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ABSTRACT

One of the areas where Large Language Models (LLMs)
show promise is for automated qualitative coding, typically
framed as a text classification task in natural language pro-
cessing (NLP). Their demonstrated ability to leverage in-
context learning to operate well even in data-scarce set-
tings poses the question of whether collecting and annotat-
ing large-scale data for training qualitative coding models is
still beneficial. In this paper, we empirically investigate the
performance of LLMs designed for use in prompting-based
in-context learning settings, and draw a comparison to mod-
els trained with task-specific annotated data, specifically for
tasks involving qualitative coding of classroom dialog. Com-
pared to other domains where NLP bench-marking studies
are typically situated, classroom dialog is much more nat-
ural and therefore variable and complex. Moreover, tasks
in this domain are nuanced, theoretically grounded and re-
quire a deep understanding of the conversational context.
We provide a comprehensive evaluation across five datasets,
including tasks such as talk move prediction and collab-
orative problem solving skill identification. Our findings
show that task-specific fine-tuning strongly outperforms in-
context learning, underscoring the ongoing need for high-
quality annotated training datasets.
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1. INTRODUCTION

In recent years, the proliferation of Natural Language Pro-
cessing (NLP), Artificial Intelligence (AI), and Large Lan-
guage Models (LLMs) has revolutionized various facets of
educational technology, from the development of conversa-
tional tutors to automated grading systems, significantly im-

pacting student learning experiences and instructional method-

ologies [4, 33, 20]. LLMs, particularly those that can be used
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off-the-shelf with minimal to no training such as the GPT
[22] and LLaMa [31] models are slowly being adopted as the
de facto models for text generation tasks such as generating
hints [25], providing feedback to students [18], or assisting
teachers [33]. More recently, LLMs have gained attention as
an alternative to “traditional” NLP models for automated
qualitative coding tasks [34]. However, their feasibility for
coding tasks, especially for challenging constructs commonly
found in the educational domain, has yet to be systemati-
cally investigated.

Automated qualitative coding problems are typically for-
malized as classification tasks in NLP. That is, given text
(such as student conversation or writing), the task is to pre-
dict the most likely label from a pre-defined set of classes
(such as if an utterance is a question). Classification models
have until recently been developed through the pre-training—
fine-tuning paradigm: pre-trained language models such as
BERT [7], trained on large web-based corpora are fine-tuned,
or undergo task-specific training on human-annotated data.
While these models leverage the rich representations of lan-
guage learned in the pre-training stage to understand mean-
ing, they require several examples of each class to learn to
distinguish between them, ultimately necessitating datasets
with thousands of examples. Acquiring such large datasets
incurs substantial costs, as trained experts must invest time
and effort into the annotation process. On the other hand,
the ability of LLMs to learn to solve complex tasks using
very few or no examples ostensibly provides a way to by-
pass the expensive data collection process. LLMs achieve
this through the mechanism of in-context learning, a pro-
cess that involves interacting with LLMs through natural
language instructions, without any training.

This ability has been demonstrated on NLP benchmarks
that challenge the language understanding abilities of mod-
els [28]. Some of these benchmarks even test for domain
knowledge and reasoning on topics such as physics or medicine
[21, 12]. Despite such rigorous testing, applying these mod-
els to qualitative coding, particularly in education, should
still be treated with caution for the following reasons: 1)
benchmark tasks tend to be well-defined and sometimes shal-
low, in contrast to the nuanced, theoretically-motivated frame-
works that drive qualitative coding, 2) benchmark tasks may
be highly similar to tasks that some LLMs are explicitly
trained on (e.g., question answering); and 3) benchmark
datasets, particularly if openly available online, may have
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already been seen by LLMs in their extensive pre-training
stage. Therefore, in this paper, we explore how prompt-
ing off-the-shelf generalist LLMs performs on nuanced, real
world tasks that are unlikely to have been seen in training.

