2023 IEEE 11th International Conference on Healthcare Informatics (ICHI) | 979-8-3503-0263-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICHI57859.2023.00047

2023 IEEE 11th International Conference on Healthcare Informatics (ICHI)

Improving Prediction of Late Symptoms using
LSTM and Patient-reported Outcomes for Head and
Neck Cancer Patients

Yaohua Wang
Electrical and Computer Engineering
The University of lowa
Iowa City, United States
yaohua-wang @uiowa.edu

Mohamed Naser
Radiation Oncology
UT M.D. Anderson Cancer Center
Houston, United States
manaser @mdanderson.org

G. Elisabeta Marai
Computer Science
University of Illinois at Chicago
Chicago, United States
gmarai @uic.edu

Abstract—Patient-Reported Outcomes (PRO) are collected di-
rectly from the patients using symptom questionnaires. In the
case of head and neck cancer patients, PRO surveys are recorded
every week during treatment with each patient’s visit to the
clinic and at different follow-up times after the treatment has
concluded. PRO surveys can be very informative regarding the
patient’s status and the effect of treatment on the patient’s
quality of life (QoL). Processing PRO data is challenging for
several reasons. First, missing data is frequent as patients might
skip a question or a questionnaire altogether. Second, PROs
are patient-dependent, a rating of 5 for one patient might be a
rating of 10 for another patient. Finally, most patients experience
severe symptoms during treatment which usually subside over
time. However, for some patients, late toxicities persist negatively
affecting the patient’s QoL. These long-term severe symptoms are
hard to predict and are the focus of this study. In this work, we
model PRO data collected from head and neck cancer patients
treated at the MD Anderson Cancer Center using the MD
Anderson Symptom Inventory (MDASI) questionnaire as time
series. We impute missing values with a combination of K nearest
neighbor (KNN) and Long Short-Term Memory (LSTM) neural
networks, and finally, apply LSTM to predict late symptom
severity 12 months after treatment. We compare performance
against clinical and ARIMA models. We show that the LSTM
model combined with KNN imputation is effective in predicting
late-stage symptom ratings for occurrence and severity under the
AUC and F1 score metrics.

Index Terms—Long Short-Term Memory (LSTM), Patient
Reported Outcomes (PRO), Late Toxicity, Symptom Severity
Prediction, KNN Baseline Imputation

Lisanne Van Dijk
Radiation Oncology
UT M.D. Anderson Cancer Center
Houston, United States
dijkvansanne @ gmail.com

Clifton David Fuller
Radiation Oncology
UT M.D. Anderson Cancer Center
Houston, United States
cdfuller@mdanderson.org

Abdallah S. R. Mohamed
Radiation Oncology
UT M.D. Anderson Cancer Center
Houston, United States
asmohamed @mdanderson.org

Xinhua Zhang
Computer Science
University of Illinois at Chicago
Chicago, United States
zhangx @uic.edu

Guadalupe Canahuate
Electrical and Computer Engineering
The University of lowa
Iowa City, United States
guadalupe-canahuate @uiowa.edu

I. INTRODUCTION

In clinical practice, Patient-Reported Outcomes (PRO) are
considered an important complement to capture the patient’s
condition outside of the medical visit so that physicians can
understand more about the patients and improve their QoL.
PRO data have a major impact on clinical decision-making,
and informing clinical practice [1]. In general, PRO data are
collected directly from the patients as survey responses and
often ask the patient to rate different symptoms in terms
of severity over some time period. PRO data is routinely
collected in clinical practice and specific questionnaires have
been created and validated for different diseases and con-
ditions. For head and neck cancer patients, the Head and
Neck module MDASI-HN from the M.D. Anderson Symptom
Inventory (MDASI) [2] questionnaire is a validated and widely
used instrument. The module contains 28 symptom-related
questions, in which, 13 questions are related to the systemic
core symptoms of cancer, 9 are related to local head and neck
symptoms, and the last 6 are related to life general symptoms
associated with daily activities. During and after treatment,
patients repeatedly rate their symptoms on a scale from 0 to
10 to indicate their symptom severity, where O stands for no
experience of the symptom and 10 stands for greatest severity.

PRO surveys can be very informative regarding the patient’s
status and the effect of treatment on the patient’s quality of
life (QoL). However, processing PRO data is challenging for
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several reasons. First, missing data is frequent as patients
might skip a question or a questionnaire altogether. Dropping
the patients that are missing any or some of the questionnaire
responses is not a feasible alternative because a significant
portion of the patients would have missing data at one time or
another. Another challenge is that PROs are patient-dependent
and somewhat subjective measures, e.g. a rating of 5 for
one patient might be a rating of 10 for another patient.
Symptoms are also often correlated, co-occurring, or product
of the same underlying cause. For head and neck cancer,
most patients experience severe symptoms during treatment
and ideally, these would subside over time. However, in some
cases, patients continue to experience health and/or Quality-of-
Life (QoL) debilitating symptoms even years after the end of
treatment [3]-[5]. These long-term severe symptoms are hard
to predict and are the focus of this study. We are interested
in developing methods that can predict these moderate-to-
severe long-term symptoms and identify patients at risk so
that interventions can be implemented to minimize the risk
and ultimately improve patients’ QoL.

