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Abstract—Patient-Reported Outcomes (PRO) are collected di-
rectly from the patients using symptom questionnaires. In the
case of head and neck cancer patients, PRO surveys are recorded
every week during treatment with each patient’s visit to the
clinic and at different follow-up times after the treatment has
concluded. PRO surveys can be very informative regarding the
patient’s status and the effect of treatment on the patient’s
quality of life (QoL). Processing PRO data is challenging for
several reasons. First, missing data is frequent as patients might
skip a question or a questionnaire altogether. Second, PROs
are patient-dependent, a rating of 5 for one patient might be a
rating of 10 for another patient. Finally, most patients experience
severe symptoms during treatment which usually subside over
time. However, for some patients, late toxicities persist negatively
affecting the patient’s QoL. These long-term severe symptoms are
hard to predict and are the focus of this study. In this work, we
model PRO data collected from head and neck cancer patients
treated at the MD Anderson Cancer Center using the MD
Anderson Symptom Inventory (MDASI) questionnaire as time
series. We impute missing values with a combination of K nearest
neighbor (KNN) and Long Short-Term Memory (LSTM) neural
networks, and finally, apply LSTM to predict late symptom
severity 12 months after treatment. We compare performance
against clinical and ARIMA models. We show that the LSTM
model combined with KNN imputation is effective in predicting
late-stage symptom ratings for occurrence and severity under the
AUC and F1 score metrics.

Index Terms—Long Short-Term Memory (LSTM), Patient
Reported Outcomes (PRO), Late Toxicity, Symptom Severity
Prediction, KNN Baseline Imputation

I. INTRODUCTION

In clinical practice, Patient-Reported Outcomes (PRO) are

considered an important complement to capture the patient’s

condition outside of the medical visit so that physicians can

understand more about the patients and improve their QoL.

PRO data have a major impact on clinical decision-making,

and informing clinical practice [1]. In general, PRO data are

collected directly from the patients as survey responses and

often ask the patient to rate different symptoms in terms

of severity over some time period. PRO data is routinely

collected in clinical practice and specific questionnaires have

been created and validated for different diseases and con-

ditions. For head and neck cancer patients, the Head and

Neck module MDASI-HN from the M.D. Anderson Symptom

Inventory (MDASI) [2] questionnaire is a validated and widely

used instrument. The module contains 28 symptom-related

questions, in which, 13 questions are related to the systemic

core symptoms of cancer, 9 are related to local head and neck

symptoms, and the last 6 are related to life general symptoms

associated with daily activities. During and after treatment,

patients repeatedly rate their symptoms on a scale from 0 to

10 to indicate their symptom severity, where 0 stands for no

experience of the symptom and 10 stands for greatest severity.

PRO surveys can be very informative regarding the patient’s

status and the effect of treatment on the patient’s quality of

life (QoL). However, processing PRO data is challenging for
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several reasons. First, missing data is frequent as patients

might skip a question or a questionnaire altogether. Dropping

the patients that are missing any or some of the questionnaire

responses is not a feasible alternative because a significant

portion of the patients would have missing data at one time or

another. Another challenge is that PROs are patient-dependent

and somewhat subjective measures, e.g. a rating of 5 for

one patient might be a rating of 10 for another patient.

Symptoms are also often correlated, co-occurring, or product

of the same underlying cause. For head and neck cancer,

most patients experience severe symptoms during treatment

and ideally, these would subside over time. However, in some

cases, patients continue to experience health and/or Quality-of-

Life (QoL) debilitating symptoms even years after the end of

treatment [3]–[5]. These long-term severe symptoms are hard

to predict and are the focus of this study. We are interested

in developing methods that can predict these moderate-to-

severe long-term symptoms and identify patients at risk so

that interventions can be implemented to minimize the risk

and ultimately improve patients’ QoL.

In this paper, we propose the use of Long Short-Term

Memory (LSTM) neural networks to model the symptom

rating trajectories for PRO data. We model PRO data collected

using MDASI-HN questionnaires as a time series and focus on

training an LSTM model to predict late toxicity at 12 months

after treatment (M12). In our preliminary work [6], we show

that recursively using an LSTM neural network to predict and

impute missing PRO data at different time points is able to

outperform linear interpolation and other imputation methods.