We choose the problem of analyzing student dialog as a case
study for our investigation. This task is significant, and
critically impacts multiple stakeholders: it can inform ped-
agogical practices by enhancing educators’ and learning sci-
entists’ understanding of student experience [10], and can
steer learning tools like tutoring systems through specific
properties of student utterances like talk moves [30]. Addi-
tionally, utterances spoken naturally by students tend to be
noisy, incomplete and contextual, making them challenging
for NLP models typically trained on sterilized text. Physi-
cal classrooms also include complications of multi-party in-
teractions and automatic speech recognition (ASR) errors.
To ensure a range of these phenomena, we provide a broad
perspective of LLM performance on nine qualitative cod-
ing tasks across five datasets based in education, ranging in
size from 2500 to 50k examples. Focusing on the question
of whether annotated data still plays an important role in
automated qualitative coding, we compare the performance
of in-context learning in LLMs to task-specific classification
models. Finally, based on our investigations, we provide rec-
ommendations for choosing models for student dialog anal-
ysis when cost, data, and performance need to be balanced.

2. RELATED WORK

LLMs in Educational Applications: Since their rise to fame,
LLMs have readily been adopted into applications to sup-
port learning [23, 19, 5]. The capacity of LLMs to generate
unique, coherent and meaningful responses conditioned on
prompts, even with limited or no task-specific adaptation
is the capability that is most utilized in these applications.
GPT-4 is famously used in Khanmigo [26] to provide guid-
ance in the form of hints and questions as students work
through lessons. While promising, some studies show that
effectiveness of such feedback could be improved [25]. Other
works point out how LLM-generated feedback directed at
teachers could help with teacher coaching [33], and how re-
framings of teacher feedback could lead to improvement in
student’s mindsets [11].

LLMs for Qualitative Coding: More relevant to our work
is the performance of LLMs on qualitative coding tasks.
[34] explore ChatGPT’s performance at categorizing stu-
dent feedback found in the comments of MOOC open-access
videos. On a set of 200 human-annotated examples, they
found that model-human agreement falls short of human-
human agreement overall, but on less complex categories
like expressing gratitude, the model performs at par with
humans. Others have demonstrated the success of LLMs for
qualitative coding broadly in domains like computational
social science [37] and medicine [21]. Researchers also ac-
knowledge that in any task, particularly in the zero-shot
setting, LLMs are sensitive to the input prompt [27], which
is especially troublesome for non Al experts who may strug-
gle to systematically explore effective prompt designs [36].

Due to these reasons and the high variability in LLM per-
formance based on task complexity, [24] argue that LLMs
must be validated using a human annotation process, where

both humans and LLMs are provided access to the same
guidelines or codebook. LLMs have also been explored as a
collaborator, rather than a replacement, to human coders,
such as in the LLM-in-the-loop framework [4].

Comparisons to Task-Specific Models: Similar to our work,
prior research has investigated LLM performance in com-
parison to models trained on task-specific data. [15] as-
sessed the classification performance of RoOBERTa [17] and
GPT-3 [2], both fine-tuned on training data, in categoriz-
ing teacher talk moves. The fine-tuned GPT-3 model had
a higher F1 score but poorer recall than RoBERTa on a
majority of the categories. However, on the class with the
smallest number of training examples, GPT-3 performed sig-
nificantly worse, contrary to widely-held beliefs about the
superior few-shot learning abilities of recent LLMs. Ad-
ditionally, [21] found that a carefully engineered few-shot
learning approach with GPT-4 outperformed a specialized
task-specific model named Med-Palm-2 on medical question
answering.

However, depending on the task and complexity, task-specific
fine-tuning has outperformed prompting methods. [9] com-
pared fine-tuned RoBERTa models to prompting ChatGPT
on the task of predicting dialog behaviors, such as show-
ing empathy or contradicting oneself. ChatGPT performed
slightly worse than fine-tuned models on three out of five be-
havioral categories. [37] also found that fine-tuned RoBERTa
models outperformed zero-shot LLM prompting in almost all
cases in a computational social science task.

Our novel contributions are: (i) we conduct a broad anal-
ysis of LLM performance on educational qualitative coding
that is less restricted to specific datasets or phenomena (ii)
we evaluate across multiple LLMs, prompting strategies, and
fine-tuning strategies, covering closed and open-source mod-
els (iii) we compare strategies with various amounts of train-
ing data, investigating whether collecting annotated data is
still a valuable endeavor in the age of LLMs.