In this paper, we propose the use of Long Short-Term
Memory (LSTM) neural networks to model the symptom
rating trajectories for PRO data. We model PRO data collected
using MDASI-HN questionnaires as a time series and focus on
training an LSTM model to predict late toxicity at 12 months
after treatment (M12). In our preliminary work [6], we show
that recursively using an LSTM neural network to predict and
impute missing PRO data at different time points is able to
outperform linear interpolation and other imputation methods.
The LSTM model recursively predicts the following time step
using data from the prior time points starting from a baseline
or time O at the start of treatment. This formulation makes the
proposed model generalizable to other types of longitudinal
PRO data collected for surveillance or monitoring.

In this work, we make several important improvements to
the LSTM prediction of PRO data. Since the LSTM recursive
imputation needs a starting initial value for the time series
and to prevent the exclusion of patients missing such baseline
or initial symptom rating from the analysis, we evaluate
two baseline imputation methods: mean imputation and KNN
imputation. For KNN, we compute the similarity between
patients using the available clinical variables including AJCC
staging (T, N, and M), tumor location, and treatment. Fur-
thermore, to account for patient variability, we subtract the
baseline score from the subsequent symptom ratings, train the
LSTM over the delta changes from the baseline, and show
that this normalization further improves prediction. Finally,
since symptom cluster research has identified groups of related
symptoms [7], we focus on the symptom cluster that includes
Dry mouth, Mucus, Swallowing, and Taste [8] given the
prevalence of these symptoms after the end of treatment for
head and neck cancer patients. We refer to this cluster as
DMST for the initials of the symptoms involved. We compared
the prediction outcome of the LSTM models against regression
models using clinical data and PRO (ARIMA) and show that
LSTM is an effective way of predicting late symptoms for
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head and neck cancer patients.

The rest of this paper is organized as follows. Section II
presents related work. Section III describes the proposed
approach. Section IV presents the experimental results using
MDASI questionnaires. Finally, we conclude in Section V.

II. RELATED WORK

MDASI-HN PRO Data. Patient Reported Outcomes (PRO)
is data collected directly from the patient and it is widely used
to evaluate treatment benefits and measure symptom burden
for the patient [9]. The PRO data used in this project is
the MD Anderson Symptom Inventory (MDASI) Head and
Neck (HN) module. The MDASI-HN [10] is a 28-symptom
questionnaire where patients rate symptoms on a scale from 0
to 10 with 0 being not present and 10 being the worse ever. As
shown in Table I, the 28 symptoms can be divided into three
broad groups: systemic (common to all cancers), local (specific
to head and neck), and life interference. Patients are asked
to fill out MDASI-HN surveys before the start of treatment
(baseline), weekly during treatment, and at their follow-up
visits 6 weeks, 6 months, and 12 months after treatment.

Using MDASI-HN PRO data, several studies focus on

identifying symptom clusters at a single timepoint [8], [11]-
[13]. From these preliminary researches, Dry mouth, Mucus,
Swallowing, and Taste (DMST) are four of the most severe
symptoms. Furthermore, cluster analysis using MDASI-HN
data shows these symptoms have small relative distances
and are highly related [8]. Prior research mainly used two
methods to find symptom clusters, one is factor analysis such
as principal component analysis and the other one is cluster
analysis such as hierarchical agglomerative clustering [7],
[14]-[16]. These studies focus on a single time point analysis,
whereas we model the PRO data as a time series.
Time Series Prediction and Imputation. When comes to
time series prediction, Auto-regressive Integrated Moving Av-
erage (ARIMA) [17] is a commonly used method. The model
combines an Auto-regressive (AR) model which predicts the
variable using a linear combination based on its previous
values and a Moving Average (MA) model which uses the
past prediction error rather than past value in prediction. In
handling the missing values in the data, the ARIMA model
can compute without struggling by skipping them in the update
stage.

More recently, Long Short-Term Memory (LSTM) Recur-
rent Neural Networks have gained more popularity in time
series prediction [18] and healthcare domain [19]. Specific
applications of LSTM in healthcare include mimicking the
pathologist’s decision and other diagnostic applications [20],
[21], classification of sleep patterns in multi-variate time-series
clinical measurements [22], and predicting symptom severity
in the acute and late stages after the treatment [6].

III. PROPOSED APPROACH

In this section, we describe the methodological approach
including data pre-processing and training metrics used in
this work. Figure 1 shows an overview of the proposed
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TABLE 1
THE 28 SYMPTOMS IN THE MDASI-HN QUESTIONNAIRE BY TOXICITY
TYPE. SYSTEMIC REFERS TO COMMON CANCER SYMPTOMS, LOCAL TO
MORE HEAD AND NECK SPECIFIC SYMTOMS, AND LIFE GENERAL TO THE
INTERFERENCE RATINGS RELATED TO QUALITY OF LIFE.

