=0.1 J=15 0.911 0.932 0.845 0.904 0.979
q=0.2 J=5 0.900 0.935 0.833 0.904 0.983
q=0.2 J=10 0.899 0.936 0.846 0.904 0.982
q=0.2 J=15 0.899 0.935 0.845 0.903 0.982

Table 3. Ablation Link Direction Prediction mean AUROC. no AE
refers to scattering without autoencoder. Best performance bolded.

4.2. Training details
We trained with an Adam / RiemmanianAdam optimizer for 50
epochs with a patience of 10 epochs with latent dimension d = 128.
The train/val/test split was 85/5/10, where the training subgraph was
first built from a minimum spanning tree with edges added until split
proportion met. We optimized for the following: walk length and
number of walks (node2vec); learning rate, bias, dropout, number of
layers, activation, and weight decay (remaining methods); attention
versus no attention (GAE); q (MagNet, DSAE-Hyp, DSAE-Euc);
c (HGCN, Poincaré map, DSAE-Hyp); and J (DSAE-Hyp, DSAE-
Euc). Results are reported as mean AUROC of five runs1.

1github.com/KrishnaswamyLab/Directed-Hierarchical-Gene-Networks
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5. INFERRING A DIRECTED GRAPH FROM DATA

Here, we show that we can use DSAE to infer signaling connec-
tions fusing data and knowledge graph embeddings (Fig. 1b). Given
single-cell RNA sequencing data (i.e., high-dimensional point-cloud
data where observations are cells and the features are gene expres-
sion), we want to understand what genes are signaling to each other
within and between cell types based on their expression and known
gene interactions. That is, we aim to infer a directed gene-gene
graph defined by two within-cell type gene networks connected by
between-cell type interactions. While most prior work identifies cor-
related gene pairs [6, 33], this is, to our knowledge, the first approach
to infer a directed gene network between cell types.

5.1. Constructing the cellular signaling network
We let G = (V,E) be a directed graph where each vertex v repre-
sents a gene and edges represent genes which interact within or be-
tween cells (such as OmniPath or SIGNOR). We assume each gene
corresponds to a certain cell type and let Vi denote the set of all
genes corresponding to cell type i. Given two cell types i and j, we
let Gi,j = (Vi,j , Ei,j) be the largest connected component of the
induced subgraph with vertices Vi ∪ Vj .

5.2. Applying DSAE to Cellular Signaling Networks
In order to structure the latent space for cellular signaling inference,
when applying DSAE to the graph Gi,j constructed above, we reg-
ularize our autoencoder with two additional classifiers that predict
cell labels from hidden representation E(S[v]). In particular, we
have an intracellular classifier, which predicts the cell type, and an
intercellular classifier, which predicts whether or not the node is ca-
pable of intercellular communication. Each of these classifiers are
penalized by supervised contrastive losses Lintracellular and Lintercellular
[34]. The intracellular classifier ensures that nodes from the same
cell type remain close. The intercellular classifier, on the other hand,
ensures that nodes which are capable of intercellular communica-
tion and are connected to nodes from the opposite cell type remain
close. These additional classifiers allow us to jointly learn a shared
representation for both unsupervised reconstruction and supervised
intracellular and intercellular classification. The total loss is then

Ltotal = αLrecon + βLintracellular + γLintercellular. (1)

After training DSAE, we then replace the initial Ei,j with a new
edge set. First, we add an undirected edge between vertices vi and vj
if vi is amongst the k-th nearest (in the embedded space) neighbors
of vj or vice-versa. Then, we assign a direction via a linear (logistic
regression) classifier trained on the edges from the original Ei,j .

5.3. Case study: Mouse visual cortex scRNA-seq data
We take two previously annotated cell types (astrocytes and endothe-
lial cells) from an scRNA-seq dataset of the mouse visual cortex [35]
and identify cell type-specific genes as genes with log2 fold change
> 2 and p-value < 0.05 in a given cell type from a Wilcoxon rank
sum test [36]. We prune the OmniPath network (version 1.0.5) to
only these genes and label nodes based on cell type and intercellu-
lar connection, then apply DSAE-Euc with (α, β, γ) = (10, 5, 1) in
(1), resulting in an embedding informed by intracellular and intercel-
lular connections in addition the original graph G. We then build a
directed network with a k-NN graph (k=5) and visualize the network
with Cytoscape [37] (Fig. 2). We see that four astrocyte genes and
eight endothelial cell genes are involved in intercellular signaling.