The LSTM model recursively predicts the following time step

using data from the prior time points starting from a baseline

or time 0 at the start of treatment. This formulation makes the

proposed model generalizable to other types of longitudinal

PRO data collected for surveillance or monitoring.

In this work, we make several important improvements to

the LSTM prediction of PRO data. Since the LSTM recursive

imputation needs a starting initial value for the time series

and to prevent the exclusion of patients missing such baseline

or initial symptom rating from the analysis, we evaluate

two baseline imputation methods: mean imputation and KNN

imputation. For KNN, we compute the similarity between

patients using the available clinical variables including AJCC

staging (T, N, and M), tumor location, and treatment. Fur-

thermore, to account for patient variability, we subtract the

baseline score from the subsequent symptom ratings, train the

LSTM over the delta changes from the baseline, and show

that this normalization further improves prediction. Finally,

since symptom cluster research has identified groups of related

symptoms [7], we focus on the symptom cluster that includes

Dry mouth, Mucus, Swallowing, and Taste [8] given the

prevalence of these symptoms after the end of treatment for

head and neck cancer patients. We refer to this cluster as

DMST for the initials of the symptoms involved. We compared

the prediction outcome of the LSTM models against regression

models using clinical data and PRO (ARIMA) and show that

LSTM is an effective way of predicting late symptoms for

head and neck cancer patients.

The rest of this paper is organized as follows. Section II

presents related work. Section III describes the proposed

approach. Section IV presents the experimental results using

MDASI questionnaires. Finally, we conclude in Section V.

II. RELATED WORK

MDASI-HN PRO Data. Patient Reported Outcomes (PRO)

is data collected directly from the patient and it is widely used

to evaluate treatment benefits and measure symptom burden

for the patient [9]. The PRO data used in this project is

the MD Anderson Symptom Inventory (MDASI) Head and

Neck (HN) module. The MDASI-HN [10] is a 28-symptom

questionnaire where patients rate symptoms on a scale from 0

to 10 with 0 being not present and 10 being the worse ever. As

shown in Table I, the 28 symptoms can be divided into three

broad groups: systemic (common to all cancers), local (specific

to head and neck), and life interference. Patients are asked

to fill out MDASI-HN surveys before the start of treatment

(baseline), weekly during treatment, and at their follow-up

visits 6 weeks, 6 months, and 12 months after treatment.

Using MDASI-HN PRO data, several studies focus on

identifying symptom clusters at a single timepoint [8], [11]–

[13]. From these preliminary researches, Dry mouth, Mucus,

Swallowing, and Taste (DMST) are four of the most severe

symptoms. Furthermore, cluster analysis using MDASI-HN

data shows these symptoms have small relative distances

and are highly related [8]. Prior research mainly used two

methods to find symptom clusters, one is factor analysis such

as principal component analysis and the other one is cluster

analysis such as hierarchical agglomerative clustering [7],

[14]–[16]. These studies focus on a single time point analysis,

whereas we model the PRO data as a time series.

Time Series Prediction and Imputation. When comes to

time series prediction, Auto-regressive Integrated Moving Av-

erage (ARIMA) [17] is a commonly used method. The model

combines an Auto-regressive (AR) model which predicts the

variable using a linear combination based on its previous

values and a Moving Average (MA) model which uses the

past prediction error rather than past value in prediction. In

handling the missing values in the data, the ARIMA model

can compute without struggling by skipping them in the update

stage.

More recently, Long Short-Term Memory (LSTM) Recur-

rent Neural Networks have gained more popularity in time

series prediction [18] and healthcare domain [19]. Specific

applications of LSTM in healthcare include mimicking the

pathologist’s decision and other diagnostic applications [20],

[21], classification of sleep patterns in multi-variate time-series

clinical measurements [22], and predicting symptom severity

in the acute and late stages after the treatment [6].