Toxicity Symptoms

Systemic fatigue, constipation, nausea, sleep, memory,
appetite, drowsy, vomit, numb

Local pain, mucus, swallow, choke, voice, skin, taste,

mucositis, teeth, shortness of breath (SOB), dry
mouth

general activity, mood, work, relations, walk-
ing, enjoy, distress, sad

Life general

methodology and each component is described in detail in
the following subsections.

A. Data

The data contains several clinical features in addition to the
sequential MDASI-HN PRO questionnaires. The clinical data
is mainly categorical data including variables such as sex, tu-
mor location, AJCC staging, T-stage, N-stage, M-stage, perfor-
mance score, HPV status, and treatment. The three numerical
variables correspond to age, height, and weight. Numerical
variables were discretized in order to have a homogeneous
set of features for distance computation as described in the
next section. MDASI-HN PRO questionnaires were repeatedly
administered to patients during treatment (at baseline, start,
and end of treatment including weeks 2-6, 6 weeks, 6 months,
and 12 months after treatment) for a total of 11 time points.

Since our focus is on late-stage symptoms, i.e. symptoms
that affect patients (with moderate to high severity) long
after the end of treatment, we evaluate rating prediction for
symptoms at M12.

B. Preprocessing

We compute the BMI of the patients and grouped them
into 4 categories (underweight, normal, obese, and morbidly
obese). Age is discretized into four groups defined by 25%,
50%, and 75%-tile values. We treat the MDASI-HN-PRO-data
as a time series and extract the ratings for four different symp-
toms: Dry mouth, Mucus, Swallowing, and Taste (DMST).
Prior research has identified these symptoms as a cluster using
MDASI-HN data [8]. We decide to focus on this symptom
cluster because their average severity at the late stage, i.e. at
M12, is moderate to severe, which means they have a long-
term effect on patients. To account for patient variability, we
subtract the baseline rating from the subsequent ratings for
each symptom. The baseline is the rating provided by the
patient before the start of the treatment. After subtraction,
all the patients have their initial rating set at zero and all
subsequent ratings as the delta change from their baseline. The
MDASI-HN PRO data have lots of missing symptom ratings
due to patients’ skipping a question or failing to complete
a questionnaire, loss of follow-up, or any other omissions
during data collection. To prepare the PRO data for LSTM
training, we transform the data into a 3-dimensional array
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where the first dimension corresponds to the patients, the
second dimension to the time steps, and the third dimension
to the symptoms. The LSTM can be applied recursively to
impute different time steps, but it needs to start from a known
baseline value. Therefore, we distinguish between the baseline
imputation which is needed before applying the LSTM and the
imputation of subsequent time points by the LSTM model.

C. Baseline Imputation

In order to complete the missing data at baseline, we
consider two different approaches: mean imputation and k-
nearest neighbor (KNN) based imputation.

Mean Imputation. In this approach, we simply take the
average of the existing ratings of the patients for each symptom
at baseline or the first time point, i.e., week 0, and impute all
missing values with the calculated average.

KNN Based Imputation. With the assumption that pa-
tients with similar demographics, disease stage, tumor loca-
tion, and treatment would have similar baselines, we decided
to compute the similarity between patients using these clinical
variables. We apply KNN to the clinical data of each patient
and compute the average baseline among the most similar
patients to fill the missing baseline rating. The hope is that the
imputed baseline will be more diverse than using the global
average and this would translate into a better prediction of late
symptom ratings.

While KNN is a non-parametric approach, we still need to
define several important parameters: 1) which features to use
for computing KNN imputation? 2) Which distance metric
would be more suitable for these data?, and 3) What is a
proper K for the K nearest neighbor?

As a result, we developed the following KNN imputation
methodology, as it is shown in the KNN imputation pipeline
depicted in Figure 1.

To answer the first question, we applied a feature selec-
tion algorithm (i.e. ridge regression) to identify the relevant
features from the 13 clinical features available in the dataset.
The distribution of clinical features is shown in Table II. As
the outcome for the regression model, we created a binary
outcome (0, 1) to indicate whether the patient experienced
any of the selected DMST symptoms at baseline. Once the
relevant features were identified, we then apply KNN over
this reduced set. Since all the features are categorical, we
consider Overlap and Goodall3 [23] as potential similarity
metrics. Overlap similarity between two patients X and Y is
the number of attributes (features) where the two patients fall
into the same category and is defined by:

d .
1 ifX;=Y;
Overlap(X,Y) = Z {0 otherwise

i=1
d is the number of attributes used in the similarity.
Goodall3 similarity applies a penalty to the attributes where
the two patients match using the sample probability of the
attribute value and it is defined as:

d e
Goodall3(X,Y) = Z {1 Pé (X3)
i=1

6]

if Xi=Y;

otherwise

@)
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Fig. 1. Overview of the proposed methodology. The top row shows the overall processing pipeline and the bottom row further details the KNN imputation
processing pipeline.
where d is the number of attributes, f;(x) is the frequency of
Yalue 2 in attribute 1, anq p?(x) = %, where N
is the total number of patients.
TABLE II When we compute both the Overlap and the Goodall3

DATA DEMOGRAPHICS FOR THE CLINICAL FEATURES AVAILABLE PRIOR
TO TREATMENT. A SET OF SELECTED FEATURES WERE USED FOR THE
KNN BASELINE IMPUTATION.