Following [33], we validate our network with matched mouse
visual cortex data with spatial resolution [38]. We reasoned cells in
the same spatial field-of-view (FOV) are close and are more likely
to signal to each other than cells in different FOVs. True signal-
ing pathway genes should have higher mutual information (MI) of
spatial expression in close cells than distant cells, whereas random

Fig. 2. Learned cellular signaling network between cell types.

gene pairs may have high or low MI between close cells (Fig. 3a).
We confirm that genes in our network have a higher MI than ran-
dom genes between close astrocytes and endothelial cells (one-sided
Kolmogorov-Smirnov (KS) test [39] statistic = 0.407, p=6.3e-117).
Genes in our network also have a higher MI between close astrocytes
and endothelial cells than between distant astrocytes and endothelial
cells (one-sided KS test statistic = 0.803, p=0.0) (Fig. 3b).

Fig. 3. Evaluation of learned network with spatial data.

6. CONCLUSION

We have introduced DSAE, a novel method for node embeddings
which trains a (regularized) autoencoder on top of a directed-graph
variation of the scattering transform. The autoencoder learns a com-
pressed representation and generates improved embeddings, in par-
ticular with the hyperbolic variation that better represents latent tree-
like motifs common to real-world graphs such as biological net-
works. We show that DSAE is effective at representing five directed
graphs due to the ability to preserve directed, multiscale, and hierar-
chical graph structure. Moreover, when properly regularized, DSAE
preserves relevant information (for a given task), including learning
active and novel gene-gene interactions for cellular signaling anal-
ysis. We emphasize this is the first known application of directed
scattering to a real-world setting, providing a key contribution to
both graph signal processing and biomedical research.

7. REFERENCES

[1] William L. Hamilton, Rex Ying, and Jure Leskovec, “Repre-
sentation learning on graphs: Methods and applications,” IEEE
Data Eng. Bull., vol. 40, no. 3, pp. 52–74, 2017.

[2] Maximillian Nickel and Douwe Kiela, “Poincaré embeddings
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“Horopca: Hyperbolic dimensionality reduction via horospher-
ical projections,” in International Conference on Machine
Learning. PMLR, 2021, pp. 1419–1429.

[26] Panagiotis Kyriakis, Iordanis Fostiropoulos, and Paul Bogdan,
“Learning hyperbolic representations of topological features,”
arXiv preprint arXiv:2103.09273, 2021.

[27] Ruochen Yang, Frederic Sala, and Paul Bogdan, “Efficient rep-
resentation learning for higher-order data with simplicial com-
plexes,” in Learning on Graphs Conference. PMLR, 2022, pp.
13–1.

[28] Mirjana Efremova, Miquel Vento-Tormo, Sarah A Teichmann,
and Roser Vento-Tormo, “CellPhoneDB: inferring cell-cell
communication from combined expression of multi-subunit
ligand-receptor complexes,” Nat. Protoc., vol. 15, no. 4, pp.
1484–1506, Apr. 2020.

[29] David Krackhardt, “Graph theoretical dimensions of infor-
mal organizations,” Computational organization theory, pages
107–130. Psychology Press.

[30] Yann Ollivier, “Ricci curvature of Markov chains on metric
spaces,” Journal of Functional Analysis, vol. 256, no. 3, pp.
810–864, 2009.

[31] Aditya Grover and Jure Leskovec, “node2vec: Scalable fea-
ture learning for networks,” in Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 2016, pp. 855–864.

[32] Thomas N. Kipf and Max Welling, “Variational graph auto-
encoders,” CoRR, vol. abs/1611.07308, 2016.

[33] Yuxuan Hu, Tao Peng, Lin Gao, and Kai Tan, “CytoTalk: De
novo construction of signal transduction networks using single-
cell transcriptomic data,” Sci. Adv., vol. 7, no. 16, Apr. 2021.

[34] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan, “Supervised contrastive learning,” 2020.

[35] Tasic et al., “Adult mouse cortical cell taxonomy revealed by
single cell transcriptomics,” Nature Neuroscience, vol. 19, no.
2, pp. 335–346, Jan. 2016.

[36] Winston Haynes, Wilcoxon Rank Sum Test, p. 2354–2355,
Springer New York, 2013.

[37] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga,
Jonathan T Wang, Daniel Ramage, Nada Amin, Benno
Schwikowski, and Trey Ideker, “Cytoscape: a software envi-
ronment for integrated models of biomolecular interaction net-
works,” Genome Res., vol. 13, no. 11, pp. 2498–2504, Nov.
2003.

[38] Linus et al., “Transcriptome-scale super-resolved imaging in
tissues by RNA seqFISH+,” Nature, vol. 568, no. 7751, pp.
235–239, Mar. 2019.

[39] F. Massey, “The Kolmogorov-Smirnov test for goodness of
fit,” J. Am. Stat. Assoc., vol. 46, no. 253, 1951.

9765

Authorized licensed use limited to: Yale University. Downloaded on August 27,2024 at 21:38:28 UTC from IEEE Xplore.  Restrictions apply. 