III. PROPOSED APPROACH

In this section, we describe the methodological approach

including data pre-processing and training metrics used in

this work. Figure 1 shows an overview of the proposed
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TABLE I
THE 28 SYMPTOMS IN THE MDASI-HN QUESTIONNAIRE BY TOXICITY

TYPE. SYSTEMIC REFERS TO COMMON CANCER SYMPTOMS, LOCAL TO

MORE HEAD AND NECK SPECIFIC SYMTOMS, AND LIFE GENERAL TO THE

INTERFERENCE RATINGS RELATED TO QUALITY OF LIFE.

Toxicity Symptoms
Systemic fatigue, constipation, nausea, sleep, memory,

appetite, drowsy, vomit, numb
Local pain, mucus, swallow, choke, voice, skin, taste,

mucositis, teeth, shortness of breath (SOB), dry
mouth

Life general general activity, mood, work, relations, walk-
ing, enjoy, distress, sad

methodology and each component is described in detail in

the following subsections.

A. Data

The data contains several clinical features in addition to the

sequential MDASI-HN PRO questionnaires. The clinical data

is mainly categorical data including variables such as sex, tu-

mor location, AJCC staging, T-stage, N-stage, M-stage, perfor-

mance score, HPV status, and treatment. The three numerical

variables correspond to age, height, and weight. Numerical

variables were discretized in order to have a homogeneous

set of features for distance computation as described in the

next section. MDASI-HN PRO questionnaires were repeatedly

administered to patients during treatment (at baseline, start,

and end of treatment including weeks 2-6, 6 weeks, 6 months,

and 12 months after treatment) for a total of 11 time points.

Since our focus is on late-stage symptoms, i.e. symptoms

that affect patients (with moderate to high severity) long

after the end of treatment, we evaluate rating prediction for

symptoms at M12.

B. Preprocessing

We compute the BMI of the patients and grouped them

into 4 categories (underweight, normal, obese, and morbidly

obese). Age is discretized into four groups defined by 25%,

50%, and 75%-tile values. We treat the MDASI-HN-PRO-data

as a time series and extract the ratings for four different symp-

toms: Dry mouth, Mucus, Swallowing, and Taste (DMST).

Prior research has identified these symptoms as a cluster using

MDASI-HN data [8]. We decide to focus on this symptom

cluster because their average severity at the late stage, i.e. at

M12, is moderate to severe, which means they have a long-

term effect on patients. To account for patient variability, we

subtract the baseline rating from the subsequent ratings for

each symptom. The baseline is the rating provided by the

patient before the start of the treatment. After subtraction,

all the patients have their initial rating set at zero and all

subsequent ratings as the delta change from their baseline. The

MDASI-HN PRO data have lots of missing symptom ratings

due to patients’ skipping a question or failing to complete

a questionnaire, loss of follow-up, or any other omissions

during data collection. To prepare the PRO data for LSTM

training, we transform the data into a 3-dimensional array

where the first dimension corresponds to the patients, the

second dimension to the time steps, and the third dimension

to the symptoms. The LSTM can be applied recursively to

impute different time steps, but it needs to start from a known

baseline value. Therefore, we distinguish between the baseline

imputation which is needed before applying the LSTM and the

imputation of subsequent time points by the LSTM model.

C. Baseline Imputation
In order to complete the missing data at baseline, we

consider two different approaches: mean imputation and k-

nearest neighbor (KNN) based imputation.
Mean Imputation. In this approach, we simply take the

average of the existing ratings of the patients for each symptom

at baseline or the first time point, i.e., week 0, and impute all

missing values with the calculated average.
KNN Based Imputation. With the assumption that pa-

tients with similar demographics, disease stage, tumor loca-

tion, and treatment would have similar baselines, we decided

to compute the similarity between patients using these clinical

variables. We apply KNN to the clinical data of each patient

and compute the average baseline among the most similar

patients to fill the missing baseline rating. The hope is that the

imputed baseline will be more diverse than using the global

average and this would translate into a better prediction of late

symptom ratings.
While KNN is a non-parametric approach, we still need to

define several important parameters: 1) which features to use

for computing KNN imputation? 2) Which distance metric

would be more suitable for these data?, and 3) What is a

proper K for the K nearest neighbor?
As a result, we developed the following KNN imputation

methodology, as it is shown in the KNN imputation pipeline

depicted in Figure 1.
To answer the first question, we applied a feature selec-

tion algorithm (i.e. ridge regression) to identify the relevant

features from the 13 clinical features available in the dataset.