Feature Value(s) Percentage
Sex Male / Female 88.21% / 13.36%
AJCC 7th / 8th 56.74% | 43.26%
T_numeric* 0 6.68%

1 28.92%

2 39.85%

3 13.12%

4 11.42%
N_numeric* 0 12.64%

1 36.94%

2 48.24%

3 2.19%
Location BOT 43.38%

Tonsil 42.89%

Others 13.73%
Treatment™ Induction_RT 6.08%

CC 71.69%

no_chemo 5.59%

Induction + CC 8.14%
BMI Underweight 10.45%

Normal 13.37%

Obese 36.94%

Morbid Obese 37.67%
Perform. Score* 0 66.71%

1 20.17%

2 1.94%

3 0.61%

4 0%
Enrollment_1%* Yes / No 0.85% / 99.15%
Enrollment_2%* Yes / No 1.58% / 98.42%
Enrollment_3 Yes / No 2.55% 1 97.45%
HPV Status Yes / No 72.42% | 27.58%
Age Median, (25% - 75%) 60, (54 - 67)

* indicates the selected features before the KNN imputation.
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similarities, patients with a similarity score less than 50% are
dropped from the KNN set to minimize the effect of potential
outliers.

To evaluate and compare the effectiveness of the two
similarity metrics we consider different numbers of nearest
neighbors (K) and calculate the RMSE between the actual
patients’ rating per symptom and the KNN predicted baseline
per symptom. To minimize the bias of the baseline, we
calculated the mean of the patients who have a baseline per
symptom and subtracted it from the baseline. Therefore, the
KNN is predicting the delta of the baseline, and the mean is
later added back to the KNN prediction when compared to the
actual patients’ rating.

After deciding a suitable value of K and which similarity
metric to use for the KNN model, we split the patients into
two groups based on the absence of baseline symptom ratings,
apply the KNN to each patient with a missing baseline, and
take the average of the similar patients that the KNN identified.
In this way, all the missing baselines were imputed.

D. Long Short-Term Memory (LSTM)

We picked LSTM neural network as the predictive model
because it has proven effective in time series prediction [24].
Unlike traditional neural networks, LSTM is a type of recur-
rent neural network (RNN) that has a 3-gate feedback structure
to memorize the important part of the input data and forget
the unimportant, in other words, LSTM stores the memory of
past events and use it to predict the future events. Furthermore,
LSTM has the advantage of a diversity of inputs and outputs,
which means, in our case, LSTM can take multiple patients’
ratings over time on multiple symptoms as inputs and predict
their responses to multiple symptoms in the late stage.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on August 22,2024 at 19:39:29 UTC from IEEE Xplore. Restrictions apply.



Since patients respond to the survey providing their symp-
tom severity ratings periodically during and after treatment,
we can learn from their responses over a past time period
and predict the responses in a future time period so that rec-
ommendations can be made proactively to minimize patients’
symptom burden thus improving their quality of life. We
applied Long short-term memory (LSTM) neural networks in
two ways during the training process. By recursively predicting
the symptom ratings at each time point, we are able to impute
the missing data. Using the complete data, we then predict the
symptom burden at M12.

LSTM Imputation. After the baselines have been im-
puted, we then trained our LSTM model on the complete
baseline data and let it predict the missing values at week 1.
The predicted values are used to fill in the missing values for
week 1. Subsequently, the same process is applied to predict
the following weeks. This recursive process is repeated until
all the missing ratings before M12 are fulfilled.

Late Symptom Prediction. We train the LSTM on all the
time points before M12 to predict M12 symptom severity. All
data prior to the prediction time point have been imputed. To
account for patient variability in their ratings, we subtracted
the baseline rating from all subsequent time steps including
M12 ratings. The LSTM model predicts the delta of each
patient and after prediction, the baseline is added back to the
predicted rating.

Two approaches are evaluated for late symptom prediction
depending on which method was used for baseline imputation.
When the mean imputation is used, we refer to this approach as
Mean Baseline Subtracted (MBS). When KNN imputation is
used, we refer to this approach as KNN-based Mean Baseline
Subtracted (KMBS).