3. DATASETS AND TASKS

The datasets that we use are either open access, or have
been extensively described in prior publications. We provide
a brief overview here, and include information about label
distributions in the appendix.

Collaborative Problem Solving: We used two CPS datasets —

one collected during a block programming challenge (Minecraft)

and another from a middle school science curriculum (Sensor
Immersion). The three CPS facets coded in these datasets
are constructing shared knowledge, negotiation / coordina-
tion, and maintaining team function. Utterances are coded
with binary indicators for each label individually, with 1 in-
dicating that the CPS facet is present in the utterance. For
more information, we refer the reader to [29] and [3].

Student Talk Move Prediction: We use the Talk Move dataset
of K-12 mathematics lesson transcripts, containing teacher
and student speech [30]. For this work, we focused on classi-
fying student talk moves, however models preceding teacher
utterances were given as context. Student talk moves in-
clude relating to another student, asking for more informa-
tion, making a claim, providing evidence, or None.



NCTE: Identifying Student Reasoning The National Cen-
ter for Teacher Effectiveness (NCTE) dataset consists of
anonymized transcripts of classroom instruction from US
elementary-school mathematics classrooms. We focus on the
binary task of identifying if student utterances contain rea-
soning. More details can be found in [6].

CIMA: Identifying Student Actions Conversational Instruc-
tion with Multi-responses and Actions (CIMA) is an open-
access corpus of crowdsourced one-on-one tutoring dialog. In
contrast to our other datasets, utterances are typed and not
spoken or transcribed. We investigate the task of student ac-
tion classification, predicting whether student responses are
a Guess, Question, Affirmation or Other. The labels are
self-reported by the crowdworker producing the utterance.

We divide our datasets into subsets for training, develop-
ment and testing according to a 70%/15%/15% ratio. A no-
table problem here, as with most educational dialog datasets,
is label imbalance, which has been recognized in prior work
[16]. However, strategies for mitigating label imbalance are
out of scope for the present work.

4. METHODS

We compare LLMs used for classification in a prompting
setting with models trained on task-specific annotated data.
Below, we provide an overview of the models and methods
used for prompting and fine-tuning.

4.1 Prompting

GPT-4 and Mistral: GPT-4 [22] is a Transformer-based lan-
guage model developed by OpenAl. The model is pre-trained
on the task of language modeling, that is, predicting the next
token in an unlabeled text corpus. GPT-4 can be accessed
either using the chat completions API, or through an in-
teractive chat interface. Notably, GPT-4 is closed-source,
meaning the weights of the model have not been released,
nor have the exact details of the architecture — including how
many parameters the model has'. While earlier variants in
the GPT family provide an API for fine-tuning, GPT-4 does
not permit that as yet. Additionally, since the model re-
quires passing datasets through a web-based API, which is
subsequently stored temporarily on OpenAl’s servers, there
are concerns with using these models for sensitive data, such
as our Sensor Immersion transcripts. The GPT-4 API is
paid, and requests are charged based on the number of in-
put and output tokens?. As a result, feeding in longer inputs
results in a higher cost.

The Mistral [14] family of models are powerful open-source
alternatives, developed by Mistral Al and released in Novem-
ber 2023. Crucially, the pre-trained weights of all model
variants can be downloaded and used for local fine-tuning
and exploration. Here we use Mistral-7B, a Transformer-
based language model with 7 billion parameters.

Both models can perform in-context learning (generate pre-
dictions on unseen tasks or datasets using only context given
in a prompt) [8]. This context can include just a task de-

!Some estimates place this at over 1 trillion parameters.
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scription, potentially framed as an instruction (zero-shot),
or additionally include example demonstrations (few-shot).

Zero-shot prompting: In this setting, we create prompts
instructing the model on what the task is, what form of in-
put data will be provided, and the list of acceptable output
labels. For each example in the test set, we concatenate the
student utterance that needs to be classified to the prompt
text, and query the model for a response. To obtain con-
sistency, we use a temperature of zero. All prompts can be
found in the appendix.