The distribution of clinical features is shown in Table II. As

the outcome for the regression model, we created a binary

outcome (0, 1) to indicate whether the patient experienced

any of the selected DMST symptoms at baseline. Once the

relevant features were identified, we then apply KNN over

this reduced set. Since all the features are categorical, we

consider Overlap and Goodall3 [23] as potential similarity

metrics. Overlap similarity between two patients X and Y is

the number of attributes (features) where the two patients fall

into the same category and is defined by:

Overlap(X, Y) =

d∑
i=1

{
1 ifXi = Yi

0 otherwise
(1)

d is the number of attributes used in the similarity.
Goodall3 similarity applies a penalty to the attributes where

the two patients match using the sample probability of the

attribute value and it is defined as:

Goodall3(X, Y) =
d∑

i=1

{
1− p2i (Xi) if Xi = Yi

0 otherwise
(2)
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Fig. 1. Overview of the proposed methodology. The top row shows the overall processing pipeline and the bottom row further details the KNN imputation
processing pipeline.

TABLE II
DATA DEMOGRAPHICS FOR THE CLINICAL FEATURES AVAILABLE PRIOR

TO TREATMENT. A SET OF SELECTED FEATURES WERE USED FOR THE

KNN BASELINE IMPUTATION.

Feature Value(s) Percentage
Sex Male / Female 88.21% / 13.36%
AJCC 7th / 8th 56.74% / 43.26%
T numeric* 0 6.68%

1 28.92%
2 39.85%
3 13.12%
4 11.42%

N numeric* 0 12.64%
1 36.94%
2 48.24%
3 2.19%

Location BOT 43.38%
Tonsil 42.89%
Others 13.73%

Treatment* Induction RT 6.08%
CC 71.69%
no chemo 5.59%
Induction + CC 8.14%

BMI Underweight 10.45%
Normal 13.37%
Obese 36.94%
Morbid Obese 37.67%

Perform. Score* 0 66.71%
1 20.17%
2 1.94%
3 0.61%
4 0%

Enrollment 1* Yes / No 0.85% / 99.15%
Enrollment 2* Yes / No 1.58% / 98.42%
Enrollment 3 Yes / No 2.55% / 97.45%
HPV Status Yes / No 72.42% / 27.58%
Age Median, (25% - 75%) 60, (54 - 67)
* indicates the selected features before the KNN imputation.

where d is the number of attributes, fi(x) is the frequency of

value x in attribute i, and p2i (x) =
fi(x)(fi(x)−1)

N(N−1) , where N
is the total number of patients.

When we compute both the Overlap and the Goodall3

similarities, patients with a similarity score less than 50% are

dropped from the KNN set to minimize the effect of potential

outliers.

To evaluate and compare the effectiveness of the two

similarity metrics we consider different numbers of nearest

neighbors (K) and calculate the RMSE between the actual

patients’ rating per symptom and the KNN predicted baseline

per symptom. To minimize the bias of the baseline, we

calculated the mean of the patients who have a baseline per

symptom and subtracted it from the baseline. Therefore, the

KNN is predicting the delta of the baseline, and the mean is

later added back to the KNN prediction when compared to the

actual patients’ rating.

After deciding a suitable value of K and which similarity

metric to use for the KNN model, we split the patients into

two groups based on the absence of baseline symptom ratings,

apply the KNN to each patient with a missing baseline, and

take the average of the similar patients that the KNN identified.

In this way, all the missing baselines were imputed.

D. Long Short-Term Memory (LSTM)

We picked LSTM neural network as the predictive model

because it has proven effective in time series prediction [24].