E. Evaluation

We evaluate the 12-month symptom rating predictions
(M12) using 5-cross validation and compute RMSE, AUC,
and F1 scores between the predicted ratings and the actual
ratings provided by the patients. We compare LSTM prediction
performance with two models. The first one, referred to as the
Clinical model, uses a logistic regression on all the clinical
features and baseline symptom ratings to predict 12-month
after-treatment symptom ratings. The second method is the
auto-regressive integrated moving average (ARIMA) statistic
model. ARIMA, as mentioned above, is able to handle the
missing values and is used to predict 12-month after-treatment
symptom ratings using all prior time points available.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup and
data statistics. Then we present the results for the KNN base-
line imputation evaluation, compare the LSTM performance
using both imputation methods for DMST symptoms, and
finally compare the predictive performance of LSTM against
ARIMA and a clinical regression model.
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A. Experimental setup

For the KNN feature selection, a ridge regression model
was trained using a 75/25 split and a grid search for the
parameter o = 10% with i € [~2, 6] with 0.5 increments. The
minimum validation error was found for o = 1, and features
were selected with threshold > 0.01. The selected features
were T numeric, N numeric, Treatment, Performance score,
Enrollment 1, and Enrollment 2 (highlighted in Table II).

For the LSTM imputation and prediction, we used Mean
Square Error (MSE) as the loss function and Stochastic
Gradient Descent (SGD) as the optimizer with a learning rate
of 0.215. Using a grid search for parameter tuning considering
hidden layers between 1-5 and the number of hidden dimen-
sions between 1-10, we set the number of hidden layers to 1
and the number of hidden dimensions to 10. We also used early
stopping criteria when training the LSTM model to prevent
over-fitting. All the networks were run on NVIDIA GeForce
RTX 2070 GPU with 8GB of memory. The LSTM model
is built based on the open-source TensorFlow framework.
Numpy, Pandas, and Scikit-Learn libraries were also used.
As for the ARIMA model, we used the pre-built first-order
autoregressive ARIMA in the statsmodels (ver. 0.13.0) library
by setting the order to (1, 0, 0).

B. Data statistic

The MDASI-HN module contains a considerable number
of patients with missing ratings at each time point. Figure 2
shows the percentage of patients with missing symptom ratings
for each time point before month 12 (< M12). The solid
line is the percentage for all patients while the dashed line
corresponds to patients with known M12 ratings, i.e. the subset
of patients used in this work. As can be seen, both sets show
similar distribution with missing data around 20% at baseline,
raising to 42-56% during treatment. In fact, there are only 26
out of 823 patients who have all questionnaires fully completed
for all time points. Therefore, simply dropping the patients
with missing ratings would dramatically reduce the size of the
sample. As a result, data imputation for the missing ratings is
needed.

C. KNN Baseline Imputation

We compare the performance of the baseline imputation for
KNN using Overlap and Goodall3 distance metrics over the
selected features for different values of K. Figure 3 shows
the RMSE between the patients’ original baselines and the
patients’ KNN predicted baselines. We also computed the nor-
malized KNN predicted baselines (Z-score) and obtained the
RMSE between the original baselines and the denormalized
KNN predicted baselines. As it is shown in Figure 3, the
KNN with the Overlap metric shows a lower RMSE than
the KNN with the Goodall3 metric for all the five values
of K evaluated between 1 and 20. The RMSE scores with
the "Norm” baseline are all lower than the RMSE scores
with the ”Original” baseline. These results showed the use of
Z-score normalization of patients’ scores and computing the
KNN prediction as the average of the scaled values improved
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Fig. 2. Average percentage of missing data for DMST symptoms at each
time point before M12. The solid line shows the average percentage for all
the patients, whereas the dashed line shows the percentage of missing data
only for patients with known M12 ratings.

the RMSE by smoothing the outliers. Moreover, the similarity
between each patient and their KNN set was always above
the 50% threshold. For the 158 patients with missing baseline
rating for dry mouth, 85% had a perfectly matched set of
nearest neighbors and from the remaining 15% (25 patients),
only 1 had some neighbors at 50% similarity.

Since the RMSE lines shown in Figure 3 have a hinge at K
= 5 and decrease slowly after, both K=5 and K=10 are good
candidates for KNN baseline imputation. For the remaining
experiments, the KNN imputation method reported is using
the Overlap metric with K = 10 and Z-score normalization.

D. LSTM Evaluation

Table III shows the patient distribution for DMST symptoms
and the three thresholds for symptom ratings used to evaluate
the LSTM performance: occurrence (> 1), mild-severe (> 3),
and moderate-severe (> 5). The distribution is shown for
two patient groups. The M12 group corresponds to the set of
patients with a known M12 symptom rating whereas the M 125
group corresponds to the patients with known M12 ratings that
needed an imputed baseline. The M12;5 group is a subset of
the M12 group and corresponds to the patients affected by
the baseline imputation method. This set is used to evaluate
more clearly, the effect of baseline rating imputation. As can
be seen in the Table, among DMST symptoms, Dry mouth is
the most prevalent symptom with 82% of patients having the
symptom and 28% feeling it moderately-severely at M12. The
other symptoms (Mucus, Swallowing, and Taste), on the other
hand, occur in the majority of the patients (55% - 70%) but
only a smaller percentage (10% - 16%) of patients experience
moderate-severe occurrences. While the M12;g group for the
DMST symptoms is only around 100 patients, the distributions
among the three thresholds are still similar to those for the
entire cohort.