With GPT-4, following the official guidelines®, the query is
formatted as a sequence of two messages, each with a ‘role’
field to indicate the system or user, and a ‘content’ field
for the text. The first message prompts the system with
the task instruction. The second message contains each test
example given by the user. Based on prompt engineering
on the development set, we find that introducing a scenario
in the beginning, such as “You are a teacher observing col-
laborative problem solving” is beneficial for more accurate
predictions. We also instruct the model to produce single to-
kens corresponding to the labels in each dataset; any other
responses are discarded. Following the advice of the Mistral
developers, we format queries to include a short introduc-
tion to the scenario (which boosted results considerably),
an opener for the utterance, the utterance in question, an
opener for the label option, and a single label option. We
pass each label from the label sets to the model in individual
queries and we choose the label with the highest probability
of appearing after the prompt as the prediction.

Few-shot prompting: Here, we concatenate k examples
(shots) of each class to the prompts (formatted as described
above) for each test instance. We choose them from the
training set by randomly sampling k instances for each class.
We repeat this process three times with different random
seeds for sampling, thereby obtaining three different sets of
k-shots. We then prompt the model in three runs, for each
of the three k-shots, and report average scores across runs.
While this doesn’t exhaustively cover all possible k-shots
from the training set, it smooths over random variation, giv-
ing a more fair estimate. We use the same k-shots for every
test set query.

For GPT-4, we provide the k-shots by adding 2*k extra
messages (utterance text under the user role and true la-
bels under the system role) before the query. This informs
the model that when a user provides a student utterance for
classification, the desired system output is the true label.
Similarly, for Mistral, we add 2*k extra messages to the se-
quence described above. This takes the form of the scenario
followed by “###+# Here are some examples: Student Ut-
terance: {ezxample from train set}. Student Action: {true la-
bel from train set}”, and ending with the same query prompt
as in the zero-shot scenario. We experiment with two val-
ues for k with Mistral: 5 and 20. We chose 5 and 20 per
class to illustrate realistic low-data scenarios which are also
reasonably proportionate to the size of our datasets. Simi-
lar values are also used in benchmarks for few-shot learning
such as RAFT [1]. However, we only assess GPT-4 with

Shttps://platform.openai.com/docs/guides/
text-generation/chat-completions-api



5-shot prompting due to the high cost of longer prompts.

4.2 Fine-Tuning

RoBERTa: The RoBERTa model [17] is an encoder-decoder
model that is based on the Transformer [32] architecture. It
is pre-trained with the objective of masked language model-
ing on a large training corpus. It learns rich, general purpose
language representations language during pre-training, and
can then be fine-tuned on task-specific data to learn a down-
stream task. This is a high-performing, popular model for
classification tasks, both in education and more broadly in
NLP. In our experiments, we use the pre-trained RoBERTa-
base model consisting of 125M parameters, and add a se-
quence classification head that maps from the learned rep-
resentations to each output label space. We perform full
fine-tuning (i.e., updating all parameters with training data)
using a CrossEntropy loss objective, and the AdamW opti-
mizer. Each model is fine-tuned for up to 30 epochs with
early stopping based on F1 score on the validation set. We
use the implementation of the model available through the
Huggingface Transformers library [35] and perform all train-
ing on a single Nvidia V100 GPU.

Mistral Embeddings: For fine-tuning the much larger mistral
model, a resource-efficient approach is to extract text repre-
sentations from the model and train a traditional machine
learning classifier to predict the labels. One can obtain fixed-
sized vector representations, or embeddings, for input text
sequences by passing the input text through the LLM and
retrieving the hidden states from one of the model’s layers.
These hidden states capture semantic and contextual infor-
mation about the input, and the resulting embeddings serve
as rich, contextualized representations of the input text, al-
lowing a classifier to effectively learn decision boundaries.

We follow the implementation designed by the creators of
Mistral [14]. Specifically, with an input utterance of N to-
kens, the Mistral model output is a list of N vectors (one
vector per token) of dimension d = 4096 (the dimensional-
ity of the model). The vectors are averaged along dimen-
sion 0 to get a single vector of size d that represents the
full utterance. The embeddings were normalized to improve
the performance and stability of the downstream classifier.
In this scenario, we did not perform hyperparameter tun-
ing on the classifier, but rather utilized the same Logistic
Regression model (with parameters C = 1.0 and maximum
iterations = 500) in each task and dataset.