Unlike traditional neural networks, LSTM is a type of recur-

rent neural network (RNN) that has a 3-gate feedback structure

to memorize the important part of the input data and forget

the unimportant, in other words, LSTM stores the memory of

past events and use it to predict the future events. Furthermore,

LSTM has the advantage of a diversity of inputs and outputs,

which means, in our case, LSTM can take multiple patients’

ratings over time on multiple symptoms as inputs and predict

their responses to multiple symptoms in the late stage.

295

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on August 22,2024 at 19:39:29 UTC from IEEE Xplore.  Restrictions apply. 



Since patients respond to the survey providing their symp-

tom severity ratings periodically during and after treatment,

we can learn from their responses over a past time period

and predict the responses in a future time period so that rec-

ommendations can be made proactively to minimize patients’

symptom burden thus improving their quality of life. We

applied Long short-term memory (LSTM) neural networks in

two ways during the training process. By recursively predicting

the symptom ratings at each time point, we are able to impute

the missing data. Using the complete data, we then predict the

symptom burden at M12.

LSTM Imputation. After the baselines have been im-

puted, we then trained our LSTM model on the complete

baseline data and let it predict the missing values at week 1.

The predicted values are used to fill in the missing values for

week 1. Subsequently, the same process is applied to predict

the following weeks. This recursive process is repeated until

all the missing ratings before M12 are fulfilled.

Late Symptom Prediction. We train the LSTM on all the

time points before M12 to predict M12 symptom severity. All

data prior to the prediction time point have been imputed. To

account for patient variability in their ratings, we subtracted

the baseline rating from all subsequent time steps including

M12 ratings. The LSTM model predicts the delta of each

patient and after prediction, the baseline is added back to the

predicted rating.

Two approaches are evaluated for late symptom prediction

depending on which method was used for baseline imputation.

When the mean imputation is used, we refer to this approach as

Mean Baseline Subtracted (MBS). When KNN imputation is

used, we refer to this approach as KNN-based Mean Baseline
Subtracted (KMBS).

E. Evaluation

We evaluate the 12-month symptom rating predictions

(M12) using 5-cross validation and compute RMSE, AUC,

and F1 scores between the predicted ratings and the actual

ratings provided by the patients. We compare LSTM prediction

performance with two models. The first one, referred to as the

Clinical model, uses a logistic regression on all the clinical

features and baseline symptom ratings to predict 12-month

after-treatment symptom ratings. The second method is the

auto-regressive integrated moving average (ARIMA) statistic

model. ARIMA, as mentioned above, is able to handle the

missing values and is used to predict 12-month after-treatment

symptom ratings using all prior time points available.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup and

data statistics. Then we present the results for the KNN base-

line imputation evaluation, compare the LSTM performance

using both imputation methods for DMST symptoms, and

finally compare the predictive performance of LSTM against

ARIMA and a clinical regression model.

A. Experimental setup

For the KNN feature selection, a ridge regression model

was trained using a 75/25 split and a grid search for the

parameter α = 10i with i ∈ [−2, 6] with 0.5 increments. The

minimum validation error was found for α = 1, and features

were selected with threshold ≥ 0.01. The selected features

were T numeric, N numeric, Treatment, Performance score,

Enrollment 1, and Enrollment 2 (highlighted in Table II).

For the LSTM imputation and prediction, we used Mean

Square Error (MSE) as the loss function and Stochastic

Gradient Descent (SGD) as the optimizer with a learning rate

of 0.215. Using a grid search for parameter tuning considering

hidden layers between 1-5 and the number of hidden dimen-

sions between 1-10, we set the number of hidden layers to 1

and the number of hidden dimensions to 10. We also used early

stopping criteria when training the LSTM model to prevent

over-fitting. All the networks were run on NVIDIA GeForce

RTX 2070 GPU with 8GB of memory. The LSTM model

is built based on the open-source TensorFlow framework.

Numpy, Pandas, and Scikit-Learn libraries were also used.

As for the ARIMA model, we used the pre-built first-order

autoregressive ARIMA in the statsmodels (ver. 0.13.0) library

by setting the order to (1, 0, 0).