Symptom Rating Normalization. To evaluate the effect
of baseline imputation and patient rating normalization, we
first evaluate LSTM performance over the M12;5 group.
Figure 4 shows the performance of the LSTM models when the
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symptoms ratings are normalized by subtracting the baseline
from all subsequent ratings (MBS and KMBS) or not (MB and
KMB). The figure shows the F1 scores for symptom occur-
rence (rating > 1). As can be seen, there is a performance im-
provement when the symptoms ratings are normalized (MB vs.
MBS and KMB vs. KMBS). Subtracting the baseline ratings
increased F1 score performance between [3.85%, 30.36%)] for
DMST symptoms. This normalization makes all the patients’
baselines the same, and the LSTM is effectively trained to
predict delta from baseline. Given the better performance of
this normalization for all symptoms, moving forward we only
compare the MBS and KMBS LSTM approaches to other
methods.

LSTM Prediction with Imputed Baseline. Figure 6
shows the performance comparison for M12 DMST symptom
predictions in terms of RMSE for the M12;p patients. We
compare the performance of the LSTM models (MBS and
KMBS) against ARIMA and the clinical regression models.
As can be seen, for Mucus, Swallowing, and Taste symptoms,
the RMSEs of the clinical model are the highest, i.e. perform
the worst, ranging between [3.5,4.3], and the ARIMA model
achieves the highest RMSE of 2.8 for Dry mouth symptom.
In contrast, LSTM models perform considerably better with
RMSE being 7.5% - 59% lower than ARIMA and 22% -
165% lower than the clinical model predictions across DMST
symptoms.

Figure 5 shows the performance comparison for M12 oc-
currence predictions over the M12jg group in terms of F1
scores. As can be seen, the MBS and KMBS-based LSTM
achieve higher F1 scores than those of the clinical and the
ARIMA model for all DMST symptoms. The performance is
closest between the models for Dry mouth prediction, with
the clinical model performing the lowest at almost 80% and
the KMBS-LSTM model achieving the highest F1 score at
87.5%. The lowest performing symptom for the clinical and
ARIMA models is Mucus, where the LSTM approach still
achieves F1 score > (.7. Overall, the KMBS-LSTM approach
achieves the highest F1 score for all the symptoms except for
Swallowing where the MBS-LSTM approach shows the best
relative performance between the compared models.

Figure 7 shows the average AUC performance for the
DMST symptoms at two severity thresholds (> 1 and > 3). As
can be seen, the AUCs of the clinical model are significantly
lower than the AUCs of the ARIMA model and LSTM models,
ranging between [0.39,0.66]. Both the ARIMA model and
LSTM models show competitive performance with values
ranging between [0.73,0.83]. The LSTM models show a
higher average AUC than the ARIMA models. At thresholds
1 and 3, the AUCs of the ARIMA model range between
[0.73,0.79] and [0.77,0.8] whereas the AUCs of the LSTM
models range between [0.76,0.83] and [0.79, 0.83].

LSTM Prediction for the Entire Cohort. Figure 8 shows
the performance comparison for the M12 rating prediction
of the DMST symptoms for the entire cohort (M12 group).
The figure shows F1 scores for the Clinical, ARIMA, and
LSTM models (MBS and KMBS) at each of the three different
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KNN Comparison between Overlap and GoodAll3 Metric
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Fig. 3. KNN Baseline Imputation Comparison between Overlap metric and Goodall3 Metric as a function of K. _Original means the RMSE was computed
between original baselines and KNN-predicted baselines; _Norm means the RMSE was computed between the original baselines and the normalized (and
later denormalized) KNN-predicted baselines. Overall, the _Norm KNN-predicted baselines have lower RMSE than the _Original KNN-predicted baselines.

TABLE III
PATIENTS’ RATING DISTRIBUTION FOR DMST SYMPTOMS 12 MONTHS AFTER TREATMENT (M12) AND FOR PATIENTS WITH KNOWN M12 BUT MISSING
BASELINE RATING (M1215). M12;g IS THE SET OF PATIENTS FOR WHICH BASELINE RATINGS NEED TO BE IMPUTED.

Dry mouth Mucus Swallowing Taste
M12 M12; Mi12 M12;p M12 M12;p M12 M12;
# Patients 464 96 463 98 461 100 459 97
Symptom Threshold Cnt % Cnt % Cnt % Cnt % Cnt % Cnt % Cnt % Cnt %

Occurrence (Rating > 1) 380 82 78 81 248
Mild-Severe (Rating > 3) 223 48 52 54 115
Moderate-Severe (Rating > 5) 129 28 23 24 46

54 55 56 300 65 66 66 316 69 69 71
25 23 23 191 41 30 30 172 37 39 40
10 7 7 46 10 9 9 75 16 20 21

Performance Comparison between Baseline and
Baseline Subtraction Prediction (M12; > 1)

Drymouth Mucus Swallow Taste

F1 Score
o o o
» (=2} -

o
[N}

mMB EMBS " KMB EKMBS

Fig. 4. Evaluating the impact of baseline subtraction on the prediction
of DMST symptom occurrence. The first two bars in each column (blue
pair) correspond to the mean imputation and the last two bars (orange
pair) correspond to the KNN imputation. The baseline subtraction has a
positive effect on the performance metric (F1 score) for both mean and KNN-
imputation approaches for all symptoms.