Fine-Tuning in Data-Scarce Settings: To see how the task
specific RoOBERTa model compares to few-shot prompting
LLMs, we artificially create a data-constrained setting by
restricting the amount of data that RoBERTa has access to
during fine-tuning. Using the same few-shot examples given
to GPT-4, we fine-tune the pre-trained RoBERTa model on
only the few-shot examples using the same hyperparameters
for training as in Section 4.2. As in Section 4.1, we exper-
iment with two choices of shots, 5 and 20, and for each,
report average performance across three sets of shots. How-
ever, unlike few-shot prompting, we perform full fine-tuning
with parameter updates in this setting.

S. RESULTS

Table 1 contains our main results, showing the performance
of the in-context learning paradigm in comparison to task-
specific fine-tuning across all datasets. As mentioned in Sec-
tion 4.1, we do not use GPT-4 with the sensor immersion
CPS dataset due to privacy and access restrictions. We re-
port the Fl-score of the positive class (e.g., presence of the
CPS skill negotiation) for the binary classification tasks. For
the multi-class datasets, specifically, CIMA and TalkMoves,
we report the macro-averaged F1 score. We also include
a random baseline for comparison, that randomly selects a
valid label conditioned on the training set label distribution.

5.1 Zero-Shot Performance

In the zero-shot setting, the GPT-4 model outperforms the
random baseline in 5 out of 6 tasks. It is particularly strong
for multi-class classification: for student talk move predic-
tion where there are five possible labels, zero-shot GPT-4
achieves an F1 of 0.42, whereas chance performance is 0.20.
Similarly, for the CIMA dataset where there are four possible
labels, zero-shot GPT-4 with an F1 of 0.49 vastly outper-
forms the random baseline of 0.29. On the binary classifica-
tion tasks, however, results are mixed; in identifying student
reasoning (NCTE), zero-shot GPT-4 is better than random
prediction by 0.3 F1 points. For the CPS skill prediction
tasks, it is at par with random on two tasks, and is weaker
than the random baseline at predicting if utterances exhibit
the skill construction of shared knowledge.

The Mistral model does not seem as adept at handling stu-
dent data in the zero-shot setting as GPT-4. For the binary
classification tasks, it is worse than random prediction on all
tasks except predicting student reasoning. For both multi-
class classification tasks, it is worse than random. We hy-
pothesize that this stark difference is likely due to GPT-4’s
larger size and supervised fine-tuning on human responses
leading to superior language understanding.

5.2 Few-Shot Performance

As outlined in Section 4.1, we only experiment with 5-shot
learning on GPT-4 due to its high costs for longer inputs.
The 5-shot examples are very helpful for detecting all CPS
skills , especially for construction of shared knowledge, where
performance improves from 0.26 F1 to 0.60 F1. Unfortu-
nately, performance drops on the other datasets when the
5-shot demonstrations are provided. This could potentially
be due to the model overfitting to the provided examples
instead of using other cues to solve the task, such as its own
pre-training knowledge.

When Mistral is prompted in the few-shot setting, we ob-
serve large improvements for 5-shot prompting on the binary
classification tasks, surpassing random performance on the
CPS-SI and NCTE datasets. However, performance is at
par with zero-shot prompting for multi-class classification.
Additionally, we see that increasing the number of shots to
20 does not help the Mistral model further, and in fact, hurts
performance for most tasks. We leave it to future work to
use improved methods for selecting the best possible demon-
strations for each test example.