B. Data statistic

The MDASI-HN module contains a considerable number

of patients with missing ratings at each time point. Figure 2

shows the percentage of patients with missing symptom ratings

for each time point before month 12 (< M12). The solid

line is the percentage for all patients while the dashed line

corresponds to patients with known M12 ratings, i.e. the subset

of patients used in this work. As can be seen, both sets show

similar distribution with missing data around 20% at baseline,

raising to 42-56% during treatment. In fact, there are only 26

out of 823 patients who have all questionnaires fully completed

for all time points. Therefore, simply dropping the patients

with missing ratings would dramatically reduce the size of the

sample. As a result, data imputation for the missing ratings is

needed.

C. KNN Baseline Imputation

We compare the performance of the baseline imputation for

KNN using Overlap and Goodall3 distance metrics over the

selected features for different values of K. Figure 3 shows

the RMSE between the patients’ original baselines and the

patients’ KNN predicted baselines. We also computed the nor-

malized KNN predicted baselines (Z-score) and obtained the

RMSE between the original baselines and the denormalized

KNN predicted baselines. As it is shown in Figure 3, the

KNN with the Overlap metric shows a lower RMSE than

the KNN with the Goodall3 metric for all the five values

of K evaluated between 1 and 20. The RMSE scores with

the ”Norm” baseline are all lower than the RMSE scores

with the ”Original” baseline. These results showed the use of

Z-score normalization of patients’ scores and computing the

KNN prediction as the average of the scaled values improved
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Fig. 2. Average percentage of missing data for DMST symptoms at each
time point before M12. The solid line shows the average percentage for all
the patients, whereas the dashed line shows the percentage of missing data
only for patients with known M12 ratings.

the RMSE by smoothing the outliers. Moreover, the similarity

between each patient and their KNN set was always above

the 50% threshold. For the 158 patients with missing baseline

rating for dry mouth, 85% had a perfectly matched set of

nearest neighbors and from the remaining 15% (25 patients),

only 1 had some neighbors at 50% similarity.

Since the RMSE lines shown in Figure 3 have a hinge at K

= 5 and decrease slowly after, both K=5 and K=10 are good

candidates for KNN baseline imputation. For the remaining

experiments, the KNN imputation method reported is using

the Overlap metric with K = 10 and Z-score normalization.

D. LSTM Evaluation

Table III shows the patient distribution for DMST symptoms

and the three thresholds for symptom ratings used to evaluate

the LSTM performance: occurrence (≥ 1), mild-severe (≥ 3),

and moderate-severe (≥ 5). The distribution is shown for

two patient groups. The M12 group corresponds to the set of

patients with a known M12 symptom rating whereas the M12IB

group corresponds to the patients with known M12 ratings that

needed an imputed baseline. The M12IB group is a subset of

the M12 group and corresponds to the patients affected by

the baseline imputation method. This set is used to evaluate

more clearly, the effect of baseline rating imputation. As can

be seen in the Table, among DMST symptoms, Dry mouth is

the most prevalent symptom with 82% of patients having the

symptom and 28% feeling it moderately-severely at M12. The

other symptoms (Mucus, Swallowing, and Taste), on the other

hand, occur in the majority of the patients (55% - 70%) but

only a smaller percentage (10% - 16%) of patients experience

moderate-severe occurrences. While the M12IB group for the

DMST symptoms is only around 100 patients, the distributions

among the three thresholds are still similar to those for the

entire cohort.

Symptom Rating Normalization. To evaluate the effect

of baseline imputation and patient rating normalization, we

first evaluate LSTM performance over the M12IB group.

Figure 4 shows the performance of the LSTM models when the

symptoms ratings are normalized by subtracting the baseline

from all subsequent ratings (MBS and KMBS) or not (MB and

KMB). The figure shows the F1 scores for symptom occur-

rence (rating ≥ 1). As can be seen, there is a performance im-

provement when the symptoms ratings are normalized (MB vs.

MBS and KMB vs. KMBS). Subtracting the baseline ratings

increased F1 score performance between [3.85%, 30.36%] for

DMST symptoms. This normalization makes all the patients’

baselines the same, and the LSTM is effectively trained to

predict delta from baseline. Given the better performance of

this normalization for all symptoms, moving forward we only

compare the MBS and KMBS LSTM approaches to other

methods.