DMST (M12,; 2 1) Prediction Performance
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Fig. 5. Performance comparison for the clinical model, ARIMA, and LSTM
methods on the DMST symptoms occurrence at M12 for the baseline imputed
patients (M12;g). MBS stands for the mean baseline subtracted approach, and
KMBS stands for the KNN-based mean baseline subtracted approach.
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RMSE for DMST Symptoms (M12,5)
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Fig. 6. RMSE for the prediction of DMST symptoms in the M12;g group.
Overall, clinical and ARIMA approaches have higher RMSE than LSTM-
based (MBS and KMBS) approaches.

AUC for DMST Symptoms (M125)
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M Clinical W ARIMA B MBS [ KMBS

Fig. 7. AUC for the prediction of DMST symptoms in the M12;g group. The
clinical approach has overall lower AUC performance than ARIMA, MBS,
and KMBS approaches.

symptom severity thresholds. As can be seen, for all the
symptoms, at each threshold, the LSTM prediction has either
a similar or better performance than the clinical and ARIMA
models. The performance difference between mean-baseline
imputation (MBS) and KNN imputation (KMBS) imputation
is negligible between the two. The main reason is that no
imputation is needed for the large majority of patients diluting
the performance impact for the baseline imputation. In any
case, baseline imputation does not seem to degrade the per-
formance of the LSTM. The AUC scores over the entire cohort
had similar distributions as the F1 scores and are omitted for
brevity. It is worth noting that the LSTM still showed better
performance in terms of AUC when compared to the other
models, ranging between [0.75, 0.89]. The clinical models had
AUC around 0.5 and ARIMA between [0.72,0.84].

V. CONCLUSION

In this work, we used the MDASI-HN PRO data and applied
LSTM neural network for symptom rating imputation and
late-stage (M12) symptom rating prediction. A significant
challenge for these patient-reported outcome (PRO) data is
the subjectivity or patient variability when responding to their
symptom severity. Some patients might be more sensitive to
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Fig. 8. Prediction performance on the DMST symptoms at M12 for the three
severity thresholds (M12 data). Overall, MBS and KMBS approaches show
better performance than Clinical and ARIMA approaches.

some symptoms while others might dismiss them or not even
notice them. To account for this subjectivity we subtract the
baseline symptom rating from subsequent ratings effectively
making all patients have the same baseline and showing
performance improvements over raw rating prediction.

For patients with missing baseline ratings, we evaluated two
different baseline imputation approaches. The first approach,
MBS, simply computed the average based on the baseline-
existing patients, while the second approach, KMBS, is a KNN
imputation method that incorporates clinical information into
the baseline imputation by computing each patient’s baseline
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from the average of K nearest neighbors with known baseline
and the most similar clinical features. When we compare
the predictive performance for only patients with imputed
baseline, the KMBS method shows better performance than
MBS. However, when we consider the entire set of patients,
the model performance is comparable for both methods as the
majority of patients have baseline ratings.

For evaluating LSTM MI12 prediction, we consider three
rating thresholds for occurrence (> 1), mild-severe (> 3), and
moderate-severe (> 5) symptoms. We evaluated performance
using RMSE, AUC, and F1 score metrics and show that LSTM
predictions outperform other models, with ARIMA showing
comparable performance in some cases and with the clinical
regression models underperforming in most cases. The better
performance of LSTM and ARIMA models indicates that the
use of longitudinal PRO is highly predictive of long-term
symptoms.

In conclusion, we have shown that LSTM can accurately
predict late symptoms for oropharyngeal patients. Our ultimate
goal is to embed symptom prediction into a clinical decision
support tool that can be used to quantify the potential risks for
late symptoms and allow physicians to preemptively prescribe
exercises or medication to help patients cope with the symp-
toms or avoid them together improving the long-term QoL of
patients. In future work, we would like to extend this work
to predict time-to-event and account for the gap difference
between collected time points.

ACKNOWLEDGEMENTS

This work was partially supported by NIH award NCI-RO1-
CA258827.

REFERENCES

Kyte D.G. Aiyegbusi O.L. et al. Rivera, S.C. The impact of patient-
reported outcome (pro) data from clinical trials: a systematic review
and critical analysis. Health Qual Life Outcomes, 17(156), 2019.

C. S. Cleeland, T. R. Mendoza, X. S. Wang, et al. Assessing symptom
distress in cancer patients: the M.D. Anderson Symptom Inventory.
Cancer, 89(7):1634—1646, 2000.