5.3 Fine-tuning Performance
Overall, the fine-tuned models that harness the entire train-
ing set are the most capable across the board. The RoBERTa



Table 1: F1 score performance of in-context learning vs task-specific fine-tuning. Positive class F1 for binary classification, macro-
averaged F1 for multi-class classification. (CONST: constructing shared knowledge, NEG: negotiation / coordination,
MAINT: maintaining team function, SI: Sensor Immersion)

. CPS Minecraft CPS SI Talk CIMA | NCTE
Paradigm Model
CONST NEG MAINT | CONST NEG MAINT | Move
Baseline Random 0.34 0.15 0.10 0.23 0.16  0.07 0.20 0.29 0.19
0-Shot-GPT-4 0.26 0.17 0.11 - - - 0.42 0.49 0.49
5-Shot—-GPT-4 0.60 0.27 0.21 - - - 0.27 0.45 0.38
In-Context 0-Shot—Mistral 0.02 0.09 0.01 0.07 0.15 0.15 0.08 0.11 0.23
Learning 5-Shot—Mistral 0.25 0.10 0.12 0.33 0.21 0.15 0.09 0.11 0.24
20-Shot—Mistral 0.00 0.02  0.00 0.01 0.00  0.00 0.11 0.20 0.30
Fine-tune RoBERTa 0.71 0.53 0.33 0.61 0.51 0.32 0.67 0.63 0.67
(Train Set) | Mistral Embeddings | 0.59 0.32 0.26 0.59 044 0.13 0.53 0.62 0.63
Fine-tune 5-Shot—-RoBERTa | 0.66 0.31 0.24 0.40 0.26  0.10 0.35 0.48 0.40
(Subsets of | 20-Shot—-RoBERTa | 0.66 0.32 0.25 0.50 0.36 0.15 0.42 0.55 0.54
Train Set)

model fine-tuned on all training samples is the best out of all
our models and tasks. It also vastly outperforms the random
baseline on every dataset. The Mistral Embeddings model
is not as strong, although it outperforms the prompt-based
models on all datasets. We hypothesize that the large size of
the Mistral model may affect the model’s generalizability, es-
pecially given that our datasets are small. However, in com-
parison to its few-shot performance, the Mistral model shows
a remarkable improvement when trained with task-specific
data. Our results are also in line with other observations
that the RoBERTa model can be a better choice than very
large language models in classifying short sequences [13].

We also find that the RoOBERTa model is surprisingly effec-
tive in the few-shot training setting, even with only 5 and
20 training examples per class. In the 5-shot setting, it out-
performs all prompting methods on all CPS tasks except for
predicting the skill of maintaining team function. On the
multi-class datasets, and the NCTE dataset, it outperforms
the random baseline but is not as good as zero-shot GPT-4.
When the number of training examples is increased to 20
per class, the RoBERTa model performs at par or better
than all prompt-based models on all datasets.

6. DISCUSSION

In this paper, we set out to investigate whether the high per-
formance of off-the-shelf LLMs on NLP tasks translates to
challenging qualitative coding tasks in education. We find
that advanced models like GPT-4 do outperform random-
chance baselines in the zero-shot setting, indicating that
their pre-training process has imbued them with some un-
derstanding about contexts such as classroom dialog. How-
ever, the extent of this performance is highly task-specific.
We see that GPT-4 does well without any examples on a task
like determining if an utterance exhibits reasoning (NCTE),
where the objective can be reasonably understood through
a simple task description, and the solution could make use
of cue words like ‘because’. However, the models struggle
particularly on complex, theoretically motivated tasks like
CPS until examples are provided, after which performance
sharply improves. We also note that GPT-4 and Mistral ex-

hibit stark differences in performance, highlighting the im-
portance of model choice in choosing between prompting
vs task-specific fine-tuning. One important consideration is
that the design of the prompt may have a big influence on
zero and few-shot performance. While we follow best prac-
tices recommended by developers, and experimented with
framings such as scenarios and role-playing, there are other
strategies for prompt engineering that could prove useful,
such as feeding an entire codebook in a prompt. Given that
this may come with the trade-off of high costs, we do not
carry out extensive prompt engineering at this stage.