LSTM Prediction with Imputed Baseline. Figure 6

shows the performance comparison for M12 DMST symptom

predictions in terms of RMSE for the M12IB patients. We

compare the performance of the LSTM models (MBS and

KMBS) against ARIMA and the clinical regression models.

As can be seen, for Mucus, Swallowing, and Taste symptoms,

the RMSEs of the clinical model are the highest, i.e. perform

the worst, ranging between [3.5, 4.3], and the ARIMA model

achieves the highest RMSE of 2.8 for Dry mouth symptom.

In contrast, LSTM models perform considerably better with

RMSE being 7.5% - 59% lower than ARIMA and 22% -

165% lower than the clinical model predictions across DMST

symptoms.

Figure 5 shows the performance comparison for M12 oc-

currence predictions over the M12IB group in terms of F1

scores. As can be seen, the MBS and KMBS-based LSTM

achieve higher F1 scores than those of the clinical and the

ARIMA model for all DMST symptoms. The performance is

closest between the models for Dry mouth prediction, with

the clinical model performing the lowest at almost 80% and

the KMBS-LSTM model achieving the highest F1 score at

87.5%. The lowest performing symptom for the clinical and

ARIMA models is Mucus, where the LSTM approach still

achieves F1 score ≥ 0.7. Overall, the KMBS-LSTM approach

achieves the highest F1 score for all the symptoms except for

Swallowing where the MBS-LSTM approach shows the best

relative performance between the compared models.

Figure 7 shows the average AUC performance for the

DMST symptoms at two severity thresholds (≥ 1 and ≥ 3). As

can be seen, the AUCs of the clinical model are significantly

lower than the AUCs of the ARIMA model and LSTM models,

ranging between [0.39, 0.66]. Both the ARIMA model and

LSTM models show competitive performance with values

ranging between [0.73, 0.83]. The LSTM models show a

higher average AUC than the ARIMA models. At thresholds

1 and 3, the AUCs of the ARIMA model range between

[0.73, 0.79] and [0.77, 0.8] whereas the AUCs of the LSTM

models range between [0.76, 0.83] and [0.79, 0.83].
LSTM Prediction for the Entire Cohort. Figure 8 shows

the performance comparison for the M12 rating prediction

of the DMST symptoms for the entire cohort (M12 group).

The figure shows F1 scores for the Clinical, ARIMA, and

LSTM models (MBS and KMBS) at each of the three different
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Fig. 3. KNN Baseline Imputation Comparison between Overlap metric and Goodall3 Metric as a function of K. Original means the RMSE was computed
between original baselines and KNN-predicted baselines; Norm means the RMSE was computed between the original baselines and the normalized (and
later denormalized) KNN-predicted baselines. Overall, the Norm KNN-predicted baselines have lower RMSE than the Original KNN-predicted baselines.

TABLE III
PATIENTS’ RATING DISTRIBUTION FOR DMST SYMPTOMS 12 MONTHS AFTER TREATMENT (M12) AND FOR PATIENTS WITH KNOWN M12 BUT MISSING

BASELINE RATING (M12IB). M12IB IS THE SET OF PATIENTS FOR WHICH BASELINE RATINGS NEED TO BE IMPUTED.

Dry mouth Mucus Swallowing Taste
M12 M12IB M12 M12IB M12 M12IB M12 M12IB

# Patients 464 96 463 98 461 100 459 97
Symptom Threshold Cnt % Cnt % Cnt % Cnt % Cnt % Cnt % Cnt % Cnt %

Occurrence (Rating ≥ 1) 380 82 78 81 248 54 55 56 300 65 66 66 316 69 69 71
Mild-Severe (Rating ≥ 3) 223 48 52 54 115 25 23 23 191 41 30 30 172 37 39 40

Moderate-Severe (Rating ≥ 5) 129 28 23 24 46 10 7 7 46 10 9 9 75 16 20 21

Fig. 4. Evaluating the impact of baseline subtraction on the prediction
of DMST symptom occurrence. The first two bars in each column (blue
pair) correspond to the mean imputation and the last two bars (orange
pair) correspond to the KNN imputation. The baseline subtraction has a
positive effect on the performance metric (F1 score) for both mean and KNN-
imputation approaches for all symptoms.