Kaitlin M. Christopherson, Alokananda Ghosh, Abdallah Sherif Radwan
Mohamed, et al. Chronic radiation-associated dysphagia in oropha-
ryngeal cancer survivors: Towards age-adjusted dose constraints for
deglutitive muscles. Clin. Transl. Rad. Onc., 18:16-22, September 2019.
A. Wentzel, P. Hanula, T. Luciani, et al. Cohort-based T-SSIM Visual
Computing for Radiation Therapy Prediction and Exploration. IEEE
Trans. Vis. and Comp. Graphics, 26(1):949-959, January 2020.
Andrew Wentzel, Peter Hanula, Lisanne V van Dijk, et al. Precision
toxicity correlates of tumor spatial proximity to organs at risk in cancer
patients receiving intensity-modulated radiotherapy. Radiotherapy and
Oncology, 148:245-251, 2020.

[5

300

(6l

(71

o0

(81

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]
[22]
[23]

[24]

Yaohua Wang, Guadalupe M Canahuate, Lisanne V Van Dijk, Abdallah
S. R. Mohamed, Clifton David Fuller, Xinhua Zhang, and Georgeta-
Elisabeta Marai. Predicting late symptoms of head and neck cancer
treatment using Istm and patient reported outcomes. IProceedings
of the 25th International Database Engineering amp; Applications
Symposium, IDEAS °21, page 273-279, New York, NY, USA, 2021.
Association for Computing Machinery.

H. M. Skerman, P. M. Yates, and D. Battistutta. Multivariate methods
to identify cancer-related symptom clusters. Res. Nursing & Health
32(3):345—360, 2009.

David 1. Rosenthal, Tito R. Mendoza, Clifton D. Fuller, Katherine A.
Hutcheson, X. Shelley Wang, Ehab Y. Hanna, Charles Lu, Adam S.
Garden, William H. Morrison, Charles S. Cleeland, and G. Brandon
Gunn. Patterns of symptom burden during radiotherapy or concurrent
chemoradiotherapy for head and neck cancer: A prospective analysis
using the university of texas md anderson cancer center symptom
inventory-head and neck module. Cancer, 120(13):1975-1984, 2014.
S. J. Coons, S. Eremenco, J. J. Lundy, et al. Capturing Patient-Reported
Outcome (PRO) Data Electronically: The Past, Present, and Promise of
ePRO Measurement in Clinical Trials. The patient, 8(4), 2015.

D. I. Rosenthal, T. R. Mendoza, M. S. Chambers, et al. Measuring head
and neck cancer symptom burden: the development and validation of
the M. D. Anderson symptom inventory, head and neck moduleHead
& neck, 29(10):923—931, 2007.

S. A. Eraj, M. K. Jomaa, C. D. Rock, et al. Long-term patient reported
outcomes following radiation therapy for oropharyngeal cancer: cross-
sectional assessment of a prospective symptom survey in patients>65
years old. Rad. onc., 12(1), 2017.

D. I. Rosenthal, T. R. Mendoza, C. D. Fuller, et al. Patterns of symptom
burden during radiotherapy or concurrent chemoradiotherapy for head
and neck. Cancer, 120(13):1975-1984, 2014.

M. Kamal, M. P. Barrow, J. S. Lewin, et al. Modeling symptom drivers
of oral intake in long-term head and neck cancer survivorsSupportive
care in cancer, 27(4):1405-1415, 2019.

G. Fan, L. Filipczak, and E. Chow. Symptom clusters in cancer patients:
a review of the literature. Current oncology (Toronto, Ont.14(5):173—
-179, 2007.

A. Aktas, D. Walsh, and L. Rybicki. Symptom clusters: myth or reality?
Palliative medicine, 24(4):373—385, 2010.

S. T. Dong, D. S. Costa, P. N. Butow, et al. Symptom clusters
in advanced cancer patients: An empirical comparison of statistical
methods and the impact on quality of life. Journal of pain and symptom
management, 51(1):88—-98, 2016.

Ratnadip Adhikari and R. K. Agrawal. An Introductory Study on Time
Series Modeling and Forecasting. CoRR, abs/1302.6613, 2013.

Steven Elsworth and Stefan Giittel. Time Series Forecasting Using
LSTM Networks: A Symbolic Approach, 2020.

Shruti Kaushik, Abhinav Choudhury, Pankaj Kumar Sheron, et al. Al
in Healthcare: Time-Series Forecasting Using Statistical, Neural, and
Ensemble Architectures. Frontiers in Big Data, 3:4, 2020.

Zizhao Zhang, Yuanpu Xie, Fuyong Xing, et al. MDNet: A Semantically
and Visually Interpretable Medical Image Diagnosis Network CoRR,
abs/1707.02485, 2017.

G. Maragatham and S Devi. LSTM Model for Prediction of Heart Failure
in Big Data. J Med Syst, 111, 2019.

Zachary C. Lipton, David C. Kale, Charles Elkan, et al. Learning to
Diagnose with LSTM Recurrent Neural Networks, 2017.

Shyam Boriah, Varun Chandola, and Vipin Kumar. Similarity Measures
for Categorical Data: A Comparative Evaluation, pages 243-254.
Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-term Memory.
Neural computation, 9:1735-80, 12 1997.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on August 22,2024 at 19:39:29 UTC from IEEE Xplore. Restrictions apply.