Next, in reflecting on whether LLMs obviate the need for
collecting large-scale annotated training datasets, we show
that these models cannot yet replace the traditional pre-
training—fine-tuning paradigm, particularly for qualitative
coding. As a result, we argue that training data is still
highly valuable, particularly for nuanced, subjective tasks
that benefit from numerous examples, such as student talk
move or CPS skill prediction. In situations where access to
data is severely constrained, models like GPT-4 show po-
tential, strongly outperforming random guessing. However,
prompting with few-shot examples may not necessarily be
an improvement over the zero-shot setting: the choice and
quality of shots is crucial and may lead to variability. If
cost is also a factor in the data-constrained setting, an al-
ternative to few-shot prompting through expensive APIs can
be few-shot fine-tuning with models like RoBERTa, which
achieve surprisingly high performance on coding tasks with
very limited training data.

Finally, when assessing which automated qualitative coding
models may be best suited for designing systems for ana-
lyzing classroom conversations, we find that training small,
accessible, and inexpensive models like RoOBERTa with high-
quality data may still lead to better performance than using
off-the-shelf LLMs. While these models are still outstanding
at text generation tasks, and therefore highly relevant for
educational applications, we conclude that they show lim-
ited promise as of now for classification-oriented qualitative
coding tasks in education.
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APPENDIX



Table 2: Prompts utilized for GPT-4 and Mistral zero-shot learning. For binary scenarios, Mistral is prompted with “Yes” or
“No” as response options ({ Yes/No}), while multiclass scenarios involve a generic prompt for a label and the iterative testing
of each label option ({label})

Task GPT-4 Prompts Mistral Prompts
{“role”: “system”, “content” “You're observing students Scenario: You're observing students collaboratively
collaboratively solving math problems. Determine if solving math problems.
NCTE their response displays reasoning skills, return 1 if so Determine if their response displays reasoning skills.
and 0 otherwise.”}, Student Utterance: {utterance}
{“role”: “user”, “content”: “Utterance: {utterance}” Contains Student Reasoning: { Yes/No}
{“role”: “system”, “content” “You're observing students Scenario: You're observing students working
working collaboratively. Determine if the utterance collaboratively. Determine if the utterance exhibits
CPS-COMM displays the collaborative problem solving skill of the construction of shared knowledge.
construction of shared knowledge. Return 1 if the skill Student Utterance: {utterance}
is shown, and 0 otherwise.”}, Exhibits the construction of shared knowledge: { Yes/No}

{“role”: “user”, “content”: “Utterance: {utterance}”

{“role”: “system”, “content”: “You’re observing students | Scenario: You’re observing students working collaboratively.

working collaboratively. Determine if the utterance Determine if the utterance exhibits the
CPS-NEG displays the collaborative problem solving skill of negotiation / coordination.
negotiation or coordination. Return 1 if the skill Student Utterance: {utterance}
is shown, and 0 otherwise.”}, Exhibits negotiation / coordination: {Yes/No}

{“role”: “user”, “content”: “Utterance: {utterance}”

”

{“role”: “system”, “content”: “You’re observing students | Scenario: You’re observing students working collaboratively.

working collaboratively. Determine if the utterance Determine if the utterance exhibits the
CPS-NEG displays the collaborative problem solving skill of maintaining team function.
maintaining team function. Return 1 if the skill Student Utterance: {utterance}
is shown, and 0 otherwise.”}, Exhibits maintaining team function: {Yes/No}
{“role”: “user”, “content”: “Utterance: {utterance}”
{“role”: “system”, “content™ “You're observing a student Scenario: You're observing a student learning
CIMA learning Italian prepositions. Italian prepositions.
Classify their response into one out of 4 categories: Student Utterance: {utterance}
[Guess, Question, Affirmation, Other]. Student Action: {label}

Only return the label corresponding
to one of the four categories.}
{“role”: “user”, “content”: “Utterance: {utterance}”

{“role”: “system”, “content” “You're observing students Scenario: You're observing students working with a
in a math classroom. Determine what talk move tutor on math problems.
Talk Move they are using by looking at both the Tutor Utterance: {prev. tutor utterance}
student utterance and the context. Student Utterance: {student utterance}
There are 5 talk moves indexed from 0 to 4: Student Action: {label}

0=None, 1=Relating to Another Student
2=Ask for more info, 3=Make a claim,
4=Provide evidence and reasoning. Return
the index of the correct talk move.”},
{“role”: “user”,
“content”: “Utterance: {utterance + prev}”
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