Fig. 5. Performance comparison for the clinical model, ARIMA, and LSTM
methods on the DMST symptoms occurrence at M12 for the baseline imputed
patients (M12IB). MBS stands for the mean baseline subtracted approach, and
KMBS stands for the KNN-based mean baseline subtracted approach.
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Fig. 6. RMSE for the prediction of DMST symptoms in the M12IB group.
Overall, clinical and ARIMA approaches have higher RMSE than LSTM-
based (MBS and KMBS) approaches.

Fig. 7. AUC for the prediction of DMST symptoms in the M12IB group. The
clinical approach has overall lower AUC performance than ARIMA, MBS,
and KMBS approaches.

symptom severity thresholds. As can be seen, for all the

symptoms, at each threshold, the LSTM prediction has either

a similar or better performance than the clinical and ARIMA

models. The performance difference between mean-baseline

imputation (MBS) and KNN imputation (KMBS) imputation

is negligible between the two. The main reason is that no

imputation is needed for the large majority of patients diluting

the performance impact for the baseline imputation. In any

case, baseline imputation does not seem to degrade the per-

formance of the LSTM. The AUC scores over the entire cohort

had similar distributions as the F1 scores and are omitted for

brevity. It is worth noting that the LSTM still showed better

performance in terms of AUC when compared to the other

models, ranging between [0.75, 0.89]. The clinical models had

AUC around 0.5 and ARIMA between [0.72, 0.84].

V. CONCLUSION

In this work, we used the MDASI-HN PRO data and applied

LSTM neural network for symptom rating imputation and

late-stage (M12) symptom rating prediction. A significant

challenge for these patient-reported outcome (PRO) data is

the subjectivity or patient variability when responding to their

symptom severity. Some patients might be more sensitive to

(a) Symptom Occurrence (Rating ≥ 1)

(b) Symptom Occurrence (Rating ≥ 3)

(c) Symptom Occurrence (Rating ≥ 5)

Fig. 8. Prediction performance on the DMST symptoms at M12 for the three
severity thresholds (M12 data). Overall, MBS and KMBS approaches show
better performance than Clinical and ARIMA approaches.

some symptoms while others might dismiss them or not even

notice them. To account for this subjectivity we subtract the

baseline symptom rating from subsequent ratings effectively

making all patients have the same baseline and showing

performance improvements over raw rating prediction.

For patients with missing baseline ratings, we evaluated two

different baseline imputation approaches. The first approach,

MBS, simply computed the average based on the baseline-

existing patients, while the second approach, KMBS, is a KNN

imputation method that incorporates clinical information into

the baseline imputation by computing each patient’s baseline
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from the average of K nearest neighbors with known baseline

and the most similar clinical features. When we compare

the predictive performance for only patients with imputed

baseline, the KMBS method shows better performance than

MBS. However, when we consider the entire set of patients,

the model performance is comparable for both methods as the

majority of patients have baseline ratings.

For evaluating LSTM M12 prediction, we consider three

rating thresholds for occurrence (≥ 1), mild-severe (≥ 3), and

moderate-severe (≥ 5) symptoms. We evaluated performance

using RMSE, AUC, and F1 score metrics and show that LSTM

predictions outperform other models, with ARIMA showing

comparable performance in some cases and with the clinical

regression models underperforming in most cases. The better

performance of LSTM and ARIMA models indicates that the

use of longitudinal PRO is highly predictive of long-term

symptoms.

In conclusion, we have shown that LSTM can accurately

predict late symptoms for oropharyngeal patients. Our ultimate

goal is to embed symptom prediction into a clinical decision

support tool that can be used to quantify the potential risks for

late symptoms and allow physicians to preemptively prescribe

exercises or medication to help patients cope with the symp-

toms or avoid them together improving the long-term QoL of

patients. In future work, we would like to extend this work

to predict time-to-event and account for the gap difference

between collected time points.
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